EP2603672B1 - Waste heat steam generator - Google Patents

Waste heat steam generator Download PDF

Info

Publication number
EP2603672B1
EP2603672B1 EP11752212.8A EP11752212A EP2603672B1 EP 2603672 B1 EP2603672 B1 EP 2603672B1 EP 11752212 A EP11752212 A EP 11752212A EP 2603672 B1 EP2603672 B1 EP 2603672B1
Authority
EP
European Patent Office
Prior art keywords
flow medium
flow
medium side
heating surface
overflow line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11752212.8A
Other languages
German (de)
French (fr)
Other versions
EP2603672A2 (en
Inventor
Jan BRÜCKNER
Frank Thomas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2603672A2 publication Critical patent/EP2603672A2/en
Application granted granted Critical
Publication of EP2603672B1 publication Critical patent/EP2603672B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G5/00Controlling superheat temperature
    • F22G5/12Controlling superheat temperature by attemperating the superheated steam, e.g. by injected water sprays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the invention relates to a heat recovery steam generator for a combined cycle power plant with a number of economizer, evaporator and Matterhitzersammlung lake flowing through a flow medium in which an overflow branched off from the flow path and to a number of flow medium side behind a superheater heating in the flow path arranged injection valves leads. It further relates to a method for controlling a short-term increase in output of a steam turbine with an upstream heat recovery steam generator.
  • a heat recovery steam generator is a heat exchanger that recovers heat from a hot gas stream.
  • Heat recovery steam generators are often used in gas and steam turbine (CCGT) plants, which are mainly used for power generation.
  • CCGT gas and steam turbine
  • a modern CCGT usually includes one to four gas turbines and at least one steam turbine, either each turbine drives a generator (multi-shaft system) or a gas turbine with the steam turbine on a common shaft drives a single generator (single-shaft system).
  • the hot exhaust gases of the gas turbine are used in the heat recovery steam generator for generating water vapor.
  • the steam is then fed to the steam turbine.
  • Usually about two-thirds of the electrical power is accounted for by the gas turbine and one third by the steam process.
  • the heat recovery steam generator also comprises a plurality of pressure stages with different thermal states of the respectively contained water-steam mixture.
  • the flow medium first passes through economizers on its flow path, using residual heat to preheat the flow medium, and then various Stages of evaporator and superheater heating surfaces.
  • the flow medium is evaporated, then separated any residual moisture in a separator and further heated the remaining steam in the superheater.
  • Modern power plants not only require high levels of efficiency but also the most flexible mode of operation possible. Apart from short start-up times and high load change speeds, this also includes the possibility of compensating for frequency disturbances in the power grid. To meet these requirements, the power plant must be able to provide more power, for example, 5% and more within a few seconds.
  • This additional power can be released in a relatively short time, so that the delayed power increase by the gas turbine (limited by their design and operation maximum load change speed) can be at least partially compensated.
  • the entire block makes by this measure immediately a jump in performance and can also maintain or exceed this level of performance by a subsequent increase in performance of the gas turbine permanently, provided that the system was at the time of additional requested power reserves in the partial load range.
  • this object is achieved according to the invention in that the branching location of the overflow line is arranged upstream of the flow medium side first evaporator heating surface and flow medium side behind an economizer heating surface.
  • the invention is based on the consideration that additional injection of feed water can make a further contribution to the rapid change in performance.
  • additional injection water in the superheater namely the steam mass flow can be increased in the short term.
  • an excessive injection quantity may lower the temperature of the steam too much.
  • Such an increase in the specific enthalpy of the injection water can be achieved by experiencing additional heat absorption by economizer heating surfaces.
  • the overflow line for the injection water should be behind an economizer heating surface on the flow medium side.
  • the displacement of the branching point in the direction of the evaporator reduces the flow-side distance between the extraction and injection sites. Between the inlet and outlet of the overflow is therefore to ensure that the pressure difference is sufficiently large, so that a satisfactory flow rate of injection water can be ensured by the injection valve.
  • a flow control valve for the flow medium is therefore arranged on the flow medium side behind the branch point of the overflow line. As a result, the pressure at the branch point is increased and it can be ensured a sufficient pressure difference for all operating cases.
  • the economizers are to be designed for the correspondingly higher operating pressure.
  • a flow measuring device for the flow medium is arranged downstream of the branch point of the overflow line on the flow medium side. Under these circumstances, the withdrawal quantity need not be taken into account for the feedwater control via additional measurement or separate balancing.
  • a method for regulating a short-term increase in output of a steam turbine with an upstream heat recovery steam generator with a number of economizer, evaporator and superheater heating surfaces flowing through a flow medium branches off from the flow path at the flow medium and injected into the flow path behind a superheater heating surface
  • the object is achieved by branching off the flow medium upstream of the first evaporator heating surface on the flow medium side and downstream of an economizer heating surface on the flow medium side.
  • the advantages achieved by the invention are, in particular, that a larger increase in the delivered steam turbine power can be obtained by the extraction of injection water for the superheater behind a first economizer heating when using the injection for frequency support. Higher temperatures / enthalpies of the injection water result namely in a larger injection quantity, provided that the steam temperature setpoint remains the same. This larger injection quantity simultaneously increases the live steam mass flow flowing through the steam turbine.
  • the CCPP can be operated in the usual load operation (in which it must be available for an immediate reserve) due to a lower throttling with a relatively greater efficiency.
  • FIG fluid flow side shows the high pressure part of a heat recovery steam generator with interconnection of the components of the injection system according to the invention.
  • the high pressure part is shown by way of example in the FIG. Of course, the invention can also come in other pressure levels used.
  • the FIG schematic depicts the flow path 2 of the flow medium M.
  • the spatial arrangement of the individual heating surfaces 4 of the economizer 6, the evaporator 8 and the superheater 10 in the hot gas duct is not shown and may vary.
  • the flow medium M is conveyed by the feed pump 12 under a corresponding pressure in the high-pressure flow path 2 of the heat recovery steam generator 1.
  • the flow medium M first passes through an economizer 6, which may comprise a plurality of heating surfaces 4.
  • the economizer 6 is typically arranged in the coldest part of the hot gas channel in order to achieve a use of residual heat to increase the efficiency there.
  • the flow medium M passes through the heating surfaces 4 of the evaporator 8 and the superheater 10.
  • a separating device not shown which removes the residual moisture from the flow medium M, so that only pure steam in the Superheater 10 arrives. From the superheater 10, the flow medium M finally flows to the downstream, not shown steam turbine.
  • the heating surfaces 4 shown in the FIG. are each representative of a plurality of serially connected heating surfaces, which, however, are not shown differentiated for reasons of clarity.
  • an injection valve 14 is arranged on the flow medium side, a further injection valve 14 is arranged after the last heating surface 4 of the superheater 10.
  • cooler and unevaporated flow medium M for controlling the outlet temperature at the outlet 16 of the high-pressure part of the heat recovery steam generator 1 can be injected.
  • the amount of flow medium M introduced into the injection valves 14 for intermediate injection or final injection is regulated by control valves 18.
  • the flow medium M is supplied via a previously branched off in the flow path 2 overflow 20.
  • the branch location 22 of the overflow line 20 is arranged between the heating surfaces 4 of the evaporator 8 and the heating surfaces 4 of the economizer 6.
  • the injected through the injectors 14 flow medium M has a much higher specific enthalpy than in a removal before the economizer 6 and it can be injected at the same target temperature at the outlet 16 a larger amount.
  • the amount of steam is increased considerably while the temperature drops, but can be kept at a comparatively higher level in the short term by using Aus Grande needen.
  • the power of the downstream steam turbine is increased.
  • the flow medium M passes through all the heating surfaces 4 of the economizer 6, before a part is taken at the branch point 22. If removal at this point is not possible, removal between two heating surfaces 4 of the economizer 6 also represents an improvement with regard to the optimization of the instantaneous reserve, since here too there is a greater enthalpy of the flow medium compared to the entry of the economizer 6.
  • a flow measuring device 24 and the flow control valve 26 is arranged for the flow path after the branch point 22 of the overflow 20.
  • the high pressure prevails at the branching point 22 of the overflow line 20 through the feed pump 12, so that a sufficiently high pressure difference is ensured between the inlet and outlet of the overflow line in order to allow a correspondingly increased flow for the additional power release.
  • the economizer 6 is structurally designed for such a high pressure.
  • the arrangement of the flow measuring device 24 behind the branch point 22 allows the measurement of the flow without consideration the removal amount through the overflow 20. This would otherwise be taken into account by an additional measurement or a separate balance.
  • Such a designed waste heat steam generator 1 is now used in a combined cycle power plant.
  • the hot exhaust gases of one or more gas turbines are routed on the flue gas side through the heat recovery steam generator, which thus provides steam for a steam turbine.
  • the steam turbine comprises several pressure stages, d. That is, the steam heated by the high pressure part of the heat recovery steam generator 1 and expanded in the first stage (high pressure stage) of the steam turbine is fed into a medium pressure stage of the heat recovery steam generator 1 and overheated there again, but at a lower pressure level.
  • the embodiment according to the FIG shows the high-pressure part of the heat recovery steam generator 1 for exemplifying the invention, but this can also be used in other pressure stages.
  • a equipped with such a heat recovery steam generator and combined cycle power plant is able to provide not only a short-term increase in power of the gas turbine, which is limited by the maximum permissible change rate, but also on an immediate power relief of the steam turbine to quickly increase the power to support the Frequency of the composite power network is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Description

