EP3827200B1 - Feed water control for forced throughput by-product steam generator - Google Patents

Feed water control for forced throughput by-product steam generator Download PDF

Info

Publication number
EP3827200B1
EP3827200B1 EP19783975.6A EP19783975A EP3827200B1 EP 3827200 B1 EP3827200 B1 EP 3827200B1 EP 19783975 A EP19783975 A EP 19783975A EP 3827200 B1 EP3827200 B1 EP 3827200B1
Authority
EP
European Patent Office
Prior art keywords
evaporator
flow
heater
heating surfaces
steam generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19783975.6A
Other languages
German (de)
French (fr)
Other versions
EP3827200A1 (en
Inventor
Jan BRÜCKNER
Tobias Schulze
Frank Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens Energy Global GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Global GmbH and Co KG filed Critical Siemens Energy Global GmbH and Co KG
Publication of EP3827200A1 publication Critical patent/EP3827200A1/en
Application granted granted Critical
Publication of EP3827200B1 publication Critical patent/EP3827200B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/10Control systems for steam boilers for steam boilers of forced-flow type of once-through type
    • F22B35/12Control systems for steam boilers for steam boilers of forced-flow type of once-through type operating at critical or supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/067Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes operating at critical or supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D5/00Controlling water feed or water level; Automatic water feeding or water-level regulators
    • F22D5/26Automatic feed-control systems
    • F22D5/30Automatic feed-control systems responsive to both water level and amount of steam withdrawn or steam pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D5/00Controlling water feed or water level; Automatic water feeding or water-level regulators
    • F22D5/26Automatic feed-control systems
    • F22D5/34Applications of valves

Definitions

  • the invention relates to a method for operating a once-through steam generator designed as a heat recovery steam generator. It also relates to a once-through steam generator for carrying out the process.
  • the feedwater control concept for Benson evaporators is essentially based on the calculation of a pilot control signal for the feedwater mass flow using measured process variables.
  • a pre-control signal is typically calculated from known reference values or disturbance variables of the control loop or changes thereto and finally corrected multiplicatively with the output signal of the controller. It anticipates the reaction of the controller to a setpoint change or a disturbance variable and increases the dynamics of the controller so that the desired overheating at the evaporator outlet (setpoint) is set as well as possible in all conceivable phases of the process.
  • a feed water control for Benson heat recovery steam generators is for example in EP 2 212 618 B1 disclosed.
  • a sufficiently reliable predictive mass flow control that can also be used for steam generators switched as waste heat boilers should be largely adapted to the special features of the waste heat boiler.
  • the firing capacity is not a suitable parameter that allows a sufficiently reliable conclusion to be drawn about the heat flow balance on which it is based.
  • the EP 2 297 518 B1 further discloses that characteristic correction values are taken into account for the time derivative of the enthalpy at the inlet of one or more of the evaporator heating surfaces.
  • the DE 10 2010 040 210 A1 also a method in which a correction value characteristic of the time derivative of the enthalpy, the temperature or the density of the flow medium at the inlet of one or more of the heating surfaces is taken into account for the creation of the set value for the feedwater mass flow.
  • the U.S. 2014/034044 A1 claims not only a solar thermal steam generator itself, but also a method for operating this solar thermal steam generator, in which the setting of the feed water mass flow is controlled predictively.
  • a correction value is also used here, by means of which thermal storage effects of stored or withdrawn thermal energy are corrected.
  • DE 10 2011 004 263 A1 a method for operating a solar-heated heat recovery steam generator, in which a device for adjusting the feedwater mass flow is supplied with a target value for the feedwater mass flow, a characteristic correction value being taken into account, by means of which thermal storage effects of thermal energy stored or withdrawn in one or more of the heating surfaces are corrected .
  • the object of the invention is therefore to provide a method for operating a once-through steam generator designed as a waste-heat steam generator, in which improved feedwater control leads to stable operating behavior of the plant. Furthermore, a once-through steam generator that is particularly suitable for carrying out the method is to be specified.
  • the invention is defined by the features of claim 1 and solves the task of a method by providing that in a once-through steam generator designed as a heat recovery steam generator with a preheater, comprising a number of preheater heating surfaces, and with an evaporator, comprising a number of the Preheater heating surfaces downstream from the evaporator heating surfaces on the flow medium side, in which a setpoint value for the feedwater mass flow is fed to a device for adjusting a feedwater mass flow, with a waste heat flow transferred to a fluid in the evaporator heating surfaces being determined when the setpoint for the feedwater mass flow is generated as well as mass storage and energy storage in the fluid in the evaporator heating surfaces during transient system operation, a temporal behavior of the mass storage in the evaporator is coupled to a temporal behavior of a mass storage in the preheater, with scaling using a ratio of the density changes in the evaporator and in the preheater.
  • the storage terms for mass storage and energy storage are advantageously determined from current measured values. This enables a particularly reliable evaluation of the heat flow balance and thus the determination of a particularly precisely precalculated desired feed water value.
  • the current measured values are expediently pressures and temperatures at the preheater inlet, at the preheater outlet or evaporator inlet and at the evaporator outlet.
  • boiling enthalpy and saturation enthalpy are determined via at least one pressure measurement at the evaporator inlet or at the evaporator outlet.
  • the correction values for mass storage and energy storage for determining the setpoint for the feedwater mass flow are advantageously determined taking into account the time derivatives of the boiling and saturation enthalpies in the evaporator and a density of the flow medium in the preheater.
  • an average fluid density in the preheater can be defined and calculated in particular by suitable measurements of temperature and pressure at the inlet and outlet of the respective preheater, a linear density profile being expediently used as a basis. This can be used to compensate for mass memory effects that occur with transient processes. If, for example, the heat supply to the evaporator heating surfaces decreases due to a load change, fluid is temporarily stored there. If the flow rate of the feedwater pump were constant, the mass flow would drop when the heating surface exited. This can now be compensated for by temporarily increasing the feedwater mass flow.
  • these temporally variable processes or temporal derivatives are advantageously determined via a first and a second differentiating element, preferably DT1 elements, to which parameters such as temperature and pressure are fed at suitable measuring points on the input side.
  • the first differentiating element which describes the change in density over time in the preheater for estimating the mass storage
  • an amplification factor that corresponds to the total volume of the flow medium in the evaporator heating surfaces.
  • the correction signals generated with the invention for the feedwater mass flow can represent the effects of mass and energy storage in a particularly advantageous manner if suitable amplifications and time constants are selected for the respective DT-1 element.
  • the first differentiating element is subjected to a time constant corresponding essentially to half the flow time of the flow medium through the evaporator.
  • the second differentiating element for estimating the energy storage is subjected to a time constant of between 5 s and 40 s.
  • the stated object is achieved by a once-through steam generator according to claim 11 with a number of evaporator heating surfaces and a number of preheater heating surfaces connected upstream on the flow medium side and with a device for adjusting the feedwater mass flow, which can be guided using a target value for the feedwater mass flow, the target value being designed using the inventive method.
  • the correction of the pilot control signal by the controller can be noticeably reduced and the controller can be parameterized with a lower gain.
  • the problem described above of undesired residual process fluctuations of a significant magnitude can thus be eliminated.
  • the operating behavior of the system is not negatively influenced.
  • the figure 1 shows schematically the change in the algorithm resulting from the invention for calculating the desired value for the feedwater mass flow ⁇ FW .
  • the part of the algorithm relevant to the invention is shown within the dashed border and the prior art outside.
  • the setpoint for the feedwater mass flow ⁇ FW is therefore made up of the feedwater mass flow for the evaporator ⁇ Ev,in and the mass flow ⁇ S , E stored or withdrawn in the preheater, corrected with a factor f Ctrl .
  • the feedwater mass flow for the evaporator ⁇ Ev in results from the quotient of the heat flow Q ⁇ Ev , fl transferred from the exhaust gas to the fluid in the evaporator and the setpoint for the enthalpy change in the evaporator ⁇ h Ev, set.
  • the heat flow Q ⁇ Ev,fl transferred to the fluid in the evaporator results from the heat flow in the exhaust gas Q ⁇ EG minus the heat storage in the wall material of the heating surface tubes Q ⁇ S , W .
  • the term for the heat flow transferred to the fluid in the evaporator is supplemented and corrected by two further terms.
  • the first correction concerns the mass storage effect in the evaporator
  • the second correction concerns the energy storage effect in the evaporator.
  • the mass storage effect is in the heat flows figure 1 through the product dm possibly German (mass storage) and h Ev , out , set (enthalpy at the outlet of the evaporator). you possibly German stands for the energy storage effect.
  • these values are suitably approximated so that they can be determined from measured process variables.
  • figure 2 shows these measured variables or the measuring points in the once-through heat recovery steam generator and their processing.
  • the once-through heat recovery steam generator according to figure 2 includes a preheater 1, also known as an economizer, for as Feed water provided for the flow medium, with a number of preheater heating surfaces 2, and an evaporator 3 with a number of evaporator heating surfaces 4 downstream of the preheater heating surfaces 2 on the flow medium side.
  • the evaporator 3 is followed by a superheater 12 with corresponding superheater heating surfaces 13.
  • the heating surfaces are located in a gas flue, not shown in detail , Which is acted upon by the exhaust gas of an associated gas turbine system.
  • the once-through steam generator is designed for a controlled application of feed water.
  • a feedwater pump 31 is followed by a throttle valve 33 controlled by a servomotor 32, so that the feedwater quantity conveyed by the feedwater pump 31 in the direction of the preheater 1 or the feedwater mass flow can be adjusted by suitably controlling the throttle valve 33.
  • a measuring device 34 for determining the feedwater mass flow through the feedwater line 35 is connected downstream of the throttle valve 33 in order to determine a current characteristic value for the feedwater mass flow supplied.
  • the servomotor 32 is actuated via a control element 36 which is acted upon on the input side by a setpoint value for the feedwater mass flow ⁇ FW supplied via a data line 37 and by the current actual value of the feedwater mass flow determined by the measuring device 34 .
  • a correction requirement is transmitted to the controller 36 by forming the difference between these two signals, so that if the actual value deviates from the desired value, the throttle valve 33 is corrected accordingly via the activation of the motor 32 .
  • the data line 37 is connected on the input side to a feedwater flow control 38 designed to specify the setpoint for the feedwater mass flow ⁇ FW .
  • a feedwater flow control 38 designed to specify the setpoint for the feedwater mass flow ⁇ FW .
  • This is for it designed to determine the target value for the feedwater mass flow ⁇ FW based on a heat flow balance in the evaporator heating surfaces 4, the target value for the feedwater mass flow ⁇ FW being determined in that a waste heat flow transferred to a fluid in the evaporator heating surfaces 4 is determined and also mass storage and energy storage in the fluid in the evaporator heating surfaces 4 are taken into account.
  • the figure 2 in the feedwater flow control 38 only the elements that are relevant for the correction of the feedwater mass flow setpoint ⁇ FW according to the invention. The part known from the prior art is not shown.
  • the measured values for determining a setpoint for the feedwater mass flow ⁇ FW are pressure and temperature values and the measuring points are in the areas of preheater inlet 5, preheater outlet 6 or evaporator inlet 7 and evaporator outlet 8.
  • the measured values determined are processed in function elements 14, 15, 16, 17 and 18.
  • the density of the fluid at various locations on the heating surfaces of preheater 1 and evaporator 3 is determined from the measured values for pressure and temperature.
  • the fourth and fifth function elements 17 and 18 deliver the boiling and saturation enthalpy from measured pressure values.
  • the storage term for mass storage dm possibly German is approximated by first forming an average value from the densities determined at the preheater inlet 5 and at the preheater outlet 6 via a first adder element 19 and a first multiplier element 20, which is then further processed in the first differentiator element 9 with a correspondingly selected time constant and with a value corresponding to the total volume V Ev of the flow medium in the evaporator heating surfaces 4 corresponding Amplification factor in the second multiplier 21 is applied.
  • the storage term for energy storage you possibly German is approximated in that an average value is formed from the determined enthalpies using the second adder 26 and the fourth multiplier 27 . This average represents a good assumption for the specific enthalpy of the fluid in evaporator 3.
  • the storage term for energy storage you possibly German is now determined by the sum of two terms.
  • the first term is determined by further processing the specific enthalpy of the fluid in the evaporator 3 in the second differentiating element 10 with a correspondingly selected time constant and with a mean value of the fluid masses M Ev in the evaporator at maximum and minimum load in the fifth multiplier 28 is applied. For the sake of simplicity, this mean value is regarded as a value which is constant over time.
  • the second term is determined by comparing the specific enthalpy of the fluid in the evaporator 3 with the storage term for mass storage dm possibly German is multiplied. This takes place in the sixth multiplication element 29.
  • the corresponding algorithm is to be implemented in the function plans of the feedwater control and thus in the power plant automation.

