JPS6267239A - Power generating method for gas turbine - Google Patents

Power generating method for gas turbine

Info

Publication number
JPS6267239A
JPS6267239A JP20639785A JP20639785A JPS6267239A JP S6267239 A JPS6267239 A JP S6267239A JP 20639785 A JP20639785 A JP 20639785A JP 20639785 A JP20639785 A JP 20639785A JP S6267239 A JPS6267239 A JP S6267239A
Authority
JP
Japan
Prior art keywords
steam
gas
gas turbine
air
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20639785A
Other languages
Japanese (ja)
Inventor
Toshikazu Kuwata
鍬田 俊和
Morihisa Hidaki
肥田木 盛久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP20639785A priority Critical patent/JPS6267239A/en
Publication of JPS6267239A publication Critical patent/JPS6267239A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/04Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
    • F01K21/047Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas having at least one combustion gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/211Heat transfer, e.g. cooling by intercooling, e.g. during a compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • F05D2260/2322Heat transfer, e.g. cooling characterized by the cooling medium steam

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve the thermal efficiency by utilizing a part of steam produced by a waste heat boiler for cooling blades so as to allow the rest of the steam to be mixed with combustion gas. CONSTITUTION:An intermediate cooler 15 is provided between an intermediate pressure compressor 12 and a high pressure compressor 13. Heat is exchanged by a regenerative preheater 33 between air from the high pressure compressor 13 and air from a low pressure compressor 32. A part of steam produced by a waste heat boiler 66 is utilized to cool blades of the high pressure turbine 31, and is subsequently fed into combustion gas. And then the rest of the steam is allowed to flow into a combustor 20 so as to be mixed with combustion gas. This configuration enables the thermal efficiency of a cycle to be improved.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明はガスタービンを利用した動力発生方法に関する
。更に詳しくは、ガスタービンサイクルと、ガスタービ
ンの排気を利用して発生させた蒸気サイクルとを組合せ
た複合サイクルの、より優れた動力発生法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a power generation method using a gas turbine. More specifically, the present invention relates to a superior power generation method using a combined cycle that combines a gas turbine cycle and a steam cycle generated using the exhaust gas of the gas turbine.

[従来の技術およびその問題点] ガスタービンサイクルは蒸気サイクルと組合せて使用さ
れることが多い。この組合せには多くの例が見られるが
、1°つの例として第2図のようなものがある。
[Prior art and its problems] Gas turbine cycles are often used in combination with steam cycles. There are many examples of this combination, but one example is shown in Figure 2.

この例はガスタービン排気に燃料を追加して燃焼させ、
蒸気の圧力、温度を上げ、さらに蒸気低圧タービンの前
に再熱器を置き、蒸気サイクルの熱効率をより高くした
ものである。
This example adds fuel to the gas turbine exhaust and burns it.
This increases the steam pressure and temperature, and also places a reheater in front of the steam low-pressure turbine to further increase the thermal efficiency of the steam cycle.

このようにすることによってサイクル熱効率は上り、そ
れなりの効果はあるが、装置が複雑になり価格がかなり
高くなる欠点が生ずる。即ち排熱ボイラーは助燃を行う
ため、燃焼装置、蒸気高圧タービン、蒸気低圧タービン
、発電機、再熱器、コンデンサー、冷却水設備等が必要
となるからである。
By doing so, the cycle thermal efficiency is increased and there is a certain effect, but the disadvantage is that the device becomes complicated and the cost becomes considerably high. That is, the waste heat boiler performs auxiliary combustion, and therefore requires a combustion device, a steam high-pressure turbine, a steam low-pressure turbine, a generator, a reheater, a condenser, a cooling water facility, etc.

なお助燃を行うことにより、蒸気ηイクルによる動力の
発生割合が大きくなり、一方この蒸気サイクルの熱効率
も排熱ボイラーという制約のため、それ程高くすること
は出来ず、結局全体の熱効率はそれ程良くはならない。
By performing auxiliary combustion, the proportion of power generated by the steam cycle increases, but the thermal efficiency of this steam cycle cannot be made that high due to the restriction of being an exhaust heat boiler, and in the end the overall thermal efficiency is not that good. It won't happen.