Die Erfindung betrifft einen Abhitzedampferzeuger für ein Gas- und Dampfturbinenkraftwerk mit einer Anzahl von einen Strömungsweg bildenden, von einem Strömungsmedium durchströmten Economiser-, Verdampfer- und Überhitzerheizflächen, bei dem eine Überströmleitung aus dem Strömungsweg abzweigt und zu einer Anzahl von strömungsmediumsseitig hinter einer Überhitzerheizfläche im Strömungsweg angeordneten Einspritzventilen führt. Sie betrifft weiter ein Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine mit einem vorgeschalteten Abhitzedampferzeuger.The invention relates to a heat recovery steam generator for a combined cycle power plant with a number of economizer, evaporator and Überhitzerheizflächen flowing through a flow medium in which an overflow branched off from the flow path and to a number of flow medium side behind a superheater heating in the flow path arranged injection valves leads. It further relates to a method for controlling a short-term increase in output of a steam turbine with an upstream heat recovery steam generator.

Ein Abhitzedampferzeuger ist ein Wärmetauscher, der Wärme aus einem heißen Gasstrom zurückgewinnt. Abhitzedampferzeuger kommen häufig in Gas- und Dampfturbinenanlagen (GuD-Anlagen) zum Einsatz, die überwiegend der Stromerzeugung dienen. Dabei umfasst eine moderne GuD-Anlage üblicherweise ein bis vier Gasturbinen und mindestens eine Dampfturbine, wobei entweder jede Turbine jeweils einen Generator antreibt (Mehrwellenanlage) oder eine Gasturbine mit der Dampfturbine auf einer gemeinsamen Welle einen einzigen Generator antreibt (Einwellenanlage). Die heißen Abgase der Gasturbine werden dabei in dem Abhitzedampferzeuger zur Erzeugung von Wasserdampf verwendet. Der Dampf wird anschließend der Dampfturbine zugeführt. Üblicherweise entfallen ca. zwei Drittel der elektrischen Leistung auf die Gasturbine und ein Drittel auf den Dampfprozess.A heat recovery steam generator is a heat exchanger that recovers heat from a hot gas stream. Heat recovery steam generators are often used in gas and steam turbine (CCGT) plants, which are mainly used for power generation. In this case, a modern CCGT usually includes one to four gas turbines and at least one steam turbine, either each turbine drives a generator (multi-shaft system) or a gas turbine with the steam turbine on a common shaft drives a single generator (single-shaft system). The hot exhaust gases of the gas turbine are used in the heat recovery steam generator for generating water vapor. The steam is then fed to the steam turbine. Usually about two-thirds of the electrical power is accounted for by the gas turbine and one third by the steam process.

