EP0308596B1 - Method for the regulation of the feed water flow in a steam plant - Google Patents

Method for the regulation of the feed water flow in a steam plant Download PDF

Info

Publication number
EP0308596B1
EP0308596B1 EP88111049A EP88111049A EP0308596B1 EP 0308596 B1 EP0308596 B1 EP 0308596B1 EP 88111049 A EP88111049 A EP 88111049A EP 88111049 A EP88111049 A EP 88111049A EP 0308596 B1 EP0308596 B1 EP 0308596B1
Authority
EP
European Patent Office
Prior art keywords
vapour
signal
temperature
steam
actuating means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88111049A
Other languages
German (de)
French (fr)
Other versions
EP0308596A1 (en
Inventor
Cenek Svoboda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trasformazione Societaria sulzer AG
Original Assignee
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebrueder Sulzer AG filed Critical Gebrueder Sulzer AG
Publication of EP0308596A1 publication Critical patent/EP0308596A1/en
Application granted granted Critical
Publication of EP0308596B1 publication Critical patent/EP0308596B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/10Control systems for steam boilers for steam boilers of forced-flow type of once-through type
    • F22B35/101Control systems for steam boilers for steam boilers of forced-flow type of once-through type operating with superimposed recirculation during starting or low load periods, e.g. composite boilers

Definitions

  • the invention relates to a method for regulating the amount of feed water according to the preamble of claim 1.
  • Such a method is known from CH-PS 517 266, in which the switching element is controlled by the pressure of the feed water at a pressure measuring point between the feed water pump and the evaporator.
  • the known method works satisfactorily for clearly low loads with wet steam and clearly high loads with dry steam. At loads around 45%, i.e. However, in the vicinity of the transition from wet to dry steam and vice versa, the known method has not proven itself because the switching element tends to fluctuate cyclically between the two types of control.
  • the pressure in the feed water line is influenced by various factors, such as on the degree of contamination of the water or steam lines arranged downstream of the pressure measuring point; these factors lead to undesirable deviations in the control and, in particular, aggravate the problem in connection with the critical load range by 45% load.
  • Claims 2 to 5 characterize particularly advantageous variants of the method according to the invention.
  • the variant according to claim 6 ensures a rapid adaptation of the feed water quantity to changes in the furnace, claim 7 representing a preferred application of the variant according to claim 6, according to which an effect of the third signal on wet steam at the inlet of the water separator is prevented.
  • the third signal would normally counteract the desired control process, since e.g. in the event of a load increase due to an increase in the fuel quantity, the third signal would cause a parallel increase in the feed water quantity, as a result of which less steam would be generated and thus undesirable heating of the steam lines downstream of the water separator would occur.
  • the drawing shows schematically the essential parts of a steam generator system according to the invention.
  • a feed water pump 2 arranged in a feed water line 1, an evaporator 3 connected downstream of this pump 2, a water separator 4 connected downstream of this, and control means 6 for controlling the feed water quantity and an in A switching unit 7 arranged in a control unit 71, together with a fossil fuel-burning furnace, are the main components of the steam generator system.
  • the switching element 7 has a first signal triggered by the water level in the water separator 4 at low load and wet steam, a second signal triggered by a steam temperature downstream of the water separator 4 acting on the control means 6 at high load.
  • a check valve 15, through which flow flows, is provided, which prevents water from the feed water line 1 from flowing into the separator 4 via the line 14.
  • a line 12 connects the outlet of the evaporator 3 to the inlet of the separator 4; a first temperature measuring device 16 is provided in it.
  • the separator 4 is connected on the steam side to the first superheater 5 via a steam outlet line 13 in which a flow meter 25 is arranged.
  • the outlet of the second superheater 5 ' is connected via a turbine steam line 18 to a steam turbine 10 which drives a generator 11.
  • the outlet of the steam turbine 10 is connected to the feed water line 1 via pipes not shown in the drawing.
  • the water separator 4 has a water level meter 20.
  • the first temperature measuring device 16 generates a signal proportional to the steam temperature T E at the inlet of the water separator 4.
  • the difference ⁇ T between this temperature T E and the saturation temperature 50 of the steam at the associated water separator pressure is formed in a first comparison element 171, which is measured by a sensor 51 and fed to a device 52 in which the associated saturation temperature 50 is determined.
  • This temperature difference .DELTA.T is fed via a signal line 19 to a control element 70 which acts on the switching element 7 via a further signal line 19 'in a manner described below.
  • the water level meter 20 sends a signal proportional to the water level in the separator 4 via a signal line 29 to a second comparator 172, in which this signal is compared with a water level setpoint 21.
  • the difference between the two signals is fed to a PID controller 22 and from this to a third comparator 173.
  • This third comparison element 173 also flows from the flow meter 25, which is proportional to the steam flow Dampf D in the steam outlet line 13 generated signal, which is transmitted via a signal line 39 containing a link 26 for weakening the signal strength.
  • the signal 101 - referred to as the "first signal” - is formed in the third comparison element 173 and is forwarded via a signal line 49 to a first contact 27 of the switching element 7.
  • the temperature measuring device 30 sends a signal proportional to the steam temperature T A between the first and the second superheater 5 or 5 'via a signal line 59 to a fourth comparator 174, in which the difference between this temperature and a temperature setpoint 31 is formed.
  • This difference is fed to a further PID controller 32, which forms a signal 102 - referred to as the "second signal" - and has it act on a second contact 37 of the switching element 7.
  • the switching element 7 - controlled by the temperature difference ⁇ T - connects one of the two contacts 27 and 37 to a fifth comparing element 175 and thus transmits the "first" or "second signal” to this comparing element with the aid of the control unit 71.
  • this comparator 175 is given a signal 43 by a maximum value element 40, which forms a "third signal".
  • the maximum element 40 receives a signal 41 which reflects a preselected minimum load - preferably the one at which the transition from wet steam to dry steam and vice versa takes place - and a signal 42 triggered by the flow meter 35 which determines the load of the steam generator Amount of fuel ⁇ B is proportional and that was reshaped in a dynamic element 42 'for comparison with the minimum load signal 41.
  • the maximum value element 40 selects the third signal 43 corresponding to the larger of the two signals 41 and 42. As already mentioned, this is fed to the comparator 175.
  • the sum of the signal coming from the control unit 71 and the signal 43 is input into the control means 6, which act on the quantity of feed water.
  • the control means 6 is a conventional design which can act both on the speed of the feed water pump 2 and on a valve in the feed water line 1 or both. Since these means are known per se and are not essential to the invention, they are not discussed in more detail here.
  • the steam generator system works as follows:
  • the feed water pump 2 promotes feed water via the feed water line 1 in the economizer 8, in which it is preheated by the furnace 3 ';
  • the preheated water passes from the economizer 8 into the evaporator 3. Here it is evaporated and enters the water separator 4 either as wet or as dry steam via line 12.
  • the water separator 4 separates the liquid and the vapor phase of the incoming steam from each other, after which the liquid phase is returned to the feed water line 1 via the water outlet line 14 and the check valve 15 by means of the circulation pump 9, while the vapor phase is returned to the superheaters 5 via the steam outlet line 13 , 5 'flows.
  • the superheated steam is transferred to the turbine steam line 18 Steam turbine 10 directed, in which it expands and does work for generating electrical current in the generator 11.
  • the first and second signals coming from the switching element 7 are added to the "third signal" and fed to the control means 6 for controlling the amount of feed water, so that in addition to the change in the water level in the water separator 4 or the steam temperature T A downstream of the Water separator 4, also the amount of fuel ⁇ B flowing to the furnace 3 ', which is decisive for the respective load of the steam generator, is taken into account in the regulation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Regelung der Speisewassermenge gemäss dem Oberbegriff des Anspruchs 1.The invention relates to a method for regulating the amount of feed water according to the preamble of claim 1.