Description

Die Erfindung betrifft ein Verfahren zum Betreiben eines als Abhitzedampferzeuger ausgebildeten Durchlaufdampferzeugers. Sie bezieht sich weiterhin auf einen Zwangdurchlaufdampferzeuger zur Durchführung des Verfahrens.The invention relates to a method for operating a once-through steam generator designed as a heat recovery steam generator. It also relates to a once-through steam generator for carrying out the process.

Das Speisewasserregelungskonzept für Benson-Verdampfer basiert im Wesentlichen auf der Berechnung eines Vorsteuersignals für den Speisewassermassenstrom anhand gemessener Prozessgrößen. Ein solches Vorsteuersignal wird typischerweise aus bekannten Sollwerten oder Störgrößen des Regelkreises bzw. deren Änderungen berechnet und final mit dem Ausgangssignal des Reglers multiplikativ korrigiert. Es nimmt die Reaktion des Reglers auf eine Sollwertänderung oder eine Störgröße vorweg und erhöht die Dynamik des Reglers, so dass die gewünschte Überhitzung am Verdampferaustritt (Sollwert) in allen denkbaren Phasen des Prozesses möglichst gut eingestellt wird. Bei der Erstanwendung eines Benson-Verdampfers in einem Abhitzedampferzeuger vertikaler Bauart hat sich nun gezeigt, dass besagter Reglereingriff designbedingt deutlich stärker ausfallen muss als bei der bekannten horizontalen Bauweise. Allerdings erhöht sich dadurch auch die Schwingungsfähigkeit des Regelkreises. Dies führt dazu, dass eine unzureichende Stellgenauigkeit der Speisewasserregelventile (z. B. infolge geringer Hardwarequalität) noch zusätzlich an Bedeutung gewinnt. So lassen sich im Extremfall unerwünschte Prozessrestschwankungen von signifikanter Größenordnung bei sonst stationärem Anlagenbetrieb beobachten.The feedwater control concept for Benson evaporators is essentially based on the calculation of a pilot control signal for the feedwater mass flow using measured process variables. Such a pre-control signal is typically calculated from known reference values or disturbance variables of the control loop or changes thereto and finally corrected multiplicatively with the output signal of the controller. It anticipates the reaction of the controller to a setpoint change or a disturbance variable and increases the dynamics of the controller so that the desired overheating at the evaporator outlet (setpoint) is set as well as possible in all conceivable phases of the process. When a Benson evaporator was used for the first time in a heat recovery steam generator of vertical design, it has now been shown that, due to the design, said controller intervention must be significantly stronger than in the known horizontal design. However, this also increases the ability of the control loop to oscillate. As a result, insufficient positioning accuracy of the feedwater control valves (e.g. due to poor hardware quality) is becoming even more important. In extreme cases, undesired residual process fluctuations of a significant magnitude can be observed in otherwise stationary plant operation.

