EP3647657A1 - Régulation de l'eau d'alimentation pour générateur de vapeur à récupération de chaleur à circulation forcée - Google Patents

Régulation de l'eau d'alimentation pour générateur de vapeur à récupération de chaleur à circulation forcée Download PDF

Info

Publication number
EP3647657A1
EP3647657A1 EP18203107.0A EP18203107A EP3647657A1 EP 3647657 A1 EP3647657 A1 EP 3647657A1 EP 18203107 A EP18203107 A EP 18203107A EP 3647657 A1 EP3647657 A1 EP 3647657A1
Authority
EP
European Patent Office
Prior art keywords
evaporator
preheater
heating surfaces
flow
feed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18203107.0A
Other languages
German (de)
English (en)
Inventor
Jan BRÜCKNER
Tobias Schulze
Frank Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP18203107.0A priority Critical patent/EP3647657A1/fr
Priority to KR1020217015943A priority patent/KR102558369B1/ko
Priority to ES19783975T priority patent/ES2927687T3/es
Priority to CA3117871A priority patent/CA3117871C/fr
Priority to JP2021523264A priority patent/JP7114808B2/ja
Priority to EP19783975.6A priority patent/EP3827200B1/fr
Priority to US17/282,022 priority patent/US11530812B2/en
Priority to PCT/EP2019/075105 priority patent/WO2020088838A1/fr
Priority to CN201980070849.7A priority patent/CN113056639B/zh
Publication of EP3647657A1 publication Critical patent/EP3647657A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D5/00Controlling water feed or water level; Automatic water feeding or water-level regulators
    • F22D5/26Automatic feed-control systems
    • F22D5/30Automatic feed-control systems responsive to both water level and amount of steam withdrawn or steam pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • F22B29/067Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes operating at critical or supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/10Control systems for steam boilers for steam boilers of forced-flow type of once-through type
    • F22B35/12Control systems for steam boilers for steam boilers of forced-flow type of once-through type operating at critical or supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D5/00Controlling water feed or water level; Automatic water feeding or water-level regulators
    • F22D5/26Automatic feed-control systems
    • F22D5/34Applications of valves

Definitions

  • the invention relates to a method for operating a continuous steam generator designed as a waste heat steam generator. It also relates to a once-through steam generator for performing the method.
  • the feed water control concept for Benson evaporators is essentially based on the calculation of a pilot control signal for the feed water mass flow based on measured process variables.
  • a pilot control signal is typically calculated from known setpoints or disturbance variables of the control circuit or their changes and finally corrected multiplicatively with the output signal of the controller. It anticipates the controller's reaction to a setpoint change or a disturbance variable and increases the dynamics of the controller so that the desired overheating at the evaporator outlet (setpoint) is set as well as possible in all conceivable phases of the process.
  • Feed water regulations for Benson heat recovery steam generators are for example in EP 2 212 618 B1 or EP 2 297 518 B1 disclosed. Since the problem occurred in the context of the first application of a Benson evaporator in a vertical heat recovery steam generator, there are no further approaches to solving the problem. The problem solution chosen in the specific case existed in reducing the gain of the controller a little again. However, with this approach, depending on the given boundary conditions, a worse and, in an extreme case, undesirable operating behavior of the system must be accepted.
  • the invention achieves the object directed to a method by providing that in such a continuous steam generator with a number of evaporator heating surfaces and a number of preheater heating surfaces upstream of the fluid medium, in which a setpoint for the feed water mass flow is supplied to a device for setting a feed water mass flow, with the creation of the setpoint for the feed water mass flow, a waste heat flow transferred to a fluid in the evaporator heating surfaces is determined and mass storage and energy storage in the fluid in the evaporator heating surfaces are also taken into account.
  • the storage terms for mass storage and energy storage are advantageously determined from current measured values. This enables a particularly reliable evaluation of the heat flow balance and thus the determination of a particularly precisely calculated feed water setpoint.
  • the current measured values are expediently pressures and temperatures at the preheater inlet, at the preheater outlet or evaporator inlet and at the evaporator outlet.
  • this is coupled to a temporal behavior of a mass storage in the preheater, scaling taking place with a ratio of the density changes in the evaporator and in the preheater, so that the temporal course (without scaling) is exclusively due to, for example, the change an average density of the fluid in the preheater is defined.
  • boiling enthalpy and saturation enthalpy are determined via at least one pressure measurement at the evaporator inlet or at the evaporator outlet.
  • the correction values for mass storage and energy storage for determining the setpoint for the feed water mass flow are advantageously taken into account the time derivatives of the boiling and saturation enthalpies in the evaporator and a density of the flow medium in the Preheater determined.
  • an average fluid density in the preheater can be defined and calculated in particular by suitable measurements of temperature and pressure at the inlet and at the outlet of the respective preheater heating surface, expediently using a linear density profile. This can be used to compensate for mass storage effects that result from transient processes. If, for example, the heat supply drops into the evaporator heating surfaces during a load change, fluid is temporarily stored there. With a constant flow of the feed water pump, the mass flow would decrease when the heating surface emerged. This can now be compensated for by temporarily increasing the feed water mass flow.
  • time-varying processes or time derivatives are advantageously determined via a first and a second differentiating element, preferably DT1 elements, to which parameters such as temperature and pressure are supplied on the input side at suitable measuring points.
  • the first differentiator describing the time course of the density change in the preheater for the estimation of the mass storage is subjected to a gain factor corresponding to the total volume of the flow medium in the evaporator heating surfaces.
  • correction signals for the feed water mass flow generated with the invention can represent effects of mass and energy storage particularly advantageously if suitable gains and time constants are selected for the respective DT-1 element.
  • the first differentiating element is subjected to a time constant that corresponds to substantially half the throughput time of the flow medium through the evaporator.
  • the second differentiating element is subjected to a time constant for the estimation of the energy storage which is between 5s and 40s.
  • the above-mentioned object is achieved by a once-through steam generator with a number of evaporator heating surfaces and a number of preheater heating surfaces connected upstream of the fluid medium and with a device for adjusting the feed water mass flow, which can be carried out on the basis of a setpoint for the feed water mass flow, the setpoint being designed based on the inventive method is.
  • the correction of the pilot control signal by the controller can be significantly reduced and the controller can be parameterized with a lower gain.
  • the problem of undesirable process residual fluctuations of a significant order of magnitude described above can thus be eliminated.
  • the operating behavior of the system is not adversely affected.
  • Empirically found correction factors for the pilot control signal are also conceivable. Finding these, however, means a great deal of effort. In contrast, the described invention is based on physical approaches and does not have to be parameterized further.
  • the Figure 1 shows schematically the change in the algorithm resulting from the invention for calculating the setpoint for the feed water mass flow ⁇ FW .
  • the portion of the algorithm relevant to the invention is shown within the dashed outline and the state of the art outside.
  • the setpoint for the feed water mass flow ⁇ FW is therefore composed of the feed water mass flow for the evaporator ⁇ Ev, in and the mass flow ein- storage, ECO stored or stored in the preheater, corrected by a factor f Ctrl .
  • the feed water mass flow for the evaporator ⁇ Ev in results according to the prior art as the quotient of the heat flow Q ⁇ Ev, fl transferred from the exhaust gas to the fluid in the evaporator and the setpoint for the enthalpy change in the evaporator ⁇ h Ev, set.
  • the heat flow Q ⁇ Ev, fl transferred to the fluid in the evaporator in turn results from the heat flow in the exhaust gas Q EG minus the heat storage in the wall material of the heating surface pipes Q Storage, wall .
  • the term for the heat flow transferred to the fluid in the evaporator is supplemented and corrected by two further terms.
  • the first correction relates to the mass storage effect in the evaporator
  • the second correction relates to the energy storage effect in the evaporator.
  • the mass storage effect is in the heat flows Figure 1 through the product dm Ev German (Mass storage) and h Ev, out, set (enthalpy at the outlet of the evaporator). you Ev German stands for the energy storage effect.
  • Figure 2 shows these measured variables and the measuring points in the once-through heat recovery steam generator and their processing.
  • the once-through heat recovery steam generator according to Figure 2 comprises a preheater 1, also referred to as an economizer, for feed water provided as a flow medium, with a number of preheater heating surfaces 2, and an evaporator 3 with a number of evaporator heating surfaces 4 downstream of the preheater heating surfaces 2 on the flow medium side.
  • the evaporator 3 is followed by a superheater 12 with corresponding superheater heating surfaces 13.
  • the heating surfaces are located in a gas train, not shown, which is charged with the exhaust gas from an associated gas turbine system.
  • the once-through steam generator is designed for a controlled supply of feed water.
  • a feed water pump 31 is followed by a throttle valve 33 controlled by a servomotor 32, so that the feed water quantity conveyed by the feed water pump 31 in the direction of the preheater 1 or the feed water mass flow can be adjusted by suitable control of the throttle valve 33.
  • a throttle valve 33 is followed by a measuring device 34 for determining the feed water mass flow through the feed water line 35.
  • the servomotor 32 is controlled via a control element 36 which is supplied on the input side with a setpoint for the feed water mass flow supplied via a data line 37 and with the current actual value of the feed water mass flow determined via the measuring device 34. By forming a difference between these two signals, a need for tracking is transmitted to the controller 36, so that if the actual value deviates from the target value, corresponding tracking is required of the throttle valve 33 via the control of the motor 32.
  • the data line 37 is connected on the input side to a feedwater flow rate control 38 designed for specifying the setpoint value for the feedwater mass flow.
  • a feedwater flow rate control 38 designed for specifying the setpoint value for the feedwater mass flow.
  • This is designed to determine the setpoint for the feed water mass flow on the basis of a heat flow balance in the evaporator heating surfaces 4, the set value for the feed water mass flow ⁇ FW being determined by determining a waste heat flow transferred to a fluid in the evaporator heating surfaces 4 and furthermore mass storage and energy storage in the Fluid in the evaporator heating surfaces 4 are taken into account.
  • the Figure 2 in the feed water flow control 38 only those elements that are relevant for the correction of the feed water mass flow setpoint ⁇ FW according to the invention. The part known from the prior art is not shown.
  • the measured values for determining a setpoint for the feed water mass flow ⁇ FW are pressure and temperature values and the measuring points are in the areas of preheater inlet 5, preheater outlet 6 or evaporator inlet 7 and evaporator outlet 8.
  • the measured values determined are processed in function elements 14, 15, 16, 17 and 18.
  • the density of the fluid at various locations on the heating surfaces of preheater 1 and evaporator 3 is determined from the measured values of pressure and temperature by means of the first, second and third functional elements 14, 15 and 16.
  • the fourth and fifth function elements 17 and 18 provide the enthalpy of boiling and saturation from measured pressure values.
  • the storage term for mass storage dm Ev German is approximated by a mean value is first formed from the determined densities at the preheater inlet 5 and at the preheater outlet 6 via a first adder 19 and a first multiplier 20, which is then further processed in the first differentiator 9 with a correspondingly chosen time constant and with a total volume V Ev of the flow medium in the evaporator heating surfaces 4 corresponding gain factor in the second multiplier 21 is applied.
  • a further scaling takes place in a subsequent third multiplication element 22 with a ratio of the density changes of the fluid in the evaporator 3 and in the preheater 1, which is determined by means of the first and second subtracting elements 23 and 24 and the first dividing element 25 in the manner as in FIG Figure 2 shown.
  • the storage term for energy storage you Ev German is approximated by forming an average value from the determined enthalpies with the aid of the second adder 26 and the fourth multiplication member 27. This mean value is a good assumption for the specific enthalpy of the fluid in the evaporator 3.
  • the storage term for energy storage you Ev German is now determined by the sum of two terms.
  • the first term is determined by further processing the specific enthalpy of the fluid in the evaporator 3 in the second differentiator 10 with a correspondingly chosen time constant and with an average value of the fluid masses M Ev is applied in the evaporator at maximum and minimum load in the fifth multiplier 28. For the sake of simplicity, this mean value is regarded as a constant value over time.
  • the second term is determined by the specific enthalpy of the fluid in the evaporator 3 with the storage term for mass storage dm Ev German is multiplied. This takes place in the sixth multiplier 29.
  • the corresponding algorithm must be implemented in the function plans of the feed water control and thus in the power plant automation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
EP18203107.0A 2018-10-29 2018-10-29 Régulation de l'eau d'alimentation pour générateur de vapeur à récupération de chaleur à circulation forcée Withdrawn EP3647657A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP18203107.0A EP3647657A1 (fr) 2018-10-29 2018-10-29 Régulation de l'eau d'alimentation pour générateur de vapeur à récupération de chaleur à circulation forcée
KR1020217015943A KR102558369B1 (ko) 2018-10-29 2019-09-19 강제 관류식 폐열 증기 발생기를 위한 급수 제어
ES19783975T ES2927687T3 (es) 2018-10-29 2019-09-19 Regulación de agua de alimentación para generadores de vapor de calor residual de flujo forzado
CA3117871A CA3117871C (fr) 2018-10-29 2019-09-19 Regulation de l'eau d'alimentation pour generateur de vapeur a chaleur perdue a circulation forcee
JP2021523264A JP7114808B2 (ja) 2018-10-29 2019-09-19 強制貫流式排熱回収ボイラの給水制御
EP19783975.6A EP3827200B1 (fr) 2018-10-29 2019-09-19 Régulation de l'eau d'alimentation pour générateur de vapeur à récupération de chaleur à circulation forcée
US17/282,022 US11530812B2 (en) 2018-10-29 2019-09-19 Feedwater control for a forced-flow waste-heat steam generator
PCT/EP2019/075105 WO2020088838A1 (fr) 2018-10-29 2019-09-19 Régulation de l'eau d'alimentation pour générateur de vapeur à chaleur perdue à circulation forcée
CN201980070849.7A CN113056639B (zh) 2018-10-29 2019-09-19 用于强制流动废热蒸汽发生器的给水控制

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18203107.0A EP3647657A1 (fr) 2018-10-29 2018-10-29 Régulation de l'eau d'alimentation pour générateur de vapeur à récupération de chaleur à circulation forcée

Publications (1)

Publication Number Publication Date
EP3647657A1 true EP3647657A1 (fr) 2020-05-06

Family

ID=64082950

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18203107.0A Withdrawn EP3647657A1 (fr) 2018-10-29 2018-10-29 Régulation de l'eau d'alimentation pour générateur de vapeur à récupération de chaleur à circulation forcée
EP19783975.6A Active EP3827200B1 (fr) 2018-10-29 2019-09-19 Régulation de l'eau d'alimentation pour générateur de vapeur à récupération de chaleur à circulation forcée

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP19783975.6A Active EP3827200B1 (fr) 2018-10-29 2019-09-19 Régulation de l'eau d'alimentation pour générateur de vapeur à récupération de chaleur à circulation forcée

Country Status (8)

Country Link
US (1) US11530812B2 (fr)
EP (2) EP3647657A1 (fr)
JP (1) JP7114808B2 (fr)
KR (1) KR102558369B1 (fr)
CN (1) CN113056639B (fr)
CA (1) CA3117871C (fr)
ES (1) ES2927687T3 (fr)
WO (1) WO2020088838A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114636144A (zh) * 2022-02-25 2022-06-17 中国大唐集团科学技术研究院有限公司西北电力试验研究院 一种基于水煤比自寻优的超临界火电机组给水设定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4217626A1 (de) * 1992-05-27 1993-12-02 Siemens Ag Zwangdurchlaufdampferzeuger
DE102010040210A1 (de) * 2010-09-03 2012-03-08 Siemens Aktiengesellschaft Verfahren zum Betreiben eines solarbeheizten Durchlaufdampferzeugers sowie solarthermischer Durchlaufdampferzeuger
DE102011004263A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Verfahren zum Betreiben eines solarbeheizten Abhitzedampferzeugers sowie solarthermischer Abhitzedampferzeuger
EP2212618B1 (fr) 2007-11-28 2013-04-03 Siemens Aktiengesellschaft Procédé de fonctionnement d'un générateur de vapeurà passage unique, ainsi que générateur de vapeur à passage unique
US20140034044A1 (en) * 2011-02-17 2014-02-06 Jürgen Birnbaum Method for operating a directly heated, solar-thermal steam generator
EP2297518B1 (fr) 2008-06-12 2016-10-19 Siemens Aktiengesellschaft Procédé de fonctionnement d'un générateur de vapeur à passage unique et générateur de vapeur à passage unique

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH599504A5 (fr) * 1975-09-26 1978-05-31 Sulzer Ag
JPS5341602A (en) 1976-09-28 1978-04-15 Mitsubishi Electric Corp Controlling device for one-through boiler
WO1993022599A1 (fr) * 1992-05-04 1993-11-11 Siemens Aktiengesellschaft Generateur de vapeur a circulation forcee
DE19604416C2 (de) * 1996-02-07 2002-05-16 Siemens Ag Verfahren zur Entspannung eines Rauchgasstroms in einer Turbine sowie entsprechende Turbine
US7007473B2 (en) * 2001-09-28 2006-03-07 Honda Giken Kogyo Kabushiki Kaisha Temperature control device of evaporator
EP1614962A1 (fr) * 2004-07-09 2006-01-11 Siemens Aktiengesellschaft Méthode pour l'opération d'une chaudière à vapeur à passage unique
US8118895B1 (en) * 2007-03-30 2012-02-21 Bechtel Power Corporation Method and apparatus for refueling existing natural gas combined cycle plant as a non-integrated gasification combined cycle plant
EP2255076B1 (fr) * 2008-02-26 2015-10-07 Alstom Technology Ltd Procédé de régulation d'un générateur de vapeur et circuit de régulation pour générateur de vapeur
EP2224164A1 (fr) * 2008-11-13 2010-09-01 Siemens Aktiengesellschaft Procédé destiné au fonctionnement d'un générateur de vapeur à récupération de chaleur
JP5341602B2 (ja) 2009-04-21 2013-11-13 株式会社岡村製作所 天板スライド式机
CN102753789B (zh) * 2009-12-08 2016-03-02 西门子公司 调节蒸汽动力设备中的蒸汽产生的方法和设备
DE102010042458A1 (de) * 2010-10-14 2012-04-19 Siemens Aktiengesellschaft Verfahren zum Betreiben einer kombinierten Gas- und Dampfturbinenanlage sowie zur Durchführung des Verfahrens hergerichtete Gas- und Dampfturbinenanlage und entsprechende Regelvorrichtung
DE102011076968A1 (de) * 2011-06-06 2012-12-06 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Umlauf-Abhitzedampferzeugers
AT511189B1 (de) * 2011-07-14 2012-10-15 Avl List Gmbh Verfahren zur regelung einer wärmenutzungsvorrichtung bei einer brennkraftmaschine
WO2018024340A1 (fr) * 2016-08-05 2018-02-08 Siemens Aktiengesellschaft Procédé de fonctionnement d'un générateur de vapeur à récupération de chaleur
EP3495732B1 (fr) * 2017-12-08 2024-02-14 General Electric Technology GmbH Systèmes d'évaporateur à passage unique
EP3495731B1 (fr) * 2017-12-08 2022-02-16 General Electric Technology GmbH Systèmes d'évaporateur à passage unique

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4217626A1 (de) * 1992-05-27 1993-12-02 Siemens Ag Zwangdurchlaufdampferzeuger
EP2212618B1 (fr) 2007-11-28 2013-04-03 Siemens Aktiengesellschaft Procédé de fonctionnement d'un générateur de vapeurà passage unique, ainsi que générateur de vapeur à passage unique
EP2297518B1 (fr) 2008-06-12 2016-10-19 Siemens Aktiengesellschaft Procédé de fonctionnement d'un générateur de vapeur à passage unique et générateur de vapeur à passage unique
DE102010040210A1 (de) * 2010-09-03 2012-03-08 Siemens Aktiengesellschaft Verfahren zum Betreiben eines solarbeheizten Durchlaufdampferzeugers sowie solarthermischer Durchlaufdampferzeuger
DE102011004263A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Verfahren zum Betreiben eines solarbeheizten Abhitzedampferzeugers sowie solarthermischer Abhitzedampferzeuger
US20140034044A1 (en) * 2011-02-17 2014-02-06 Jürgen Birnbaum Method for operating a directly heated, solar-thermal steam generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114636144A (zh) * 2022-02-25 2022-06-17 中国大唐集团科学技术研究院有限公司西北电力试验研究院 一种基于水煤比自寻优的超临界火电机组给水设定方法
CN114636144B (zh) * 2022-02-25 2023-10-20 中国大唐集团科学技术研究院有限公司西北电力试验研究院 一种基于水煤比自寻优的超临界火电机组给水设定方法

Also Published As

Publication number Publication date
US11530812B2 (en) 2022-12-20
JP7114808B2 (ja) 2022-08-08
CA3117871A1 (fr) 2020-05-07
CA3117871C (fr) 2023-10-03
WO2020088838A1 (fr) 2020-05-07
CN113056639B (zh) 2023-04-14
CN113056639A (zh) 2021-06-29
KR20210083302A (ko) 2021-07-06
ES2927687T3 (es) 2022-11-10
EP3827200A1 (fr) 2021-06-02
KR102558369B1 (ko) 2023-07-24
JP2022514453A (ja) 2022-02-14
EP3827200B1 (fr) 2022-06-29
US20210341139A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
DE3126331C2 (fr)
DE69618140T2 (de) Verfahren und Vorrichtung zur Lastausgleichung zwischen mehreren Verdichtern
DE10129565B4 (de) Kühlverfahren für ein warmgewalztes Walzgut und hiermit korrespondierendes Kühlstreckenmodell
DE4338615A1 (de) Verfahren und Vorrichtung zur Führung eines Prozesses in einem geregelten System
WO2011069700A2 (fr) Procédé et dispositif pour réguler la production de vapeur dans une centrale à vapeur
EP2244011A1 (fr) Procédé et dispositif de réglage de la température de la vapeur pour une centrale à vapeur
DE69106031T2 (de) Regler mit zwei Freiheitsgraden.
DE69324097T2 (de) Gerät zur Prozess-Steuerung
EP0639253A1 (fr) Generateur de vapeur a circulation forcee.
EP3161378B1 (fr) Procédé de régulation du fonctionnement d'un générateur de vapeur à récupération de chaleur
EP2588925B1 (fr) Procédé et dispositif pour déterminer des paramètres de modèle servant à la régulation d'un bloc de centrale à vapeur, unité de régulation pour un générateur de vapeur et produit de programme informatique
EP3647657A1 (fr) Régulation de l'eau d'alimentation pour générateur de vapeur à récupération de chaleur à circulation forcée
EP1426564B1 (fr) Procédé et dispositif pour la régulation de la puissance d' une centrale thermique à cycle combiné
EP1614962A1 (fr) Méthode pour l'opération d'une chaudière à vapeur à passage unique
DE102018002425A1 (de) Numerische Regelungsvorrichtung
EP1462901A2 (fr) Procédé et dispositif pour la régulation ou la commande d'un processus de variation de charge thermique dans une piece non déformable et/ou à paroi épaisse traversée par un fluide dans une installation thermique
EP3542229B1 (fr) Dispositif et procédé de détermination des paramètres d'un dispositif de réglage
DE69622956T2 (de) Methode zur Regelung der Bestandteile eines Phosphatbades
DE102020201215A1 (de) Verfahren zum Betreiben einer industriellen Anlage
WO2020069875A1 (fr) Réglage découplé du contour et de la planéité d'un ruban métallique
DE3336596C2 (de) Verfahren zum Regeln eines in Kraft-/Wärmekopplung betriebenen Kraftwerkblockes
DE102010000101B4 (de) Regler sowie Regelungsverfahren
DE4434294C2 (de) Verfahren zur Steuerung eines nichtlinearen, technischen Prozesses
DE4329759C2 (de) Verfahren zur Regelung eines Prozesses
WO2023139438A1 (fr) Procédé de commande d'un procédé de coulée, système de commande pour un procédé de coulée, dispositif et programme informatique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20201107