Aus der CH-PS 517 266 ist ein solches Verfahren bekannt, bei dem das Umschaltorgan vom Druck des Speisewassers an einer Druckmessstelle zwischen der Speisewasserpumpe und dem Verdampfer gesteuert wird. Das bekannte Verfahren funktioniert zufriedenstellend für eindeutig niedrige Lasten mit Nassdampf und eindeutig hohe Lasten mit Trockendampf. Bei Lasten um 45%, d.h. in der Nähe des Uebergangs von Nass- auf Trockendampf und umgekehrt, hat sich das bekannte Verfahren jedoch nicht bewährt, weil das Umschaltorgan zum zyklischen Schwanken zwischen den beiden Steuerungsarten neigt.Such a method is known from CH-PS 517 266, in which the switching element is controlled by the pressure of the feed water at a pressure measuring point between the feed water pump and the evaporator. The known method works satisfactorily for clearly low loads with wet steam and clearly high loads with dry steam. At loads around 45%, i.e. However, in the vicinity of the transition from wet to dry steam and vice versa, the known method has not proven itself because the switching element tends to fluctuate cyclically between the two types of control.

Darüberhinaus wird der Druck in der Speisewasserleitung von verschiedenen Faktoren beeinflusst, wie z.B. vom Verschmutzungsgrad der stromunterhalb der Druckmessstelle angeordneten Wasser- bzw. Dampfleitungen; diese Faktoren führen zu unerwünschten Abweichungen in der Regelung und verschlimmern insbesondere die Problematik im Zusammenhang mit dem kritischen Lastbereich um 45% Last zusätzlich.In addition, the pressure in the feed water line is influenced by various factors, such as on the degree of contamination of the water or steam lines arranged downstream of the pressure measuring point; these factors lead to undesirable deviations in the control and, in particular, aggravate the problem in connection with the critical load range by 45% load.

Es ist daher Aufgabe der Erfindung, die Steuerung des Umschaltorgans so zu verbessern, dass sie bei allen Lasten zuverlässig arbeitet und von Störungen in der Dampferzeugeranlage weitgehend unbeeinflusst bleibt.It is therefore an object of the invention to improve the control of the switching element in such a way that it affects all Loads work reliably and remain largely unaffected by malfunctions in the steam generator system.

