EP0549522B1 - Method of operating a forced circulation steam generator and forced circulation steam generator therefor - Google Patents

Method of operating a forced circulation steam generator and forced circulation steam generator therefor Download PDF

Info

Publication number
EP0549522B1
EP0549522B1 EP19920810925 EP92810925A EP0549522B1 EP 0549522 B1 EP0549522 B1 EP 0549522B1 EP 19920810925 EP19920810925 EP 19920810925 EP 92810925 A EP92810925 A EP 92810925A EP 0549522 B1 EP0549522 B1 EP 0549522B1
Authority
EP
European Patent Office
Prior art keywords
line
feedwater
economizer
steam generator
water separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19920810925
Other languages
German (de)
French (fr)
Other versions
EP0549522A1 (en
Inventor
Friedrich Pietzonka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Management AG
Original Assignee
ABB Management AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Management AG filed Critical ABB Management AG
Publication of EP0549522A1 publication Critical patent/EP0549522A1/en
Application granted granted Critical
Publication of EP0549522B1 publication Critical patent/EP0549522B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/10Control systems for steam boilers for steam boilers of forced-flow type of once-through type
    • F22B35/101Control systems for steam boilers for steam boilers of forced-flow type of once-through type operating with superimposed recirculation during starting or low load periods, e.g. composite boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/008Adaptations for flue gas purification in steam generators

Definitions

  • the invention relates to a method for part-load operation of a forced-flow steam generator fired with fossil fuels.
  • the invention further relates to a forced-flow steam generator for carrying out the method.
  • Forced-flow steam generator in the sense of the invention is to be understood as a steam generator (boiler) which works according to the forced-flow or forced-circulation principle.
  • steam generators fired with fossil fuels may mostly only be operated with downstream flue gas cleaning systems, especially denitrification systems.
  • catalytic denitrification plants a minimum temperature of around 300 ° C for the flue gas entering the denitrification plant must be maintained so that this plant functions properly. In practice, however, this smoke gas temperature is not reached if the steam generator falls below a certain partial load. For steam generators with supercritical steam generation, this partial load can be around 60% of the full load, whereas for subcritical steam generation it is around 75% of the full load.
  • a flue gas bypass or a feed water bypass has previously been provided either in the economizer area (see DE 3 344 712). In both cases, a sufficiently high flue gas temperature could be maintained by diverting flue gas or feed water around the economizer.
  • Such bypass lines are structurally very complex, especially since additional bypass flaps, bypass valves or circulation pumps must be provided in the bypass line (see DE 3 616 095) in order to influence the amount routed around the economizer.
  • the invention has for its object to change the operating method and the forced steam generator of the type mentioned in such a way that it allows a temperature setting for the flue gas entering the catalytic denitrification plant below full load in a simple manner without great expenditure on equipment.
  • a feed water container 1 is provided, to which a feed water line 2 is connected, which leads to an economizer 3 of the steam generator.
  • a feed pump 4 a feed control valve 5 and a bypass valve 6 are arranged in the feed water line 2.
  • Feed water side connected in series to the economizer 3 are an evaporator 7, a water separator 8 and at least one superheater 9.
  • a steam line 10 is connected, which leads to a steam turbine system, not shown, in which the steam generated relaxes work and then in is condensed.
  • the condensate is returned via a condensate line 11 into the feed water tank 1.
  • the evaporator 7 and the superheater 9 are accommodated in a combustion chamber 12 which is provided in the lower area with a furnace 13 which, in a known, not shown manner, is a fossil fuel, e.g. Coal dust, and combustion air is supplied.
  • a flue gas duct 14 is connected, in which contact heating surfaces, not shown, such as further superheaters and / or reheaters, and the economizer 3 are arranged.
  • contact heating surfaces not shown, such as further superheaters and / or reheaters, and the economizer 3 are arranged.
  • a catalytic denitrification system 15 known per se is arranged in the flue gas flue 14, which works according to the so-called SCR method.
  • a gas line 16 connects to the denitrification plant and leads the cleaned flue gas to a chimney, not shown.
  • a line 20 is connected which leads via a check valve 21 to a start-up heat exchanger 22 and which then a control valve 23 opens into the feed water tank 1.
  • the start-up heat exchanger 22 is connected on the secondary side to the feed water line 2, specifically via a line 17 branching off from the line 2 between the feed control valve 5 and the bypass valve 6 and via a line 18 opening into the line 2 between the bypass valve 6 and the economizer 3 the line 20 branches off between the water outlet of the separator 8 and the non-return valve 21, a line 24 with valve 25, which leads to the already mentioned, not shown condenser or a starting vessel.
  • the water separator 8 has a level measuring element 30, which generates a signal representing the level, which is fed via a controller 31 to a first input 27 of a switching element 32.
  • a temperature measuring element 33 is provided near the inlet of the economizer 3 and generates a signal representing the feed water temperature, which signal is fed via a controller 34 to a second input 28 of the switching element 32.
  • An output 29 of the switching element 32 is connected to the control valve 23.
  • a signal line 35 is connected to the switching element 32, via which a signal is fed which actuates the switching element in such a way that, depending on the operating state of the steam generator, it assumes a neutral middle position between the two inputs 27 and 28 or its output 29 optionally with one of the two inputs 27, 28 connects.
  • the signal in line 35 can be a load-dependent signal that comes from a load generator, but it can also be a temperature difference signal that is formed from the steam temperature at the inlet of water separator 8 and the saturation temperature of the steam at the associated water separator pressure. It is also possible to supply a signal via line 35 that forms a limit temperature for the flue gas between the economizer 3 and the denitrification plant 15.
  • the controllers 31 and 34 can each have a P, PI or PID character.
  • the steam generator shown in Figure 1 is operated as follows. At full load of the steam generator, a quantity of feed water corresponding to the quantity of steam to be generated is fed to the steam generator by means of the feed pump 4, it being preheated in the economizer 3, evaporated in the evaporator 7 and overheated in the superheater 9.
  • the bypass valve 6 is open and there is no heat transfer in the start-up heat exchanger 22 because the control valve 23 is in the closed position, because the changeover element 32 is in the neutral position.
  • the water separator 8 is flowed through by slightly superheated steam.
  • the flue gas temperature drops behind the economizer 3 and - without using the method according to the invention - would fall below the minimum temperature of 300 ° C. with a 45% load (dashed curve A).
  • curve B in FIG. 2 shows, the feed water inlet temperature also decreases as the load on the steam generator decreases.
  • the bypass valve 6 is at least partially closed at about 60% load of the steam generator and the switching element 32 is switched from its neutral position to the second input 28, so that the signal from the temperature measuring element 33 is sent via the controller 34 to the switching element 32 arrives, which forwards an opening command for the control valve 23.
  • the switching element 32 is switched to its first input 27 with the aid of the signal in line 35, so that the level measurement signal now acts on the control valve 23 via the controller 31 and the known low-load or start-up method takes place.
  • Saturated water from the evaporator 7 enters the water separator 8 and water separated there arrives via the line 20 to the start-up heat exchanger 22. The heat contained in the separated water is then transferred to the feed water.
  • a line 20 ′ branches off the line 20 connected to the water outlet of the water separator 8 below the start-up heat exchanger 22, which bypasses the control valve 23 and also opens into the feed water tank 1.
  • a control valve 23 ' is arranged in line 20', which is dimensioned somewhat smaller than the control valve 23.
  • the control valve 23 is directly influenced by the level control signal coming from the controller 31, whereas the control valve 23 'is directly influenced by the temperature signal coming from the controller 34. In this arrangement, the switching element 32 is therefore omitted. Otherwise, the method according to the invention with the modified arrangement according to FIG. 3 proceeds the same way as described for FIG then the control valve 23 is open.
  • This valve closes when the separator 8 is run dry, that is, through which slightly superheated steam flows.
  • the control valve 23 ' In the flue gas temperature range of 300 ° C, the control valve 23 'is opened, depending on the feed water temperature at the inlet of the economizer 3. Above 60% load, the valve 23' is closed.
  • the method according to the invention can also be modified in such a way that instead of the feed water temperature measurement with the aid of the measuring element 33 or in addition thereto, the flue gas temperature is measured, specifically at one or more points of the flue gas channel 14 between the economizer 3 and the denitrification system 15.
  • the flue gas temperature measurement signal then acts the controller 34 to the control valve 23 (circuit according to FIG. 1) or the control valve 23 '(circuit according to FIG. 3). If both the feed water temperature and the flue gas temperature are measured, it forms a reference value for the flue gas temperature.
  • the method according to the invention can also be used for so-called drum boilers in which the steam is produced the natural circulation principle takes place.
  • the separator then corresponds to the steam / water drum.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Teillastbetrieb eines mit fossilen Brennstoffen befeuerten Zwanglaufdampferzeugers. Weiter betrifft die Erfindung einen Zwanglaufdampferzeuger zum Durchführen des Verfahrens.The invention relates to a method for part-load operation of a forced-flow steam generator fired with fossil fuels. The invention further relates to a forced-flow steam generator for carrying out the method.

