JP3586542B2 - Multi-shaft combined cycle power plant - Google Patents

Multi-shaft combined cycle power plant Download PDF

Info

Publication number
JP3586542B2
JP3586542B2 JP14647497A JP14647497A JP3586542B2 JP 3586542 B2 JP3586542 B2 JP 3586542B2 JP 14647497 A JP14647497 A JP 14647497A JP 14647497 A JP14647497 A JP 14647497A JP 3586542 B2 JP3586542 B2 JP 3586542B2
Authority
JP
Japan
Prior art keywords
steam
pressure
cooling
turbine
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14647497A
Other languages
Japanese (ja)
Other versions
JPH10339109A (en
Inventor
一雄 上松
秀隆 森
秀昭 椙下
潔 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14647497A priority Critical patent/JP3586542B2/en
Publication of JPH10339109A publication Critical patent/JPH10339109A/en
Application granted granted Critical
Publication of JP3586542B2 publication Critical patent/JP3586542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は複数のガスタービンと排熱回収ボイラの組合せに対して単一の蒸気タービンを当てて構成した多軸コンバインドサイクル発電プラントに関する。
【0002】
【従来の技術】
コンバインドサイクル発電プラントは、ガスタービンプラントと蒸気タービンプラントを組み合わせた発電システムであり、熱エネルギーの高温域をガスタービンで、また、低温域を蒸気タービンでそれぞれ分担して受持ち、熱エネルギーを有効に回収し、利用するようにしたものであり、近年特に脚光を浴びている発電システムである。
【0003】
このコンバインドサイクル発電プラントでは、効率向上のための一つのポイントを、ガスタービンの高温化に置いて研究開発が進められてきた。
【0004】
一方、高温化の達成には、タービン構造体の耐熱性の面から冷却システムを追求する必要があり、この分野でも種々の試行錯誤が行われており、冷却媒体として旧来の圧縮空気の利用から脱して、蒸気を用いて蒸気冷却を行う形態へと進展してきている。
【0005】
一例として挙げれば、特開平05−163960号公報のものがあるが、ここに記載されたものは、ガスタービンの冷却媒体として蒸気を採用するという概念の開示はともかくとして、その冷却蒸気は排熱回収ボイラの中圧蒸気を用いるものであり、蒸気のトータル分量が十分ではなく、安定した確実な冷却を確保するには必ずしも十分とは言い難いものであった。
【0006】
従って、昨今では、これから更に一歩進んで、前記冷却蒸気として、分量的に十分であり、安定した冷却を実施できる点に着目して、高圧タービンの排気を前記冷却蒸気として用いるものが検討されるに至っている。
【0007】
また一方、コンバインドサイクル発電プラントそのものについてみれば、ガスタービンと排熱回収ボイラと蒸気タービンを全て1対1の関係で配列した単軸形式のものから、ガスタービンと排熱回収ボイラとの組合せを複数系列設け、これらを併せて1基の蒸気タービンと組合せる多軸形式のものまで考案され、これら単軸、多軸の何れを問わずに冷却媒体として冷却蒸気の採用が検討されている状況にある。
【0008】
【発明が解決しようとする課題】
前記したように従来の蒸気冷却方式は、冷却媒体として排熱回収ボイラの中圧蒸気を使用することから脱皮して、蒸気タービンの高圧排気の使用へと進展することによりその実用性を一段と高めたが、高圧排気はその温度も高いことから被冷却部に当たるガスタービンの高温部は、この高温に耐えられる材料を選択して作らなければならない。
【0009】
しかし、高温に耐え得る材料はその特性を厳しく要求されること等から、自ずと高価なものとなり、なかでもタービンディスク等に至っては、コストダウン等の要求も有って、適切な素材の入手に苦慮するという設計製作上も厳しい問題があるのが実態である。
【0010】
しかも、ガスタービンと排熱回収ボイラと蒸気タービンとをそれぞれ1対1の関係で組み合わせたいわゆる単軸型のコンバインドサイクル発電プラントはともかく、ガスタービンと排熱回収ボイラとを一つの単位として1セットとし、複数のセットにおける各排熱回収ボイラで発生する蒸気を集合して蒸気タービンに供給するようにしたいわゆる多軸型のコンバインドサイクル発電プラントにおいては、多セットのガスタービンがアンバランスな出力で運転された場合には、蒸気タービンへの供給蒸気量の減少等に起因して、高圧タービン排気である冷却蒸気温度が異常に高温となるケースも発生し、燃焼器や翼の耐熱強度もさることながら、ディスクの耐熱強度が非常に問題となる。
【0011】
本発明はこのような状況に鑑み、特に多軸型のものに適用して好ましい結果の得られるようにし、蒸気冷却の機能の安定性を何ら損ずることなく、冷却媒体として用いる冷却蒸気の温度を適切に調整して、入手性の良い素材を使用してガスタービンを製作し得るコンバインドサイクル発電プラントを提供することを課題とするものである。
【0012】
【課題を解決するための手段】
本発明は前記した課題を解決すべくなされたもので、ガスタービンと同ガスタービンの排気を熱源とする排熱回収ボイラとの組合せを複数列設け、各排熱回収ボイラの発生蒸気を集合して単一の蒸気タービンに供給する多軸コンバインドサイクル発電プラントにおいて、高圧蒸気タービン排気を冷却蒸気として各ガスタービンの高温部に供給する冷却蒸気供給経路に減温装置を配設し、同減温装置に中圧節炭器または高圧節炭器の少なくとも何れか一方から高圧水を供給して前記冷却蒸気の温度を低下させた多軸コンバインドサイクル発電プラントを提供するものである。
【0013】
即ち、ガスタービンの高温部の冷却媒体として先ず高圧蒸気タービン排気を選んで採用し、かつ、この高圧蒸気タービン排気を冷却蒸気として供給する冷却蒸気供給経路において、中圧節炭器または高圧節炭器の少なくとも何れか一方から高圧水を供給される減温装置により同冷却蒸気の温度を低下させ、これをガスタービンの高温部へ供給することにより冷却を行うものである。
【0014】
この様に、分量的に十分の高圧排気をその供給経路において減温装置を介して温度を低下させるようにしたことにより、同高圧排気の温度を大幅、かつ、確実に低下させ、被冷却部に当たるガスタービン高温部は耐熱性能を低下した素材を採用可能とし、多軸コンバインドサイクル発電プラントとして全体効率を低下することなく安定した冷却の実施を可能としたものである。
【0015】
【発明の実施の形態】
本発明の実施の一形態を図1に基づいて説明する。
【0016】
本実施の形態は、多軸コンバインドサイクル発電プラントの基本型を示し、ガスタービンプラントと排熱回収プラントとを組み合わせたものを2系列配置し、両系列で発生する蒸気を単一の蒸気タービンプラントに供給するようにしたものであり、ガスタービンプラントと排熱回収プラントのセットは各系列同一であるので一方の系列を説明し、他方の系列については説明を省略する。
【0017】
10はガスタービンプラントで、ガスタービン11、同ガスタービン11で駆動される空気圧縮機12、同空気圧縮機12から供給される圧縮空気を燃料と共に燃焼させる燃焼器13を主要機器として構成されている。
【0018】
このガスタービン11内には、図示省略の動翼、静翼等が内在し、これ等が冷却を必要とする高温部11aに相当することになる。また燃焼器13は燃焼室後域から燃焼ガス出口にかけて尾筒冷却部13aを有しており、同尾筒冷却部13aも前記高温部11a同様に冷却を必要とする部位となっている。
【0019】
そして、前記ガスタービン11の高温部11aに向かって、冷却蒸気を供給する冷却蒸気供給経路14と、また同冷却蒸気供給経路14から分岐して、前記燃焼器13の尾筒冷却部13aへ冷却蒸気を供給する冷却蒸気分岐経路15がそれぞれ設けられている。
【0020】
また、16は減温装置で、ガスタービン11の高温部11aへ冷却蒸気を供給する冷却蒸気供給経路14に配置され、後述する排熱回収ボイラ20等からの高温水をスプレーして前記冷却蒸気の温度を低下させるものである。
【0021】
なお、前記排熱回収ボイラ20中の後述する中圧蒸発器26には、中圧蒸気を取り出す中圧蒸気供給経路35が連絡しており、同中圧蒸気供給経路35は前記冷却蒸気供給経路14から冷却蒸気分岐経路15が分岐した後流位置に連絡し、同冷却蒸気供給経路14中に中圧蒸気を混入するように配置されている。
【0022】
また、37はガスタービン冷却蒸気回収経路で、中圧第2再熱器28の入口側に連通し、また38は尾筒冷却蒸気回収経路で、前記中圧第2再熱器28の出口側に連通している。
【0023】
20は排熱回収ボイラで、前記ガスタービン11の排気を加熱源とし、その内部は、高圧蒸気発生部と、中圧蒸気発生部と、低圧蒸気発生部とに区分されて構成されている。
【0024】
各蒸気発生部に区画される機器を蒸気のマクロな流れ順に従って羅列すれば、低圧蒸気発生部は、低圧節炭器21、低圧蒸発器22、低圧過熱器23等で構成され、中圧蒸気発生部は、中圧節炭器24、中圧給水ポンプ25、中圧蒸発器26、第1再熱器27、第2再熱器28等で構成されている。
【0025】
そして高圧蒸気発生部は、高圧第1節炭器29、高圧給水ポンプ30、高圧第2節炭器31、高圧蒸発器32、高圧第1過熱器33、そして高圧第2過熱器34等で構成されている。
【0026】
また、これら排熱回収ボイラ20の高圧蒸気発生部、中圧蒸気発生部および低圧蒸気発生部で発生する蒸気および高温水は、後述の蒸気タービンプラント40およびガスタービンプラント10の冷却蒸気となる高圧排気の冷却蒸気供給経路14等へ供給されるが、その詳細は後に説明する。
【0027】
本実施の形態においては、前記の様に構成されたガスタービンプラント10と排熱回収ボイラ20の組合せで1セットの配列構成とし、このセットを図示の様に2系列(2セット)並行に配置してこれを単一の蒸気タービンプラント40に組合せている。