Eine Speisewasserregelung für Benson-Abhitzedampferzeuger ist beispielsweise in EP 2 212 618 B1 offenbart. Dort geht man davon aus, dass eine auch für als Abhitzekessel geschaltete Dampferzeuger nutzbare, ausreichend zuverlässige prädiktive Massenstromregelung weitgehend an die Besonderheiten des Abhitzekessels angepasst werden sollte. Dabei sollte insbesondere berücksichtigt werden, dass anders als bei gefeuerten Kesseln in diesem Fall die Feuerungsleistung kein geeigneter Parameter ist, der einen ausreichend zuverlässigen Rückschluss auf die zugrunde liegende Wärmestrombilanz zulässt. Insbesondere sollte dabei berücksichtigt werden, dass bei einer für Abhitzekessel äquivalenten Größe, nämlich der aktuellen Gasturbinenleistung oder mit dieser korrelierenden Parameter, noch weitere, gasturbineninterne Parameter hinzutreten können, so dass kein akzeptabler Rückschluss auf die Enthalpieverhältnisse beim Eintritt des Heizgases in den Rauchgaskanal des Dampferzeugers möglich ist. Bei der zur Ermittlung des benötigten Speisewasserstroms zugrunde gelegten Wärmestrombilanz sollte daher auf andere, besonders geeignete Parameter zurückgegriffen werden, wie die Heizgastemperatur beim Eintritt in den Verdampfer sowie der Massenstrom des Heizgases.A feed water control for Benson heat recovery steam generators is for example in EP 2 212 618 B1 disclosed. There it is assumed that a sufficiently reliable predictive mass flow control that can also be used for steam generators switched as waste heat boilers should be largely adapted to the special features of the waste heat boiler. In particular, it should It must be taken into account that, unlike with fired boilers, in this case the firing capacity is not a suitable parameter that allows a sufficiently reliable conclusion to be drawn about the heat flow balance on which it is based. In particular, it should be taken into account that with a value that is equivalent for waste heat boilers, namely the current gas turbine output or parameters correlating with this, other gas turbine-internal parameters can also occur, so that no acceptable conclusions can be drawn about the enthalpy conditions when the hot gas enters the flue gas duct of the steam generator is. The heat flow balance used to determine the required feedwater flow should therefore be based on other, particularly suitable parameters, such as the hot gas temperature when it enters the evaporator and the mass flow of the hot gas.

Die EP 2 297 518 B1 offenbart ferner, dass für die zeitliche Ableitung der Enthalpie am Eingang einer oder mehrerer der Verdampferheizflächen charakteristische Korrekturwerte berücksichtigt werden.the EP 2 297 518 B1 further discloses that characteristic correction values are taken into account for the time derivative of the enthalpy at the inlet of one or more of the evaporator heating surfaces.

Für die Anwendung im Solarthermiekraftwerk offenbart die DE 10 2010 040 210 A1 ebenfalls ein Verfahren, bei dem für die Erstellung des Sollwerts für den Speisewassermassenstrom ein für die zeitliche Ableitung der Enthalpie, der Temperatur oder der Dichte des Strömungsmediums am Eingang einer oder mehrerer der Heizflächen charakteristischer Korrekturwert berücksichtigt wird.For use in the solar thermal power plant reveals the DE 10 2010 040 210 A1 also a method in which a correction value characteristic of the time derivative of the enthalpy, the temperature or the density of the flow medium at the inlet of one or more of the heating surfaces is taken into account for the creation of the set value for the feedwater mass flow.

Die US 2014/034044 A1 beansprucht neben einem solarthermischen Dampferzeuger selbst, ebenfalls ein Verfahren zum Betrieb dieses solarthermischen Dampferzeugers, bei dem die Einstellung des Speisewassermassenstroms prädiktiv geregelt wird. Zu diesem Zweck wird auch hier mit einem Korrekturwert gearbeitet, durch den thermische Speichereffekte von ein- oder ausgespeicherter thermischer Energie korrigiert werden.the U.S. 2014/034044 A1 claims not only a solar thermal steam generator itself, but also a method for operating this solar thermal steam generator, in which the setting of the feed water mass flow is controlled predictively. For this purpose, a correction value is also used here, by means of which thermal storage effects of stored or withdrawn thermal energy are corrected.

Schließlich offenbart auch die DE 10 2011 004 263 A1 ein Verfahren zum Betreiben eines solarbeheizten Abhitzedampferzeugers, bei dem einer Vorrichtung zum Einstellen des Speisewassermassenstroms ein Sollwert für den Speisewassermassenstrom zugeführt wird, wobei ein charakteristischer Korrekturwert berücksichtigt wird, durch den thermische Speichereffekte von ein- oder ausgespeicherter thermischer Energie in eine oder mehrere der Heizflächen korrigiert werden.Finally also reveals the DE 10 2011 004 263 A1 a method for operating a solar-heated heat recovery steam generator, in which a device for adjusting the feedwater mass flow is supplied with a target value for the feedwater mass flow, a characteristic correction value being taken into account, by means of which thermal storage effects of thermal energy stored or withdrawn in one or more of the heating surfaces are corrected .

Da das vorliegende Problem im Rahmen der Erstanwendung eines Benson-Verdampfers in einem vertikalen Abhitzedampferzeuger auftrat, gibt es keine weiterführenden Ansätze zur Problemlösung. Die im konkreten Fall gewählte Problemlösung bestand darin, die Verstärkung des Reglers wieder etwas zu verringern. Allerdings muss bei dieser Herangehensweise in Abhängigkeit von den gegebenen Randbedingungen ein schlechteres und im Extremfall auch unerwünschtes Betriebsverhalten der Anlage in Kauf genommen werden.Since the present problem occurred during the initial application of a Benson evaporator in a vertical heat recovery steam generator, there are no further approaches to solving the problem. The solution to the problem chosen in this specific case was to slightly reduce the gain of the controller again. However, with this approach, depending on the given boundary conditions, poorer and, in extreme cases, undesirable operating behavior of the system must be accepted.

Aufgabe der Erfindung ist es daher, ein Verfahren zum Betreiben eines als Abhitzedampferzeuger ausgebildeten Durchlaufdampferzeugers bereitzustellen, bei dem eine verbesserte Speisewasserregelung zu einem stabilen Betriebsverhalten der Anlage führt. Des Weiteren soll ein für die Durchführung des Verfahrens besonders geeigneter Zwangdurchlaufdampferzeuger angegeben werden.The object of the invention is therefore to provide a method for operating a once-through steam generator designed as a waste-heat steam generator, in which improved feedwater control leads to stable operating behavior of the plant. Furthermore, a once-through steam generator that is particularly suitable for carrying out the method is to be specified.

Die Erfindung wird durch die Merkmale des Anspruchs 1 definiert und löst die auf ein Verfahren gerichtete Aufgabe, indem sie vorsieht, dass bei einem als Abhitzedampferzeuger ausgebildeten Durchlaufdampferzeuger mit einem Vorwärmer, umfassend eine Anzahl von Vorwärmerheizflächen, und mit einem Verdampfer, umfassend eine Anzahl von den Vorwärmerheizflächen strömungsmediumseitig nachgeschalteten Verdampferheizflächen, bei dem einer Vorrichtung zum Einstellen eines Speisewassermassenstroms ein Sollwert für den Speisewassermassenstrom zugeführt wird, wobei bei der Erstellung des Sollwerts für den Speisewassermassenstrom ein auf ein Fluid in den Verdampferheizflächen übertragener Abwärmestrom ermittelt wird sowie ferner Massenspeicherung und Energiespeicherung im Fluid in den Verdampferheizflächen beim instationären Anlagenbetrieb erfasst werden, ein zeitliches Verhalten der Massenspeicherung im Verdampfer an ein zeitliches Verhalten einer Massenspeicherung im Vorwärmer gekoppelt wird, wobei eine Skalierung mit einem Verhältnis der Dichteänderungen im Verdampfer und im Vorwärmer erfolgt.The invention is defined by the features of claim 1 and solves the task of a method by providing that in a once-through steam generator designed as a heat recovery steam generator with a preheater, comprising a number of preheater heating surfaces, and with an evaporator, comprising a number of the Preheater heating surfaces downstream from the evaporator heating surfaces on the flow medium side, in which a setpoint value for the feedwater mass flow is fed to a device for adjusting a feedwater mass flow, with a waste heat flow transferred to a fluid in the evaporator heating surfaces being determined when the setpoint for the feedwater mass flow is generated as well as mass storage and energy storage in the fluid in the evaporator heating surfaces during transient system operation, a temporal behavior of the mass storage in the evaporator is coupled to a temporal behavior of a mass storage in the preheater, with scaling using a ratio of the density changes in the evaporator and in the preheater.