Unter Zwanglaufdampferzeuger im Sinne der Erfindung ist ein Dampferzeuger (Kessel) zu verstehen, welcher nach dem Zwangdurchlauf- bzw. Zwangumlaufprinzip arbeitet.Forced-flow steam generator in the sense of the invention is to be understood as a steam generator (boiler) which works according to the forced-flow or forced-circulation principle.

Bei den bisherigen Betriebsverfahren von Zwanglaufdampferzeugern mit Anfahrwärmeübertragern wurde dieser Wärmeübertrager nach Beendigung des Anfahr- und gegebenenfalls Schwachlastbetriebes ausgeschaltet, indem das Ventil stromunterhalb des Wasseraustritts geschlossen wurde (siehe K. Eberl und P. Fässler: Berechnung des Anfahrverhaltens von Zwangdurchlaufkesseln auf dem Digitalrechner als Optimierungsmittel für die Systemauslegung und Prozessführung. VGB Kraftwerkstechnik 54, Heft 8, S. 547-555). Mit zunehmender Last des Dampferzeugers verliert der Abscheider seine Abscheidefunktion, da er nur noch von leicht überhitztem Dampf durchströmt wird.In the previous operating methods of forced-flow steam generators with start-up heat exchangers, this heat exchanger was switched off after the start-up and possibly low-load operation by closing the valve downstream of the water outlet (see K. Eberl and P. Fässler: Calculation of the start-up behavior of forced-flow boilers on the digital computer as an optimization tool for system design and process control (VGB Kraftwerkstechnik 54, Issue 8, pp. 547-555). With increasing steam generator load, the separator loses its separating function because only slightly overheated steam flows through it.