【0028】
即ち、40は蒸気タービンプラントを示し、前記排熱回収ボイラ20の高圧第2過熱器34から途中を省略して図示した経路※2を経て高圧蒸気を供給される高圧タービン41、中圧第2再熱器28から経路※3を経て中圧蒸気を供給される中圧タービン42、そして同中圧タービン42の排気、および前記低圧過熱器23から経路※4を経て低圧蒸気を供給される低圧タービン43から構成されている。
【0029】
そして経路※3については図示した様に前記各系列の排熱回収ボイラ20からの再熱蒸気が合流して中圧タービン42に供給されているが、経路※2の高圧過熱蒸気および経路※4の低圧過熱蒸気は、図示省略するが経路※3と同様に前記2系列が合流して高圧タービン41または低圧タービン43にそれぞれ供給されている。
【0030】
なお、低圧タービン43の排気は、その下流に設けられた復水器44で凝縮され、ボイラ給水ポンプ45、グランドコンデンサ46と順次経由して前記排熱回収ボイラ20へと循環される。
【0031】
なおまた、51はガスタービンプラント10で駆動される発電機、52は蒸気タービンプラント40で駆動される発電機を示している。
【0032】
以上各種機器を羅列して概略的に説明したが、本実施の形態は各系列においてガスタービン11の高温部11aへ冷却蒸気を供給する冷却蒸気供給経路14に減温装置16を配置し、排熱回収ボイラ20の中圧節炭器24、高圧第2節炭器31から経路※1で示すように高温水供給経路36に連通し、減温装置16で冷却蒸気である高圧排気中に熱水をスプレーして前記冷却蒸気の温度を低下させるようにしている。
【0033】
なお、ここでは経路※1として中圧節炭器24から連通するものと高圧第2節炭器31からのものの2経路を示しているが、両方の経路を共に使用しても、また、いずれか一方のみを使用するように切り換えてもよいことは勿論である。
【0034】
本実施の形態は前記した様に構成されており、定常状態に於けるガスタービン11の高温部11a、および燃焼器13の尾筒冷却部13aの冷却は次のようにおこなわれる。
【0035】
即ち、高圧タービン41の高圧排気が冷却蒸気供給経路14を経て供給され、一部は途中で分流して冷却蒸気分岐経路15から燃焼器13に至り、尾筒冷却部13aを冷却し、また、分流しなかった残部はそのまま冷却蒸気供給経路14を経てガスタービン11に至りその高温部11a冷却する。
【0036】
高圧タービン41を出る高圧排気の温度は、その温度低下の一例を示せば約370℃であり、この温度の蒸気に晒されるとタービン動翼及びそのディスクのような可動部分は特に耐熱条件が厳しくなり、それをクリヤーするために高価な材料を必要とし、経済的条件が悪くなる。
【0037】
しかも本実施の形態のものは、ガスタービンプラント10と排熱回収ボイラ20とを1セットとし、複数セットのものの排熱回収ボイラで発生する蒸気を集合して蒸気タービンに供給するように構成した多軸型のコンバインドサイクル発電プラントであるために、何れか一方のガスタービン11の機能低下等により同ガスタービン11がアンバランスな出力で運転された場合には、蒸気タービンプラント40への供給蒸気量の減少等に起因して、高圧タービン排気温度が異常に高温となるケースも発生し、燃焼器や翼の耐熱強度もさることながら、ディスクの耐熱強度が非常に問題となる。
【0038】
しかし、排熱回収ボイラ20の中圧節炭器24、高圧第2節炭器31から経路※1、高温水供給経路36を経て供給される高温水は、100〜300℃であるので、これを減温装置16で高圧排気中にスプレーすれば前記冷却蒸気の温度は大幅に低下し、前記タービン動翼及びそのディスクのような可動部分を製作する素材として比較的安価で入手性の良い材料で対応でき、経済的条件は大幅に好転する。
【0039】
なお、燃焼器13の尾筒冷却部13aは固定構造物であるため、同じ370℃の温度条件であっても、比較的安価な材料で対応出来るので、冷却蒸気分岐経路15に対しては中圧蒸気を混入する必要はない。
【0040】
そしてガスタービン11の高温部11aを冷却した冷却蒸気は、ガスタービン冷却蒸気回収経路37を経て第2再熱器28に回収され、また燃焼器13の尾筒冷却部13aを冷却して冷却蒸気は、尾筒冷却蒸気回収経路38を経て前記第2再熱器28の出口側に至り、同第2再熱器28を経て加熱された他の蒸気と共に中圧タービン42に供給されて回収される。
【0041】
この様に本実施の形態によれば、ガスタービン11の高温部11aを冷却する冷却蒸気は、高圧タービン41の高圧排気に中圧節炭器24、高圧第2節炭器31等から高温水をスプレーして冷却蒸気を温度低下して用いることにより、多軸型のコンバインドサイクル発電プラントでガスタービン11がアンバランスな出力で運転された場合であっても、ガスタービン11の高温部11aは耐熱要求をクリヤーすることができ、タービンの製作コストを大幅に節減することができるものである。
【0042】
以上、本発明を図示の実施の形態について説明したが、本発明はかかる実施の形態に限定されず、本発明の範囲内でその具体的構造に種々の変更を加えてもよいことはいうまでもない。
【0043】
【発明の効果】
以上本発明によれば、ガスタービンと同ガスタービンの排気を熱源とする排熱回収ボイラとの組合せを複数列設け、各排熱回収ボイラの発生蒸気を集合して単一の蒸気タービンに供給する多軸コンバインドサイクル発電プラントにおいて、高圧蒸気タービン排気を冷却蒸気として各ガスタービンの高温部に供給する冷却蒸気供給経路に減温装置を配設し、同減温装置に中圧節炭器または高圧節炭器の少なくとも何れか一方から高圧水を供給して前記冷却蒸気の温度を低下させるように構成し、ガスタービンの高温部の冷却媒体として選んだ高圧蒸気タービン排気中に減温装置で高温水をスプレーして加え、同冷却蒸気の温度を低下させてこれをガスタービンの高温部へ供給することにより冷却を行うものである。
【0044】
従って本発明では、分量的に十分の高圧排気を減温装置を介して温度を低下させた上で冷却蒸気として用いることにより、同高圧排気の温度を大幅、かつ、確実に低下させ、被冷却部に当たるガスタービン高温部は耐熱性能を低下した素材を採用可能とし、多軸コンバインドサイクル発電プラントとして全体効率を低下することなく安定した冷却の実施を可能とすることが出来たものである。
【図面の簡単な説明】
【図1】本発明の実施の一形態に係わる多軸コンバインドサイクル発電プラントの概要を模式的に示す説明図。
【符号の説明】
10 ガスタービンプラント
11 ガスタービン
11a 高温部
12 空気圧縮機
13 燃焼器
13a 尾筒冷却部
14 冷却蒸気供給経路
15 冷却蒸気分岐経路
16 減温装置
20 排熱回収ボイラ
21 低圧節炭器
22 低圧蒸発器
23 低圧過熱器
24 中圧節炭器
25 中圧給水ポンプ
26 中圧蒸発器
27 第1再熱器
28 第2再熱器
29 高圧第1節炭器
30 高圧給水ポンプ
31 高圧第2節炭器
32 高圧蒸発器
33 高圧第1過熱器
34 高圧第2過熱器
35 中圧蒸気供給経路
36 高温水供給経路
37 ガスタービン冷却蒸気回収経路
38 尾筒冷却蒸気回収経路
40 蒸気タービンプラント
41 高圧タービン
42 中圧タービン
43 低圧タービン
44 復水器
45 ボイラ給水ポンプ
46 グランドコンデンサ
51 発電機
52 発電機
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multi-shaft combined cycle power plant configured by applying a single steam turbine to a combination of a plurality of gas turbines and an exhaust heat recovery boiler.
[0002]
[Prior art]
A combined cycle power plant is a power generation system that combines a gas turbine plant and a steam turbine plant.The high-temperature area of thermal energy is shared by the gas turbine, and the low-temperature area is shared by the steam turbine, and heat energy is effectively used. It is a power generation system that has been collected and used, and has been particularly spotlighted in recent years.
[0003]
In this combined cycle power plant, research and development have been promoted with one point for improving the efficiency being the high temperature of the gas turbine.
[0004]
On the other hand, in order to achieve high temperatures, it is necessary to pursue a cooling system from the viewpoint of the heat resistance of the turbine structure, and various trials and errors have been made in this field. It has been progressing to a form in which steam cooling is performed using steam.
[0005]
As an example, there is Japanese Patent Application Laid-Open No. 05-163960. However, the disclosed technology does not disclose the concept of employing steam as a cooling medium of a gas turbine, but the cooling steam is exhausted heat. The medium-pressure steam in the recovery boiler is used, and the total amount of steam is not sufficient, and it is not always sufficient to secure stable and reliable cooling.
[0006]
Therefore, in recent years, a further step has been taken, and the use of exhaust gas from a high-pressure turbine as the cooling steam is studied, focusing on the fact that the cooling steam is quantitatively sufficient and can perform stable cooling. Has been reached.
[0007]
On the other hand, as for the combined cycle power plant itself, from the single-shaft type in which the gas turbine, the exhaust heat recovery boiler and the steam turbine are all arranged in a one-to-one relationship, the combination of the gas turbine and the exhaust heat recovery boiler is changed. A multi-shaft type, in which a plurality of systems are provided and combined with a single steam turbine, has been devised, and the use of cooling steam as a cooling medium regardless of whether the shaft is single-shaft or multi-shaft is being studied. It is in.
[0008]
[Problems to be solved by the invention]
As described above, the conventional steam cooling system further removes the use of medium-pressure steam from a heat recovery steam generator as a cooling medium, and further enhances its practicality by progressing to the use of high-pressure exhaust from a steam turbine. However, since the high-pressure exhaust gas also has a high temperature, the high-temperature portion of the gas turbine corresponding to the portion to be cooled must be made of a material that can withstand this high temperature.
[0009]
However, materials that can withstand high temperatures are naturally required to be expensive due to their strict requirements, etc. In particular, for turbine disks, etc., there are demands for cost reduction, etc. Actually, there are severe problems in designing and manufacturing, which are difficult.
[0010]
Moreover, apart from the so-called single-shaft combined cycle power plant in which the gas turbine, the exhaust heat recovery boiler and the steam turbine are combined in a one-to-one relationship, one set includes the gas turbine and the exhaust heat recovery boiler as one unit. In a so-called multi-shaft combined cycle power plant in which steam generated in each heat recovery steam generator in a plurality of sets is collected and supplied to a steam turbine, multiple sets of gas turbines have unbalanced output. During operation, the temperature of cooling steam, which is high-pressure turbine exhaust, may become abnormally high due to a decrease in the amount of steam supplied to the steam turbine, etc., and the heat resistance of the combustor and blades also goes down. However, the heat resistance of the disk is very important.
[0011]
In view of such a situation, the present invention is particularly applicable to a multi-shaft type so as to obtain a favorable result, without impairing the stability of the function of steam cooling at all, and controlling the temperature of the cooling steam used as a cooling medium. It is an object of the present invention to provide a combined cycle power plant capable of manufacturing a gas turbine using a material which is easily adjusted and which is easily available.
[0012]
[Means for Solving the Problems]
The present invention has the problems described above were solved all Kunasa, the combination of the exhaust heat recovery boiler to heat the exhaust gas turbine and the gas turbine is provided a plurality of rows, and set the steam generated in each heat recovery steam Te in multi-shaft combined cycle power plant to supply a single steam turbine, disposed a temperature reducing apparatus to the cooling steam supply passage for supplying the high temperature section of the gas turbine high pressure steam turbine exhaust as cooling steam, the temperature reducing An object of the present invention is to provide a multi-shaft combined cycle power plant in which high-pressure water is supplied to at least one of a medium-pressure economizer and a high-pressure economizer to reduce the temperature of the cooling steam.
[0013]
That is, a high-pressure steam turbine exhaust is first selected and adopted as a cooling medium for a high-temperature portion of a gas turbine, and a medium-pressure or high-pressure saving device is provided in a cooling steam supply path for supplying the high-pressure steam turbine exhaust as cooling steam. The temperature of the cooling steam is reduced by a temperature reducing device to which high-pressure water is supplied from at least one of the devices, and the cooling steam is supplied to a high-temperature portion of the gas turbine for cooling.
[0014]
In this way, by quantitatively reducing the temperature of the high-pressure exhaust gas in the supply path through the temperature reducing device in the supply path, the temperature of the high-pressure exhaust gas is significantly and surely reduced, and the cooled part is cooled. The high-temperature portion of the gas turbine corresponds to a material that has a reduced heat-resistant performance, and enables stable cooling without lowering the overall efficiency as a multi-shaft combined cycle power plant.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to FIG.
[0016]
This embodiment shows a basic type of a multi-shaft combined cycle power generation plant, in which a combination of a gas turbine plant and an exhaust heat recovery plant is arranged in two lines, and steam generated in both lines is converted into a single steam turbine plant. Since the sets of the gas turbine plant and the exhaust heat recovery plant are the same for each series, one series will be described, and the description of the other series will be omitted.
[0017]
A gas turbine plant 10 includes a gas turbine 11, an air compressor 12 driven by the gas turbine 11, and a combustor 13 for burning compressed air supplied from the air compressor 12 together with fuel as main components. I have.
[0018]
The gas turbine 11 includes moving blades, stationary blades, and the like (not shown), which correspond to the high-temperature portion 11a requiring cooling. Further, the combustor 13 has a transition piece cooling section 13a from the rear area of the combustion chamber to the combustion gas outlet, and the transition piece cooling section 13a is also a part requiring cooling like the high temperature section 11a.
[0019]
Then, a cooling steam supply path 14 for supplying cooling steam toward the high temperature section 11a of the gas turbine 11 and a branch from the cooling steam supply path 14 are cooled to the transition piece cooling section 13a of the combustor 13. A cooling steam branch path 15 for supplying steam is provided.
[0020]
Reference numeral 16 denotes a cooling device which is disposed in a cooling steam supply path 14 for supplying cooling steam to the high temperature section 11a of the gas turbine 11, and sprays high temperature water from an exhaust heat recovery boiler 20 or the like described later to spray the cooling steam. Is to lower the temperature.
[0021]
A medium-pressure steam supply path 35 for extracting medium-pressure steam is connected to a medium-pressure evaporator 26 (described later) in the exhaust heat recovery boiler 20, and the medium-pressure steam supply path 35 is connected to the cooling steam supply path. The cooling steam branch path 15 is connected to a downstream position where the cooling steam branch path 15 branches from the cooling steam supply path 14, and is arranged so that medium-pressure steam is mixed into the cooling steam supply path 14.
[0022]
Reference numeral 37 denotes a gas turbine cooling steam recovery path, which communicates with the inlet side of the intermediate pressure second reheater 28, and reference numeral 38 denotes a transition piece cooling steam recovery path, which is the outlet side of the intermediate pressure second reheater 28. Is in communication with
[0023]
Reference numeral 20 denotes an exhaust heat recovery boiler, which uses the exhaust gas of the gas turbine 11 as a heating source, and has an interior divided into a high-pressure steam generator, a medium-pressure steam generator, and a low-pressure steam generator.
[0024]
If the devices divided into the steam generators are arranged in accordance with the macro flow order of the steam, the low-pressure steam generator is composed of a low-pressure economizer 21, a low-pressure evaporator 22, a low-pressure superheater 23, and the like. The generator includes a medium-pressure economizer 24, a medium-pressure feedwater pump 25, a medium-pressure evaporator 26, a first reheater 27, a second reheater 28, and the like.
[0025]
The high-pressure steam generator includes a high-pressure first economizer 29, a high-pressure feedwater pump 30, a high-pressure second economizer 31, a high-pressure evaporator 32, a high-pressure first superheater 33, a high-pressure second superheater 34, and the like. Have been.
[0026]
The steam and high-temperature water generated in the high-pressure steam generator, the medium-pressure steam generator, and the low-pressure steam generator of the exhaust heat recovery boiler 20 serve as high-pressure steam that becomes cooling steam for the steam turbine plant 40 and the gas turbine plant 10 described below. The exhaust gas is supplied to the cooling steam supply path 14 and the like, the details of which will be described later.
[0027]
In the present embodiment, the gas turbine plant 10 and the exhaust heat recovery boiler 20 configured as described above are combined into one set of an array configuration, and the sets are arranged in two lines (two sets) in parallel as illustrated. This is combined with a single steam turbine plant 40.
[0028]
That is, reference numeral 40 denotes a steam turbine plant, in which a high-pressure turbine 41 to which high-pressure steam is supplied through a route * 2 shown in the drawing from the high-pressure second superheater 34 of the exhaust heat recovery boiler 20, An intermediate-pressure turbine 42 supplied with medium-pressure steam from the reheater 28 via a path * 3, and an exhaust of the medium-pressure turbine 42, and a low-pressure turbine supplied with low-pressure steam from the low-pressure superheater 23 via a path * 4. It is constituted by a turbine 43.
[0029]
As for the route * 3, the reheated steam from the exhaust heat recovery boilers 20 of the respective series merges and is supplied to the intermediate pressure turbine 42 as shown in the figure, but the high pressure superheated steam of the route * 2 and the route * 4 The low-pressure superheated steam is supplied to the high-pressure turbine 41 or the low-pressure turbine 43 by merging the two series in the same manner as in the route * 3, though not shown.
[0030]
The exhaust gas of the low-pressure turbine 43 is condensed by a condenser 44 provided downstream thereof, and is circulated to the exhaust heat recovery boiler 20 via a boiler feed pump 45 and a ground condenser 46 in order.
[0031]
Reference numeral 51 denotes a generator driven by the gas turbine plant 10, and 52 denotes a generator driven by the steam turbine plant 40.
[0032]
As described above, various devices have been schematically described. In the present embodiment, the cooling device 16 is disposed in the cooling steam supply path 14 that supplies the cooling steam to the high temperature portion 11a of the gas turbine 11 in each system, and the exhaust gas is discharged. The heat recovery boiler 20 communicates with the high-pressure water supply path 36 as shown by a path * 1 from the medium-pressure and second-pressure economizers 24 and 31, and the heat is reduced by the temperature-reducing device 16 into high-pressure exhaust, which is cooling steam. Water is sprayed to lower the temperature of the cooling steam.
[0033]
In addition, here, as the route * 1, there are shown two routes, one from the medium-pressure economizer 24 and the other from the high-pressure second economizer 31, but if both routes are used together, Needless to say, it may be switched to use only one of them.
[0034]
The present embodiment is configured as described above, and the cooling of the high temperature portion 11a of the gas turbine 11 and the transition piece cooling portion 13a of the combustor 13 in the steady state are performed as follows.
[0035]
That is, the high-pressure exhaust gas of the high-pressure turbine 41 is supplied through the cooling steam supply path 14, and a part of the high-pressure exhaust gas is branched on the way to reach the combustor 13 from the cooling steam branch path 15, and cools the transition piece cooling unit 13 a. The remaining portion that has not been diverted directly passes through the cooling steam supply path 14 to the gas turbine 11 where it is cooled in the high-temperature portion 11a.
[0036]
The temperature of the high-pressure exhaust gas exiting the high-pressure turbine 41 is about 370 ° C. as an example of the temperature drop, and when exposed to steam at this temperature, the movable parts such as the turbine blade and its disk have particularly severe heat-resistant conditions. Requires expensive materials to clear it, and the economic conditions are worse.
[0037]
Moreover, in this embodiment, the gas turbine plant 10 and the exhaust heat recovery boiler 20 are configured as one set, and the steam generated in the plurality of sets of the exhaust heat recovery boilers is assembled and supplied to the steam turbine. Since the multi-shaft combined cycle power plant is operated at an unbalanced output due to a decrease in the function of one of the gas turbines 11, the steam supplied to the steam turbine plant 40 In some cases, the exhaust temperature of the high-pressure turbine becomes abnormally high due to the decrease in the amount, and the heat resistance of the disk becomes extremely problematic as well as the heat resistance of the combustor and the blade.
[0038]
However, since the high-temperature water supplied from the medium pressure economizer 24 and the high-pressure second economizer 31 and the high-temperature water supply path 36 from the exhaust heat recovery boiler 20 is 100 to 300 ° C. Is sprayed into the high-pressure exhaust gas by the temperature reducing device 16, the temperature of the cooling steam is greatly reduced, and a relatively inexpensive and easily available material for manufacturing the moving parts such as the turbine blade and its disk. And economic conditions will improve significantly.