Wichtig ist es, zu verstehen, dass bei der vorliegenden Erfindung ein Beobachter im übertragenen Sinn nicht mit einem Fluidteilchen verbunden ist und mit diesem durch den Verdampfer strömt, sondern dass der Beobachter den Verdampfer als Bilanzraum betrachtet, in den Fluid ein- und ausströmt. Ein Fluidteilchen wird im normalen Betrieb der Anlage immer auf dem Weg vom Verdampfereingang zum Verdampferausgang Energie aufnehmen, egal ob der Anlagenbetrieb stationär oder instationär verläuft. Anders ist es bei der Betrachtung des Systems gemäß der Erfindung, wo im stationären Betrieb der Anlage (des Verdampfers) an einem bestimmten Ort im Verdampfer zu unterschiedlichen Zeiten dieselben Temperaturen und Drücke gemessen werden und somit die Zeitableitungen der entsprechenden Terme in den den Vorgang beschreibenden Formeln Null werden. Durch das erfinderische Verfahren werden nun die zeitlichen Änderungen dieser Parameter im instationären Betrieb des Verdampfers berücksichtigt. Dabei kann es selbstverständlich sowohl zu Energie- oder Massen-Einspeicherungen als auch zu Energie- oder Massenausspeicherungen kommen.It is important to understand that in the present invention an observer is not connected to a fluid particle in a figurative sense and flows with it through the evaporator, but that the observer regards the evaporator as a balance space into which fluid flows in and out. During normal operation of the system, a fluid particle will always absorb energy on the way from the evaporator inlet to the evaporator outlet, regardless of whether the system operation is stationary or transient. It is different when considering the system according to the invention, where during stationary operation of the system (the evaporator) the same temperatures and pressures are measured at a specific location in the evaporator at different times and thus the time derivatives of the corresponding terms in the formulas describing the process become zero. The changes in these parameters over time during transient operation of the evaporator are now taken into account by the inventive method. Of course, this can lead to energy or mass injections as well as energy or mass withdrawals.

Mit diesem Verfahren, bei dem der Algorithmus zur Berechnung des Vorsteuersignals, der im Stand der Technik im einfachsten Fall lediglich den auf das Fluid im Verdampfer übertragenen Wärmestrom Ev,fl berücksichtigt, der sich aus dem Wärmestrom im Abgas EG abzüglich der Wärmespeicherung im Wandmaterial der Heizflächenrohre s,w ergibt, um den Einfluss der fluidseitigen Massen- und Energiespeichereffekte im Verdampfer erweitert wird, wird die Qualität des Vorsteuersignals insbesondere für den beschriebenen Anwendungsfall des vertikalen Abhitzedampferzeugers weiter verbessert und somit die notwendige Korrektur durch den Regler minimiert. Dies hat potentiell zur Folge, dass der Regler dann wieder schwächer parametriert werden kann, so dass das oben beschriebene Problem nicht auftritt, gleichzeitig aber auch das Betriebsverhalten der Anlage nicht negativ beeinflusst wird.With this method, in which the algorithm for calculating the pre-control signal, which in the simplest state of the art only takes into account the heat flow Ev , fl transferred to the fluid in the evaporator, which results from the heat flow in the exhaust gas EG minus the heat storage in the wall material of the heating surface tubes Q̇ s , w is expanded by the influence of the fluid-side mass and energy storage effects in the evaporator, the quality of the pre-control signal is particularly high for the described application of the vertical Heat recovery steam generator further improved, thus minimizing the necessary correction by the controller. The potential consequence of this is that the controller can then be parameterized more weakly, so that the problem described above does not occur, but at the same time the operating behavior of the system is not negatively influenced.

Vorteilhafterweise werden die Speicherterme für Massenspeicherung und Energiespeicherung aus aktuellen Messwerten bestimmt. Damit ist eine besonders zuverlässige Auswertung der Wärmestrombilanz und somit die Ermittlung eines besonders genau vorausberechneten Speisewasser-Sollwerts ermöglicht.The storage terms for mass storage and energy storage are advantageously determined from current measured values. This enables a particularly reliable evaluation of the heat flow balance and thus the determination of a particularly precisely precalculated desired feed water value.

Zweckmäßigerweise sind die aktuellen Messwerte Drücke und Temperaturen am Vorwärmereingang, am Vorwärmerausgang respektive Verdampfereingang und am Verdampferausgang.The current measured values are expediently pressures and temperatures at the preheater inlet, at the preheater outlet or evaporator inlet and at the evaporator outlet.

Es ist vorteilhaft, wenn eine für die Abschätzung der Energiespeicherung benötigte spezifische Enthalpie des Fluids im Verdampfer durch den arithmetischen Mittelwert von Siede- und Sättigungsenthalpie approximiert wird.It is advantageous if a specific enthalpy of the fluid in the evaporator required for estimating the energy storage is approximated by the arithmetic mean of the boiling and saturation enthalpy.

Dabei ist es zweckmäßig, wenn Siedeenthalpie und Sättigungsenthalpie über mindestens eine Druckmessung am Verdampfereingang oder am Verdampferausgang ermittelt werden.It is expedient here if the boiling enthalpy and saturation enthalpy are determined via at least one pressure measurement at the evaporator inlet or at the evaporator outlet.

Die Korrekturwerte zu Massenspeicherung und Energiespeicherung für die Ermittlung des Sollwerts für den Speisewassermassenstrom werden vorteilhafterweise unter Berücksichtigung der zeitlichen Ableitungen der Siede- und Sättigungsenthalpien im Verdampfer sowie einer Dichte des Strömungsmediums im Vorwärmer bestimmt. Im Hinblick auf die Dichte kann insbesondere durch geeignete Messungen von Temperatur und Druck am Eintritt und am Austritt der jeweiligen Vorwärmerheizfläche eine mittlere Fluiddichte im Vorwärmer definiert und berechnet werden, wobei zweckmäßigerweise ein lineares Dichteprofil zugrunde gelegt wird. Damit lassen sich Massenspeichereffekte kompensieren, die sich bei transienten Vorgängen ergeben. Wenn beispielsweise bei einer Laständerung die Wärmezufuhr in die Verdampferheizflächen absinkt, so wird dort temporär Fluid eingespeichert. Bei konstantem Förderstrom der Speisewasserpumpe würde somit der Massenstrom beim Austritt der Heizfläche absinken. Dies lässt sich nun durch eine temporäre Erhöhung des Speisewassermassenstroms kompensieren.The correction values for mass storage and energy storage for determining the setpoint for the feedwater mass flow are advantageously determined taking into account the time derivatives of the boiling and saturation enthalpies in the evaporator and a density of the flow medium in the preheater. With regard to the density, an average fluid density in the preheater can be defined and calculated in particular by suitable measurements of temperature and pressure at the inlet and outlet of the respective preheater, a linear density profile being expediently used as a basis. This can be used to compensate for mass memory effects that occur with transient processes. If, for example, the heat supply to the evaporator heating surfaces decreases due to a load change, fluid is temporarily stored there. If the flow rate of the feedwater pump were constant, the mass flow would drop when the heating surface exited. This can now be compensated for by temporarily increasing the feedwater mass flow.