Aus Umweltschutzgründen dürfen mit fossilen Brennstoffen befeuerte Dampferzeuger meistens nur noch mit nachgeschalteten Rauchgasreinigungsanlagen, insbesondere Entstickungsanlagen, betrieben werden. Bei katalytischen Entstickungsanlagen muss eine bei ungefähr 300°C liegende Mindesttemperatur für das in die Entstickungsanlage eintretende Rauchgas eingehalten werden, damit diese Anlage einwandfrei funktioniert. In der Praxis wird diese Rauchgastemperatur jedoch unterschritten, wenn der Dampferzeuger eine bestimmte Teillast unterschreitet. Bei Dampferzeugern mit überkritischer Dampferzeugung kann diese Teillast bei etwa 60% der Vollast liegen, wogegen sie bei unterkritischer Dampferzeugung bei etwa 75% der Vollast liegt. Um zu vermeiden, dass das Rauchgas mit zu tiefer Temperatur in die katalytische Entstickungsanlage eintritt, wurde bisher entweder im Bereich des Economisers ein Rauchgasbypass oder ein Speisewasserbypass vorgesehen (s. DE 3 344 712). In beiden Fällen konnte durch Umleiten von Rauchgas bzw. Speisewasser um den Economiser herum eine genügend hohe Rauchgastemperatur eingehalten werden. Solche Bypassleitungen sind konstruktiv recht aufwendig, zumal noch zusätzlich Bypassklappen, Bypassventile bzw. Umwälzpumpen in der Bypassleitung (s. DE 3 616 095) zum Beeinflussen der jeweils um den Economiser herumgeführten Menge vorgesehen werden müssen.For environmental reasons, steam generators fired with fossil fuels may mostly only be operated with downstream flue gas cleaning systems, especially denitrification systems. In catalytic denitrification plants, a minimum temperature of around 300 ° C for the flue gas entering the denitrification plant must be maintained so that this plant functions properly. In practice, however, this smoke gas temperature is not reached if the steam generator falls below a certain partial load. For steam generators with supercritical steam generation, this partial load can be around 60% of the full load, whereas for subcritical steam generation it is around 75% of the full load. In order to prevent the flue gas from entering the catalytic denitrification plant at too low a temperature, a flue gas bypass or a feed water bypass has previously been provided either in the economizer area (see DE 3 344 712). In both cases, a sufficiently high flue gas temperature could be maintained by diverting flue gas or feed water around the economizer. Such bypass lines are structurally very complex, especially since additional bypass flaps, bypass valves or circulation pumps must be provided in the bypass line (see DE 3 616 095) in order to influence the amount routed around the economizer.

Der Erfindung liegt die Aufgabe zugrunde, das Betriebsverfahren, sowie den Zwanglaufdampferzeuger der eingangs genannten Art so abzuändern, dass es eine Temperatureinstellung für das in der katalytischen Entstickungsanlage eintretende Rauchgas unterhalb der Vollast ohne grossen apparativen Aufwand auf einfache Weise erlaubt.The invention has for its object to change the operating method and the forced steam generator of the type mentioned in such a way that it allows a temperature setting for the flue gas entering the catalytic denitrification plant below full load in a simple manner without great expenditure on equipment.

Diese Aufgabe wird erfindungsgemäss durch die Merkmale der unabhängigen Patentansprüche 1, 3 und 4 gelöst. Beim Vorhandensein einer rauchgasseitig dem Economiser nachgeschalteten katalytischen Entstickungsanlage und in einem Lastbereich des Dampferzeugers zwischen dem Anfahrbetrieb und der Vollast wird dem Anfahrwärmeübertrager Dampf aus dem Wasserabscheider zugeführt. Mit dem Zuführen von Dampf in den Anfahrwärmeübertrager wird auch im Lastbereich oberhalb des Anfahrbetriebes oder der Schwachlast Wärme an das zum Economiser strömende Speisewasser übertragen und damit ein Absinken der Rauchgastemperatur unter den für die katalytische Anlage notwendigen Mindestwert vermieden. Es wird also erfindungsgemäss ein in der Dampferzeugungsanlage ohnehin vorhandener Apparat, nämlich der Anfahrwärmeübertrager, für einen neuen zusätzlichen Zweck verwendet. Gleichzeitig ist es nicht mehr nötig, am Economiser einen Speisewasserbypass oder einen Rauchgasbypass mit den zugehörigen Stellorganen zu installieren.This object is achieved according to the invention by the features of independent claims 1, 3 and 4. In the presence of a catalytic denitrification system downstream of the flue gas side and in a load range of the steam generator between the start-up mode and the full load, steam is supplied to the start-up heat exchanger from the water separator. When steam is fed into the start-up heat exchanger, heat is also transferred to the feed water flowing to the economiser in the load area above the start-up mode or the low load, thus preventing the flue gas temperature from dropping below the minimum value required for the catalytic system. According to the invention, an apparatus that is already present in the steam generation system, namely the start-up heat exchanger, is used for a new additional purpose. At the same time, it is no longer necessary to install a feed water bypass or a flue gas bypass with the associated actuators on the economizer.

Ein Ausführungsbeispiel der Erfindung ist in der folgenden Beschreibung anhand der Zeichnung näher erläutert. Es zeigen

Fig.1
ein Schaltschema eines Zwangdurchlaufdampferzeugers zum Durchführen des erfindungsgemässen Verfahrens,
Fig.2
ein Diagramm, in dem über der Last des Dampferzeugers der Verlauf der Rauchgastemperatur am Austritt des Economisers und der der Speisewassertemperatur am Eintritt des Economisers aufgetragen sind, und zwar mit und ohne Anwendung des erfindungsgemässen Verfahrens und
Fig.3
ein gegenüber Fig.1 abgewandeltes Detail des Dampferzeugers.
An embodiment of the invention is explained in more detail in the following description with reference to the drawing. Show it
Fig. 1
2 shows a circuit diagram of a once-through steam generator for carrying out the method according to the invention,
Fig. 2
a diagram in which the course of the flue gas temperature at the outlet of the economizer and that of the feed water temperature at the inlet of the economizer are plotted against the load of the steam generator, with and without using the method according to the invention and
Fig. 3
a modified detail of the steam generator compared to Fig.1.

Gemäss Fig.1 ist ein Speisewasserbehälter 1 vorgesehen, an dem eine Speisewasserleitung 2 angeschlossen ist, die zu einem Economiser 3 des Dampferzeugers führt. In der Speisewasserleitung 2 sind eine Speisepumpe 4, ein Speiseregelventil 5 und ein Bypassventil 6 angeordnet. Speisewasserseitig in Reihe geschaltet zum Economiser 3 sind ein Verdampfer 7, ein Wasserabscheider 8 und mindestens ein Ueberhitzer 9. Am Austritt des Ueberhitzers 9 ist eine Dampfleitung 10 angeschlossen, die zu einer nicht dargestellten Dampfturbinenanlage führt, in der der erzeugte Dampf arbeitsleistend entspannt und dann in einem Kondensator niedergeschlagen wird. Das Kondensat wird über eine Kondensatleitung 11 in den Speisewasserbehälter 1 zurückgeleitet.According to FIG. 1, a feed water container 1 is provided, to which a feed water line 2 is connected, which leads to an economizer 3 of the steam generator. A feed pump 4, a feed control valve 5 and a bypass valve 6 are arranged in the feed water line 2. Feed water side connected in series to the economizer 3 are an evaporator 7, a water separator 8 and at least one superheater 9. At the outlet of the superheater 9, a steam line 10 is connected, which leads to a steam turbine system, not shown, in which the steam generated relaxes work and then in is condensed. The condensate is returned via a condensate line 11 into the feed water tank 1.

Der Verdampfer 7 und der Ueberhitzer 9 sind in einer Brennkammer 12 untergebracht, die im unteren Bereich mit einer Feuerung 13 versehen ist, der in bekannter, nicht näher dargestellter Weise ein fossiler Brennstoff, z.B. Kohlenstaub, und Verbrennungsluft zugeführt wird. Am oberen Ende der Brennkammer 12 ist ein Rauchgaszug 14 angeschlossen, in dem nicht gezeigte Berührungsheizflächen, wie weitere Ueberhitzer und/oder Zwischenüberhitzer, sowie der Economiser 3 angeordnet sind. Rauchgasseitig stromunterhalb des Economisers 3 ist im Rauchgaszug 14 eine an sich bekannte katalytische Entstickungsanlage 15 angeordnet, die nach dem sogenannten SCR-Verfahren arbeitet. An die Entstickungsanlage schliesst sich eine Gasleitung 16 an, die das gereinigte Rauchgas zu einem nicht dargestellten Kamin führt.The evaporator 7 and the superheater 9 are accommodated in a combustion chamber 12 which is provided in the lower area with a furnace 13 which, in a known, not shown manner, is a fossil fuel, e.g. Coal dust, and combustion air is supplied. At the upper end of the combustion chamber 12, a flue gas duct 14 is connected, in which contact heating surfaces, not shown, such as further superheaters and / or reheaters, and the economizer 3 are arranged. On the flue gas side, downstream of the economizer 3, a catalytic denitrification system 15 known per se is arranged in the flue gas flue 14, which works according to the so-called SCR method. A gas line 16 connects to the denitrification plant and leads the cleaned flue gas to a chimney, not shown.

Am Wasseraustritt des Wasserabscheiders 8 ist eine Leitung 20 angeschlossen, die über ein Rückschlagventil 21 zu einem Anfahrwärmeübertrager 22 führt und die dann über ein Regelventil 23 in den Speisewasserbehälter 1 mündet. Der Anfahrwärmeübertrager 22 ist sekundärseitig mit der Speisewasserleitung 2 verbunden, und zwar über eine zwischen dem Speiseregelventil 5 und dem Bypassventil 6 von der Leitung 2 abzweigende Leitung 17 sowie über eine zwischen dem Bypassventil 6 und dem Economiser 3 in die Leitung 2 mündende Leitung 18. Von der Leitung 20 zweigt zwischen dem Wasseraustritt des Abscheiders 8 und der Rückschlagklappe 21 eine Leitung 24 mit Ventil 25 ab, die zum schon erwähnten, nicht gezeichneten Kondensator oder einem Anfahrgefäss führt.At the water outlet of the water separator 8, a line 20 is connected which leads via a check valve 21 to a start-up heat exchanger 22 and which then a control valve 23 opens into the feed water tank 1. The start-up heat exchanger 22 is connected on the secondary side to the feed water line 2, specifically via a line 17 branching off from the line 2 between the feed control valve 5 and the bypass valve 6 and via a line 18 opening into the line 2 between the bypass valve 6 and the economizer 3 the line 20 branches off between the water outlet of the separator 8 and the non-return valve 21, a line 24 with valve 25, which leads to the already mentioned, not shown condenser or a starting vessel.

Der Wasserabscheider 8 weist ein Niveaumessorgan 30 auf, das ein das Niveau repräsentierendes Signal erzeugt, das über einen Regler 31 einem ersten Eingang 27 eines Umschaltorgans 32 zugeführt wird. Nahe dem Eintritt des Economisers 3 ist ein Temperaturmessorgan 33 vorgesehen, das ein die Speisewassertemperatur repräsentierendes Signal erzeugt, das über einen Regler 34 einem zweiten Eingang 28 des Umschaltorgans 32 zugeführt wird. Ein Ausgang 29 des Umschaltorgans 32 ist mit dem Regelventil 23 verbunden. Am Umschaltorgan 32 ist eine Signalleitung 35 angeschlossen, über die ein Signal zugeführt wird, das das Umschaltorgan so betätigt, dass es je nach Betriebszustand des Dampferzeugers eine neutrale Mittellage zwischen den beiden Eingängen 27 und 28 einnimmt oder seinen Ausgang 29 wahlweise mit einem der beiden Eingänge 27, 28 verbindet. Das Signal in der Leitung 35 kann ein lastabhängiges Signal sein, das von einem Lastgeber kommt, es kann aber auch ein Temperaturdifferenzsignal sein, das aus der Dampftemperatur am Eintritt des Wasserabscheiders 8 und der Sättigungstemperatur des Dampfes beim zugehörigen Wasserabscheiderdruck gebildet wird. Es ist auch möglich, über die Leitung 35 ein Signal zuzuführen, das eine Grenztemperatur für das Rauchgas zwischen dem Economiser 3 und der Entstickungsanlage 15 bildet. Die Regler 31 und 34 können jeweils P-, PI- oder PID-Charakter aufweisen.The water separator 8 has a level measuring element 30, which generates a signal representing the level, which is fed via a controller 31 to a first input 27 of a switching element 32. A temperature measuring element 33 is provided near the inlet of the economizer 3 and generates a signal representing the feed water temperature, which signal is fed via a controller 34 to a second input 28 of the switching element 32. An output 29 of the switching element 32 is connected to the control valve 23. A signal line 35 is connected to the switching element 32, via which a signal is fed which actuates the switching element in such a way that, depending on the operating state of the steam generator, it assumes a neutral middle position between the two inputs 27 and 28 or its output 29 optionally with one of the two inputs 27, 28 connects. The signal in line 35 can be a load-dependent signal that comes from a load generator, but it can also be a temperature difference signal that is formed from the steam temperature at the inlet of water separator 8 and the saturation temperature of the steam at the associated water separator pressure. It is also possible to supply a signal via line 35 that forms a limit temperature for the flue gas between the economizer 3 and the denitrification plant 15. The controllers 31 and 34 can each have a P, PI or PID character.

Der in Fig.1 gezeigte Dampferzeuger wird wie folgt betrieben. Bei Vollast des Dampferzeugers wird eine der zu erzeugenden Dampfmenge entsprechende Speisewassermenge mittels der Speisepumpe 4 dem Dampferzeuger zugeführt, wobei es im Economiser 3 vorgewärmt, im Verdampfer 7 verdampft und im Ueberhitzer 9 überhitzt wird. Dabei ist das Bypassventil 6 offen, und es findet keine Wärmeübertragung im Anfahrwärmeübertrager 22 statt, weil das Regelventil 23 in geschlossener Stellung ist, denn das Umschaltorgan 32 hat die neutrale Stellung inne. Der Wasserabscheider 8 wird von leicht überhitztem Dampf durchströmt. Wie aus Fig.2 ersichtlich ist, beträgt die Rauchgastemperatur (Kurve A) hinter dem Economiser 3 bei Vollast (= 100%) etwa 370°C, d.h. sie liegt oberhalb der für den einwandfreien Betrieb der Entstickungsanlage 15 notwendigen Mindesttemperatur von etwa 300°C.The steam generator shown in Figure 1 is operated as follows. At full load of the steam generator, a quantity of feed water corresponding to the quantity of steam to be generated is fed to the steam generator by means of the feed pump 4, it being preheated in the economizer 3, evaporated in the evaporator 7 and overheated in the superheater 9. The bypass valve 6 is open and there is no heat transfer in the start-up heat exchanger 22 because the control valve 23 is in the closed position, because the changeover element 32 is in the neutral position. The water separator 8 is flowed through by slightly superheated steam. As can be seen from Fig. 2, the flue gas temperature (curve A) behind the economizer 3 at full load (= 100%) is about 370 ° C, i.e. it is above the minimum temperature of approximately 300 ° C. necessary for the correct operation of the denitrification plant 15.

Mit sinkender Last geht die Rauchgastemperatur hinter dem Economiser 3 zurück und würde - ohne Anwendung des erfindungsgemässen Verfahrens - bei etwa 45% Last die Mindesttemperatur von 300°C unterschreiten (gestrichelte Kurve A). Wie die Kurve B in Fig.2 zeigt, geht mit sinkender Last des Dampferzeugers auch die Speisewassereintrittstemperatur zurück. Mit dem erfindungsgemässen Verfahren wird bei etwa 60% Last des Dampferzeugers das Bypassventil 6 mindestens teilweise geschlossen und das Umschaltorgan 32 aus seiner neutralen Stellung auf den zweiten Eingang 28 geschaltet, so dass das Signal des Temperaturmessorgans 33 über den Regler 34 zum Umschaltorgan 32 gelangt, das einen Oeffnungsbefehl für das Regelventil 23 weitergibt. Da in dem Wasserabscheider 8 immer noch leicht überhitzter Dampf eintritt, strömt nunmehr Dampf über die Leitung 20 zum Anfahrwärmeübertrager 22, in dem Wärme an das über die Leitung 17 zuströmende Speisewasser übertragen wird. Dieses Speisewasser mit höherer Temperatur tritt nunmehr - gegebenenfalls gemischt der vom Bypassventil 6 durchgelassenen Speisewasserteilmenge - in den Economiser 3 ein, dessen Austrittstemperatur dabei entsprechend der Kurve B' in Fig.2 ansteigt. Dadurch wird ein weiteres Absinken der Rauchgastemperatur entsprechend der gestrichelten Kurve A in Fig.2 am Austritt des Economisers verhindert. Wie sich aus der Kurve A' in Fig.2 ergibt, verläuft diese Rauchgastemperatur ungefähr konstant auf 320°C im Lastbereich von 60% bis ungefähr 30% Last des Dampferzeugers.With a falling load, the flue gas temperature drops behind the economizer 3 and - without using the method according to the invention - would fall below the minimum temperature of 300 ° C. with a 45% load (dashed curve A). As curve B in FIG. 2 shows, the feed water inlet temperature also decreases as the load on the steam generator decreases. With the method according to the invention, the bypass valve 6 is at least partially closed at about 60% load of the steam generator and the switching element 32 is switched from its neutral position to the second input 28, so that the signal from the temperature measuring element 33 is sent via the controller 34 to the switching element 32 arrives, which forwards an opening command for the control valve 23. Since slightly overheated steam still enters the water separator 8, steam now flows via the line 20 to the start-up heat exchanger 22, in which heat is transferred to the feed water flowing in via the line 17. This feed water with a higher temperature now enters the economizer 3, possibly mixed with the feed water partial quantity let through bypass valve 6, the outlet temperature of which rises in accordance with curve B 'in FIG. This prevents a further drop in the flue gas temperature in accordance with the dashed curve A in FIG. 2 at the exit of the economizer. As can be seen from curve A 'in FIG. 2, this flue gas temperature is approximately constant at 320 ° C. in the load range from 60% to approximately 30% load of the steam generator.

Unterhalb 30% Last wird mit Hilfe des Signals in der Leitung 35 das Umschaltorgan 32 auf seinen ersten Eingang 27 geschaltet, so dass nunmehr das Niveaumessignal über den Regler 31 auf das Regelventil 23 wirkt und das bekannte Schwachlast- oder Anfahrverfahren stattfindet. Dabei tritt Sattwasser aus dem Verdampfer 7 in den Wasserabscheider 8 ein und dort abgeschiedenes Wasser gelangt über die Leitung 20 zum Anfahrwärmeübertrager 22. Die im abgeschiedenen Wasser enthaltene Wärme wird dann an das Speisewasser übertragen.Below 30% load, the switching element 32 is switched to its first input 27 with the aid of the signal in line 35, so that the level measurement signal now acts on the control valve 23 via the controller 31 and the known low-load or start-up method takes place. Saturated water from the evaporator 7 enters the water separator 8 and water separated there arrives via the line 20 to the start-up heat exchanger 22. The heat contained in the separated water is then transferred to the feed water.

Bei der abgewandelten Ausführungsform gemäss Fig.3 zweigt von der am Wasseraustritt des Wasserabscheiders 8 angeschlossenen Leitung 20 stromunterhalb des Anfahrwärmeübertragers 22 eine Leitung 20' ab, die das Regelventil 23 umgeht und ebenfalls in den Speisewasserbehälter 1 mündet. In der Leitung 20' ist ein Regelventil 23' angeordnet, das etwas kleiner dimensioniert ist als das Regelventil 23. Das Regelventil 23 steht direkt unter dem Einfluss des vom Regler 31 kommenden Niveauregelsignals, wogegen das Regelventil 23' direkt unter dem Einfluss des vom Regler 34 kommenden Temperatursignals steht. Bei dieser Anordnung entfällt also das Umschaltorgan 32. Im übrigen läuft das erfindungsgemässe Verfahren mit der abgewandelten Anordnung gemäss Fig.3 gleich ab wie zu Fig.1 beschrieben, d.h. bei Anfahr- oder Schwachlastbetrieb wird der Anfahrwärmeübertrager 22 von Wasser aus dem Abscheider durchströmt, indem dann das Regelventil 23 geöffnet ist. Dieses Ventil schliesst, wenn der Abscheider 8 trockengefahren wird, d.h. von leicht überhitztem Dampf durchströmt wird. Im Rauchgastemperaturbereich von 300°C wird das Regelventil 23' geöffnet, und zwar in Abhängigkeit von der Speisewassertemperatur am Eintritt des Economisers 3. Oberhalb von 60% Last ist das Ventil 23' geschlossen.In the modified embodiment according to FIG. 3, a line 20 ′ branches off the line 20 connected to the water outlet of the water separator 8 below the start-up heat exchanger 22, which bypasses the control valve 23 and also opens into the feed water tank 1. A control valve 23 'is arranged in line 20', which is dimensioned somewhat smaller than the control valve 23. The control valve 23 is directly influenced by the level control signal coming from the controller 31, whereas the control valve 23 'is directly influenced by the temperature signal coming from the controller 34. In this arrangement, the switching element 32 is therefore omitted. Otherwise, the method according to the invention with the modified arrangement according to FIG. 3 proceeds the same way as described for FIG then the control valve 23 is open. This valve closes when the separator 8 is run dry, that is, through which slightly superheated steam flows. In the flue gas temperature range of 300 ° C, the control valve 23 'is opened, depending on the feed water temperature at the inlet of the economizer 3. Above 60% load, the valve 23' is closed.

Das erfindungsgemässe Verfahren lässt sich auch dahingehend abwandeln, dass anstelle der Speisewassertemperaturmessung mit Hilfe des Messorgans 33 oder zusätzlich dazu die Rauchgastemperatur gemessen wird, und zwar an einer oder mehreren Stellen des Rauchgaskanals 14 zwischen dem Economiser 3 und der Entstickungsanlage 15. Das Rauchgastemperaturmessignal wirkt dann über den Regler 34 auf das Regelventil 23 (Schaltung gemäss Fig.1) oder das Regelventil 23' (Schaltung gemäss Fig.3). Wenn sowohl die Speisewassertemperatur als auch die Rauchgastemperatur gemessen werden, bildet jene einen Referenzwert für die Rauchgastemperatur.The method according to the invention can also be modified in such a way that instead of the feed water temperature measurement with the aid of the measuring element 33 or in addition thereto, the flue gas temperature is measured, specifically at one or more points of the flue gas channel 14 between the economizer 3 and the denitrification system 15. The flue gas temperature measurement signal then acts the controller 34 to the control valve 23 (circuit according to FIG. 1) or the control valve 23 '(circuit according to FIG. 3). If both the feed water temperature and the flue gas temperature are measured, it forms a reference value for the flue gas temperature.

Das erfindungsgemässe Verfahren ist auch für sogenannte Trommelkessel anwendbar, in denen die Dampferzeugung nach dem Naturumlaufprinzip stattfindet. Der Abscheider entspricht dann der Dampf/Wasser-Trommel.The method according to the invention can also be used for so-called drum boilers in which the steam is produced the natural circulation principle takes place. The separator then corresponds to the steam / water drum.

Claims (4)

  1. Method for the part-load operation of a forced-circulation steam generator fired by fossil fuels, having a feedwater container (1), to which a feedwater line (2) is connected, which leads to a feed pump (4), an economizer (3), an evaporator (7) and a water separator (8), a line (20) being connected at the water outlet of the water separator (8), which line leads to a start-up heat exchanger (22) and opens into the feedwater container (1) via at least one control valve (23) which is influenced by the level in the water separating member (8), in the case of a catalytic denitration system (15) being present downstream of the economizer (3) on the smoke gas side, steam from the water separator (8) being fed to the start-up heat exchanger (22).
  2. Method for the part-load operation of a forced-circulation steam generator according to Claim 1, in which the start-up heat exchanger (22) is connected to the feedwater line (2) via a line (17), which branches off from the feedwater line (2) between a feedwater control valve (5) and a bypass valve (6), and a line (18) which opens into the feed line (2) between the bypass valve (6) and the economizer (3), the bypass valve (6) being at least partially closed so that feedwater flows through the start-up heat exchanger (22).
  3. Forced-circulation steam generator for carrying out the method according to Claim 1 or 2, having a feedwater container (1), to which a feedwater line (2) is connected, which leads to a feed pump (4), an economizer (3), an evaporator (7) and a water separator (8), a line (20) being connected at the water outlet of the water separator (8), which line leads to a start-up heat exchanger (22) and opens into the feedwater container (1) via at least one control valve (23) which is influenced by the level in the water separating member (8), and having a level measuring member (30) arranged on the water separator (8), a temperature measuring member (33) being arranged at the feedwater inlet of the economizer (3), a switchover member (32) being provided, which has two inputs (27, 28) and an output and whose one input (27) is connected to the level measuring member (30) and whose other input (28) is connected to the temperature measuring member (33), whereas the output (29) of the switchover member (32) is connected to the valve (23) arranged downstream of the water outlet, and the switchover member (32) producing, during the start-up operation, a connection of its output to the input (27) connected to the level measuring member (30) and, during operation between the start-up phase and full load, producing a connection of its output (29) to the input (28) connected to the temperature measuring member (33).
  4. Forced-circulation steam generator for carrying out the method according to Claim 1 or 2, having a feedwater container (1), to which a feedwater line (2) is connected, which leads to a feed pump (4), an economizer (3), an evaporator (7) and a water separator (8), a line (20) being connected at the water outlet of the water separator (8), which line leads to a start-up heat exchanger and opens into the feedwater container (1) via at least one control valve which is influenced by the level in the water separator (8), and having a level measuring member (30) arranged on the water separator (8), a temperature measuring member (33) being arranged at the feedwater inlet of the economizer (3), a second line (20') being provided parallel to the line (20), in which second line (20') a second control valve (23') is arranged, which is directly connected to the temperature measuring member (33).
EP19920810925 1991-12-23 1992-11-27 Method of operating a forced circulation steam generator and forced circulation steam generator therefor Expired - Lifetime EP0549522B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH383591 1991-12-23
CH3835/91 1991-12-23

Publications (2)

Publication Number Publication Date
EP0549522A1 EP0549522A1 (en) 1993-06-30
EP0549522B1 true EP0549522B1 (en) 1996-05-08

Family

ID=4264495

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19920810925 Expired - Lifetime EP0549522B1 (en) 1991-12-23 1992-11-27 Method of operating a forced circulation steam generator and forced circulation steam generator therefor

Country Status (5)

Country Link
EP (1) EP0549522B1 (en)
CZ (1) CZ282894B6 (en)
DE (1) DE59206233D1 (en)
PL (1) PL170179B1 (en)
SK (1) SK374492A3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004024705D1 (en) * 2004-12-29 2010-01-28 Son S R L steam generator
EP2119880A1 (en) * 2008-02-15 2009-11-18 Siemens Aktiengesellschaft Method for starting a steam producer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL287831A (en) * 1963-01-21
DE1915583B1 (en) * 1969-03-27 1970-04-23 Neckarwerke Elek Zitaetsversor Process for influencing the steam outlet temperature in a once-through steam generator with superimposed circulation during start-up and at partial load
US3972193A (en) * 1975-01-02 1976-08-03 Foster Wheeler Energy Corporation Integral separator start-up system for a vapor generator with constant pressure furnace circuitry
CA1092910A (en) * 1976-07-27 1981-01-06 Ko'hei Hamabe Boiler apparatus containing denitrator
DE3344712C1 (en) * 1983-12-10 1985-04-18 Balcke-Dürr AG, 4030 Ratingen Steam generator
DK154731C (en) * 1985-05-21 1989-05-08 Burmeister & Wains Energi Steam boiler with catalytic flue gas treatment as well as boiler operation
DE3625062A1 (en) * 1986-07-24 1988-02-04 Steinmueller Gmbh L & C Steam generator with downstream catalytic gas purification and superposed forced circulation

Also Published As

Publication number Publication date
CZ374492A3 (en) 1993-07-14
SK374492A3 (en) 1994-04-06
PL170179B1 (en) 1996-11-29
DE59206233D1 (en) 1996-06-13
CZ282894B6 (en) 1997-11-12
EP0549522A1 (en) 1993-06-30
PL297019A1 (en) 1993-09-20

Similar Documents

Publication Publication Date Title
EP0591163B1 (en) Combined gas and steam turbine plant
DE102009036064B4 (en) in order to operate a forced-circulation steam generator operating at a steam temperature of more than 650 ° C, as well as forced circulation steam generators
DE4303613C2 (en) Process for generating steam in a once-through steam generator
EP0013045B1 (en) Steam-generation plant
DE3213837A1 (en) EXHAUST STEAM GENERATOR WITH DEGASSER
EP0777035B1 (en) Method for starting a multiple pressure boiler
EP0781960A2 (en) Purification of a water-steam cycle in an once-through steam generator
DE1426701B2 (en) START-UP DEVICE FOR FORCED FLOW STEAM GENERATOR
DE19544224B4 (en) Chemical operation of a water / steam cycle
EP0881429B1 (en) Improvement of the impurities separating degree in a steam-water separator
EP0981014B1 (en) Power plant and process for starting and for purification of its water-steam cycle
EP3017152B1 (en) Combined cycle gas turbine plant having a waste heat steam generator and fuel pre-heating
DE19527537C1 (en) Combined gas and steam turbine plant
EP0549522B1 (en) Method of operating a forced circulation steam generator and forced circulation steam generator therefor
DE1426907B2 (en) APPROACH FOR STEAM POWER PLANTS
DE2023748A1 (en) Process for improving the mode of operation of a combined cycle gas and steam turbine system with a downstream steam boiler and system for carrying out the process
CH688837A5 (en) Steam generator.
EP2556218A1 (en) Method for quickly connecting a steam generator
DE2006409C3 (en) Forced steam generator operated in the sliding pressure process
DE2029830A1 (en) Warm-up circuit for steam turbine plant
WO1993024790A1 (en) Process and device for regulating the flue gas temperature at the outlet of a steam generator
DE1242633B (en) Procedure for starting up a once-through steam generator from a warm state
EP0919767B1 (en) Combined steam gas power plant with a once-through steam generator
EP0898054B1 (en) Steam generator and operating method
DE1228623B (en) Steam power plant with forced steam generator and reheater

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19930727

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB KESSELANLAGEN AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB MANAGEMENT AG

17Q First examination report despatched

Effective date: 19950119

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 59206233

Country of ref document: DE

Date of ref document: 19960613

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960722

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19991005

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001130

BERE Be: lapsed

Owner name: ABB MANAGEMENT A.G.

Effective date: 20001130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20010927

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011001

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

NLS Nl: assignments of ep-patents

Owner name: ALSTOM;ASEA BROWN BOVERI LTD.

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: ABB SWITSERLAND HOLDING LTD.;ASEA BROWN BOVERI LTD

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020919

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030601

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030930

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051127