このように装置が複雑になり、コストがかさむのを避け
るために、発生した蒸気を直接燃焼器に噴きこんで、動
力をすべてガスタービンで発生するようにしたものがあ
る。蒸気が燃焼ガスに入った分だけ稀釈空気間が減少し
、即ら空気過剰率が低下し、空気圧縮機の動力が著しく
減少する。
In order to avoid complicating the device and increasing costs, some systems inject the generated steam directly into the combustor, so that all the power is generated by a gas turbine. The dilution air gap is reduced by the amount of steam that enters the combustion gas, ie, the excess air ratio is reduced, and the power of the air compressor is significantly reduced.

しかし噴きこんだ蒸気について見ると、これは大気圧で
放出されることになり、即ち真空までのエネルギーは利
用されないので熱効率は非常に悪い。このため全体の効
率も良好とは言えない。
However, when looking at the injected steam, it is released at atmospheric pressure, meaning that the energy up to the vacuum is not utilized, resulting in very poor thermal efficiency. Therefore, the overall efficiency cannot be said to be good.

我々の発明は、発生した蒸気を燃焼器に噴きこむことに
よって、装置の簡漱さを保ちながら、全体として前述の
ガスタービン、蒸気タービン複合サイクルに劣らない熱
効率を追及したものである。
Our invention aims to maintain the simplicity of the device by injecting the generated steam into the combustor, while pursuing overall thermal efficiency comparable to the gas turbine and steam turbine combined cycle described above.

[問題点解決のための手段] 発生蒸気を燃焼ガスと混合し、ガスタービン中で処理す
る方法の欠点は、蒸気に関して見て、その熱効率が非常
に悲いことにある。この熱効率の悪さを防止するために
は、熱気の温度を高くするのが1つの解決法である。
SUMMARY OF THE INVENTION A disadvantage of the method of mixing generated steam with combustion gas and processing it in a gas turbine is that its thermal efficiency, with respect to steam, is very poor. In order to prevent this poor thermal efficiency, one solution is to increase the temperature of the hot air.

蒸気と燃焼ガスは混合するのであるが、近似的に両者の
熱効率を別々に考えることができる。このように考えれ
ば通常の蒸気サイクルでは不可能な蒸気温度でも、この
場合可能となるのである。
Steam and combustion gas are mixed, but approximately the thermal efficiency of both can be considered separately. Considering this, it is possible to achieve steam temperatures that would not be possible in a normal steam cycle.

従ってガスタービン入口のガス温度、圧力が高くなれば
、ある程度以上では通常の蒸気サイクルに比し熱効率が
恕くない、ということがわかる。
Therefore, it can be seen that if the gas temperature and pressure at the gas turbine inlet become high, the thermal efficiency will not be as good as that of a normal steam cycle above a certain level.

なおこの場合のように、発生蒸気をガスタービンで処理
する゛特殊な蒸気サイクル°°は通常の蒸気サイクルと
は異なるのであるが、本萌細店では両者を特に区別せず
に“′蒸気サイクル′°と呼ぶことにする。
In addition, as in this case, a ``special steam cycle'' in which generated steam is processed by a gas turbine is different from a normal steam cycle, but at Honmoesaiten, we do not particularly distinguish between the two, and refer to them as ``steam cycles.'' We will call it ′°.

例えば、概略の飴であるが、 蒸気圧力  温度  排気圧力  熱効率22 aha
   400℃ 0.05a[a  34%22   
400  1.00  2422  1400  1.
00  35蒸気圧力、温度が上表より高くなれば熱効
率は更に高くなる。一方通常の蒸気サイクルではこのよ
うな排熱ボイラーの場合、上記の値、即ち約34%より
更に高めるのは困難であるので、蒸気温度(即ちガスタ
ービン入口ガスの温度)が高い場合、発生した蒸気は燃
焼器に直接噴きこむ方が、熱効率は^くなると言える。
For example, as a rough guide, steam pressure temperature exhaust pressure thermal efficiency 22 aha
400℃ 0.05a[a 34%22
400 1.00 2422 1400 1.
00 35 If the steam pressure and temperature are higher than those shown in the table above, the thermal efficiency will further increase. On the other hand, in the case of such a waste heat boiler in a normal steam cycle, it is difficult to further increase the above value, that is, about 34%, so if the steam temperature (that is, the temperature of the gas turbine inlet gas) is high, the generated It can be said that the thermal efficiency will be higher if the steam is injected directly into the combustor.