In der Praxis werden diese zeitlich veränderlichen Vorgänge bzw. zeitlichen Ableitungen vorteilhafterweise über ein erstes und ein zweites Differenzierglied, bevorzugt DT1-Glieder, ermittelt, denen eingangsseitig an geeigneten Messstellen Parameter wie Temperatur und Druck zugeführt werden.In practice, these temporally variable processes or temporal derivatives are advantageously determined via a first and a second differentiating element, preferably DT1 elements, to which parameters such as temperature and pressure are fed at suitable measuring points on the input side.

Dabei ist es vorteilhaft, wenn das den zeitlichen Verlauf der Dichteänderung im Vorwärmer für die Abschätzung der Massenspeicherung beschreibende erste Differenzierglied mit einem dem Gesamtvolumen des Strömungsmediums in den Verdampferheizflächen entsprechenden Verstärkungsfaktor beaufschlagt wird. Die mit der Erfindung erzeugten Korrektursignale für den Speisewassermassenstrom können Effekte der Massen- und der Energiespeicherung besonders vorteilhaft abbilden, wenn geeignete Verstärkungen und Zeitkonstanten für das jeweilige DT-1-Glied gewählt werden.It is advantageous if the first differentiating element, which describes the change in density over time in the preheater for estimating the mass storage, is subjected to an amplification factor that corresponds to the total volume of the flow medium in the evaporator heating surfaces. The correction signals generated with the invention for the feedwater mass flow can represent the effects of mass and energy storage in a particularly advantageous manner if suitable amplifications and time constants are selected for the respective DT-1 element.

Insbesondere ist es vorteilhaft, wenn das erste Differenzierglied mit einer im Wesentlichen der Hälfte der Durchlaufzeit des Strömungsmediums durch den Verdampfer entsprechenden Zeitkonstante beaufschlagt wird.In particular, it is advantageous if the first differentiating element is subjected to a time constant corresponding essentially to half the flow time of the flow medium through the evaporator.

Weiter ist es vorteilhaft, wenn das zweite Differenzierglied für die Abschätzung der Energiespeicherung mit einer Zeitkonstante beaufschlagt wird, die zwischen 5s und 40s liegt. Bezüglich des Zwangdurchlaufdampferzeugers wird die genannte Aufgabe gelöst durch einen Zwangdurchlaufdampferzeuger nach Anspruch 11 mit einer Anzahl von Verdampferheizflächen und einer Anzahl von strömungsmediumseitig vorgeschalteten Vorwärmerheizflächen und mit einer Vorrichtung zum Einstellen des Speisewassermassenstroms, die anhand eines Sollwerts für den Speisewassermassenstrom führbar ist, wobei der Sollwert anhand des erfinderischen Verfahrens ausgelegt ist.It is also advantageous if the second differentiating element for estimating the energy storage is subjected to a time constant of between 5 s and 40 s. With regard to the once-through steam generator, the stated object is achieved by a once-through steam generator according to claim 11 with a number of evaporator heating surfaces and a number of preheater heating surfaces connected upstream on the flow medium side and with a device for adjusting the feedwater mass flow, which can be guided using a target value for the feedwater mass flow, the target value being designed using the inventive method.

Mit der vorliegenden Erfindung kann die Korrektur des Vorsteuersignals durch den Regler merklich reduziert und der Regler mit einer geringeren Verstärkung parametriert werden. Das oben beschriebene Problem unerwünschter Prozessrestschwankungen von signifikanter Größenordnung kann damit beseitigt werden. Das Betriebsverhalten der Anlage wird nicht negativ beeinflusst.With the present invention, the correction of the pilot control signal by the controller can be noticeably reduced and the controller can be parameterized with a lower gain. The problem described above of undesired residual process fluctuations of a significant magnitude can thus be eliminated. The operating behavior of the system is not negatively influenced.

Es sind auch empirisch gefundene Korrekturfaktoren für das Vorsteuersignal (oder gar ganze Parameterfelder) denkbar. Diese zu finden bedeutet allerdings einen sehr großen Aufwand. Im Gegensatz dazu basiert die beschriebene Erfindung auf physikalischen Ansätzen und muss nicht weiter parametriert werden.Correction factors found empirically for the pilot control signal (or even entire parameter fields) are also conceivable. Finding them, however, takes a lot of effort. In contrast to this, the invention described is based on physical approaches and does not have to be further parameterized.

Die Erfindung wird beispielhaft anhand der Zeichnungen näher erläutert. Es zeigen schematisch:

Figur 1
eine Skizze des Algorithmus zur Berechnung des Speisewassermassenstroms und
Figur 2
eine Darstellung der Messgrößen und der daraus abgeleiteten Approximationen für die Änderungen im Algorithmus zur Berechnung des Sollwerts des Speisewassermassenstroms, wie sie in der Kraftwerksautomatisierung zu implementieren sind.
The invention is explained in more detail by way of example with reference to the drawings. They show schematically:
figure 1
a sketch of the algorithm for calculating the feedwater mass flow and
figure 2
a representation of the measured variables and the approximations derived from them for the changes in the algorithm for calculating the target value of the feedwater mass flow, as they are to be implemented in the power plant automation.

Die Figur 1 zeigt schematisch die sich aus der Erfindung ergebende Änderung des Algorithmus zur Berechnung des Sollwerts für den Speisewassermassenstrom ṀFW. Dabei ist der erfindungsrelevante Anteil des Algorithmus innerhalb der gestrichelten Umrandung und der Stand der Technik außerhalb dargestellt.the figure 1 shows schematically the change in the algorithm resulting from the invention for calculating the desired value for the feedwater mass flow Ṁ FW . The part of the algorithm relevant to the invention is shown within the dashed border and the prior art outside.

Der Sollwert für den Speisewassermassenstrom ṀFW setzt sich demnach zusammen aus dem Speisewassermassenstrom für den Verdampfer ṀEv,in und dem im Vorwärmer ein- oder ausgespeicherten Massenstrom ṀS,E, korrigiert mit einem Faktor fCtrl.The setpoint for the feedwater mass flow Ṁ FW is therefore made up of the feedwater mass flow for the evaporator Ṁ Ev,in and the mass flow Ṁ S , E stored or withdrawn in the preheater, corrected with a factor f Ctrl .

Der Speisewassermassenstrom für den Verdampfer ṀEv,in ergibt sich nach dem Stand der Technik als Quotient des vom Abgas auf das Fluid im Verdampfer übertragenen Wärmestroms Ev,fl und des Sollwerts für die Enthalpieänderung im Verdampfer Δh Ev, set. Der auf das Fluid im Verdampfer übertragene Wärmestrom Ev,fl wiederum ergibt sich aus dem Wärmestrom im Abgas EG abzüglich der Wärmespeicherung im Wandmaterial der Heizflächenrohre S,W . According to the state of the art, the feedwater mass flow for the evaporator Ṁ Ev , in results from the quotient of the heat flow Ev , fl transferred from the exhaust gas to the fluid in the evaporator and the setpoint for the enthalpy change in the evaporator Δh Ev, set. The heat flow Ev,fl transferred to the fluid in the evaporator results from the heat flow in the exhaust gas EG minus the heat storage in the wall material of the heating surface tubes Q̇ S , W .

Erfindungsgemäß wird der Term für den auf das Fluid im Verdampfer übertragenen Wärmestrom durch zwei weitere Terme ergänzt und korrigiert.According to the invention, the term for the heat flow transferred to the fluid in the evaporator is supplemented and corrected by two further terms.

Die erste Korrektur betrifft den Massenspeichereffekt im Verdampfer, die zweite Korrektur betrifft den Energiespeichereffekt im Verdampfer.The first correction concerns the mass storage effect in the evaporator, the second correction concerns the energy storage effect in the evaporator.