Diese Aufgabe wird durch die Merkmale des Kennzeichens des Anspruchs 1 gelöst.This object is achieved by the features of the characterizing part of claim 1.

Durch den Vergleich der Dampftemperatur am Eintritt des Wasserabscheiders mit der Sättigungstemperatur des Dampfes beim zugehörigen Wasserabscheiderdruck wird der Wassergehalt des in den Wasserabscheider eintretenden Dampfes eindeutig und unbeeinflusst von Störfaktoren festgestellt. Es hat sich gezeigt, dass bei Verwendung dieser Temperaturdifferenz zum Umsteuern des Umschaltorgans das eingangs geschilderte zyklische Schwanken des Umschaltorgans nicht mehr auftritt, so dass ein unkontrolliertes Pendeln der Speisewassermenge im kritischen Lastbereich verhindert wird.By comparing the steam temperature at the inlet of the water separator with the saturation temperature of the steam at the associated water separator pressure, the water content of the steam entering the water separator is clearly and uninfluenced by interference factors. It has been shown that when this temperature difference is used to reverse the switching element, the cyclical fluctuation of the switching element described at the beginning no longer occurs, so that an uncontrolled oscillation of the feed water quantity in the critical load range is prevented.

Die Ansprüche 2 bis 5 kennzeichnen besonders vorteilhafte Varianten des erfindungsgemässen Verfahrens.Claims 2 to 5 characterize particularly advantageous variants of the method according to the invention.

Die Variante nach Anspruch 6 sichert eine rasche Anpassung der Speisewassermenge an Aenderungen der Feuerung, wobei Anspruch 7 eine bevorzugte Anwendungsform der Variante nach Anspruch 6 darstellt, nach der eine Wirkung des dritten Signals bei Nassdampf am Eintritt des Wasserabscheiders verhindert wird. In diesem Betriebszustand würde nämlich das dritte Signal normalerweise dem gewünschten Regelverlauf entgegenwirken, da z.B. bei einer Lasterhöhung durch Vergrössern der Brennstoffmenge das dritte Signal eine parallele Zunahme der Speisewassermenge bewirken würde, wodurch weniger Dampf erzeugt würde und somit eine unerwünschte Erwärmung der dem Wasserabscheider nachgeschalteten Dampfleitungen einträte.The variant according to claim 6 ensures a rapid adaptation of the feed water quantity to changes in the furnace, claim 7 representing a preferred application of the variant according to claim 6, according to which an effect of the third signal on wet steam at the inlet of the water separator is prevented. In this operating state, the third signal would normally counteract the desired control process, since e.g. in the event of a load increase due to an increase in the fuel quantity, the third signal would cause a parallel increase in the feed water quantity, as a result of which less steam would be generated and thus undesirable heating of the steam lines downstream of the water separator would occur.

Aufgrund der Zeichnung werden nun die Erfindung und die damit verbundenen Vorteile näher erläutert.Based on the drawing, the invention and the associated advantages are now explained in more detail.

Die Zeichnung zeigt schematisch die wesentlichen Teile einer erfindungsgemässen Dampferzeugeranlage. Eine in einer Speisewasserleitung 1 angeordnete Speisewasserpumpe 2, ein dieser Pumpe 2 nachgeschalteter Verdampfer 3, ein diesem nachgeschalteter Wasserabscheider 4 sowie Steuermittel 6 zur Steuerung der Speisewassermenge und ein in einer Steuereinheit 71 angeordnetes Umschaltorgan 7 sind zusammen mit einer fossilen Brennstoff verbrennenden Feuerung die Hauptkomponenten der Dampferzeugeranlage. Das Umschaltorgan 7 lässt bei niedriger Last mit Nassdampf ein vom Wasserstand im Wasserabscheider 4 ausgelöstes, erstes Signal und bei hoher Last, mit Trockendampf, ein von einer Dampftemperatur stromunterhalb des Wasserabscheiders 4 ausgelöstes, zweites Signal auf die Steuermittel 6 einwirken. Zwischen der Speisewasserpumpe 2 und dem Verdampfer 3 ist ein ebenfalls von der Feuerung 3′ erwärmter Ekonomizer 8 angeordnet. Dampfseitig sind dem Wasserabscheider 4 ein erster und ein zweiter Dampfüberhitzer 5 bzw. 5′ in Serie nachgeschaltet. Eine Umwälzpumpe 9 dient der Umwälzung des im Wasserabscheider 4 anfallenden Wassers durch eine Wasseraustrittleitung 14, den Ekonomizer 8, den Verdampfer 3 und zurück zum Abscheider 4.The drawing shows schematically the essential parts of a steam generator system according to the invention. A feed water pump 2 arranged in a feed water line 1, an evaporator 3 connected downstream of this pump 2, a water separator 4 connected downstream of this, and control means 6 for controlling the feed water quantity and an in A switching unit 7 arranged in a control unit 71, together with a fossil fuel-burning furnace, are the main components of the steam generator system. The switching element 7 has a first signal triggered by the water level in the water separator 4 at low load and wet steam, a second signal triggered by a steam temperature downstream of the water separator 4 acting on the control means 6 at high load. Between the feed water pump 2 and the evaporator 3 is also from the furnace 3 'heated economizer 8 is arranged. On the steam side, the water separator 4 is followed by a first and a second steam superheater 5 or 5 'in series. A circulation pump 9 is used to circulate the water accumulating in the water separator 4 through a water outlet line 14, the economizer 8, the evaporator 3 and back to the separator 4.