このような場合、ガスタービン入口のガス温度、圧力が
^くなると、ガスタービンサイクルの熱効率は蒸気サイ
クルよりかなり高くなるので、全体としては蒸気サイク
ルによる動力の発生割合がなるべく低いことが望ましい
。即ち燃焼ガス中に混入する蒸気の出はなるべく少ない
方がよい。もつともこれはガスタービン排ガスからの熱
量を最大限に回収するという前提でのことである。
In such a case, when the gas temperature and pressure at the gas turbine inlet increase, the thermal efficiency of the gas turbine cycle becomes considerably higher than that of the steam cycle, so it is desirable that the proportion of power generated by the steam cycle as a whole is as low as possible. That is, it is better to minimize the amount of steam mixed into the combustion gas. Of course, this is based on the premise that the maximum amount of heat can be recovered from the gas turbine exhaust gas.

タービン燃焼ガスに噴きこむ蒸気量を減らすためには、
第1に蒸気の発生聞を減らすことが必要である。第2に
発生した熱気の、より有効な利用先がある場合はそれに
消費することである。例えば蒸気の減圧に見合う動力と
、発生する低圧蒸気に見合う加熱の要求があるような場
合は、最も有効な利用先と考えられる。
In order to reduce the amount of steam injected into the turbine combustion gas,
First, it is necessary to reduce the amount of steam generated. Second, if there is a more effective use for the generated hot air, it should be used for that purpose. For example, if there is a demand for power to reduce the pressure of the steam and for heating to meet the low-pressure steam generated, it is considered to be the most effective use.

以上を総合すると、発生した蒸気を燃焼ガスに噴箸こむ
プロセスをより魅力的なものとするためには、次のよう
にすることが必要である。
In summary, in order to make the process of injecting generated steam into combustion gas more attractive, it is necessary to do the following.

〈1)ガスタービン入口ガス温度をなるべく8温にする
ことを可能ならしめること。
(1) To make it possible to keep the gas turbine inlet gas temperature at 8 temperatures as much as possible.

圧力の方はこの温度に応じた最適の斥力比があるので、
工程的と考えてよい。もつともこの最適圧力比も温度に
応じて高くなる。
As for pressure, there is an optimal repulsion ratio according to this temperature, so
You can think of it as a process. However, this optimum pressure ratio also increases with temperature.

タービン入ロガス瀉痘を高くとれる利点は、(a)サイ
クル熱効率が上る、(b)稀釈ガス(過剰空気、蒸気)
が減少する、(C)従って全体のガス量が減るので排ガ
スの保有熱iが減少する、(d)従って排ガスを利用し
た蒸気の発生量が減る、(e)ガス量が減るので装置が
コンパクトにできる、という効果を生ずるという点にあ
る。
The advantages of high turbine input log gas are (a) increased cycle thermal efficiency, (b) dilution gas (excess air, steam)
(C) Therefore, the total amount of gas decreases, so the retained heat i of the exhaust gas decreases. (d) Therefore, the amount of steam generated using the exhaust gas decreases. (e) The device becomes more compact because the amount of gas decreases. The point is that it produces the effect that it can be done.

N)ガスタービン排気の保有する熱量をなるべく小さく
することによって蒸気の発生量を押える。
N) Reduce the amount of steam generated by reducing the amount of heat held by the gas turbine exhaust as much as possible.

ガスタービン出口直後のガスの条件はサイクルによって
自然に決ってくる。この排気の保有する熱量は、他のガ
ス(例えば燃焼器入口空気)との熱交換により温度を低
下することによって小さくすることができる。また燃焼
ガス温度が上る口とによって稀釈ガス量が減り、全体の
ガス量が減少し、保有熱団も減少する。
The gas conditions immediately after the gas turbine exit are naturally determined by the cycle. The amount of heat held by this exhaust gas can be reduced by lowering its temperature through heat exchange with other gases (for example, combustor inlet air). In addition, the amount of diluting gas decreases due to the increase in combustion gas temperature, the total amount of gas decreases, and the retained heat group also decreases.

(Ii)発生した蒸気は有効な利用先がある場合はそれ
を優先的に使用し、燃焼ガスに噴きこむ蒸気量をなるべ
く減少させる。ガスタービンサイクルに比し蒸気サイク
ルの熱効率が悪い場合、これは当然のことである。
(Ii) If the generated steam has an effective use, it is used preferentially, and the amount of steam injected into the combustion gas is reduced as much as possible. This is understandable given the poor thermal efficiency of the steam cycle compared to the gas turbine cycle.

以上の要点を実現するための具体的手段を要約すれば次
の通りである。
The specific means for realizing the above points are summarized as follows.

■ 空気圧縮機をそれぞれの圧力段からなる複数の圧縮
機に分割し、少なくともその最終段の圧縮機の吸入前に
おいて中間冷却を行い、この圧縮機から流出した空気と
、ガスタービンから流出するガスを熱交換させる。
■ The air compressor is divided into multiple compressors each consisting of a pressure stage, and intermediate cooling is performed at least before the intake of the final stage compressor, and the air flowing out from this compressor and the gas flowing out from the gas turbine are exchange heat.

■ ガスタービン^圧部の動翼および静翼を蒸気によっ
て冷却する。冷却に使用された蒸気は燃焼ガス中に流入
させる。
■ The moving and stationary blades of the gas turbine pressure section are cooled by steam. The steam used for cooling is allowed to flow into the combustion gases.

■ 残った蒸気を稀釈ガスの一部として燃焼ガスに混合
させる。
■ Mix the remaining steam with the combustion gas as part of the dilution gas.

これを更に詳細に説明するため、この発明の計画例第1
図によって説明する。
In order to explain this in more detail, the first example of the plan of this invention
This will be explained using figures.

■この例において空気圧縮機は低圧圧縮機11、中圧圧
縮機12、高圧圧縮機13と3つに別れている。この空
気圧縮機の圧力比は22と大きいので、各圧縮機の圧力
比を軸流圧縮機として一軸で対策なしでも充分な作動範
囲を有する4以下に止めている。
(2) In this example, the air compressor is divided into three parts: a low pressure compressor 11, an intermediate pressure compressor 12, and a high pressure compressor 13. Since the pressure ratio of this air compressor is as large as 22, the pressure ratio of each compressor is kept at 4 or less, which is enough to operate in a single shaft as an axial flow compressor without any countermeasures.

そして中圧圧縮機12と高圧圧縮機13の間で、熱交換
器14と中間クーラー15によって中間冷却が行われる
。中間冷却は圧縮機の所要動力を減らす意味であるが、
同時に再生予熱器33において、圧縮機出口の空気とガ
スタービン出口排ガスとの熱交換を充分性わせる意味が
ある。ガスタービン出口排ガスは温度が下がり、m(i
)のタービン排気の保有熱mの減少に非常に有効である
Intermediate cooling is performed between the intermediate pressure compressor 12 and the high pressure compressor 13 by a heat exchanger 14 and an intermediate cooler 15. Intercooling is meant to reduce the power required by the compressor, but
At the same time, the regeneration preheater 33 has the meaning of ensuring sufficient heat exchange between the air at the compressor outlet and the exhaust gas at the gas turbine outlet. The temperature of the gas turbine outlet exhaust gas decreases, m(i
) is very effective in reducing the retained heat m of the turbine exhaust gas.

■ガスタービン高圧部31の動翼、静翼の冷却を蒸気で
行う。
■ Cooling of the rotor blades and stationary blades of the gas turbine high pressure section 31 is performed using steam.

現今この部分の冷却はすべて空気によって行われている
。蒸気による冷却は原理的には空気の場合と全く変らな
い。蒸気を用いる利点は、その比熱が空気のほぼ2倍あ
るので、冷却効果がよい点にある。従って空気冷却の翼
に比し、高温ガスに対する設計が容易になる。
Currently, all cooling in this area is done by air. Cooling with steam is in principle no different from cooling with air. The advantage of using steam is that its specific heat is approximately twice that of air, so it has a good cooling effect. Therefore, compared to air-cooled blades, it is easier to design for high-temperature gases.

この翼冷却を蒸気によって行うという概念は既に紹介さ
れており、公知である。しかし実際に使用されている例
はない。蒸気が使用可能な航空用以外のタービンにおい
ては、蒸気の使用を妨げるものは何もない。この翼冷却
に使用された蒸気は燃焼ガスの中に流入し、作業流体の
一部となるので、全く無駄になるわけではない。蒸気の
圧力、−〇 一 温度および使用量は任意に選べるので、その冷却効果は
最大限に発揮させることができる。なお岡の冷却に蒸気
を使用するのであるから、燃焼器に噴きこむ蒸気の貴を
減少させる効果がある。
The concept of cooling the blades with steam has already been introduced and is well known. However, there are no examples of it being actually used. In non-aviation turbines where steam is available, there is nothing that prevents the use of steam. The steam used to cool the blades flows into the combustion gas and becomes part of the working fluid, so it is not wasted at all. Since the pressure, temperature and amount of steam used can be selected arbitrarily, the cooling effect can be maximized. Furthermore, since steam is used to cool the cylinder, it has the effect of reducing the amount of steam injected into the combustor.

■以上述べた手段を打って、なお残った蒸気は燃焼ガス
に稀釈ガスの一部分として吹きこむ。
■After the above-mentioned measures have been taken, the remaining steam is blown into the combustion gas as part of the dilution gas.

蒸気の比熱は空気の約2倍であるので、温度調節の効果
は大きく、過剰空気の量は著しく減少し、結局空気圧縮
のための動力および設備は小さくなる。またガスタービ
ン以降の設備もガス量が減少するので小さくなる。
Since the specific heat of steam is about twice that of air, the effect of temperature regulation is large, the amount of excess air is significantly reduced, and the power and equipment for air compression are eventually reduced. Additionally, the equipment after the gas turbine also becomes smaller because the amount of gas decreases.

ガスタービン入口のガスの温度は充分に高く、かつ蒸気
の量は最小限に押えられるので、ガスタービンサイクル
の高い熱効率が蒸気サイクルの低効率によって薄められ
る恐れは少ない。
Since the temperature of the gas at the gas turbine inlet is sufficiently high and the amount of steam is kept to a minimum, there is little risk that the high thermal efficiency of the gas turbine cycle will be diluted by the low efficiency of the steam cycle.

即ち複合サイクルの目指す高熱効率を、発生した蒸気を
ガスタービンで処理することによって、蒸気タービン等
への設備投資なしに、実現することができるのである。
In other words, the high thermal efficiency that the combined cycle aims for can be achieved by processing the generated steam with a gas turbine, without investing in equipment such as a steam turbine.

前述の3つの具体的手段はいずれも各々は公知の技術に
属する。しかしここで特に強調したいのは、これらの手
段はこのように複合して行われて始めて、特に顕著な効
果を示Jということである。
All of the three specific means described above belong to known techniques. However, what I would like to emphasize here is that it is only when these measures are used in combination in this manner that particularly remarkable effects can be achieved.

第1図の例につき更に詳細に説明する。The example of FIG. 1 will be explained in more detail.

この例は使用燃料メタン(100%)、空気圧縮機の圧
力比22、タービン入ロガス温爪1430℃にて計画し
たものである。
This example was planned using methane as the fuel (100%), the pressure ratio of the air compressor at 22, and the temperature of the log gas entering the turbine at 1430°C.

空気圧縮機は、それぞれ3つの圧力段からなる低圧11
、中圧12、高圧圧縮機13からなっている。低圧圧縮
機は低圧タービンに発電機51と共に連結されている。
The air compressor has a low pressure 11 each consisting of three pressure stages.
, a medium pressure compressor 12, and a high pressure compressor 13. The low pressure compressor is connected to the low pressure turbine together with a generator 51.

中圧、高圧圧縮機は夫々別の高圧ガスタービン軸により
駆動される。ガスタービンケーシングは一体になってい
るが、別々のケーシングでも勿論よい。高圧ガスタービ
ン翼冷却用として温度の調整された蒸気が導入されてい
る。
The medium pressure and high pressure compressors are each driven by separate high pressure gas turbine shafts. Although the gas turbine casing is integrated, it is of course possible to use separate casings. Temperature-controlled steam is introduced to cool high-pressure gas turbine blades.

中圧と高圧圧縮機の間に、熱交換器14と中間クーラー
15からなる中間冷却器が設けられている。この熱交換
器ではボイラー水と熱交換し、蒸気を多少発生する。
An intercooler consisting of a heat exchanger 14 and an intercooler 15 is provided between the medium pressure and high pressure compressors. This heat exchanger exchanges heat with boiler water and generates some steam.

空気圧縮機を出た空気は再生予熱器33においてガスタ
ービン排気と熱交換して燃焼器20に導入される。ガス
タービン排気は冷却されてl[熱ボイラー60に導入さ
れ、排熱を蒸気として回収された後大気に放出される。
The air exiting the air compressor exchanges heat with the gas turbine exhaust gas in the regenerative preheater 33 and is introduced into the combustor 20. The gas turbine exhaust gas is cooled and introduced into the thermal boiler 60, where the exhaust heat is recovered as steam and then released to the atmosphere.

再生予熱孔で温度が下がった分だけ蒸気の発生量が減少
する。
The amount of steam generated decreases by the amount of temperature lowered by the regeneration preheating hole.

ボイラー水はボイラー水ポンプ61によって補給され、
給水予熱器63、脱気器64を経てボイラードラム67
に導入される。さらにボイラー66にて蒸発し、過熱器
68にて過熱されて流出する。蒸気の圧力は25k(]
/cnfG、温度300℃である。タービン買冷却用蒸
気は温度を所望温庶に調節してからタービンに導入する
。なおこの蒸気には、特にスケールの付着防止に注意し
なければならない。即ちボイラー給水にはスケール成分
の少ない、例えば純水を用いるのが望ましい。
Boiler water is replenished by a boiler water pump 61,
Boiler drum 67 via feed water preheater 63 and deaerator 64
will be introduced in It is further evaporated in the boiler 66, superheated in the superheater 68, and then flows out. The pressure of steam is 25k (]
/cnfG, temperature is 300°C. The temperature of the steam for cooling the turbine is adjusted to a desired level before being introduced into the turbine. Note that special care must be taken to prevent scale build-up with this steam. That is, it is desirable to use pure water, for example, pure water, which has few scale components, as the boiler feed water.

以上のプロセスで総合熱効率は約50%となる。With the above process, the overall thermal efficiency is about 50%.

これは第2図に示すような通常の蒸気タービンを使用す
るものが、同じ条件で約48%程度であるのに比して優
れたものである。その基本的な理由は、前に説明した通
り、蒸気サイクルの熱効率が本発明の方が僅かに自く、
および蒸気サイクルによる動力の発生割合が本発明の方
が小さいことによる。
This is superior to the one using a normal steam turbine as shown in FIG. 2, which is about 48% under the same conditions. The basic reason for this is, as explained earlier, that the thermal efficiency of the steam cycle is slightly higher in the present invention.
This is also because the proportion of power generated by the steam cycle is smaller in the present invention.

このプロセスの量的なバランスをまとめると次のように
なる。
The quantitative balance of this process can be summarized as follows.

理論空気110 、 OO0Nllt/Arに対し空気
量       23 、700 Pkd / Kr燃
料 メタン100% 1.050  〃蒸気発生量3 
、700 kCI / 1ljr噴きこみ用     
2.200  〃翼冷却用      1.500 8 発生動力       5,200Kwタービン入ロガ
ス温度、圧力比がこの例より更に大きくなると、この型
式のガスタービン設備は従来のものに比し更に優れた熱
効率を示すが、第1図に示すものは空気圧縮機圧力比1
6〜64、タービン入ロガス温度1300〜1700℃
程度の条件に特に適合する。
Theoretical air 110, Air amount 23, 700 Pkd/Kr Fuel Methane 100% 1.050 〃Steam generation amount 3
, for 700 kCI / 1ljr injection
2.200 〃For blade cooling 1.500 8 Generated power 5,200Kw If the gas temperature and pressure ratio entering the turbine are even higher than in this example, this type of gas turbine equipment will show even better thermal efficiency than conventional ones. However, the one shown in Figure 1 has an air compressor pressure ratio of 1
6-64, turbine input log gas temperature 1300-1700℃
Particularly suitable for degree conditions.

この温度、圧力比以下の、蒸気による動力の発生割合が
比較的大きいものでは、設備費は小さくなるが、熱効率
は従来のものに比し特に優れたものとは言えない。また
これ以上では^温ガスに対する対策、蒸気の圧力や圧縮
機の圧力を高める等の対策が更に必要である。
If the temperature and pressure ratio are below this level and the proportion of power generated by steam is relatively large, the equipment cost will be low, but the thermal efficiency cannot be said to be particularly superior compared to conventional ones. Moreover, if the temperature exceeds this level, further measures are required such as countermeasures against hot gas and increasing the pressure of steam and compressor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図 本発明のガスタービン動力発生設備70−シー
ト 第2図 従来のガス蒸気タービン複合サイクル70−シ
ート 10 空気圧縮機 11 低圧圧縮機 12 中圧圧縮機 13 高圧圧縮機 14 熱交換器 15 中間クーラー 20 燃焼器 30 ガスタービン 31 高圧タービン 32 低圧タービン 33 再生予熱器 40 蒸気タービン 41 蒸気高圧タービン 42 蒸気低圧タービン 43 コンデンサー 51 ガスタービン発電機 52 蒸気タービン発電機 60 排熱ボイラー 61 ボイラー水ポンプ 62 ボイラー給水ポンプ 63 給水予熱器 64  g気孔 65 エコノマイザ− 66ボイラー 67 ボイラードラム 68 過熱器 69 再熱器
FIG. 1 Gas turbine power generation equipment 70-sheet of the present invention FIG. 2 Conventional gas-steam turbine combined cycle 70-sheet 10 Air compressor 11 Low-pressure compressor 12 Intermediate-pressure compressor 13 High-pressure compressor 14 Heat exchanger 15 Intermediate Cooler 20 Combustor 30 Gas turbine 31 High pressure turbine 32 Low pressure turbine 33 Regeneration preheater 40 Steam turbine 41 Steam high pressure turbine 42 Steam low pressure turbine 43 Condenser 51 Gas turbine generator 52 Steam turbine generator 60 Waste heat boiler 61 Boiler water pump 62 Boiler Feed water pump 63 Feed water preheater 64 G-hole 65 Economizer 66 Boiler 67 Boiler drum 68 Superheater 69 Reheater

Claims (1)

【特許請求の範囲】 空気圧縮機によつて空気を圧縮し、燃料および圧縮空気
を燃焼器中で燃焼させ、発生した燃焼ガスをガスタービ
ン中で膨脹させて動力を発生させ、この動力の一部で該
空気圧縮機を駆動し、残りの動力を外部へ供給し、該ガ
スタービンを流出したガスは排熱ボイラーにおいて熱交
換して、蒸気を発生させるのに使用された後、大気中に
放出される、動力発生法において、 該空気圧縮機を、それぞれの圧力段を持つた複数の圧縮
機に分割し、少なくともその最終段の圧縮機の入口にお
いて中間冷却を行い、この最終段圧縮機から流出する空
気と、ガスタービンから流出するガスとを熱交換させ、
および該排熱ボイラーにおいて発生した蒸気の一部を、
該ガスタービンの高圧部の動翼および静翼の冷却に使用
した後、燃焼ガス中に流入させ、残つた蒸気は燃焼ガス
の稀釈ガスの一部として、燃焼ガスと混合させる、こと
を特徴とする、ガスタービン動力発生法。
[Claims] Air is compressed by an air compressor, fuel and compressed air are combusted in a combustor, and the generated combustion gas is expanded in a gas turbine to generate power. The air compressor is driven by the gas turbine, and the remaining power is supplied to the outside.The gas that flows out of the gas turbine is exchanged with heat in the waste heat boiler and used to generate steam, and then released into the atmosphere. In the power generation method, the air compressor is divided into a plurality of compressors each having its own pressure stage, intercooling is performed at least at the inlet of the final stage compressor, and this final stage compressor is heat exchange between the air flowing out from the gas turbine and the gas flowing out from the gas turbine,
and a part of the steam generated in the waste heat boiler,
After being used to cool the rotor blades and stationary blades in the high-pressure part of the gas turbine, the steam is introduced into the combustion gas, and the remaining steam is mixed with the combustion gas as part of the dilution gas of the combustion gas. Gas turbine power generation method.
JP20639785A 1985-09-20 1985-09-20 Power generating method for gas turbine Pending JPS6267239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20639785A JPS6267239A (en) 1985-09-20 1985-09-20 Power generating method for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20639785A JPS6267239A (en) 1985-09-20 1985-09-20 Power generating method for gas turbine

Publications (1)

Publication Number Publication Date
JPS6267239A true JPS6267239A (en) 1987-03-26

Family

ID=16522675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20639785A Pending JPS6267239A (en) 1985-09-20 1985-09-20 Power generating method for gas turbine

Country Status (1)

Country Link
JP (1) JPS6267239A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0348676A2 (en) * 1988-05-27 1990-01-03 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Gas turbine combine using intercooling
JPH0275731A (en) * 1988-09-09 1990-03-15 Mitsubishi Heavy Ind Ltd Turbine plant
JPH02286835A (en) * 1989-04-18 1990-11-27 General Electric Co <Ge> Power plant
JPH0396628A (en) * 1989-07-28 1991-04-22 General Electric Co <Ge> Cooling gas turbine engine by steam
JPH0437807U (en) * 1990-07-23 1992-03-31
WO1996018810A1 (en) * 1994-12-12 1996-06-20 Westinghouse Electric Corporation Recuperative steam cooled gas turbine
WO1998012421A1 (en) * 1996-09-19 1998-03-26 Siemens Westinghouse Power Corporation Closed loop steam cooled steam turbine
JP2002317649A (en) * 2001-04-19 2002-10-31 Mitsubishi Heavy Ind Ltd Gas turbine
WO2005019605A1 (en) * 2003-08-13 2005-03-03 Siemens Aktiengesellschaft Method for operating a turbine system, turbine system, and use of a gas turbine
JP2006526736A (en) * 2003-05-30 2006-11-24 ユーロタービン アクティエボラーグ Operation method of gas turbine assembly
WO2010038288A1 (en) * 2008-10-01 2010-04-08 三菱重工業株式会社 Combined cycle electric power generation plant and heat exchanger

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0348676A2 (en) * 1988-05-27 1990-01-03 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Gas turbine combine using intercooling
JPH0219613A (en) * 1988-05-27 1990-01-23 Mtu Motoren & Turbinen Union Muenchen Gmbh Gas turbine device
EP0348676A3 (en) * 1988-05-27 1990-04-04 Mtu Motoren- Und Turbinen-Union MàœNchen Gmbh Gas turbine combine using intercooling
JPH0275731A (en) * 1988-09-09 1990-03-15 Mitsubishi Heavy Ind Ltd Turbine plant
JPH02286835A (en) * 1989-04-18 1990-11-27 General Electric Co <Ge> Power plant
JPH0396628A (en) * 1989-07-28 1991-04-22 General Electric Co <Ge> Cooling gas turbine engine by steam
JPH0437807U (en) * 1990-07-23 1992-03-31
WO1996018810A1 (en) * 1994-12-12 1996-06-20 Westinghouse Electric Corporation Recuperative steam cooled gas turbine
WO1998012421A1 (en) * 1996-09-19 1998-03-26 Siemens Westinghouse Power Corporation Closed loop steam cooled steam turbine
US5953900A (en) * 1996-09-19 1999-09-21 Siemens Westinghouse Power Corporation Closed loop steam cooled steam turbine
JP2002317649A (en) * 2001-04-19 2002-10-31 Mitsubishi Heavy Ind Ltd Gas turbine
JP2006526736A (en) * 2003-05-30 2006-11-24 ユーロタービン アクティエボラーグ Operation method of gas turbine assembly
JP4705018B2 (en) * 2003-05-30 2011-06-22 ユーロタービン アクティエボラーグ Operation method of gas turbine assembly
WO2005019605A1 (en) * 2003-08-13 2005-03-03 Siemens Aktiengesellschaft Method for operating a turbine system, turbine system, and use of a gas turbine
WO2010038288A1 (en) * 2008-10-01 2010-04-08 三菱重工業株式会社 Combined cycle electric power generation plant and heat exchanger
US9109513B2 (en) 2008-10-01 2015-08-18 Mitsubishi Hitachi Power Systems, Ltd. Combined cycle electric power generation plant and heat exchanger

Similar Documents

Publication Publication Date Title
US3971211A (en) Thermodynamic cycles with supercritical CO2 cycle topping
JP3162479B2 (en) Gas / steam combined power plant
KR100341646B1 (en) Method of cooling thermally loaded components of a gas turbine group
CA2324162C (en) Gas turbine combined cycle system
US5491971A (en) Closed circuit air cooled gas turbine combined cycle
EP0540787B1 (en) Improved process and system for producing power
JPH08510311A (en) High efficiency multi-axis reheat turbine using intercooling and recuperation
JP3564242B2 (en) Cooling steam system for steam-cooled gas turbine
JPH10159584A (en) Steam-cooled gas turbine system
JPS5968504A (en) Heat recovery system of gas turbine cooling medium
JPS6267239A (en) Power generating method for gas turbine
JPH11247669A (en) Gas turbine combined cycle
US6725643B1 (en) High efficiency gas turbine power generator systems
JPH11193704A (en) Combined-cycle power plant operation method
JPH10131717A (en) Combined cycle power generating plant
US6751940B1 (en) High efficiency gas turbine power generator
EP1509688A1 (en) High efficiency gas turbine power generator systems
JPH074210A (en) Steam-cooled gas turbine combined plant
JP2002129977A (en) Gas turbine equipment
WO1999037889A1 (en) Combined cycle power plant
EP0319699A2 (en) Steam injected engine with auxillary high pressure steam turbine
JPH10231710A (en) Gas turbine generating device
JPH09144561A (en) Hydrogen combustion gas turbine plant
JPH10325336A (en) Gas turbine power generating system
JPH0988518A (en) Composite power generating plant