Der Massenspeichereffekt ist in den Wärmeströmen der Figur 1 durch das Produkt aus dM Ev dt

Figure imgb0001
(Massenspeicherung) und hEv, out, set (Enthalpie am Austritt des Verdampfers) dargestellt. dU Ev dt
Figure imgb0002
steht für den Energiespeichereffekt.The mass storage effect is in the heat flows figure 1 through the product dm possibly German
Figure imgb0001
(mass storage) and h Ev , out , set (enthalpy at the outlet of the evaporator). you possibly German
Figure imgb0002
stands for the energy storage effect.

Diese Werte werden gemäß der Erfindung geeignet approximiert, so dass sie aus gemessenen Prozessgrößen bestimmt werden können.According to the invention, these values are suitably approximated so that they can be determined from measured process variables.

Figur 2 zeigt diese Messgrößen bzw. die Messpunkte im Zwangdurchlauf-Abhitzedampferzeuger und deren Verarbeitung. figure 2 shows these measured variables or the measuring points in the once-through heat recovery steam generator and their processing.

Der Zwangdurchlauf-Abhitzedampferzeuger gemäß Figur 2 umfasst einen auch als Economizer bezeichneten Vorwärmer 1 für als Strömungsmedium vorgesehenes Speisewasser, mit einer Anzahl von Vorwärmerheizflächen 2, sowie einen Verdampfer 3 mit einer Anzahl von den Vorwärmerheizflächen 2 strömungsmediumseitig nachgeschalteten Verdampferheizflächen 4. Auf den Verdampfer 3 folgt ein Überhitzer 12 mit entsprechenden Überhitzerheizflächen 13. Die Heizflächen befinden sich in einem nicht näher dargestellten Gaszug, der mit dem Abgas einer zugeordneten Gasturbinenanlage beaufschlagt wird.The once-through heat recovery steam generator according to figure 2 includes a preheater 1, also known as an economizer, for as Feed water provided for the flow medium, with a number of preheater heating surfaces 2, and an evaporator 3 with a number of evaporator heating surfaces 4 downstream of the preheater heating surfaces 2 on the flow medium side. The evaporator 3 is followed by a superheater 12 with corresponding superheater heating surfaces 13. The heating surfaces are located in a gas flue, not shown in detail , Which is acted upon by the exhaust gas of an associated gas turbine system.

Der Zwangdurchlaufdampferzeuger ist, wie bereits ausgeführt, für eine geregelte Beaufschlagung mit Speisewasser ausgelegt. Dazu ist einer Speisewasserpumpe 31 ein von einem Stellmotor 32 angesteuertes Drosselventil 33 nachgeschaltet, so dass über eine geeignete Ansteuerung des Drosselventils 33 die von der Speisewasserpumpe 31 in Richtung des Vorwärmers 1 geförderte Speisewassermenge oder der Speisewassermassenstrom einstellbar ist. Zur Ermittlung eines aktuellen Kennwerts für den zugeführten Speisewassermassenstrom ist dem Drosselventil 33 eine Messeinrichtung 34 zur Ermittlung des Speisewassermassenstroms durch die Speisewasserleitung 35 nachgeschaltet. Der Stellmotor 32 ist über ein Regelelement 36 angesteuert, das eingangsseitig mit einem über eine Datenleitung 37 zugeführten Sollwert für den Speisewassermassenstrom ṀFW und mit dem über die Messeinrichtung 34 ermittelten aktuellen Istwert des Speisewassermassenstroms beaufschlagt ist. Durch Differenzbildung zwischen diesen beiden Signalen wird an den Regler 36 ein Nachführungsbedarf übermittelt, so dass bei einer Abweichung des Istwerts vom Sollwert eine entsprechende Nachführung des Drosselventils 33 über die Ansteuerung des Motors 32 erfolgt.As already explained, the once-through steam generator is designed for a controlled application of feed water. For this purpose, a feedwater pump 31 is followed by a throttle valve 33 controlled by a servomotor 32, so that the feedwater quantity conveyed by the feedwater pump 31 in the direction of the preheater 1 or the feedwater mass flow can be adjusted by suitably controlling the throttle valve 33. A measuring device 34 for determining the feedwater mass flow through the feedwater line 35 is connected downstream of the throttle valve 33 in order to determine a current characteristic value for the feedwater mass flow supplied. The servomotor 32 is actuated via a control element 36 which is acted upon on the input side by a setpoint value for the feedwater mass flow Ṁ FW supplied via a data line 37 and by the current actual value of the feedwater mass flow determined by the measuring device 34 . A correction requirement is transmitted to the controller 36 by forming the difference between these two signals, so that if the actual value deviates from the desired value, the throttle valve 33 is corrected accordingly via the activation of the motor 32 .

Zur Ermittlung eines besonders bedarfsgerechten Sollwerts für den Speisewassermassenstrom ṀFW in der Art einer prädiktiven, vorausschauenden oder am zukünftigen oder aktuellen Bedarf orientierten Einstellung des Speisewassermassenstroms ist die Datenleitung 37 eingangsseitig mit einer zur Vorgabe des Sollwerts für den Speisewassermassenstrom ṀFW ausgelegten Speisewasserdurchflussregelung 38 verbunden. Diese ist dafür ausgelegt den Sollwert für den Speisewassermassenstrom ṀFW anhand einer Wärmestrombilanz in den Verdampferheizflächen 4 zu ermitteln, wobei der Sollwert für den Speisewassermassenstrom ṀFW dadurch ermittelt wird, dass ein auf ein Fluid in den Verdampferheizflächen 4 übertragener Abwärmestrom bestimmt wird und ferner Massenspeicherung und Energiespeicherung im Fluid in den Verdampferheizflächen 4 berücksichtigt werden. Zu Lasten der Vollständigkeit, aber zugunsten der Übersichtlichkeit zeigt die Figur 2 in der Speisewasserdurchflussregelung 38 lediglich die Elemente, die für die erfindungsgemäße Korrektur des Speisewassermassenstromsollwertes ṀFW relevant sind. Der aus dem Stand der Technik bekannte Teil ist nicht dargestellt.In order to determine a particularly needs-based setpoint for the feedwater mass flow Ṁ FW in the manner of a predictive, anticipatory setting of the feedwater mass flow or an adjustment based on future or current needs, the data line 37 is connected on the input side to a feedwater flow control 38 designed to specify the setpoint for the feedwater mass flow Ṁ FW . This is for it designed to determine the target value for the feedwater mass flow Ṁ FW based on a heat flow balance in the evaporator heating surfaces 4, the target value for the feedwater mass flow Ṁ FW being determined in that a waste heat flow transferred to a fluid in the evaporator heating surfaces 4 is determined and also mass storage and energy storage in the fluid in the evaporator heating surfaces 4 are taken into account. At the expense of completeness, but in favor of clarity, the figure 2 in the feedwater flow control 38 only the elements that are relevant for the correction of the feedwater mass flow setpoint Ṁ FW according to the invention. The part known from the prior art is not shown.

Die Messwerte zur Bestimmung eines Sollwerts für den Speisewassermassenstrom ṀFW sind Druck- und Temperaturwerte und die Messstellen liegen in den Bereichen Vorwärmereingang 5, Vorwärmerausgang 6 bzw. Verdampfereingang 7 und Verdampferausgang 8.The measured values for determining a setpoint for the feedwater mass flow Ṁ FW are pressure and temperature values and the measuring points are in the areas of preheater inlet 5, preheater outlet 6 or evaporator inlet 7 and evaporator outlet 8.

Die ermittelten Messwerte werden in Funktionsgliedern 14, 15, 16, 17 und 18 verarbeitet. Mittels der ersten, zweiten und dritten Funktionsglieder 14, 15, und 16 wird aus den Messwerten zu Druck und Temperatur die Dichte des Fluids an verschiedenen Orten der Heizflächen von Vorwärmer 1 und Verdampfer 3 bestimmt. Die vierten und fünften Funktionsglieder 17 und 18 liefern aus gemessenen Druckwerten die Siede- und Sättigungsenthalpie.The measured values determined are processed in function elements 14, 15, 16, 17 and 18. Using the first, second and third function elements 14, 15 and 16, the density of the fluid at various locations on the heating surfaces of preheater 1 and evaporator 3 is determined from the measured values for pressure and temperature. The fourth and fifth function elements 17 and 18 deliver the boiling and saturation enthalpy from measured pressure values.

Der Speicherterm für die Massenspeicherung dM Ev dt

Figure imgb0003
wird approximiert, indem aus den ermittelten Dichten am Vorwärmereingang 5 und am Vorwärmerausgang 6 zuerst über ein erstes Addierglied 19 und ein erstes Multiplikationsglied 20 ein Mittelwert gebildet wird, der anschließend im ersten Differenzierglied 9 mit einer entsprechend gewählten Zeitkonstanten weiter verarbeitet und mit einem dem Gesamtvolumen VEv des Strömungsmediums in den Verdampferheizflächen 4 entsprechenden Verstärkungsfaktor im zweiten Multiplikationsglied 21 beaufschlagt wird.The storage term for mass storage dm possibly German
Figure imgb0003
is approximated by first forming an average value from the densities determined at the preheater inlet 5 and at the preheater outlet 6 via a first adder element 19 and a first multiplier element 20, which is then further processed in the first differentiator element 9 with a correspondingly selected time constant and with a value corresponding to the total volume V Ev of the flow medium in the evaporator heating surfaces 4 corresponding Amplification factor in the second multiplier 21 is applied.

Eine weitere Skalierung erfolgt in einem nachfolgenden dritten Multiplikationsglied 22 mit einem Verhältnis der Dichteänderungen des Fluids im Verdampfer 3 und im Vorwärmer 1, welches mittels der ersten und zweiten Subtrahierglieder 23 und 24 und des ersten Dividierglieds 25 in der Weise bestimmt wird, wie in der Figur 2 gezeigt.Further scaling takes place in a subsequent third multiplication element 22 with a ratio of the changes in density of the fluid in the evaporator 3 and in the preheater 1, which is determined by means of the first and second subtraction elements 23 and 24 and the first dividing element 25 in the manner shown in FIG figure 2 shown.

Der Speicherterm für die Energiespeicherung dU Ev dt

Figure imgb0004
wird approximiert, indem aus den ermittelten Enthalpien ein Mittelwert mit Hilfe des zweiten Addierglieds 26 und des vierten Multiplikationsglieds 27 gebildet wird. Dieser Mittelwert stellt eine gute Annahme für die spezifische Enthalpie des Fluids im Verdampfer 3 dar.The storage term for energy storage you possibly German
Figure imgb0004
is approximated in that an average value is formed from the determined enthalpies using the second adder 26 and the fourth multiplier 27 . This average represents a good assumption for the specific enthalpy of the fluid in evaporator 3.

Der Speicherterm für die Energiespeicherung dU Ev dt

Figure imgb0005
wird nun durch die Summe zweier Terme bestimmt. Der erste Term wird dadurch ermittelt, dass die spezifische Enthalpie des Fluids im Verdampfer 3 im zweiten Differenzierglied 10 mit einer entsprechend gewählten Zeitkonstanten weiter verarbeitet und mit einem Mittelwert der Fluidmassen M Ev im Verdampfer bei maximaler und minimaler Last im fünften Multiplikationsglied 28 beaufschlagt wird. Dieser Mittelwert wird der Einfachheit halber als zeitlich konstanter Wert angesehen. Der zweite Term wird ermittelt, indem die spezifische Enthalpie des Fluids im Verdampfer 3 mit dem Speicherterm für die Massenspeicherung dM Ev dt
Figure imgb0006
multipliziert wird. Dies erfolgt im sechsten Multiplikationsglied 29.The storage term for energy storage you possibly German
Figure imgb0005
is now determined by the sum of two terms. The first term is determined by further processing the specific enthalpy of the fluid in the evaporator 3 in the second differentiating element 10 with a correspondingly selected time constant and with a mean value of the fluid masses M Ev in the evaporator at maximum and minimum load in the fifth multiplier 28 is applied. For the sake of simplicity, this mean value is regarded as a value which is constant over time. The second term is determined by comparing the specific enthalpy of the fluid in the evaporator 3 with the storage term for mass storage dm possibly German
Figure imgb0006
is multiplied. This takes place in the sixth multiplication element 29.

Im dritten Addierglied 30 werden die beiden Terme zusammengeführt.In the third adder 30, the two terms are combined.

Der entsprechende Algorithmus ist in den Funktionsplänen der Speisewasserregelung und damit in der Kraftwerksautomatisierung zu implementieren.The corresponding algorithm is to be implemented in the function plans of the feedwater control and thus in the power plant automation.

Claims (11)

  1. Method for operating a once-through steam generator designed as a waste-heat steam generator, with a pre-heater (1), comprising a number of pre-heater heating surfaces (2), and with an evaporator (3), comprising a number of evaporator heating surfaces (4) connected downstream on the flow medium side of the pre-heater heating surfaces (2), in which a device for setting a feedwater mass flow is fed a setpoint value for the feedwater mass flow, wherein a waste heat flow transferred to a fluid in the evaporator heating surfaces (4) is determined in the creation of the setpoint value for the feedwater mass flow and furthermore mass storage and energy storage in the fluid in the evaporator heating surfaces (4) are detected during non-steady-state plant operation,
    characterized in that a behavior over time of the mass storage in the evaporator (3) is coupled to a behavior over time of a mass storage in the pre-heater (1), wherein scaling is carried out with a ratio of the changes in density in the evaporator (3) and in the pre-heater (1).
  2. Method according to Claim 1, wherein storage terms for mass storage and energy storage are determined from current measured values.
  3. Method according to Claim 2, wherein the current measured values are pressures and temperatures at the pre-heater input (5), at the pre-heater output (6) or at the evaporator input (7) and at the evaporator output (8).
  4. Method according to one of the preceding claims, wherein a specific enthalpy of the fluid in the evaporator (3) required for the estimation of the energy storage is approximated by the arithmetic mean value of the boiling enthalpy and saturation enthalpy.
  5. Method according to Claim 4, wherein the boiling enthalpy and the saturation enthalpy are determined by way of at least one pressure measurement either at the evaporator input (7) or at the evaporator output (8).
  6. Method according to Claim 5, wherein temporal derivatives of the boiling and saturation enthalpies in the evaporator (3) and also a density of the flow medium in the pre-heater (1) are evaluated.
  7. Method according to Claim 6, wherein the temporal derivatives are determined by way of first and second differential elements (9, 10).
  8. Method according to Claim 7, in which the first differential element (9), describing the variation over time of the change in density in the pre-heater (1) for the estimation of the mass storage, is subjected to a gain factor corresponding to the total volume of the flow medium in the evaporator heating surfaces (4).
  9. Method according to either of Claims 7 and 8, wherein the first differential element (9) is subjected to a time constant corresponding to substantially half the transit time of the flow medium through the evaporator (3).
  10. Method according to Claim 7, wherein the second differential element (10) for the estimation of the energy storage is subjected to a time constant that lies between 5 s and 40 s.
  11. Forced-flow waste-heat steam generator (11) with a number of evaporator heating surfaces (4) and a number of pre-heater heating surfaces (2) connected upstream on the flow medium side, characterized in that the forced-flow waste-heat steam generator comprises a device for setting a feedwater mass flow, which can be guided on the basis of a setpoint value for the feedwater mass flow, wherein the setpoint value is designed on the basis of the method according to one of Claims 1 to 10.
EP19783975.6A 2018-10-29 2019-09-19 Feed water control for forced throughput by-product steam generator Active EP3827200B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18203107.0A EP3647657A1 (en) 2018-10-29 2018-10-29 Feed water control for forced throughput by-product steam generator
PCT/EP2019/075105 WO2020088838A1 (en) 2018-10-29 2019-09-19 Feedwater control for a forced-flow waste-heat steam generator

Publications (2)

Publication Number Publication Date
EP3827200A1 EP3827200A1 (en) 2021-06-02
EP3827200B1 true EP3827200B1 (en) 2022-06-29

Family

ID=64082950

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18203107.0A Withdrawn EP3647657A1 (en) 2018-10-29 2018-10-29 Feed water control for forced throughput by-product steam generator
EP19783975.6A Active EP3827200B1 (en) 2018-10-29 2019-09-19 Feed water control for forced throughput by-product steam generator

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP18203107.0A Withdrawn EP3647657A1 (en) 2018-10-29 2018-10-29 Feed water control for forced throughput by-product steam generator

Country Status (8)

Country Link
US (1) US11530812B2 (en)
EP (2) EP3647657A1 (en)
JP (1) JP7114808B2 (en)
KR (1) KR102558369B1 (en)
CN (1) CN113056639B (en)
CA (1) CA3117871C (en)
ES (1) ES2927687T3 (en)
WO (1) WO2020088838A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114636144B (en) * 2022-02-25 2023-10-20 中国大唐集团科学技术研究院有限公司西北电力试验研究院 Water-coal ratio self-optimizing-based supercritical thermal power unit water supply setting method

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH599504A5 (en) * 1975-09-26 1978-05-31 Sulzer Ag
JPS5341602A (en) * 1976-09-28 1978-04-15 Mitsubishi Electric Corp Controlling device for one-through boiler
DE4217626A1 (en) * 1992-05-27 1993-12-02 Siemens Ag Forced flow steam generator
DE59304751D1 (en) * 1992-05-04 1997-01-23 Siemens Ag FORCED STEAM GENERATOR
DE19604416C2 (en) * 1996-02-07 2002-05-16 Siemens Ag Process for expanding a flue gas flow in a turbine and corresponding turbine
US7007473B2 (en) * 2001-09-28 2006-03-07 Honda Giken Kogyo Kabushiki Kaisha Temperature control device of evaporator
EP1614962A1 (en) * 2004-07-09 2006-01-11 Siemens Aktiengesellschaft Method for operating of an once-through steam generator
US8118895B1 (en) * 2007-03-30 2012-02-21 Bechtel Power Corporation Method and apparatus for refueling existing natural gas combined cycle plant as a non-integrated gasification combined cycle plant
EP2065641A3 (en) 2007-11-28 2010-06-09 Siemens Aktiengesellschaft Method for operating a continuous flow steam generator and once-through steam generator
EP2255076B1 (en) * 2008-02-26 2015-10-07 Alstom Technology Ltd Method for regulating a boiler and control circuit for a boiler
EP2194320A1 (en) * 2008-06-12 2010-06-09 Siemens Aktiengesellschaft Method for operating a once-through steam generator and once-through steam generator
EP2224164A1 (en) * 2008-11-13 2010-09-01 Siemens Aktiengesellschaft Method of operating a waste heat steam generator
JP5341602B2 (en) 2009-04-21 2013-11-13 株式会社岡村製作所 Top plate sliding desk
EP2510198B1 (en) * 2009-12-08 2016-07-27 Siemens Aktiengesellschaft Method and device for regulating the production of steam in a steam plant
DE102010040210A1 (en) * 2010-09-03 2012-03-08 Siemens Aktiengesellschaft Method for operating a solar-heated continuous steam generator and solar thermal continuous steam generator
DE102010042458A1 (en) 2010-10-14 2012-04-19 Siemens Aktiengesellschaft Method for operating a combined cycle power plant and for the implementation of the method prepared gas and steam turbine plant and corresponding control device
DE102011004277A1 (en) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Method for operating a directly heated solar thermal steam generator
DE102011004263A1 (en) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Method for operating a solar-heated waste heat steam generator and solar thermal waste heat steam generator
DE102011076968A1 (en) 2011-06-06 2012-12-06 Siemens Aktiengesellschaft Method for operating a circulation heat recovery steam generator
AT511189B1 (en) * 2011-07-14 2012-10-15 Avl List Gmbh METHOD FOR CONTROLLING A HEAT UTILIZATION DEVICE IN AN INTERNAL COMBUSTION ENGINE
WO2018024340A1 (en) * 2016-08-05 2018-02-08 Siemens Aktiengesellschaft Method for operating a waste heat steam generator
EP3495731B1 (en) * 2017-12-08 2022-02-16 General Electric Technology GmbH Once-through evaporator systems
EP3495732B1 (en) * 2017-12-08 2024-02-14 General Electric Technology GmbH Once-through evaporator systems

Also Published As

Publication number Publication date
CA3117871A1 (en) 2020-05-07
EP3827200A1 (en) 2021-06-02
CA3117871C (en) 2023-10-03
EP3647657A1 (en) 2020-05-06
KR20210083302A (en) 2021-07-06
CN113056639A (en) 2021-06-29
WO2020088838A1 (en) 2020-05-07
US20210341139A1 (en) 2021-11-04
US11530812B2 (en) 2022-12-20
JP7114808B2 (en) 2022-08-08
JP2022514453A (en) 2022-02-14
KR102558369B1 (en) 2023-07-24
CN113056639B (en) 2023-04-14
ES2927687T3 (en) 2022-11-10

Similar Documents

Publication Publication Date Title
DE3126331C2 (en)
EP2297518B1 (en) Method for operating a once-through steam generator and once-through steam generator
EP2510198B1 (en) Method and device for regulating the production of steam in a steam plant
EP1766288B1 (en) Process for operating a continuous steam generator
EP2212618B1 (en) Method for operating a continuous flow steam generator and once-through steam generator
EP0639253B1 (en) Forced-flow steam generator
DE102011076968A1 (en) Method for operating a circulation heat recovery steam generator
EP2244011A1 (en) Method and device for regulating the temperature of steam for a steam power plant
EP3161378B1 (en) Control method for operating a heat recovery steam generator
EP3827200B1 (en) Feed water control for forced throughput by-product steam generator
DE102011004277A1 (en) Method for operating a directly heated solar thermal steam generator
EP1426564B1 (en) Method and device for controlling the output of a combined heat and power plant
DE102010025916A1 (en) Method and device for determining model parameters for controlling a steam power plant unit, regulating device for a steam generator and computer program product
EP2780557B1 (en) Method and device for controlling a temperature of steam for a steam power plant
EP1462901B1 (en) Method for the control or regulation of a thermal load variation process in a fluid conveying non-deformable and/or thick wall component of a thermal system.
EP2638251B1 (en) Method for operating a solar-thermal parabolic trough power plant
EP2676072B1 (en) Method for operating a once-through steam generator
EP0308596B1 (en) Method for the regulation of the feed water flow in a steam plant
EP1365110B1 (en) Process and apparatus for operating a steam power plant, especially in a partial load range
EP2669480B1 (en) Method for operating a solar energy system
DE4217626A1 (en) Forced flow steam generator
EP2825736B1 (en) Method and apparatus for operating a solar thermal power plant
DE1815969B2 (en) OVER CRITICAL FORCED FLOW STEAM GENERATOR
DE1221374B (en) Method for obtaining a measurement signal representing the instantaneous power of a nuclear reactor
DE3336596A1 (en) Method for controlling a power unit operated in cogeneration of power and heat

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210226

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220316

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1501573

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019004832

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220929

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220930

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221031

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221029

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019004832

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220919

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230926

Year of fee payment: 5

Ref country code: IT

Payment date: 20230920

Year of fee payment: 5

Ref country code: GB

Payment date: 20230926

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230928

Year of fee payment: 5

Ref country code: BE

Payment date: 20230926

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231017

Year of fee payment: 5