In der Wasseraustrittsleitung 14 ist ein in Umwälzrichtung durchströmtes Rückschlagventil 15 vorgesehen, das verhindert, dass Wasser aus der Speisewasserleitung 1 über die Leitung 14 in den Abscheider 4 strömt. Eine Leitung 12 verbindet den Ausgang des Verdampfers 3 mit dem Eintritt des Abscheiders 4; in ihr ist ein erstes Temperaturmessgerät 16 vorgesehen. Eine dampfseitige Verbindung des Abscheiders 4 mit dem ersten Ueberhitzer 5 erfolgt über eine Dampfaustrittsleitung 13, in der ein Durchflussmesser 25 angeordnet ist.In the water outlet line 14, a check valve 15, through which flow flows, is provided, which prevents water from the feed water line 1 from flowing into the separator 4 via the line 14. A line 12 connects the outlet of the evaporator 3 to the inlet of the separator 4; a first temperature measuring device 16 is provided in it. The separator 4 is connected on the steam side to the first superheater 5 via a steam outlet line 13 in which a flow meter 25 is arranged.

Der Austritt des zweiten Ueberhitzers 5′ ist über eine Turbinendampfleitung 18 mit einer Dampfturbine 10 verbunden, die einen Generator 11 antreibt. Der Austritt der Dampfturbine 10 ist über in der Zeichnung nicht gezeigte Rohrleitungen an die Speisewasserleitung 1 angeschlossen.The outlet of the second superheater 5 'is connected via a turbine steam line 18 to a steam turbine 10 which drives a generator 11. The outlet of the steam turbine 10 is connected to the feed water line 1 via pipes not shown in the drawing.

Diese Leitungen enthalten Wärmeübertrager, einen Kondensator und eventuell eine Wasseraufbereitungsanlage sowie einen Speisewassertank mit Frischwasseranschluss. Bei Bedarf können auch Zwischenüberhitzer für die Dampfturbine 10 in der Dampferzeugeranlage vorgesehen werden. Der Wasserabscheider 4 weist einen Wasserstandsmesser 20 auf. Eine Verbindungsleitung zwischen dem ersten und dem zweiten Ueberhitzer 5 bzw. 5′ enthält ein zweites Temperaturmessgerät 30. Eine die Feuerung 3′ speisende Brennstoffzufuhrleitung 3˝ enthält einen Durchflussmesser 35 für die zur Feuerung strömende Brennstoffmenge ṁB.These lines contain heat exchangers, a condenser and possibly a water treatment system as well as a feed water tank with fresh water connection. If necessary, reheaters can also be provided for the steam turbine 10 in the steam generator system. The water separator 4 has a water level meter 20. A connecting line between the first and the second superheater 5 or 5 'contains a second temperature measuring device 30. A fuel supply line 3' feeding the furnace 3 'contains a flow meter 35 for the amount of fuel flowing to the furnace ṁ B.

Das erste Temperaturmessgerät 16 erzeugt ein der Dampftemperatur TE am Eintritt des Wasserabscheiders 4 proportionales Signal. In einem ersten Vergleichsorgan 171 wird die Differenz ΔT zwischen dieser Temperatur TE und der Sättigungstemperatur 50 des Dampfes beim zugehörigen Wasserabscheiderdruck gebildet, der durch einen Messfühler 51 gemessen und einem Gerät 52 zugeführt wird, in dem die zugehörige Sättigungstemperatur 50 ermittelt wird. Diese Temperaturdifferenz ΔT wird über eine Signalleitung 19 einem Steuerorgan 70 zugeführt, das über eine weitere Signalleitung 19′ auf das Umschaltorgan 7 auf eine weiter unten beschriebene Weise einwirkt.The first temperature measuring device 16 generates a signal proportional to the steam temperature T E at the inlet of the water separator 4. The difference ΔT between this temperature T E and the saturation temperature 50 of the steam at the associated water separator pressure is formed in a first comparison element 171, which is measured by a sensor 51 and fed to a device 52 in which the associated saturation temperature 50 is determined. This temperature difference .DELTA.T is fed via a signal line 19 to a control element 70 which acts on the switching element 7 via a further signal line 19 'in a manner described below.

Der Wasserstandsmesser 20 sendet ein dem Wasserstand im Abscheider 4 proportionales Signal über eine Signalleitung 29, zu einem zweiten Vergleichsorgan 172, in dem dieses Signal mit einem Wasserstandssollwert 21 verglichen wird. Die Differenz der beiden Signale wird einem PID-Regler 22 und von diesem einem dritten Vergleichsorgan 173 zugeführt. Diesem dritten Vergleichsorgan 173 fliesst ausserdem ein dem Dampfstrom ṁD in der Dampfaustrittsleitung 13 proportionales, vom Durchflussmesser 25 erzeugtes Signal zu, das über eine ein Glied 26 zur Abschwächung der Signalstärke enthaltende Signalleitung 39 übertragen wird. Durch Summierung der aus dem Wasserstandsmesser 20 und dem Durchflussmesser 25 stammenden Signale wird im dritten Vergleichsorgan 173 das - als "erstes Signal" bezeichnete - Signal 101 gebildet, das über eine Signalleitung 49, zu einem ersten Kontakt 27 des Umschaltorgans 7 weitergeleitet wird.The water level meter 20 sends a signal proportional to the water level in the separator 4 via a signal line 29 to a second comparator 172, in which this signal is compared with a water level setpoint 21. The difference between the two signals is fed to a PID controller 22 and from this to a third comparator 173. This third comparison element 173 also flows from the flow meter 25, which is proportional to the steam flow Dampf D in the steam outlet line 13 generated signal, which is transmitted via a signal line 39 containing a link 26 for weakening the signal strength. By summing the signals originating from the water level meter 20 and the flow meter 25, the signal 101 - referred to as the "first signal" - is formed in the third comparison element 173 and is forwarded via a signal line 49 to a first contact 27 of the switching element 7.

Das Temperaturmessgerät 30 sendet ein der Dampftemperatur TA zwischen dem ersten und dem zweiten Ueberhitzer 5 bzw. 5′ proportionales Signal über eine Signalleitung 59 zu einem vierten Vergleichsorgan 174, in dem die Differenz zwischen dieser Temperatur und einem Temperatursollwert 31 gebildet wird. Diese Differenz wird einem weiteren PID-Regler 32 zugeführt, der ein - als "zweites Signal" bezeichnetes - Signal 102 bildet und auf einen zweiten Kontakt 37 des Umschaltorgans 7 einwirken lässt.The temperature measuring device 30 sends a signal proportional to the steam temperature T A between the first and the second superheater 5 or 5 'via a signal line 59 to a fourth comparator 174, in which the difference between this temperature and a temperature setpoint 31 is formed. This difference is fed to a further PID controller 32, which forms a signal 102 - referred to as the "second signal" - and has it act on a second contact 37 of the switching element 7.

Ueber eine Signalleitung 69 verbindet das Umschaltorgan 7 - gesteuert von der Temperaturdifferenz ΔT - einen der beiden Kontakte 27 und 37 mit einem fünften Vergleichsorgan 175 und überträgt so mit Hilfe der Steuereinheit 71 das "erste" oder das "zweite Signal" auf dieses Vergleichsorgan.Via a signal line 69, the switching element 7 - controlled by the temperature difference ΔT - connects one of the two contacts 27 and 37 to a fifth comparing element 175 and thus transmits the "first" or "second signal" to this comparing element with the aid of the control unit 71.

Diesem Vergleichsorgan 175 wird ausserdem von einem Maximalwertglied 40 ein Signal 43 additiv aufgegeben, das ein "drittes Signal" bildet. Das Maximalglied 40 empfängt ein Signal 41, das eine vorgewählte Minimallast - vorzugsweise diejenige, bei der der Uebergang von Nassdampf auf Trockendampf und umgekehrt stattfindet - wiederspiegelt, und ein vom Durchflussmesser 35 ausgelöstes Signal 42, das der die Last des Dampferzeugers bestimmenden Brennstoffmenge ṁB proportional ist und das in einem dynamischen Glied 42′ für einen Vergleich mit dem Minimallastsignal 41 umgeformt wurde. Das Maximalwertglied 40 wählt dann das dem grösseren der beiden Signale 41 und 42 entsprechende dritte Signal 43 aus. Dieses wird, wie bereits erwähnt, dem Vergleichsorgan 175 zugeführt. Die Summe aus dem von der Steuereinheit 71 her stammenden Signal und dem Signal 43 wird in die Steuermittel 6 eingegeben, die auf die Speisewassermenge einwirken.In addition, this comparator 175 is given a signal 43 by a maximum value element 40, which forms a "third signal". The maximum element 40 receives a signal 41 which reflects a preselected minimum load - preferably the one at which the transition from wet steam to dry steam and vice versa takes place - and a signal 42 triggered by the flow meter 35 which determines the load of the steam generator Amount of fuel ṁ B is proportional and that was reshaped in a dynamic element 42 'for comparison with the minimum load signal 41. The maximum value element 40 then selects the third signal 43 corresponding to the larger of the two signals 41 and 42. As already mentioned, this is fed to the comparator 175. The sum of the signal coming from the control unit 71 and the signal 43 is input into the control means 6, which act on the quantity of feed water.

Bei den Steuermitteln 6 handelt es sich um eine übliche Ausführung, die sowohl auf die Drehzahl der Speisewasserpumpe 2 als auch auf ein Ventil in der Speisewasserleitung 1 oder auf beides einwirken kann. Da diese Mittel an sich bekannt und nicht erfindungswesentlich sind, wird hier nicht näher darauf eingegangen.The control means 6 is a conventional design which can act both on the speed of the feed water pump 2 and on a valve in the feed water line 1 or both. Since these means are known per se and are not essential to the invention, they are not discussed in more detail here.

Die Dampferzeugeranlage nach der Zeichnung arbeitet wie folgt:
Die Speisewasserpumpe 2 fördert Speisewasser über die Speisewasserleitung 1 in den Ekonomizer 8, in dem es von der Feuerung 3′ vorgewärmt wird; vom Ekonomizer 8 gelangt das vorgewärmte Wasser in den Verdampfer 3. Hier wird es verdampft und tritt entweder als Nass- oder als Trockendampf über die Leitung 12 in den Wasserabscheider 4 ein. Der Wasserabscheider 4 trennt die flüssige und die dampfförmige Phase des eintretenden Dampfes voneinander, wonach die flüssige Phase mit Hilfe der Umwälzpumpe 9 über die Wasseraustrittsleitung 14 und das Rückschlagventil 15 in die Speisewasserleitung 1 zurückgeführt wird, während die dampfförmige Phase über die Dampfaustrittsleitung 13 den Ueberhitzern 5, 5′ zufliesst. Der überhitzte Dampf wird über die Turbinendampfleitung 18 zur Dampfturbine 10 geleitet, in der er expandiert und Arbeit zur Erzeugung von elektrischem Strom im Generator 11 leistet.
The steam generator system according to the drawing works as follows:
The feed water pump 2 promotes feed water via the feed water line 1 in the economizer 8, in which it is preheated by the furnace 3 '; The preheated water passes from the economizer 8 into the evaporator 3. Here it is evaporated and enters the water separator 4 either as wet or as dry steam via line 12. The water separator 4 separates the liquid and the vapor phase of the incoming steam from each other, after which the liquid phase is returned to the feed water line 1 via the water outlet line 14 and the check valve 15 by means of the circulation pump 9, while the vapor phase is returned to the superheaters 5 via the steam outlet line 13 , 5 'flows. The superheated steam is transferred to the turbine steam line 18 Steam turbine 10 directed, in which it expands and does work for generating electrical current in the generator 11.

Die im ersten Vergleichsorgan 171 festgestellte Temperaturdifferenz ΔT wird im Steuerorgan 70 ausgewertet. Dieses gibt jeweils eines der drei folgenden Befehlssignale "S" aus:

  • S = -1, wenn die Temperaturdifferenz kleiner oder gleich Null ist,
  • S = +1, wenn die Temperaturdifferenz grösser als ein Grenzwert G ist, und
  • S = 0, wenn die Temperaturdifferenz grösser als Null, aber kleiner als der oder gleich dem Grenzwert G ist.
The temperature difference ΔT determined in the first comparison element 171 is evaluated in the control element 70. This outputs one of the three following command signals "S":
  • S = -1 if the temperature difference is less than or equal to zero,
  • S = +1 if the temperature difference is greater than a limit value G, and
  • S = 0 if the temperature difference is greater than zero but less than or equal to the limit value G.

Bei S = -1 liegt das Umschaltorgan 7 am ersten Kontakt 27 an und gibt das "erste Signal" über das Vergleichsorgan 175 an die Steuermittel 6 weiter. Ist dagegen das Befehlssignal S = +1, so liegt das Umschaltorgan 7 am zweiten Kontakt 37 an und leitet das "zweite Signal" weiter. Bei einem Befehl S = 0 bleibt das Umschaltorgan 7 in einer neutralen Stellung, wobei das zeitlich davor zuletzt dem fünften Vergleichsorgan 175 zugeführte erste oder zweite Signal mit Hilfe der Steuereinheit 71 festgehalten und dem fünften Vergleichsorgan 175 weiterhin zugeleitet wird.When S = -1, the switching element 7 is in contact with the first contact 27 and forwards the "first signal" to the control means 6 via the comparison element 175. If, on the other hand, the command signal S = +1, the switching element 7 is present at the second contact 37 and forwards the "second signal". In the case of a command S = 0, the switching element 7 remains in a neutral position, the first or second signal last fed to the fifth comparing element 175 with the help of the control unit 71 and being fed to the fifth comparing element 175.

Der Grenzwert G ≧ 0°C wird dabei für die Dampferzeugeranlage empirisch so niedrig wie möglich festgelegt, aber doch derart, dass im kritischen Lastbereich um 45% Last, in dem der Uebergang Nass- zu Trockendampf und umgekehrt stattfindet, der Befehl S = 0 das Umschaltorgan 7 erreicht, um ein unkontrolliertes Hin- und Herschwanken der Speisewassermenge zu verhindern. In der Praxis wird G vorzugsweise unterhalb 30°C festgelegt, wobei in den meisten Fällen erfahrungsgemäss G = 0°C gesetzt werden kann, ohne dass derartige Schwankungen auftreten.The limit value G ≧ 0 ° C is empirically set as low as possible for the steam generator system, but in such a way that in the critical load range around 45% load, in which the transition from wet to dry steam and vice versa takes place, the command S = 0 reaches the switching element 7 in order to prevent an uncontrolled swaying back and forth of the quantity of feed water. In practice, G is preferably set below 30 ° C, whereby experience has shown that G = 0 ° C can be set in most cases without such fluctuations occurring.

Es ist beim Umschalten des Umschaltorgans 7 wichtig, dass der Uebergang von einem Signal auf das andere stossfrei geschieht, was z.B. durch entsprechende Festsetzung des I-Anteils der PID-Regler 22 und 32 und mit Hilfe der Steuereinheit 71 möglich ist.When switching the switching element 7, it is important that the transition from one signal to the other occurs smoothly, which is e.g. by appropriately setting the I component of the PID controllers 22 and 32 and with the help of the control unit 71.

Im fünften Vergleichsorgan 175 werden das aus dem Umschaltorgan 7 kommende erste bzw. zweite Signal zum "dritten Signal" addiert und zur Steuerung der Speisewassermenge den Steuermitteln 6 zugeführt, so dass neben der Aenderung des Wasserstands im Wasserabscheider 4 bzw. der Dampftemperatur TA stromunterhalb des Wasserabscheiders 4, auch die zur Feuerung 3′ strömende Brennstoffmenge ṁB, die für die jeweilige Last des Dampferzeugers massgebend ist, in der Regelung berücksichtigt wird.In the fifth comparison element 175, the first and second signals coming from the switching element 7 are added to the "third signal" and fed to the control means 6 for controlling the amount of feed water, so that in addition to the change in the water level in the water separator 4 or the steam temperature T A downstream of the Water separator 4, also the amount of fuel ṁ B flowing to the furnace 3 ', which is decisive for the respective load of the steam generator, is taken into account in the regulation.

Claims (6)

  1. A method of controlling the feed water quantity of a fossil-fuel-fired vapour-producing plant having: a feed water pump disposed in a feed water line; an evaporator disposed after such pump; a water separator disposed after the evaporator; actuating means for controlling the feed water quantity; and a changeover element which on low vapour-producer load with wet steam causes a first signal triggered by the water level in the water separator and, on high vapour-producer load with dry steam, a second signal triggered by the vapour temperature downstream of the water separator, to act on the actuating means, characterised in that the difference ΔT between the vapour temperature at the water separator entry and the saturation temperature of the vapour at the associated water separator pressure is formed and compared with a selected critical temperature G ≧ 0°C and the changeover element is so controlled that at temperature differences ΔT ≦ 0 the first signal acts on the actuating means, at temperature differences ΔT greater than the critical value G (ΔT > G) the second signal acts on the actuating means and at G > 0°C and at temperature differences ΔT > 0 but less than or equal to the critical value G (0 < ΔT ≦ G) the immediately previous first or second signal which was acting continues to act on the actuating means.
  2. A method according to claim 1, characterised in that the first and second signal each act by way of a controller on the actuating means, the controllers preferably being PID controllers.
  3. A method according to claim 1 or 2, at least one vapour superheater being disposed after the water separator on the vapour side, characterised in that the vapour temperature for the second signal is measured downstream of the vapour superheater.
  4. A method according to claim 3, there being at least two consecutively connected vapour superheaters, characterised in that the vapour temperature for the second signal is measured in a connecting line between two vapour superheaters.
  5. A method according to any one of claims 1 to 4, a sum formed from the first or second signal and from a third signal representing the quantity of fuel inflowing to the vapour-producing plant acting on the actuating means, characterised in that the third signal takes effect only when the vapour-producing plant has overshot a predetermined minimum load.
  6. A method according to claim 5, characterised in that the minimum load chosen is the load at which the changeover from wet steam to dry steam and vice versa occurs.
EP88111049A 1987-09-22 1988-07-11 Method for the regulation of the feed water flow in a steam plant Expired - Lifetime EP0308596B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3650/87A CH673697A5 (en) 1987-09-22 1987-09-22
CH3650/87 1987-09-22

Publications (2)

Publication Number Publication Date
EP0308596A1 EP0308596A1 (en) 1989-03-29
EP0308596B1 true EP0308596B1 (en) 1991-12-11

Family

ID=4260560

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88111049A Expired - Lifetime EP0308596B1 (en) 1987-09-22 1988-07-11 Method for the regulation of the feed water flow in a steam plant

Country Status (6)

Country Link
US (1) US4825654A (en)
EP (1) EP0308596B1 (en)
JP (1) JPS6490902A (en)
CH (1) CH673697A5 (en)
DE (1) DE3866841D1 (en)
FI (1) FI90377C (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19504308C1 (en) * 1995-02-09 1996-08-08 Siemens Ag Method and device for starting a once-through steam generator
AT411632B (en) * 2000-04-19 2004-03-25 Tech Alternative Elektronische METHOD FOR REGULATING THE TAKE-OUT TEMPERATURE OF HOT WATER
WO2008154599A1 (en) * 2007-06-11 2008-12-18 Brightsource Energy, Inc. Solar receiver
CN101614203B (en) * 2009-07-27 2011-05-25 广州粤能电力科技开发有限公司 Method and system for automatically controlling motor-driven feed-water pump
CN103003550B (en) 2010-05-03 2016-02-17 亮源工业(以色列)有限公司 A kind of system, method and apparatus for operating solar thermal energy power generation system
DE102010042458A1 (en) * 2010-10-14 2012-04-19 Siemens Aktiengesellschaft Method for operating a combined cycle power plant and for the implementation of the method prepared gas and steam turbine plant and corresponding control device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3125073A (en) * 1964-03-17 Profos
NL111390C (en) * 1958-12-23
NL273658A (en) * 1961-01-27
FR1418864A (en) * 1964-06-25 1965-11-26 Sulzer Ag Method and device for acting on the feed water flow rate in forced circulation steam generators
CH517266A (en) * 1969-12-24 1971-12-31 Sulzer Ag Method for sliding pressure operation of a forced-flow steam generator and forced-flow steam generator system for carrying out the method
CH552173A (en) * 1972-05-16 1974-07-31 Sulzer Ag DEVICE FOR REGULATING THE FEED WATER SUPPLY OF A FORCED STEAM GENERATOR OPERATING WITH SLIDING PRESSURE.
FR2401380A1 (en) * 1977-08-23 1979-03-23 Sulzer Ag Forced circulation steam generator - has injector supplied from tapping between economiser and evaporator and temperature controlled regulator controlling flow to evaporator
US4213304A (en) * 1978-11-24 1980-07-22 Leeds & Northrup Company Boiler control system
DE3243578C3 (en) * 1982-11-25 1998-10-22 Babcock Energie Umwelt Method for operating a once-through steam generator

Also Published As

Publication number Publication date
FI90377C (en) 1994-01-25
FI883601A (en) 1989-03-23
CH673697A5 (en) 1990-03-30
US4825654A (en) 1989-05-02
FI883601A0 (en) 1988-08-01
DE3866841D1 (en) 1992-01-23
FI90377B (en) 1993-10-15
JPS6490902A (en) 1989-04-10
EP0308596A1 (en) 1989-03-29

Similar Documents

Publication Publication Date Title
EP2297518B1 (en) Method for operating a once-through steam generator and once-through steam generator
EP2212618B1 (en) Method for operating a continuous flow steam generator and once-through steam generator
EP1766288B1 (en) Process for operating a continuous steam generator
DE3017659A1 (en) BOILER LEVEL CONTROL ARRANGEMENT
DE102007035976A1 (en) Steam temperature control using an integrated function block
EP0149002B1 (en) Process-variable regulating device for a flowing medium
EP0308596B1 (en) Method for the regulation of the feed water flow in a steam plant
DE2544799C3 (en) Gas-heated steam generator
EP2676072B1 (en) Method for operating a once-through steam generator
CH632050A5 (en) Control device for a power station block operated in sliding pressure mode
EP0544615B1 (en) Method of operating a once-through steam generator with low load recirculation
DE3243578C2 (en)
DE2006409A1 (en) Method for sliding pressure operation of a forced-flow steam generator and forced-flow generator for carrying out the method
EP0565853B1 (en) Method and device for in-temperature regulation of a heating system and control unit for carrying out the process
EP0507730B1 (en) Apparatus for the load-dependent regulation of the feedwater flow in a forced circulation steam generator
EP0549522B1 (en) Method of operating a forced circulation steam generator and forced circulation steam generator therefor
CH681927A5 (en)
DE1426701C (en) Start-up device for forced flow steam generator
DE2628101C3 (en) Forced steam generator, preferably for sliding pressure operation
DE4217626A1 (en) Forced flow steam generator
DE1237586B (en) Procedure and equipment for start-up and partial load operation of once-through boilers
AT223210B (en) Procedure for regulating the steam pressure in once-through boilers
DE2648228B2 (en) Procedure for two-variable control of a steam generator
DE3101035A1 (en) &#34;CONTROL CIRCUIT WITH AUXILIARY CONTROL SIZE&#34;
CH359717A (en) Device for regulating a once-through steam generator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT SE

17P Request for examination filed

Effective date: 19890918

17Q First examination report despatched

Effective date: 19910131

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: ING. ZINI MARANESI & C. S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT SE

REF Corresponds to:

Ref document number: 3866841

Country of ref document: DE

Date of ref document: 19920123

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITPR It: changes in ownership of a european patent

Owner name: TRASFORMAZIONE SOCIETARIA;SULZER AKTIENGESELLSCHAF

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

EAL Se: european patent in force in sweden

Ref document number: 88111049.8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960617

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19960619

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960621

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19970712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980401

EUG Se: european patent has lapsed

Ref document number: 88111049.8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050711