Analog zu den verschiedenen Druckstufen einer Dampfturbine umfasst auch der Abhitzedampferzeuger eine Mehrzahl von Druckstufen mit unterschiedlichen thermischen Zuständen des jeweils enthaltenen Wasser-Dampf-Gemisches. In jeder dieser Druckstufen durchläuft das Strömungsmedium auf seinem Strömungsweg zunächst Economiser, die Restwärme zur Vorwärmung des Strömungsmediums nutzen, und anschließend verschiedene Stufen von Verdampfer- und Überhitzerheizflächen. Im Verdampfer wird das Strömungsmedium verdampft, danach eventuelle Restnässe in einer Abscheideeinrichtung abgetrennt und der übrig behaltene Dampf im Überhitzer weiter erhitzt.Analogous to the various pressure stages of a steam turbine, the heat recovery steam generator also comprises a plurality of pressure stages with different thermal states of the respectively contained water-steam mixture. In each of these pressure stages, the flow medium first passes through economizers on its flow path, using residual heat to preheat the flow medium, and then various Stages of evaporator and superheater heating surfaces. In the evaporator, the flow medium is evaporated, then separated any residual moisture in a separator and further heated the remaining steam in the superheater.

Aufgrund von Lastschwankungen kann die an die Überhitzer übertragene Wärmeleistung stark beeinflusst werden. Daher ist es häufig notwendig, die Überhitzungstemperatur zu regeln. Bei neuen Anlagen wird dies meistens durch eine Einspritzung von Speisewasser zwischen den Überhitzerheizflächen zur Kühlung erreicht, d. h., eine Überströmleitung zweigt vom Hauptstrom des Strömungsmediums ab und führt zu dort entsprechend angeordneten Einspritzventilen. Die Einspritzung wird dabei über die Austrittstemperaturen an dem jeweiligen Überhitzer geregelt.Due to load fluctuations, the heat output transferred to the superheaters can be heavily influenced. Therefore, it is often necessary to control the superheat temperature. In new plants this is usually achieved by injecting feedwater between the superheater heating surfaces for cooling, i. h., An overflow branches off from the main flow of the flow medium and leads to there correspondingly arranged injection valves. The injection is controlled by the outlet temperatures at the respective superheater.

Von modernen Kraftwerken werden nicht nur hohe Wirkungsgrade gefordert, sondern auch eine möglichst flexible Betriebsweise. Hierzu gehört außer kurzen Anfahrzeiten und hohen Laständerungsgeschwindigkeiten auch die Möglichkeit, Frequenzstörungen im Stromverbundnetz auszugleichen. Um diese Anforderungen zu erfüllen, muss das Kraftwerk in der Lage sein, Mehrleistungen von beispielsweise 5 % und mehr innerhalb weniger Sekunden zur Verfügung zu stellen.Modern power plants not only require high levels of efficiency but also the most flexible mode of operation possible. Apart from short start-up times and high load change speeds, this also includes the possibility of compensating for frequency disturbances in the power grid. To meet these requirements, the power plant must be able to provide more power, for example, 5% and more within a few seconds.

Dies wird in bisher üblichen GuD-Kraftwerken üblicherweise durch eine Lasterhöhung der Gasturbine realisiert. Der Druckschrift US-B1-6 766 646 offenbart einen solchen GuD-Kraftwerk. Unter gewissen Umständen kann es aber insbesondere im oberen Lastbereich möglich sein, dass der gewünschte Leistungsanstieg nicht ausschließlich durch die Gasturbine bereitgestellt werden kann. Daher werden mittlerweile auch Lösungen verfolgt, bei denen die Dampfturbine ebenfalls einen zusätzlichen Beitrag zur Frequenzstützung in den ersten Sekunden leisten kann und soll.This is usually realized in previously conventional combined cycle power plants by increasing the load of the gas turbine. The publication US-B1-6 766 646 discloses such a combined cycle power plant. Under certain circumstances, however, it may be possible, especially in the upper load range, for the desired power increase not to be provided exclusively by the gas turbine. Therefore, solutions are now being pursued, in which the steam turbine can and should also make an additional contribution to the frequency support in the first few seconds.

Dies kann beispielsweise durch das Öffnen teilweise angedrosselter Turbinenventile der Dampfturbine oder eines so genannten Stufenventils geschehen, wodurch der Dampfdruck vor der Dampfturbine abgesenkt wird. Dampf aus dem Dampfspeicher des vorgeschalteten Abhitzedampferzeugers wird dadurch ausgespeichert und der Dampfturbine zugeführt. Mit dieser Maßnahme wird innerhalb weniger Sekunden ein Leistungsanstieg im Dampf Teil des GuD-Kraftwerks erreicht.This can be done, for example, by opening partially throttled turbine valves of the steam turbine or a so-called step valve, whereby the vapor pressure before Steam turbine is lowered. Steam from the steam storage of the upstream waste heat steam generator is thereby expelled and fed to the steam turbine. With this measure, an increase in output in the steam part of the combined cycle power plant is achieved within a few seconds.

Diese zusätzliche Leistung kann in relativ kurzer Zeit freigesetzt werden, so dass die verzögerte Leistungserhöhung durch die Gasturbine (begrenzt durch deren konstruktions- und betriebsbedingte maximale Laständerungsgeschwindigkeit) zumindest teilweise kompensiert werden kann. Der gesamte Block macht durch diese Maßnahme unmittelbar einen Leistungssprung und kann durch eine nachfolgende Leistungssteigerung der Gasturbine auch dieses Leistungsniveau dauerhaft halten bzw. überschreiten, vorausgesetzt die Anlage befand sich zum Zeitpunkt der zusätzlich angeforderten Leistungsreserven im Teillastbereich.This additional power can be released in a relatively short time, so that the delayed power increase by the gas turbine (limited by their design and operation maximum load change speed) can be at least partially compensated. The entire block makes by this measure immediately a jump in performance and can also maintain or exceed this level of performance by a subsequent increase in performance of the gas turbine permanently, provided that the system was at the time of additional requested power reserves in the partial load range.

Eine permanente Androsselung der Turbinenventile zur Vorhaltung einer Reserve führt jedoch immer zu einem Wirkungsgradverlust, so dass für eine wirtschaftliche Fahrweise der Grad der Androsselung so gering wie unbedingt notwendig gehalten werden sollte. Zudem weisen einige Bauformen von Abhitzedampferzeugern, so z. B. Zwangdurchlaufdampferzeuger unter Umständen ein erheblich kleineres Speichervolumen auf als z. B. Naturumlauf-Dampferzeuger. Der Unterschied in der Größe des Speichers hat im oben beschriebenen Verfahren Einfluss auf das Verhalten bei Leistungsänderungen des Dampfteils des GuD-Kraftwerks.However, a permanent throttling of the turbine valves to provide a reserve always leads to a loss of efficiency, so that for an economic driving the degree of throttling should be kept as low as absolutely necessary. In addition, some types of heat recovery steam generators, such. B. forced flow steam generator may have a significantly smaller storage volume than z. B. natural circulation steam generator. The difference in the size of the memory in the process described above has an influence on the behavior with changes in power of the steam part of the combined cycle power plant.

Es ist daher Aufgabe der Erfindung, einen Abhitzedampferzeuger der oben genannten Art anzugeben, der in besonderem Maße in der Lage ist, eine kurzfristige Leistungssteigerung einer nachgeschalteten Dampfturbine zu ermöglichen, ohne dass dabei der Wirkungsgrad des Dampfprozesses über Gebühr beeinträchtigt wird. Gleichzeitig soll die kurzfristige Leistungssteigerung unabhängig von der Bauform des Abhitzedampferzeugers ermöglicht werden. Es ist weiter Aufgabe der Erfindung, ein entsprechendes GuD-Kraftwerk sowie ein Verfahren zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine mit einem vorgeschalteten Abhitzedampferzeuger anzugeben.It is therefore an object of the invention to provide a heat recovery steam generator of the type mentioned above, which is particularly capable of allowing a short-term increase in output of a downstream steam turbine, without affecting the efficiency of the steam process is overly impaired. At the same time the short-term performance increase should be made possible regardless of the design of the heat recovery steam generator. It is another object of the invention, a specify corresponding gas and steam power plant and a method for controlling a short-term increase in output of a steam turbine with an upstream heat recovery steam generator.

Bezüglich des Abhitzedampferzeugers wird diese Aufgabe erfindungsgemäß gelöst, indem der Abzweigort der Überströmleitung vor der strömungsmediumsseitig ersten Verdampferheizfläche und strömungsmediumsseitig hinter einer Economizerheizfläche angeordnet ist.With regard to the heat recovery steam generator, this object is achieved according to the invention in that the branching location of the overflow line is arranged upstream of the flow medium side first evaporator heating surface and flow medium side behind an economizer heating surface.

Die Erfindung geht dabei von der Überlegung aus, dass zusätzliches Einspritzen von Speisewasser einen weiteren Beitrag zur schnellen Leistungsänderung leisten kann. Durch zusätzliches Einspritzwasser im Bereich der Überhitzer kann nämlich der Dampfmassenstrom kurzfristig erhöht werden. Eine zu große Einspritzmenge senkt unter Umständen jedoch die Temperatur des Dampfes zu stark ab. Dem sollte begegnet werden, indem die spezifische Enthalpie des Einspritzwassers erhöht wird, da so eine höhere Einspritzmenge bei gleichem Dampftemperatursollwert möglich ist. Eine derartige Erhöhung der spezifischen Enthalpie des Einspritzwassers ist dadurch erreichbar, dass dieses eine zusätzliche Wärmeaufnahme durch Economizerheizflächen erfährt. Das heißt, die Überströmleitung für das Einspritzwasser sollte strömungsmediumsseitig hinter einer Economizerheizfläche liegen.The invention is based on the consideration that additional injection of feed water can make a further contribution to the rapid change in performance. By additional injection water in the superheater namely the steam mass flow can be increased in the short term. However, an excessive injection quantity may lower the temperature of the steam too much. This should be counteracted by increasing the specific enthalpy of the injection water, as a higher injection quantity is possible with the same steam temperature setpoint. Such an increase in the specific enthalpy of the injection water can be achieved by experiencing additional heat absorption by economizer heating surfaces. In other words, the overflow line for the injection water should be behind an economizer heating surface on the flow medium side.

Eine derartige Entnahme hinter einer Economizerheizfläche stellt bereits eine Verbesserung hinsichtlich der Optimierung des Einspritzsystems zur Bereitstellung einer Sofortreserve dar. Allerdings kann der Dampfmassenstrom bei gleichbleibender Dampftemperatur umso weiter erhöht werden, je höher die spezifische Enthalpie des Einspritzwassers ist. Durch eine weitere Vorwärmung des Einspritzwassers ist dies erreichbar. Daher sollte der Abzweigort der Überströmleitung strömungsmediumsseitig hinter der letzten Economizerheizfläche angeordnet sein.Such a removal behind an economizer heating surface already represents an improvement with regard to the optimization of the injection system for providing an instantaneous reserve. However, the steam mass flow can be further increased with constant steam temperature, the higher the specific enthalpy of the injection water. This can be achieved by further preheating the injection water. Therefore, the branch location of the overflow line should be arranged downstream of the last economizer heating surface on the flow medium side.

Durch die Verlagerung des Abzweigortes in Richtung Verdampfer verringert sich jedoch der strömungsseitige Abstand zwischen Entnahme- und Einspritzort. Zwischen Ein- und Austritt der Überströmleitung ist daher zu gewährleisten, dass die Druckdifferenz ausreichend groß ist, damit ein zufriedenstellender Durchsatz des Einspritzwassers durch das Einspritzventil sichergestellt werden kann. Ein Durchflussregelventil für das Strömungsmedium ist daher strömungsmediumsseitig hinter dem Abzweigort der Überströmleitung angeordnet. Dadurch wird der Druck an der Abzweigstelle erhöht und es kann eine ausreichende Druckdifferenz für alle Betriebsfälle sichergestellt werden. Allerdings sind die Economiser für den entsprechend höheren Betriebsdruck auszulegen.However, the displacement of the branching point in the direction of the evaporator reduces the flow-side distance between the extraction and injection sites. Between the inlet and outlet of the overflow is therefore to ensure that the pressure difference is sufficiently large, so that a satisfactory flow rate of injection water can be ensured by the injection valve. A flow control valve for the flow medium is therefore arranged on the flow medium side behind the branch point of the overflow line. As a result, the pressure at the branch point is increased and it can be ensured a sufficient pressure difference for all operating cases. However, the economizers are to be designed for the correspondingly higher operating pressure.

In weiterer vorteilhafter Ausgestaltung ist strömungsmediumsseitig hinter dem Abzweigort der Überströmleitung eine Durchflussmesseinrichtung für das Strömungsmedium angeordnet. Die Entnahmemenge muss dann nämlich unter diesen Umständen für die Speisewasserregelung nicht über eine zusätzliche Messung oder eine separate Bilanzierung berücksichtigt werden.In a further advantageous embodiment, a flow measuring device for the flow medium is arranged downstream of the branch point of the overflow line on the flow medium side. Under these circumstances, the withdrawal quantity need not be taken into account for the feedwater control via additional measurement or separate balancing.

Bezüglich eines Verfahrens zur Regelung einer kurzfristigen Leistungserhöhung einer Dampfturbine mit einem vorgeschalteten Abhitzedampferzeuger mit einer Anzahl von einen Strömungsweg bildenden, von einem Strömungsmedium durchströmten Economiser-, Verdampfer- und Überhitzerheizflächen, bei dem Strömungsmedium aus dem Strömungsweg abgezweigt und strömungsmediumsseitig hinter einer Überhitzerheizfläche in den Strömungsweg eingespritzt wird, wird die Aufgabe gelöst, indem das Strömungsmedium vor der strömungsmediumsseitig ersten Verdampferheizfläche und strömungsmediumsseitig hinter einer Economizerheizfläche abgezweigt wird.With regard to a method for regulating a short-term increase in output of a steam turbine with an upstream heat recovery steam generator with a number of economizer, evaporator and superheater heating surfaces flowing through a flow medium, branches off from the flow path at the flow medium and injected into the flow path behind a superheater heating surface The object is achieved by branching off the flow medium upstream of the first evaporator heating surface on the flow medium side and downstream of an economizer heating surface on the flow medium side.

Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch die Entnahme von Einspritzwasser für den Überhitzer hinter einer ersten Economizerheizfläche bei der Nutzung der Einspritzung zur Frequenzstützung ein größerer Anstieg der entbundenen Dampfturbinenleistung gewonnen werden kann. Höhere Temperaturen/Enthalpien des Einspritzwassers resultieren nämlich in einer größeren Einspritzmenge, vorausgesetzt, der Dampftemperatursollwert bleibt gleich. Diese größere Einspritzmenge vergrößert simultan den Frischdampfmassenstrom, der durch die Dampfturbine strömt.The advantages achieved by the invention are, in particular, that a larger increase in the delivered steam turbine power can be obtained by the extraction of injection water for the superheater behind a first economizer heating when using the injection for frequency support. Higher temperatures / enthalpies of the injection water result namely in a larger injection quantity, provided that the steam temperature setpoint remains the same. This larger injection quantity simultaneously increases the live steam mass flow flowing through the steam turbine.

Ist parallel eine Androsselung der Turbinenventile realisiert, kann unter diesen Umständen der Androsselungsgrad vermindert werden und trotzdem die erforderliche Leistungserhöhung generiert werden. Somit kann die GuD-Anlage im gewöhnlichen Lastbetrieb (in der sie für eine Sofortreserve zur Verfügung stehen muss) aufgrund einer geringeren Androsselung mit einem vergleichsweise größeren Wirkungsgrad betrieben werden.If a throttling of the turbine valves is realized in parallel, under these circumstances the degree of throttling can be reduced and the required power increase nevertheless generated. Thus, the CCPP can be operated in the usual load operation (in which it must be available for an immediate reserve) due to a lower throttling with a relatively greater efficiency.

Dadurch, dass im gewöhnlichen Betrieb insbesondere ein Zwangdurchlauf-Abhitzedampferzeuger mit BENSON-Verdampfer im gesamten Lastbereich im Normalfall ohne Einspritzung in den Überhitzer auskommt (ebenfalls zur gegebenenfalls Wirkungsgradverbesserung), hat systembedingt eine größere Enthalpie des Einspritzwassers keine zusätzlichen negativen Begleiterscheinungen. Das bedeutet, dass es für den gewöhnlichen Anlagenbetrieb unerheblich ist, an welcher Stelle das Einspritzwasser entnommen wird.Due to the fact that in normal operation in particular a forced once-through heat recovery steam generator with BENSON evaporator in the entire load range normally manages without injection into the superheater (also to improve the efficiency, if necessary), due to the system, a larger enthalpy of the injection water has no additional negative concomitants. This means that it is irrelevant for the usual plant operation, at which point the injection water is removed.

Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigt die FIG strömungsmediumsseitig den Hochdruckteil eines Abhitzedampferzeugers mit Verschaltung der Komponenten des Einspritzsystems gemäß der Erfindung.An embodiment of the invention will be explained in more detail with reference to a drawing. Therein, the FIG fluid flow side shows the high pressure part of a heat recovery steam generator with interconnection of the components of the injection system according to the invention.

Vom Abhitzedampferzeuger 1 ist in der FIG beispielhaft der Hochdruckteil dargestellt. Die Erfindung kann natürlich auch in anderen Druckstufen zur Anwendung kommen. Die FIG stellt schematisch den Strömungsweg 2 des Strömungsmediums M dar. Die räumliche Anordnung der einzelnen Heizflächen 4 des Economisers 6, des Verdampfers 8 und des Überhitzers 10 im Heißgaskanal ist nicht dargestellt und kann variieren.From the heat recovery steam generator 1, the high pressure part is shown by way of example in the FIG. Of course, the invention can also come in other pressure levels used. The FIG schematic depicts the flow path 2 of the flow medium M. The spatial arrangement of the individual heating surfaces 4 of the economizer 6, the evaporator 8 and the superheater 10 in the hot gas duct is not shown and may vary.

Das Strömungsmedium M wird von der Speisepumpe 12 unter entsprechendem Druck in den Hochdruck-Strömungsweg 2 des Abhitzedampferzeugers 1 gefördert. Dabei durchläuft das Strömungsmedium M zunächst einen Economiser 6, der eine Vielzahl von Heizflächen 4 umfassen kann. Der Economiser 6 ist typischerweise im kältesten Teil des Heißgaskanals angeordnet, um dort eine Nutzung von Restwärme zur Erhöhung des Wirkungsgrades zu erreichen. Anschließend durchläuft das Strömungsmedium M die Heizflächen 4 des Verdampfers 8 und des Überhitzers 10. Zwischen Verdampfer 8 und Überhitzer 10 kann dabei noch eine nicht näher dargestellte Abscheideeinrichtung angeordnet sein, die die Restnässe aus dem Strömungsmedium M entfernt, so dass nur noch reiner Dampf in den Überhitzer 10 gelangt. Vom Überhitzer 10 strömt das Strömungsmedium M schließlich zur nachgeschalteten, nicht dargestellten Dampfturbine.The flow medium M is conveyed by the feed pump 12 under a corresponding pressure in the high-pressure flow path 2 of the heat recovery steam generator 1. The flow medium M first passes through an economizer 6, which may comprise a plurality of heating surfaces 4. The economizer 6 is typically arranged in the coldest part of the hot gas channel in order to achieve a use of residual heat to increase the efficiency there. Subsequently, the flow medium M passes through the heating surfaces 4 of the evaporator 8 and the superheater 10. Between evaporator 8 and superheater 10 can still be arranged a separating device not shown, which removes the residual moisture from the flow medium M, so that only pure steam in the Superheater 10 arrives. From the superheater 10, the flow medium M finally flows to the downstream, not shown steam turbine.

Die in der FIG dargestellten Heizflächen 4 stehen jeweils stellvertretend für eine Mehrzahl seriell geschalteter Heizflächen, die jedoch aufgrund der Übersichtlichkeit nicht differenziert dargestellt sind.The heating surfaces 4 shown in the FIG. Are each representative of a plurality of serially connected heating surfaces, which, however, are not shown differentiated for reasons of clarity.

Zwischen einzelnen Heizflächen 4 des Überhitzers 10 ist strömungsmediumsseitig ein Einspritzventil 14 angeordnet, ein weiteres Einspritzventil 14 ist nach der letzten Heizfläche 4 des Überhitzers 10 angeordnet. Hier kann kühleres und unverdampftes Strömungsmedium M zur Regelung der Austrittstemperatur am Austritt 16 des Hochdruckteils des Abhitzedampferzeugers 1 eingespritzt werden. Die in die Einspritzventile 14 zur Zwischen- bzw. Endeinspritzung eingebrachte Menge an Strömungsmedium M wird über Regelventile 18 geregelt. Das Strömungsmedium M wird dabei über eine zuvor im Strömungsweg 2 abzweigende Überströmleitung 20 zugeführt.Between individual heating surfaces 4 of the superheater 10, an injection valve 14 is arranged on the flow medium side, a further injection valve 14 is arranged after the last heating surface 4 of the superheater 10. Here cooler and unevaporated flow medium M for controlling the outlet temperature at the outlet 16 of the high-pressure part of the heat recovery steam generator 1 can be injected. The amount of flow medium M introduced into the injection valves 14 for intermediate injection or final injection is regulated by control valves 18. The flow medium M is supplied via a previously branched off in the flow path 2 overflow 20.

Um das Einspritzsystem jedoch nicht nur zur Regelung der Austrittstemperatur, sondern auch zur Bereitstellung einer sofortigen Leistungsreserve nutzen zu können, ist der Abzweigort 22 der Überströmleitung 20 zwischen den Heizflächen 4 des Verdampfers 8 und den Heizflächen 4 des Economisers 6 angeordnet. Somit hat das durch die Einspritzventile 14 eingespritzte Strömungsmedium M eine wesentlich höhere spezifische Enthalpie als bei einer Entnahme vor dem Economiser 6 und es kann bei gleicher Solltemperatur am Austritt 16 eine größere Menge eingespritzt werden. Dadurch wird die Dampfmenge erheblich erhöht während die Temperatur zwar absinkt, aber durch Nutzung von Ausspeichereffekten kurzfristig auf vergleichsweise höherem Niveau gehalten werden kann. Somit wird die Leistung der nachgeschalteten Dampfturbine erhöht.However, in order to be able to use the injection system not only for regulating the outlet temperature but also for providing an immediate power reserve, the branch location 22 of the overflow line 20 is arranged between the heating surfaces 4 of the evaporator 8 and the heating surfaces 4 of the economizer 6. Thus, the injected through the injectors 14 flow medium M has a much higher specific enthalpy than in a removal before the economizer 6 and it can be injected at the same target temperature at the outlet 16 a larger amount. As a result, the amount of steam is increased considerably while the temperature drops, but can be kept at a comparatively higher level in the short term by using Ausspeichereffekten. Thus, the power of the downstream steam turbine is increased.

Im Ausführungsbeispiel nach der FIG durchläuft das Strömungsmedium M alle Heizflächen 4 des Economisers 6, bevor ein Teil am Abzweigort 22 entnommen wird. Sollte eine Entnahme an dieser Stelle nicht möglich sein, so stellt auch eine Entnahme zwischen zwei Heizflächen 4 des Economisers 6 eine Verbesserung hinsichtlich der Optimierung für die Sofortreserve dar, da auch hier im Vergleich zum Eintritt des Economisers 6 bereits eine größere Enthalpie des Strömungsmediums vorliegt.In the embodiment according to FIG the flow medium M passes through all the heating surfaces 4 of the economizer 6, before a part is taken at the branch point 22. If removal at this point is not possible, removal between two heating surfaces 4 of the economizer 6 also represents an improvement with regard to the optimization of the instantaneous reserve, since here too there is a greater enthalpy of the flow medium compared to the entry of the economizer 6.

Im Strömungsweg 2 ist nach dem Abzweigort 22 der Überströmleitung 20 eine Durchflussmesseinrichtung 24 sowie das Durchflussregelventil 26 für den Strömungsweg angeordnet. Dadurch herrscht am Abzweigort 22 der Überströmleitung 20 der hohe Druck durch die Speisepumpe 12, so dass zwischen Eintritt und Austritt der Überströmleitung eine ausreichend hohe Druckdifferenz gewährleistet ist, um einen entsprechend erhöhten Durchfluss für die zusätzliche Leistungsentbindung zu ermöglichen. Der Economiser 6 ist baulich entsprechend für einen derartig hohen Druck ausgelegt.In the flow path 2, a flow measuring device 24 and the flow control valve 26 is arranged for the flow path after the branch point 22 of the overflow 20. As a result, the high pressure prevails at the branching point 22 of the overflow line 20 through the feed pump 12, so that a sufficiently high pressure difference is ensured between the inlet and outlet of the overflow line in order to allow a correspondingly increased flow for the additional power release. The economizer 6 is structurally designed for such a high pressure.

Die Anordnung der Durchflussmesseinrichtung 24 hinter dem Abzweigort 22 erlaubt die Messung des Durchflusses ohne Berücksichtigung der Entnahmemenge durch die Überströmleitung 20. Diese müsste ansonsten über eine zusätzliche Messung oder eine separate Bilanzierung berücksichtigt werden.The arrangement of the flow measuring device 24 behind the branch point 22 allows the measurement of the flow without consideration the removal amount through the overflow 20. This would otherwise be taken into account by an additional measurement or a separate balance.

Ein derart ausgestalteter Abhitzedampferzeuger 1 kommt nun in einem Gas- und Dampfturbinenkraftwerk zum Einsatz. Hier werden die heißen Abgase einer oder mehrerer Gasturbinen rauchgasseitig durch den Abhitzedampferzeuger geführt, der somit Dampf für eine Dampfturbine bereitstellt. Die Dampfturbine umfasst dabei mehrere Druckstufen, d. h., der vom Hochdruckteil des Abhitzedampferzeugers 1 erhitzte und in der ersten Stufe (Hochdruckstufe) der Dampfturbine entspannte Dampf wird in eine Mitteldruckstufe des Abhitzedampferzeugers 1 geführt und dort erneut überhitzt, allerdings auf niedrigerem Druckniveau. Wie bereits erwähnt, zeigt das Ausführungsbeispiel gemäß der FIG den Hochdruckteil des Abhitzedampferzeugers 1 zur exemplarischen Verdeutlichung der Erfindung, diese kann jedoch auch in anderen Druckstufen zur Anwendung kommen.Such a designed waste heat steam generator 1 is now used in a combined cycle power plant. Here, the hot exhaust gases of one or more gas turbines are routed on the flue gas side through the heat recovery steam generator, which thus provides steam for a steam turbine. The steam turbine comprises several pressure stages, d. That is, the steam heated by the high pressure part of the heat recovery steam generator 1 and expanded in the first stage (high pressure stage) of the steam turbine is fed into a medium pressure stage of the heat recovery steam generator 1 and overheated there again, but at a lower pressure level. As already mentioned, the embodiment according to the FIG shows the high-pressure part of the heat recovery steam generator 1 for exemplifying the invention, but this can also be used in other pressure stages.

Ein mit einem derartigen Abhitzedampferzeuger ausgestattetes Gas- und Dampfturbinenkraftwerk ist in der Lage, nicht nur über eine kurzfristige Leistungserhöhung der Gasturbine, welche über die erlaubte Maximallaständerungsgeschwindigkeit begrenzt ist, sondern auch über eine sofortige Leistungsentbindung der Dampfturbine schnell eine Leistungserhöhung zu leisten, die zur Stützung der Frequenz des Verbundstromnetzes dient.A equipped with such a heat recovery steam generator and combined cycle power plant is able to provide not only a short-term increase in power of the gas turbine, which is limited by the maximum permissible change rate, but also on an immediate power relief of the steam turbine to quickly increase the power to support the Frequency of the composite power network is used.

Dadurch, dass diese Leistungsreserve durch eine Doppelnutzung der Einspritzarmaturen neben der üblichen Temperaturregelung erreicht wird, kann auch eine permanente Androsselung der Dampfturbine zur Bereitstellung einer Reserve verringert werden oder ganz entfallen, wodurch ein besonders hoher Wirkungsgrad während des normalen Betriebs erreicht wird.The fact that this power reserve is achieved by a double use of injection fittings in addition to the usual temperature control, a permanent throttling of the steam turbine to provide a reserve can be reduced or eliminated altogether, whereby a particularly high efficiency is achieved during normal operation.

Claims (4)

  1. Waste heat steam generator (1) for a combined cycle power plant with a number of economiser, evaporator and superheater heating surfaces (4) forming a flow path (2) through which a flow medium (M) flows, in which an overflow line (20) branches off from the flow path (2) and leads to a number of injection valves (14) disposed in the flow path (2) on the flow medium side downstream of a superheater heating surface (10), wherein the branching-off point (22) of the overflow line (20) is disposed on the flow medium side upstream of the first evaporator heating surface (8) and is disposed downstream of an economiser heating surface (6) on the flow medium side, characterised in that the branching-off point (22) of the overflow line (20) is disposed on the flow medium side downstream of the last economiser heating surface (6) and a throughflow valve (26) for the flow medium (M) is disposed on the flow medium side downstream of the branching-off point (22) of the overflow line (20).
  2. Waste heat steam generator (1) according to claim 1, in which a throughflow measurement device (24) for the flow medium (M) is disposed on the flow medium side downstream of the branching-off point (22) of the overflow line (20).
  3. Method for regulating a short-term power increase of a steam turbine with an upstream waste heat generator (1) with a number of economiser, evaporator and superheater heating surfaces (4) forming a flow path (2) through which a flow medium (M) flows, in which flow medium (M) branches off from the flow path (2) and is injected into the flow path on the flow medium side downstream of a superheater heating surface (10),
    wherein the flow medium (M) is branched off upstream of the first evaporator heating surface (8) on the flow medium side and on the flow medium side downstream of the last economiser heating surface(6),
    characterised in that a throughflow valve (26) for the flow medium (M) is disposed on the flow medium side downstream of the branching point (22) of the overflow line (20) and the throughflow of the flow medium (M) is regulated.
  4. Method according to claim 3, in which on the flow medium side the throughflow of the flow medium (M) is measured downstream of the branching-off point (22) of the overflow line (20).
EP11752212.8A 2010-09-13 2011-09-02 Waste heat steam generator Active EP2603672B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010040624A DE102010040624A1 (en) 2010-09-13 2010-09-13 heat recovery steam generator
PCT/EP2011/065176 WO2012034870A2 (en) 2010-09-13 2011-09-02 Waste heat steam generator

Publications (2)

Publication Number Publication Date
EP2603672A2 EP2603672A2 (en) 2013-06-19
EP2603672B1 true EP2603672B1 (en) 2016-08-31

Family

ID=44587821

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11752212.8A Active EP2603672B1 (en) 2010-09-13 2011-09-02 Waste heat steam generator

Country Status (8)

Country Link
US (1) US8959915B2 (en)
EP (1) EP2603672B1 (en)
JP (1) JP5869575B2 (en)
KR (1) KR101813741B1 (en)
CN (1) CN103109048B (en)
DE (1) DE102010040624A1 (en)
ES (1) ES2606007T3 (en)
WO (1) WO2012034870A2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013202249A1 (en) * 2013-02-12 2014-08-14 Siemens Aktiengesellschaft Steam temperature control device for a gas and steam turbine plant
US10266780B2 (en) * 2013-08-20 2019-04-23 V-GRID Energy Systems Micro-gasifier array networking
JP6282238B2 (en) * 2014-03-31 2018-02-21 トクデン株式会社 Superheated steam recycling apparatus and method of using the same
FR3021070B1 (en) * 2014-05-16 2017-08-18 Valeo Systemes Thermiques REFRIGERANT FLUID CIRCUIT FOR RECOVERING ENERGY FROM THERMAL LOSSES OF AN INTERNAL COMBUSTION ENGINE
EP3048366A1 (en) 2015-01-23 2016-07-27 Siemens Aktiengesellschaft Waste heat steam generator
DE102016104538B3 (en) * 2016-03-11 2017-01-19 Mitsubishi Hitachi Power Systems Europe Gmbh Thermal steam power plant with improved waste heat recovery and method of operation thereof
US10143970B2 (en) 2016-08-09 2018-12-04 Nrgtek, Inc. Power generation from low-temperature heat by hydro-osmotic processes
US20180106166A1 (en) * 2016-10-18 2018-04-19 General Electric Technology Gmbh Feedwater bypass system for a desuperheater
JP6769888B2 (en) * 2017-02-09 2020-10-14 株式会社神戸製鋼所 Thermal energy recovery device
US20180274391A1 (en) * 2017-03-21 2018-09-27 General Electric Company Systems and methods for operating a combined cycle power plant
CN108984938A (en) * 2018-07-27 2018-12-11 广东电网有限责任公司 A kind of steam turbine load controls the revolving speed criterion calculation method and device of protection fastly
DE102018120214A1 (en) * 2018-08-20 2020-02-20 Frank Ostermann Power plant and method for its operation
CN109488397B (en) * 2018-12-27 2023-08-15 大唐贵州发耳发电有限公司 Shaft seal overflow steam heat recovery system of condensing steam turbine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB741984A (en) * 1951-07-04 1955-12-14 Siemens Ag Improvements in or relating to means for regulating the temperature of steam in a superheater for forced flow boilers
DE1177170B (en) * 1958-09-27 1964-09-03 Siemens Ag Device for controlling a once-through steam generator
EP1441110A3 (en) * 1997-04-15 2004-10-27 Mitsubishi Heavy Industries, Ltd. Combined cycle power plant and cooling steam supply method for gas turbine therein
JP3586542B2 (en) * 1997-06-04 2004-11-10 三菱重工業株式会社 Multi-shaft combined cycle power plant
US7127895B2 (en) * 2003-02-05 2006-10-31 Active Power, Inc. Systems and methods for providing backup energy to a load
US6766646B1 (en) * 2003-11-19 2004-07-27 General Electric Company Rapid power producing system and method for steam turbine
US7584024B2 (en) * 2005-02-08 2009-09-01 Pegasus Technologies, Inc. Method and apparatus for optimizing operation of a power generating plant using artificial intelligence techniques
EP2034137A1 (en) * 2007-01-30 2009-03-11 Siemens Aktiengesellschaft Method for operating a gas and steam turbine plant and the correspondingly designed gas and steam turbine plant
US7793501B2 (en) * 2008-10-03 2010-09-14 General Electric Company Apparatus for steam attemperation using fuel gas heater water discharge to reduce feedwater pump size
EP2224164A1 (en) * 2008-11-13 2010-09-01 Siemens Aktiengesellschaft Method of operating a waste heat steam generator
US8387356B2 (en) * 2009-11-02 2013-03-05 General Electric Company Method of increasing power output of a combined cycle power plant during select operating periods

Also Published As

Publication number Publication date
US8959915B2 (en) 2015-02-24
JP2013539836A (en) 2013-10-28
US20130167533A1 (en) 2013-07-04
WO2012034870A2 (en) 2012-03-22
KR101813741B1 (en) 2017-12-29
JP5869575B2 (en) 2016-02-24
CN103109048A (en) 2013-05-15
CN103109048B (en) 2016-03-30
WO2012034870A3 (en) 2013-01-24
EP2603672A2 (en) 2013-06-19
ES2606007T3 (en) 2017-03-17
KR20130139240A (en) 2013-12-20
DE102010040624A1 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
EP2603672B1 (en) Waste heat steam generator
DE102009036064B4 (en) in order to operate a forced-circulation steam generator operating at a steam temperature of more than 650 ° C, as well as forced circulation steam generators
EP2255076B1 (en) Method for regulating a boiler and control circuit for a boiler
DE112016003348B4 (en) WATER SUPPLY SYSTEM, WATER SUPPLY PROCESS, AND STEAM GENERATING SYSTEM PROVIDED WITH WATER SUPPLY SYSTEM
DE3782314T2 (en) LOCKING STEAM SYSTEM FOR A STEAM TURBINE.
DE102010060064A1 (en) Method for increasing the power output of a gas and steam combined cycle power plant during selected operating periods
DE102011076968A1 (en) Method for operating a circulation heat recovery steam generator
EP2467601A2 (en) Solar thermal power plant having a heat exchanger in the feedwater preheating section and method for operating the power plant
EP2606206A2 (en) Method for controlling a short-term increase in power of a steam turbine
EP1957759B1 (en) Method for starting a steam turbine plant
EP3014179A2 (en) Operating method for starting a once-through steam generator heated using solar thermal energy
EP2616643B1 (en) Method for regulating a short-term power increase of a steam tubine
DE69220240T2 (en) STEAM SYSTEM FOR A SYSTEM WITH SEVERAL BOILERS
EP1801363A1 (en) Power plant
EP3017152B1 (en) Combined cycle gas turbine plant having a waste heat steam generator and fuel pre-heating
DE102011078193A1 (en) Additional control tap for a preheater to improve the system dynamics and frequency control in a steam power plant
EP3475539A1 (en) Method for the short-term adjustment of the output of a combined-cycle power plant steam turbine, for primary frequency control
DE102010043683A1 (en) Fossil fired steam generator
WO2015028366A2 (en) Operating method for an externally heated once-through steam generator
EP2625390B1 (en) Fossil-fired steam generator
EP2655811B1 (en) Method for regulating a brief increase in power of a steam turbine
WO2015024886A1 (en) Steam power plant and method for operating a steam power plant
AT512176A4 (en) heat recovery steam generator
EP2781701A1 (en) Method for operating a solar thermal power plant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130312

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160324

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011010581

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 825165

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20160920

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160914

Year of fee payment: 6

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161201

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2606007

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170102

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011010581

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160902

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

26N No opposition filed

Effective date: 20170601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160902

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 825165

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011010581

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220825 AND 20220831

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20221214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230920

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231017

Year of fee payment: 13

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

Effective date: 20240409

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240926

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240924

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240925

Year of fee payment: 14