[0039]
In addition, since the transition piece cooling portion 13a of the combustor 13 is a fixed structure, a relatively inexpensive material can be used even under the same 370 ° C. temperature condition. There is no need to mix pressure steam.
[0040]
The cooling steam that has cooled the high temperature portion 11a of the gas turbine 11 is recovered by the second reheater 28 via the gas turbine cooling steam recovery path 37, and also cools the transition piece cooling portion 13a of the combustor 13 to cool the cooling steam. Reaches the outlet side of the second reheater 28 via a transition pipe cooling steam recovery path 38, and is supplied to the medium-pressure turbine 42 together with other steam heated via the second reheater 28 and collected. You.
[0041]
As described above, according to the present embodiment, the cooling steam for cooling the high-temperature portion 11 a of the gas turbine 11 is supplied to the high-pressure exhaust of the high-pressure turbine 41 from the medium-pressure economizer 24, the high-pressure second economizer 31, and the like. And using the cooling steam at a reduced temperature, even when the gas turbine 11 is operated at an unbalanced output in a multi-shaft combined cycle power plant, the high temperature portion 11a of the gas turbine 11 The heat resistance requirement can be cleared, and the production cost of the turbine can be greatly reduced.
[0042]
Although the present invention has been described with reference to the illustrated embodiments, the present invention is not limited to these embodiments, and various modifications may be made to the specific structure within the scope of the present invention. Nor.
[0043]
【The invention's effect】
According to the present invention, a plurality of combinations of a gas turbine and an exhaust heat recovery boiler using the exhaust gas of the gas turbine as a heat source are provided in a plurality of rows, and the steam generated from each exhaust heat recovery boiler is collected and supplied to a single steam turbine. In a multi-shaft combined cycle power plant, a cooling device is provided in a cooling steam supply path that supplies high-pressure steam turbine exhaust as cooling steam to the high-temperature section of each gas turbine, and a medium pressure economizer or A high-pressure water is supplied from at least one of the high-pressure economizers to reduce the temperature of the cooling steam, and a high-temperature steam turbine exhaust gas selected as a cooling medium of a high-temperature portion of the gas turbine is cooled by a temperature reducing device. The cooling is performed by spraying and adding high-temperature water to lower the temperature of the cooling steam and supplying it to the high-temperature portion of the gas turbine.
[0044]
Thus in the present invention, by using as the cooling steam after having quantity to reduce the temperature over a sufficient temperature reducing device a high pressure exhaust, significantly the temperature of the high-pressure exhaust and reliably reduced, the cooled gas turbine hot section striking the parts are of the employable materials that reduce the heat resistance was able to allow the implementation of stable cooling without reducing the overall efficiency as a multi-shaft combined cycle power plant.
[Brief description of the drawings]
FIG. 1 is an explanatory view schematically showing an outline of a multi-shaft combined cycle power plant according to an embodiment of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 10 gas turbine plant 11 gas turbine 11 a high temperature section 12 air compressor 13 combustor 13 a transition piece cooling section 14 cooling steam supply path 15 cooling steam branch path 16 temperature reducing device 20 exhaust heat recovery boiler 21 low pressure economizer 22 low pressure evaporator 23 Low-pressure superheater 24 Medium-pressure economizer 25 Medium-pressure water supply pump 26 Medium-pressure evaporator 27 First reheater 28 Second reheater 29 High-pressure first economizer 30 High-pressure water pump 31 High-pressure second economizer 32 High-pressure evaporator 33 High-pressure first superheater 34 High-pressure second superheater 35 Medium-pressure steam supply path 36 High-temperature water supply path 37 Gas turbine cooling steam recovery path 38 Tail cooling steam recovery path 40 Steam turbine plant 41 High-pressure turbine 42 Medium Pressure turbine 43 low-pressure turbine 44 condenser 45 boiler feed pump 46 ground condenser 51 generator 52 generator

Claims (1)

ガスタービンと同ガスタービンの排気を熱源とする排熱回収ボイラとの組合せを複数列設け、各排熱回収ボイラの発生蒸気を集合して単一の蒸気タービンに供給する多軸コンバインドサイクル発電プラントにおいて、高圧蒸気タービン排気を冷却蒸気として各ガスタービンの高温部に供給する冷却蒸気供給経路に減温装置を配設し、同減温装置に中圧節炭器または高圧節炭器の少なくとも何れか一方から高圧水を供給して前記冷却蒸気の温度を低下させたことを特徴とする多軸コンバインドサイクル発電プラント。A multi-shaft combined cycle power plant in which a combination of a gas turbine and an exhaust heat recovery boiler using the exhaust gas of the gas turbine as a heat source is provided in a plurality of rows, and the steam generated from each exhaust heat recovery boiler is collected and supplied to a single steam turbine. In the cooling steam supply path for supplying high-pressure steam turbine exhaust as cooling steam to the high-temperature section of each gas turbine, a cooling device is disposed, and the cooling device is provided with at least one of a medium-pressure economizer and a high-pressure economizer. A multi-shaft combined cycle power plant, wherein high-pressure water is supplied from one of the two sides to reduce the temperature of the cooling steam.
JP14647497A 1997-06-04 1997-06-04 Multi-shaft combined cycle power plant Expired - Fee Related JP3586542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14647497A JP3586542B2 (en) 1997-06-04 1997-06-04 Multi-shaft combined cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14647497A JP3586542B2 (en) 1997-06-04 1997-06-04 Multi-shaft combined cycle power plant

Publications (2)

Publication Number Publication Date
JPH10339109A JPH10339109A (en) 1998-12-22
JP3586542B2 true JP3586542B2 (en) 2004-11-10

Family

ID=15408467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14647497A Expired - Fee Related JP3586542B2 (en) 1997-06-04 1997-06-04 Multi-shaft combined cycle power plant

Country Status (1)

Country Link
JP (1) JP3586542B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4395254B2 (en) 2000-11-13 2010-01-06 三菱重工業株式会社 Combined cycle gas turbine
DE102010040624A1 (en) * 2010-09-13 2012-03-15 Siemens Aktiengesellschaft heat recovery steam generator
CN104481618B (en) * 2014-11-14 2017-02-01 东方电气集团东方汽轮机有限公司 High-parameter ultra-supercritical steam turbine generator unit
CN104632310B (en) * 2015-02-09 2017-07-28 北京北方三合能源技术有限公司 It is a kind of to improve vacuum and the embedded hybrid system of residual heat of condensed water heat supply
CN104807344B (en) * 2015-04-13 2017-04-19 北京北方三合能源技术有限公司 Dry indirect-cooling-storage type peak cooling system of thermal power generating unit
CN107202356B (en) * 2017-06-19 2022-12-06 北京北方三合能源技术有限公司 Waste heat cascade utilization heating system of thermal power generating unit

Also Published As

Publication number Publication date
JPH10339109A (en) 1998-12-22

Similar Documents

Publication Publication Date Title
US6499302B1 (en) Method and apparatus for fuel gas heating in combined cycle power plants
US8505309B2 (en) Systems and methods for improving the efficiency of a combined cycle power plant
US5428950A (en) Steam cycle for combined cycle with steam cooled gas turbine
EP0676532B1 (en) Steam injected gas turbine system with topping steam turbine
US8281565B2 (en) Reheat gas turbine
CN109653875B (en) Fuel preheating system for combustion turbine engine
JPH10131719A (en) Steam cooling gas turbine system
KR20000036203A (en) Closed loop steam cooled steam turbine
MX2013007023A (en) A supercritical heat recovery steam generator reheater and supercritical evaporator arrangement.
US20120317973A1 (en) Asymmetrical Combined Cycle Power Plant
JP3564241B2 (en) Combined cycle power plant
JP3586542B2 (en) Multi-shaft combined cycle power plant
JP2699808B2 (en) Steam-cooled gas turbine combined plant
WO1999037889A1 (en) Combined cycle power plant
JP2003206750A (en) Regenerative type gas turbine combined cycle electric power generating system
CA2285286C (en) Gas turbine for combined cycle power plant
JP3389019B2 (en) Steam cooled gas turbine
JP3530345B2 (en) Combined cycle power plant
JP3586538B2 (en) Combined cycle power plant
JPH11148315A (en) Combined cycle power plant
JPH10325338A (en) Combined cycle generating plant
US20020189262A1 (en) Method for operating a steam turbine , and a turbine system provided with a steam turbine that functions according to said method
RU2139430C1 (en) Combined-cycle plant
JPH04124411A (en) Steam turbine combine generator equipment
JP2001289009A (en) Single-shaft combined turbine equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees