JP3530345B2 - Combined cycle power plant - Google Patents

Combined cycle power plant

Info

Publication number
JP3530345B2
JP3530345B2 JP17967397A JP17967397A JP3530345B2 JP 3530345 B2 JP3530345 B2 JP 3530345B2 JP 17967397 A JP17967397 A JP 17967397A JP 17967397 A JP17967397 A JP 17967397A JP 3530345 B2 JP3530345 B2 JP 3530345B2
Authority
JP
Japan
Prior art keywords
steam
cooling
cooling steam
passage
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17967397A
Other languages
Japanese (ja)
Other versions
JPH1122488A (en
Inventor
正人 片岡
卓 一柳
靖史 福泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP17967397A priority Critical patent/JP3530345B2/en
Priority to DE69817693T priority patent/DE69817693T2/en
Priority to EP98111984A priority patent/EP0889203B1/en
Priority to CA002242071A priority patent/CA2242071C/en
Publication of JPH1122488A publication Critical patent/JPH1122488A/en
Priority to US09/693,933 priority patent/US6298657B1/en
Application granted granted Critical
Publication of JP3530345B2 publication Critical patent/JP3530345B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明はガスタービンプラン
トと蒸気タービンプラントとを組み合わせたコンバイン
ドサイクル発電プラントに関するものである。 【0002】 【従来の技術】コンバインドサイクル発電プラントは、
ガスタービンプラントと蒸気タービンプラントを組み合
わせた発電システムであり、熱エネルギーの高温域をガ
スタービンで、また、低温域を蒸気タービンでそれぞれ
分担して受持ち、熱エネルギーを有効に回収し、利用す
るようにしたものであり、近年特に脚光を浴びている発
電システムである。 【0003】このコンバインドサイクル発電プラントで
は、効率向上のための一つのポイントを、ガスタービン
の高温域を何処まで高め得るか、と言う点に置いて研究
開発が進められてきた。 【0004】一方、高温域の形成には、タービン構造体
の耐熱性の面から冷却システムを設けねばならず、この
冷却システムにおける冷却媒体としては従来から空気が
用いられて来た。 【0005】しかし、冷却媒体として空気を用いる限
り、例え高温域を達成し得たとしても、冷却に要した空
気を自らの空気圧縮機で必要圧力迄昇圧するのに要した
動力損失と、また、高温ガスの通過するタービン流路内
に部品の冷却に使用した空気を最終的に混合させる事に
より平均ガス温度を低下させてガスの持つエネルギーを
低下せしめる結果になることとの両方を考慮すると、熱
効率のこれ以上の向上は期待できないところまで来てい
る。 【0006】この問題点を解決し更に効率向上を図るべ
く、ガスタービンの冷却媒体として前記した空気に替え
て、蒸気を採用するものが提案されるに至った。 【0007】一例として挙げれば、特開平05−163
960号公報のものがある。しかしこの特開平05−1
63960号公報に記載されたものは、ガスタービンの
冷却媒体として蒸気を採用するという概念の開示はとも
かくとして、その細部においては工夫し解決しなければ
ならない課題が多数残されている。 【0008】例えば、この公報の開示においても、ガス
タービンの高温被冷却部に供給される冷却蒸気は、一定
の蒸気源から前記被冷却部に導かれ、冷却すべき位置を
通して流れ、一定の仕事をした後所定の回収部へ導かれ
る、と言う基本概念の紹介に止まり、その過程における
冷却蒸気の圧力損失等の問題については、格別気に止め
ておらず、格別の配慮もされていない。 【0009】即ち、この蒸気冷却の技術に関しては、未
だ試行錯誤の段階であり、前記したような細部に亘って
の問題点の追求、工夫、配慮、対応等について、従来技
術はまだまだ未完の域を出ていないと言うのが実状であ
る。 【0010】 【発明が解決しようとする課題】前記したように、従来
のものでは、蒸気冷却の基本概念の紹介に止まり、ガス
タービンの高温被冷却部の冷却蒸気通路は、静止系また
は回転系のそれぞれにおいて、被冷却部全体に亘って直
列に連通して形成されている。 【0011】即ち、静止系の高温被冷却部では、第1段
静翼、続いて第2段静翼と連通して冷却蒸気は直列に流
され、所定の冷却を行って加熱され、回収部に至る構成
となっている。 【0012】このような構成によれば、ガスタービンの
高温被冷却部での圧力損失が大きくなり、同高温被冷却
部の上流側、及び下流側で種々の制約が生じ、設計製作
はもとより、操作上も自由度が小さくなるのみならず、
プラント効率の低下に連なることになる。即ち、高温被
冷却部で冷却を行った後の冷却蒸気を回収するに当た
り、同冷却蒸気の圧力が低下していれば、その低下した
分蒸気タービンの出力減となり、ひいてはプラント効率
の低下となる。 【0013】他方、この圧力損失が生じることを予め織
り込んだ上、蒸気タービンで常時所定の圧力を得ようと
すると、必要以上に大きな容量の制御弁を必要とするこ
とになり、設計製作のコストを引き上げる事となるばか
りでなく、この様な大容量の制御弁の採用は現実的では
ない。 【0014】本発明はこれらの諸点に鑑み、ガスタービ
ンの高温被冷却部において圧力損失が大きくなるのを防
止し、冷却蒸気を効率良く回収するようにしたものを提
供することを課題とするものである。 【0015】 【課題を解決するための手段】本発明は、前記課題を解
すべくなされたもので、ガスタービンプラントと蒸気
タービンプラントとを組合せ、ガスタービンからの排熱
を利用して蒸気タービン駆動用蒸気を発生させる排熱回
収ボイラを備えるとともに、前記ガスタービンの高温被
冷却部を蒸気で冷却する蒸気冷却システムを設け、この
蒸気冷却システムからの過熱蒸気を蒸気タービンに回収
させるように構成したコンバインドサイクル発電プラン
トにおいて、前記高温被冷却部の冷却蒸気通路は、同一
段内の複数の静翼間または動翼間を区分して通る互いに
独立した複数系統の冷却蒸気通路を並列に配置して構成
したコンバインドサイクル発電プラントを提供し、冷却
蒸気通路を静翼または動翼の同一段内で周方向に複数区
分し、互いに独立した冷却蒸気通路とし、これを並列に
配置して構成したことにより、この並列配置数により冷
却蒸気の圧力損失発生部が分散し、圧力損失全体の合計
を小さくすることができるものである。 【0016】 【0017】 【0018】 【0019】 【発明の実施の形態】本発明の実施の形態を理解するの
に有益な参考例について図1に基づいて説明する。な
お、図1は説明の便宜を考慮して、その要部を抜粋して
極く略式に示す概略図である。 【0020】1は第1段静翼、2は第2段静翼、また3
は第1段動翼、4は第2動静翼である。5は冷却蒸気の
供給経路で、途中で分岐して第1段静翼の冷却蒸気通路
5aと第2段静翼の冷却蒸気通路5bとに通じている。 【0021】各冷却蒸気通路5a、5bは、それぞれ第
1、第2段静翼1、2の被冷却部を経て第1段静翼の回
収通路6a、および第2段静翼の回収通路6bへ通じ、
その後流でこの回収通路6a、6bは蒸気回収通路6へ
合流している。 【0022】即ち、前記冷却蒸気通路5a、5bは、第
1、第2段静翼1、2の位置において、互いに独立した
並列の通路を構成し、またこれに通じる回収通路6a、
6bも同様に並列の通路を構成している。 【0023】一方、動翼側についてみると、前記静翼側
と対称に、7は冷却蒸気の供給経路で、途中で分岐して
第1段動翼の冷却蒸気通路7aと第2段動翼の冷却蒸気
通路7bとに通じている。 【0024】そして各冷却蒸気通路7a、7bは、それ
ぞれ第1、第2段動翼3、4の被冷却部を経て第1段動
翼の回収通路8a、および第2段動翼の回収通路8bへ
通じ、その後流でこの回収通路8a、8bは蒸気回収通
路8へ合流している。 【0025】即ち前記静翼側と同様に、前記冷却蒸気通
路7a、7bは、第1、第2段動翼3、4の位置におい
て、互いに独立した並列の通路を構成し、またこれに通
じる回収通路8a、8bも同様に並列の通路を構成して
いる。 【0026】この参考例のものは、前記の様に構成され
ているので、先ず静翼側についてみると、図示省略した
外部の冷却蒸気源から供給される冷却蒸気は、冷却蒸気
の供給経路5から導入されて冷却蒸気通路5a、5bに
並列に分岐し、第1段静翼1および第2段静翼2へ直接
導入され、同第1段静翼1および第2段静翼2の高温被
冷却部を冷却することにより自身は加熱され、その後そ
れぞれ独立の回収通路6a、6bを経て蒸気回収通路6
へ合流し、図示省略の蒸気タービン等で熱回収される。 【0027】この場合、冷却蒸気通路5aを流れる冷却
蒸気は、冷却蒸気通路5bによる圧力損失には無関係で
あり、反対に冷却蒸気通路5bを流れる冷却蒸気は、冷
却蒸気通路5aによる圧力損失には無関係であるので、
全体としての圧力損失は大幅に低減されることとあな
る。 【0028】一方、動翼側については、前記静翼側と全
く同様に圧力損失を抑えた上で蒸気回収通路8を経て図
示省略の蒸気タービン等で熱回収されるものであること
は、重ねて説明するまでもなく容易に理解されるであろ
う。 【0029】次に本発明の実施の一形態について図2に
基づいて説明する。図2も前記図1と同様に説明の便宜
を考慮して、その要部を抜粋して極く略式に示す概略図
である。 【0030】10は静翼または動翼の全周に亘る翼群を
イメージとして示し、同翼群10はここでは6つのグル
ープに区分され、各グループごとに独立した冷却蒸気通
路で結ばれ、周方向で並列の系統を構成している。 【0031】即ち、第1の翼群の冷却蒸気通路11は、
供給経路11aと蒸気回収通路11bを有し、また第2
の翼群の冷却蒸気通路12は、供給経路12aと蒸気回
収通路12bを有し、以下同様に第3、4、5、6の翼
群の冷却蒸気通路13、14、15、16は、それぞれ
供給経路13a,14a,15a,16aと蒸気回収通
路13b,14b,15b,16bを有して形成され、
互いに並列となる6組の系統を構成している。 【0032】そして本実施の形態において、前記のよ
うに冷却蒸気通路を周方向で並列に分散させることによ
り、前記参考例と同様に圧力損失を抑えた上で図示省略
の蒸気タービン等で熱回収されるものである。 【0033】以上、本発明を図示の実施の形態について
説明したが、本発明はかかる実施の形態に限定されず、
本発明の範囲内でその具体的構造に種々の変更を加えて
よいことはいうまでもない。 【0034】 【発明の効果】以上本発明によれば、冷却蒸気はそれぞ
れ独立した並列の通路を分流するので、全ての冷却蒸気
が共通の圧力損失発生部を重複してひっきりなしに流
れ、圧力損失が積み上げられて大きくなるというもので
はなく、無駄も無理もなく、後流の各種機器に不要なト
ラブルを持ち込むこともない、圧損発生を抑えた効果的
な装置を得ることができたものである。 【0035】 【0036】 【0037】特に本発明によれば、静翼または動翼の特
定の同一段落内で並行して冷却し、熱回収を行うように
した形式の装置に適用して、圧損抑制に特に効果を発揮
することができたものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined cycle power plant combining a gas turbine plant and a steam turbine plant. [0002] A combined cycle power plant is
This is a power generation system that combines a gas turbine plant and a steam turbine plant.The high-temperature region of thermal energy is shared by the gas turbine, and the low-temperature region is shared by the steam turbine. This is a power generation system that has been particularly spotlighted in recent years. [0003] In this combined cycle power plant, research and development have been promoted with one point for improving efficiency as to how high the high temperature range of the gas turbine can be increased. On the other hand, a cooling system must be provided for the formation of a high-temperature region in view of the heat resistance of the turbine structure, and air has conventionally been used as a cooling medium in this cooling system. [0005] However, as long as air is used as the cooling medium, even if a high temperature range can be achieved, the power loss required to raise the air required for cooling to the required pressure by its own air compressor, and Considering both the fact that the air used for cooling components is finally mixed into the turbine flow path through which high-temperature gas passes, thereby lowering the average gas temperature and reducing the energy possessed by the gas. No further improvement in thermal efficiency can be expected. [0006] In order to solve this problem and further improve the efficiency, it has been proposed to employ steam instead of the above-described air as a cooling medium for a gas turbine. As an example, Japanese Patent Application Laid-Open No. 05-163
No. 960. However, Japanese Patent Laid-Open No. 05-1
No. 63960 discloses a concept that employs steam as a cooling medium for a gas turbine, aside from disclosing the concept, but there are still many problems that need to be devised and solved in its details. For example, in the disclosure of this publication as well, the cooling steam supplied to the high-temperature portion to be cooled of the gas turbine is guided to the portion to be cooled from a certain steam source, flows through a position to be cooled, and has a certain work. After that, only the basic concept of being guided to a predetermined recovery section is introduced, and problems such as pressure loss of cooling steam in the process are not particularly disregarded and no special consideration is given. That is, this steam cooling technology is still in a trial and error stage, and the prior art is still incomplete in pursuing the above-mentioned problems in detail, ingenuity, consideration, and measures. The fact is that you are not out. [0010] As described above, in the prior art, only the basic concept of steam cooling is introduced, and the cooling steam passage of the high-temperature cooled part of the gas turbine is either stationary or rotary. Are formed so as to communicate in series over the entire portion to be cooled. That is, in the high-temperature portion to be cooled of the stationary system, the cooling steam is flowed in series in communication with the first-stage stationary blade and then with the second-stage stationary blade, and is cooled and heated to reach the recovery portion. Has become. According to such a configuration, the pressure loss in the high-temperature cooled part of the gas turbine increases, and various restrictions occur on the upstream and downstream sides of the high-temperature cooled part. Not only the degree of freedom in operation is reduced,
This leads to a decrease in plant efficiency. That is, in recovering the cooling steam after cooling in the high-temperature cooled part, if the pressure of the cooling steam is reduced, the output of the steam turbine is reduced by the reduced pressure, and the plant efficiency is reduced. . On the other hand, taking into account the occurrence of the pressure loss in advance, and always trying to obtain a predetermined pressure by the steam turbine, a control valve having an unnecessarily large capacity is required. In addition, the use of such a large-capacity control valve is not practical. The present invention has been made in view of the above circumstances, and has as its object to provide a gas turbine in which a high-temperature portion to be cooled is prevented from increasing pressure loss and cooling steam is efficiently recovered. It is. [0015] According to an aspect of the present invention, the problems intended to have been resolved all Kunasa, combining a gas turbine plant and a steam turbine plant, the steam turbine by utilizing the exhaust heat from the gas turbine A steam cooling system for cooling the high-temperature cooled portion of the gas turbine with steam, and a steam turbine configured to collect superheated steam from the steam cooling system. In the combined cycle power plant, the cooling steam passage of the high-temperature cooled part is the same.
Providing a plurality of vanes or between combined cycle power plant cooling steam passage of a plurality of systems independent from each other through by dividing the inter-blades were constructed by arranging in parallel in stage stationary blade or moving the cooling steam passage Multiple sections in the circumferential direction within the same stage of the wing
Divided into independent cooling steam passages, which are
With the arrangement, the pressure loss generating portions of the cooling steam are dispersed by the number of parallel arrangements, and the total pressure loss can be reduced. [0016] [0017] [0018] DETAILED DESCRIPTION OF THE INVENTION understanding the implementation of the embodiment of the present invention
A useful reference example will be described with reference to FIG. Incidentally, FIG. 1 is solely for the convenience of explanation, a schematic diagram illustrating a very simplified excerpted the main portion thereof. 1 is a first stage stationary blade, 2 is a second stage stationary blade, and 3
Denotes a first stage rotor blade, and 4 denotes a second rotor blade. Reference numeral 5 denotes a cooling steam supply path, which branches on the way and communicates with the cooling steam passage 5a of the first stage stationary blade and the cooling steam passage 5b of the second stage stationary blade. The cooling steam passages 5a and 5b pass through the cooled portions of the first and second stage stationary blades 1 and 2 to the recovery passage 6a of the first stage stationary blade and the recovery passage 6b of the second stage stationary blade, respectively.
In the subsequent flow, the recovery passages 6a and 6b join the steam recovery passage 6. That is, the cooling steam passages 5a, 5b constitute independent parallel passages at the positions of the first and second stage stationary blades 1, 2, and the recovery passages 6a,
6b similarly constitutes a parallel passage. On the other hand, as for the moving blade side, symmetrically with the stationary blade side, 7 is a cooling steam supply path, which branches off in the middle and cools the cooling steam passage 7a of the first stage moving blade and the second stage moving blade. It communicates with the steam passage 7b. The cooling steam passages 7a and 7b pass through the portions to be cooled of the first and second stage moving blades 3 and 4, respectively, and collect the recovery passage 8a of the first stage moving blade and the recovery passage of the second stage moving blade. The recovery passages 8a and 8b join the steam recovery passage 8 in the subsequent flow. That is, similarly to the stationary blade side, the cooling steam passages 7a and 7b constitute independent parallel passages at the positions of the first and second stage moving blades 3 and 4, and the recovery passage communicating therewith. The passages 8a and 8b similarly constitute parallel passages. Since the structure of this embodiment is constructed as described above, the cooling steam supplied from an external cooling steam source (not shown) is supplied from the cooling steam supply path 5 to the stationary blade side. It is introduced and branched in parallel to the cooling steam passages 5a and 5b, and is directly introduced into the first-stage stationary blade 1 and the second-stage stationary blade 2, and cools the high-temperature cooled portions of the first-stage stationary blade 1 and the second-stage stationary blade 2 to be cooled. Is heated and then passed through independent recovery passages 6a and 6b.
And heat is recovered by a steam turbine or the like (not shown). In this case, the cooling steam flowing through the cooling steam passage 5a is irrelevant to the pressure loss caused by the cooling steam passage 5b, while the cooling steam flowing through the cooling steam passage 5b is affected by the pressure loss caused by the cooling steam passage 5a. Because they are irrelevant
As a result, the overall pressure loss is significantly reduced. On the other hand, it will be repeatedly described that the rotor blade side is one in which the heat loss is recovered by a steam turbine or the like (not shown) via the steam recovery passage 8 after suppressing the pressure loss in exactly the same manner as the stationary blade side. It will be easy to understand. Next, an embodiment of the present invention will be described with reference to FIG. Figure 2 also in consideration of the convenience of similar description as FIG 1 is a schematic diagram showing a very simplified excerpted the main portion thereof. Numeral 10 denotes an image of a blade group extending over the entire circumference of the stationary blade or the moving blade. The blade group 10 is divided into six groups here, and each group is connected by an independent cooling steam passage, and each group has a circumference. The direction constitutes a parallel system. That is, the cooling steam passage 11 of the first blade group is
It has a supply path 11a and a steam recovery path 11b.
The cooling steam passage 12 of the blade group has a supply path 12a and a steam recovery passage 12b. Similarly, the cooling steam passages 13, 14, 15, and 16 of the third, fourth, fifth, and sixth blade groups respectively Formed with supply paths 13a, 14a, 15a, 16a and steam recovery paths 13b, 14b, 15b, 16b,
Six sets of systems are arranged in parallel with each other. [0032] Then, in this embodiment, by dispersing the parallel cooling steam passages as described above in the circumferential direction, heat not shown in the steam turbine or the like while suppressing the pressure loss as in the reference example It will be recovered. While the present invention has been described with reference to the illustrated embodiment, the present invention is not limited to such an embodiment.
It goes without saying that various changes may be made to the specific structure within the scope of the present invention. As described above, according to the present invention, since the cooling steam flows through the independent parallel passages, all the cooling steam flows in the common pressure loss generating portion without interruption, and the pressure loss is reduced. It is possible to obtain an effective device that suppresses the occurrence of pressure loss without causing waste and without causing unnecessary troubles in various downstream devices without waste. . In particular , according to the present invention, the present invention is applied to an apparatus of a type in which cooling and heat recovery are performed in parallel in a specific stage of a stationary blade or a moving blade, and a pressure drop is applied. This was particularly effective for suppression.

【図面の簡単な説明】 【図1】本発明の参考例に係わるガスタービン冷却部の
要部を抜粋し、軸方向断面を略式に示す概略図である。 【図2】本発明の実施の形態に係わるガスタービン冷
却部の要部を抜粋し、半径方向断面を略式に示す概略図
である。 【符号の説明】 1 第1段静翼 2 第2段静翼 3 第1段動翼 4 第2段動翼 5 冷却蒸気の供給経路 5a 冷却蒸気通路 5b 冷却蒸気通路 6 蒸気回収通路 6a 回収通路 6b 回収通路 7 冷却蒸気の供給経路 7a 冷却蒸気通路 7b 冷却蒸気通路 8 蒸気回収通路 8a 回収通路 8b 回収通路 10 翼群 11 冷却蒸気通路 11a 供給経路 11b 蒸気回収通路 12 冷却蒸気通路 12a 供給経路 12b 蒸気回収通路 13 冷却蒸気通路 13a 供給経路 13b 蒸気回収通路 14 冷却蒸気通路 14a 供給経路 14b 蒸気回収通路 15 冷却蒸気通路 15a 供給経路 15b 蒸気回収通路 16 冷却蒸気通路 16a 供給経路 16b 蒸気回収通路
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of an essential part of a gas turbine cooling unit according to a reference example of the present invention, schematically showing an axial cross section. [Figure 2] excerpted main part of the gas turbine cooling unit according to an embodiment of the present invention, it is a schematic diagram showing a radial cross section informally. [Description of Signs] 1 First-stage stationary blade 2 Second-stage stationary blade 3 First-stage moving blade 4 Second-stage moving blade 5 Cooling steam supply path 5a Cooling steam passage 5b Cooling steam passage 6 Steam recovery passage 6a Recovery passage 6b Recovery passage 7 Cooling steam supply path 7a Cooling steam path 7b Cooling steam path 8 Steam recovery path 8a Recovery path 8b Recovery path 10 Blade group 11 Cooling steam path 11a Supply path 11b Steam recovery path 12 Cooling steam path 12a Supply path 12b Steam recovery path 13 Cooling Steam path 13a Supply path 13b Steam recovery path 14 Cooling steam path 14a Supply path 14b Steam recovery path 15 Cooling steam path 15a Supply path 15b Steam recovery path 16 Cooling steam path 16a Supply path 16b Steam recovery path

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI F01K 23/10 F01K 23/10 X F02C 3/30 F02C 3/30 Z 6/18 6/18 A (56)参考文献 特開 平8−270408(JP,A) 特開 平9−88514(JP,A) 特開 平8−277725(JP,A) 特開 平10−103004(JP,A) (58)調査した分野(Int.Cl.7,DB名) F01D 5/18,9/02 F02C 7/12 - 7/18 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification symbol FI F01K 23/10 F01K 23/10 X F02C 3/30 F02C 3/30 Z 6/18 6/18 A (56) References JP JP-A 8-270408 (JP, A) JP-A 9-88514 (JP, A) JP-A 8-277725 (JP, A) JP-A 10-103004 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) F01D 5 / 18,9 / 02 F02C 7 /12-7/18

Claims (1)

(57)【特許請求の範囲】 【請求項1】 ガスタービンプラントと蒸気タービンプ
ラントとを組合せ、ガスタービンからの排熱を利用して
蒸気タービン駆動用蒸気を発生させる排熱回収ボイラを
備えるとともに、前記ガスタービンの高温被冷却部を蒸
気で冷却する蒸気冷却システムを設け、この蒸気冷却シ
ステムからの過熱蒸気を蒸気タービンに回収させるよう
に構成したコンバインドサイクル発電プラントにおい
て、前記高温被冷却部の冷却蒸気通路は、同一段内の複
数の静翼間または動翼間を区分して通る互いに独立した
複数系統の冷却蒸気通路を並列に配置して構成したこと
を特徴とするコンバインドサイクル発電プラント。
(57) [Claim 1] A gas turbine plant and a steam turbine plant are combined, and an exhaust heat recovery boiler that generates steam for driving a steam turbine by using exhaust heat from the gas turbine is provided. A combined cycle power plant configured to provide a steam cooling system for cooling a high temperature cooled portion of the gas turbine with steam, and to recover superheated steam from the steam cooling system to a steam turbine; cooling steam passages, double in the same stage
Number of vanes or buckets separated from each other
A combined cycle power plant comprising a plurality of cooling steam passages arranged in parallel.
JP17967397A 1997-07-04 1997-07-04 Combined cycle power plant Expired - Fee Related JP3530345B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP17967397A JP3530345B2 (en) 1997-07-04 1997-07-04 Combined cycle power plant
DE69817693T DE69817693T2 (en) 1997-07-04 1998-06-29 Power plant with a combined cycle
EP98111984A EP0889203B1 (en) 1997-07-04 1998-06-29 Combined cycle power generation plant
CA002242071A CA2242071C (en) 1997-07-04 1998-06-30 Combined cycle power generation plant
US09/693,933 US6298657B1 (en) 1997-07-04 2000-10-23 Combined cycle power plant generation plant with steam cooling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17967397A JP3530345B2 (en) 1997-07-04 1997-07-04 Combined cycle power plant

Publications (2)

Publication Number Publication Date
JPH1122488A JPH1122488A (en) 1999-01-26
JP3530345B2 true JP3530345B2 (en) 2004-05-24

Family

ID=16069884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17967397A Expired - Fee Related JP3530345B2 (en) 1997-07-04 1997-07-04 Combined cycle power plant

Country Status (5)

Country Link
US (1) US6298657B1 (en)
EP (1) EP0889203B1 (en)
JP (1) JP3530345B2 (en)
CA (1) CA2242071C (en)
DE (1) DE69817693T2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4301692B2 (en) 2000-03-31 2009-07-22 三菱重工業株式会社 gas turbine
DE50106969D1 (en) * 2001-03-30 2005-09-08 Siemens Ag Chilled gas turbine blade
US6899668B2 (en) 2003-02-07 2005-05-31 Amod Prabhakar Paranjpe Airborne pathogen isolation system and method
JP2008274818A (en) * 2007-04-27 2008-11-13 Hitachi Ltd Gas turbine
US9334753B2 (en) 2011-10-12 2016-05-10 General Electric Company Control system and methods for controlling the operation of power generation systems
JP7096058B2 (en) * 2018-04-18 2022-07-05 三菱重工業株式会社 Gas turbine system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4571935A (en) * 1978-10-26 1986-02-25 Rice Ivan G Process for steam cooling a power turbine
DE3261410D1 (en) 1981-04-03 1985-01-17 Bbc Brown Boveri & Cie Combined steam and gas turbine power plant
JPS6340244A (en) 1986-08-05 1988-02-20 Mitsubishi Electric Corp Neutron detector for atomic reactor
US5340274A (en) 1991-11-19 1994-08-23 General Electric Company Integrated steam/air cooling system for gas turbines
JP3068925B2 (en) 1991-12-16 2000-07-24 東北電力株式会社 Combined cycle power plant
US5412937A (en) * 1993-11-04 1995-05-09 General Electric Company Steam cycle for combined cycle with steam cooled gas turbine
JPH08270408A (en) * 1995-03-30 1996-10-15 Hitachi Ltd Gas turbine equipment
DE69625147T2 (en) * 1995-09-22 2003-09-11 Kabushiki Kaisha Toshiba, Kawasaki Power plant with a combined circuit
GB2307279B (en) 1995-11-14 1999-11-17 Rolls Royce Plc A gas turbine engine

Also Published As

Publication number Publication date
US6298657B1 (en) 2001-10-09
JPH1122488A (en) 1999-01-26
DE69817693D1 (en) 2003-10-09
EP0889203A3 (en) 1999-08-25
CA2242071C (en) 2001-09-11
CA2242071A1 (en) 1999-01-04
EP0889203B1 (en) 2003-09-03
EP0889203A2 (en) 1999-01-07
DE69817693T2 (en) 2004-07-08

Similar Documents

Publication Publication Date Title
EP1473442B1 (en) Steam turbine, steam turbine plant and method of operating a steam turbine in a steam turbine plant
KR100389990B1 (en) Gas turbine
US6499302B1 (en) Method and apparatus for fuel gas heating in combined cycle power plants
CA2269731C (en) Combined cycle plant
JPH09317494A (en) Power plant and gas turbine device
JP3564241B2 (en) Combined cycle power plant
US20110085886A1 (en) System and method for cooling steam turbine rotors
JP3530345B2 (en) Combined cycle power plant
JP3486328B2 (en) Recovery steam-cooled gas turbine
JPS6267239A (en) Power generating method for gas turbine
JP3586542B2 (en) Multi-shaft combined cycle power plant
JPH0425415B2 (en)
JP3389019B2 (en) Steam cooled gas turbine
JP3614949B2 (en) Combined power plant
CA2285286C (en) Gas turbine for combined cycle power plant
JPH0476205A (en) Combined cycle electric power plant
JPH07317562A (en) Gas turbine
CA2284487C (en) Combined cycle power plant
JPH0693810A (en) Combined power generating system
JPH09189236A (en) Combined power generating plant and operation method thereof
JP5475315B2 (en) Combined cycle power generation system
JPH02153232A (en) Heating device for gas turbine casing
JP5495995B2 (en) Combined cycle power generator
JP3586538B2 (en) Combined cycle power plant
JP3825091B2 (en) Combined cycle power plant

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees