JP3825091B2 - Combined cycle power plant - Google Patents

Combined cycle power plant Download PDF

Info

Publication number
JP3825091B2
JP3825091B2 JP19460396A JP19460396A JP3825091B2 JP 3825091 B2 JP3825091 B2 JP 3825091B2 JP 19460396 A JP19460396 A JP 19460396A JP 19460396 A JP19460396 A JP 19460396A JP 3825091 B2 JP3825091 B2 JP 3825091B2
Authority
JP
Japan
Prior art keywords
steam
turbine
pipe
gas turbine
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19460396A
Other languages
Japanese (ja)
Other versions
JPH1037714A (en
Inventor
一彦 高岡
貞一 後藤
博之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19460396A priority Critical patent/JP3825091B2/en
Priority to PCT/JP1998/000262 priority patent/WO1999037891A1/en
Publication of JPH1037714A publication Critical patent/JPH1037714A/en
Application granted granted Critical
Publication of JP3825091B2 publication Critical patent/JP3825091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • F05D2260/2322Heat transfer, e.g. cooling characterized by the cooling medium steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Description

【0001】
【発明の属する技術分野】
本発明はガスタービンプラントと蒸気タービンプラントとを組み合わせたコンバインドサイクル発電プラントに関するものである。
【0002】
【従来の技術】
コンバインドサイクル発電プラントは、ガスタービンプラントと蒸気タービンプラントを組み合わせた発電システムであり、熱エネルギーの高温域をガスタービンで、また、低温域を蒸気タービンでそれぞれ分担して受持ち、熱エネルギーを有効に回収し、利用するようにしたものであり、近年特に脚光を浴びている発電システムである。
【0003】
このコンバインドサイクル発電プラントでは、効率向上のための一つのポイントを、ガスタービンの高温域を何処まで高め得るか、と言う点に置いて研究開発が進められてきた。
【0004】
一方、高温域の形成には、タービン構造体の耐熱性の面から冷却システムを設けねばならず、この冷却システムにおける冷却媒体としては従来から空気が用いられて来た。
【0005】
しかし、冷却媒体として空気を用いる限り、例え高温域を達成し得たとしても、冷却に要した空気を自らの空気圧縮機で必要圧力迄昇圧するのに要した動力損失と、また、高温ガスの通過するタービン流路内に部品の冷却に使用した空気を最終的に混合させる事により平均ガス温度を低下させてガスの持つエネルギーを低下せしめる結果になることとの両方を考慮すると、熱効率のこれ以上の向上は期待できないところまで来ている。
【0006】
この問題点を解決し更に効率向上を図るべく、ガスタービンの冷却媒体として前記した空気に替えて、蒸気を採用するものが提案されるに至った。
【0007】
一例として挙げれば、特開平05−163960号公報のものがある。しかしこの特開平05−163960号公報に開示されたものは、ガスタービンの冷却媒体として蒸気を採用するという概念の開示はともかくとして、その細部においては工夫し解決しなければならない課題が多数残されている。
【0008】
例えば、ガスタービンの高温冷却部を冷却して高温化した蒸気は、再熱器から供給される蒸気と合流されて中圧タービンへ導入されることになるが、このへんの技術開示としては、作動蒸気の供給系統として示されるに止まり、具体的にどのような位置において、どのようにして合流していくのか、と言うような点についての配慮、検討は何らなされていないのが現状である。
【0009】
即ち、ガスタービンの高温冷却部を蒸気で冷却するという試みは、未だ試行錯誤の段階という状況であり、解明し解決しなければならない課題が山積されているのが実情である。
【0010】
【発明が解決しようとする課題】
前記したように特開平05−163960号公報に開示されたものをはじとして従来の技術としては、中圧タービンへ導入する複数の蒸気の混合について格別掘り下げた検討がなされておらず、また問題意識も見当たらない。
【0011】
しかし、前記したようなガスタービンの高温冷却部を冷却して高温化した蒸気と再熱器から供給される蒸気とは、圧力、温度等の条件が異なるため、このような蒸気同志が不十分な混合のまま中圧タービンへ導入される様な場合には、設定温度に対して高い温度の蒸気、もしくは低い温度の蒸気がそのままの状態でタービンに投入されることとなり、タービン本体の損傷を招くおそれがある。
【0012】
また、この混合する複数の蒸気を配管のまま中圧タービンの付近まで持って行く構造にすると、配管物量が多くかかり直ちにコストアップにつながることになる。さらにまた、配管中に温度差がつき、熱応力による配管の割れ、という懸念もでてる。
【0013】
本発明は、複数の蒸気を混合するに際してこのような不具合の発生を防止し、装置の安全を確保し、長期にわたって安定して作動する装置を提供することを課題とするものである。
【0014】
【課題を解決するための手段】
本発明は、前記課題を解決すべくなされたもので、ガスタービンプラントと蒸気タービンプラントとを組合せ、ガスタービンからの排熱を利用して蒸気タービン駆動用蒸気を発生させる排熱回収ボイラを備えるとともに、前記ガスタービンの高温被冷却部を蒸気で冷却する蒸気冷却システムを設け、この蒸気冷却システムからの過熱蒸気を蒸気タービンに回収させるように構成したコンバインドサイクル発電プラントにおいて、前記蒸気冷却システムの出口蒸気とバイパス蒸気とを混合する混合管を設け、同混合管は、管端部からの蒸気導入口と、複数の管側部からの蒸気導入口とを備え、管側部からの導入口は管長手方向に間隔をおいて配置されるとともに、隣り合う導入口同士を円周方向に角度をもたせて配置したコンバインドサイクル発電プラントを提供し、前記ガスタービンの高温被冷却部を冷却することにより加熱され、蒸気冷却システムから出てきた出口蒸気と、高温被冷却部の導入蒸気の流量・温度を制御するために同高温被冷却部に導入されることなく迂回してきたバイパス蒸気とを、混合管に導入してこれを混合することにより、圧力、温度等が均一な混合過熱蒸気を形成し、この混合した過熱蒸気を後流の蒸気タービン、例えば中圧タービンに回収させるようにしたものである。
【0015】
そして本発明においては、前記したように蒸気導入口の設置位置を、管端部からと管側部からとに分け、しかも管側部からのものについては、管長手方向に間隔を置くとともに隣り合うもの同士を円周方向に角度をもたせるようにしているので、それぞれの蒸気導入口から入ってくる条件のそれぞれ異なる複数の蒸気を、均一条件のものとなるように良く混合することが出来るものである。
【0016】
【発明の実施の形態】
本発明の実施の一形態を図1及び図2に基づいて説明する。
【0017】
100はガスタービンプラントで、ガスタービン101、同ガスタービン101で駆動される空気圧縮機102、同空気圧縮機102から供給される圧縮空気を燃料と共に燃焼させる燃焼器103を主要機器として構成されている。
【0018】
200は排熱回収ボイラで、前記ガスタービン101の排気ガスを加熱源とし、高圧蒸気発生部201、中圧蒸気発生部202及び低圧蒸気発生部203を主要部として構成されている。
【0019】
300は蒸気タービンプラントで、前記排熱回収ボイラ200から高圧蒸気を供給される高圧タービン301、後述する蒸気回収系統405等からの蒸気を供給される中圧タービン302および前記排熱回収ボイラ200から低圧蒸気を供給され低圧タービン303を主要機器として構成されている。
【0020】
400は蒸気冷却システムで、前記高圧タービン301の排気部304に連結した冷却蒸気供給系統401、同冷却蒸気供給系統401から分岐して前記燃焼器103を冷却する第1の蒸気冷却系統402、同第1の蒸気冷却系統402と同様にそれぞれ前記冷却蒸気供給系統401から分岐して前記ガスタービン101の高温被冷却部を冷却する第2、第3の蒸気冷却系統403、404を主要機器として構成されている。
【0021】
500はバイパス系統で、前記第1ないし第3の蒸気冷却系統402、403、404へ導入する蒸気の流量および温度を制御するために各冷却系統に並行して配置した第1、第2、第3のバイパス系統501、502、503で構成されている。
【0022】
700は混合管で、管端部に蒸気導入口701を、管側部には複数の蒸気導入口702、703、704、705を有し、管端部の蒸気導入口701は前記ガスタービン101の高温被冷却部を冷却する第2、第3の蒸気冷却系統403、404の系統に連通し、管側部の蒸気導入口702は前記燃焼器103を冷却する第1の蒸気冷却系統402の系統に連通し、また管側部の他の蒸気導入口703、704、705は、第1ないし第3の蒸気冷却系統402、403、404をバイパスし、第1ないし第3のバイパス系統501、502、503を流れるバイパス蒸気の供給を受けるようになっている。
【0023】
706は他方の管端部に設けた蒸気出口で、蒸気回収系統405を経て中圧タービン302へ連通している。
【0024】
そして前記管側部の蒸気導入口702、703、704、および705は管長手方向に間隔をおくとともに、円周方向で90度の角度をもたせて配置されている。
【0025】
706は蒸気出口で、前記蒸気導入口701と反対側の管端部にあり、中圧タービン302の入口に連通している。
【0026】
なおここでは前記管側部の蒸気導入口は702ないし705の4個とし、上流と下流に離れ、かつ周方向で90度の角度ずらして配置したものを示したが、この個数と離れる間隔および方向等は、これに限定されるものではなく、混合する蒸気源の数、性状等に応じて、90度またはその中間の角度というように、適宜変更しうることは言うまでもいない。
【0027】
また、混合管700を配設する位置については、図1では単に模式的に表示しているにすぎないが、実際はガスタービン101の高温被冷却部の出口に限りなく近いところに配置し、その結果として蒸気出口706から中圧タービン302までの距離を出来るだけ長くするような配列とすることが好ましい。
【0028】
本実施の形態は前記したように構成されているので、ガスタービン101の高温被冷却部を冷却することにより加熱された第2、第3の蒸気冷却系統403、404からの出口蒸気は、管端部の蒸気導入口701から混合管700に供給され、この蒸気と燃焼器103を冷却して第1の蒸気冷却系統402から管側部の蒸気導入口702を経て混合管700に供給された出口蒸気、及び第1ないし第3のバイパス系統501、502、503を経て管側部の他の蒸気導入口703、704、705から混合管700に供給されたバイパス蒸気のそれぞれが同混合管700内で混合されて混合過熱蒸気となる。
【0029】
この時、管端部の蒸気導入口701から入る出口蒸気は、混合管700の軸線方向に進み、この蒸気の流れに対し管側部の蒸気導入口702および他の蒸気導入口703ないし705から供給される蒸気は、同蒸気導入口702、703、704、および705が混合管700の管長手方向に間隔を置くとともに互いに円周方向で90度の角度(またはその中間の場合も同様)をもって配列されているので、流れ方向に沿って異なる位置で順次混合が行われることとなり、それぞれの蒸気導入口701、702、703、704、および705から入ってくる条件のそれぞれ異なる蒸気が、良く混合されて圧力、温度等が均一条件の混合過熱蒸気を形成することが出来る。
【0030】
そしてこの混合は、混合管700をガスタービン高温被冷却部の出口に限りなく近いところに配置し、各蒸気をガスタービン高温被冷却部の直後で集約して行うことにより、混合管700を出たあと中圧タービン302までの経路の距離を余裕をもって形成することが出来るので、混合過熱蒸気の条件均一化は一層促進されるとともに、配管物量を節減しコストダウンに大いに貢献するものである。
【0031】
このようにして、本実施の形態によれば、中圧タービンで回収させる混合過熱蒸気の条件均一化により、同中圧タービンの損傷防止を図り、しかも、配管物量を節減しコストダウンに大いに貢献するものである。
【0032】
以上、本発明を図示の実施の形態について説明したが、本発明はかかる実施の形態に限定されず、本発明の範囲内でその具体的構造に種々の変更を加えてよいことはいうまでもない。
【0033】
【発明の効果】
以上本発明によれば、管端部および管側部に設けた導入口から圧力、温度等の条件の異なる複数の蒸気を集約し、これらの条件が均一な混合過熱蒸気を形成してこれを後流の蒸気タービン、例えば中圧タービンに回収させるので、蒸気条件の不安定に起因する蒸気タービンの損傷発生とか、配管の割れ発生というような不要なトラブルを回避することが出来たものである。
【0034】
しかも本発明によれば、前記混合過熱蒸気の形成に際し、管側部から混合管に入る複数の蒸気の位置関係を円周方向に角度をもたせて形成することにより、条件のそれぞれ異なる複数の蒸気の均一混合を確実に促進し、前記した蒸気タービンの安定化を確保して、システムの安定性、信頼性を得ることが出来たものである。
【図面の簡単な説明】
【図1】本発明の実施の一形態に係わるコンバインドサイクル発電プラントの系統図。
【図2】図1の中、混合管を抜き出して示す混合管の説明図。
【符号の説明】
100 ガスタービンプラント
101 ガスタービン
102 空気圧縮機
103 燃焼器
200 排熱回収ボイラ
201 高圧蒸気発生部
202 中圧蒸気発生部
203 低圧蒸気発生部
300 蒸気タービンプラント
301 高圧タービン
302 中圧タービン
303 低圧タービン
304 排気部
400 蒸気冷却システム
401 冷却蒸気供給系統
402 第1の蒸気冷却系統
403 第2の蒸気冷却系統
404 第3の蒸気冷却系統
405 蒸気回収系統
500 バイパス系統
501 第1のバイパス系統
502 第2のバイパス系統
503 第3のバイパス系統
700 混合管
701 蒸気導入口
702 蒸気導入口
703 蒸気導入口
704 蒸気導入口
705 蒸気導入口
706 蒸気出口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combined cycle power plant that combines a gas turbine plant and a steam turbine plant.
[0002]
[Prior art]
A combined cycle power plant is a power generation system that combines a gas turbine plant and a steam turbine plant. The high temperature region of the thermal energy is shared by the gas turbine, and the low temperature region is shared by the steam turbine. It is a power generation system that has been collected and used, and has been particularly in the spotlight in recent years.
[0003]
In this combined cycle power plant, research and development has been advanced with one point for improving the efficiency as to how far the high temperature range of the gas turbine can be increased.
[0004]
On the other hand, in order to form a high temperature region, a cooling system must be provided from the viewpoint of heat resistance of the turbine structure, and air has been conventionally used as a cooling medium in this cooling system.
[0005]
However, as long as air is used as the cooling medium, even if a high temperature range can be achieved, the power loss required for boosting the air required for cooling to the required pressure with its own air compressor, and the high temperature gas Considering both the fact that the average gas temperature is lowered by finally mixing the air used for cooling the parts in the turbine passage through which the gas passes, resulting in lowering the energy of the gas. We can't expect any further improvement.
[0006]
In order to solve this problem and further improve the efficiency, it has been proposed to use steam instead of the air as the cooling medium of the gas turbine.
[0007]
As an example, there is one disclosed in Japanese Patent Application Laid-Open No. 05-163960. However, what is disclosed in Japanese Patent Application Laid-Open No. 05-163960, apart from the disclosure of the concept of using steam as a cooling medium for a gas turbine, there are still many problems that must be devised and solved in detail. ing.
[0008]
For example, steam that has been heated to a high temperature by cooling a high-temperature cooling section of a gas turbine is merged with steam supplied from a reheater and introduced into an intermediate pressure turbine. The current situation is that there is no consideration and examination about the point of how to join, in what kind of position, specifically, it is only shown as a working steam supply system .
[0009]
That is, the attempt to cool the high-temperature cooling part of the gas turbine with steam is still in a trial and error stage, and there are actually many problems that must be solved.
[0010]
[Problems to be solved by the invention]
As described above, as a conventional technique including the one disclosed in Japanese Patent Laid-Open No. 05-163960, there has been no special investigation on mixing of a plurality of steams to be introduced into an intermediate pressure turbine, and there is a problem awareness. I can't find any.
[0011]
However, since the steam heated at the high temperature cooling section of the gas turbine as described above is heated and the steam supplied from the reheater has different conditions such as pressure and temperature, such steam is insufficient. In the case of being introduced into an intermediate pressure turbine with proper mixing, steam at a higher temperature than the set temperature or steam at a lower temperature will be put into the turbine as it is, which may damage the turbine body. There is a risk of inviting.
[0012]
In addition, if a structure in which the plurality of steams to be mixed are brought to the vicinity of the intermediate-pressure turbine while being in the piping is used, the amount of piping is increased, and the cost is immediately increased. Furthermore, there is a concern that a temperature difference occurs in the pipe and the pipe is cracked due to thermal stress.
[0013]
An object of the present invention is to provide an apparatus that prevents the occurrence of such problems when mixing a plurality of steams, ensures the safety of the apparatus, and operates stably over a long period of time.
[0014]
[Means for Solving the Problems]
The present invention, the problems intended to have been resolved all Kunasa, combining a gas turbine plant and a steam turbine plant, comprising a heat recovery steam by utilizing exhaust heat from a gas turbine to generate steam turbine driving steam In addition, in a combined cycle power plant configured to provide a steam cooling system that cools a high-temperature cooled part of the gas turbine with steam, and to collect the superheated steam from the steam cooling system in the steam turbine, the steam cooling system includes: A mixing pipe for mixing the outlet steam and the bypass steam is provided , and the mixing pipe includes a steam inlet from the pipe end and steam inlets from a plurality of pipe sides, and the inlet from the pipe side. combined cycle is that while being spaced tube longitudinal direction and arranged remembering angle inlet adjacent to each other in the circumferential direction An electric plant is provided to control the flow rate and temperature of the outlet steam that is heated by cooling the high-temperature cooled part of the gas turbine and comes out of the steam cooling system, and the introduced steam of the high-temperature cooled part. By introducing the bypass steam that has been bypassed without being introduced into the high-temperature cooled part into the mixing tube and mixing it, a mixed superheated steam with uniform pressure, temperature, etc. is formed, and this mixed superheated steam Is recovered by a downstream steam turbine, for example, an intermediate pressure turbine.
[0015]
In the present invention, as described above, the installation position of the steam inlet is divided into the tube end portion and the tube side portion, and those from the tube side portion are spaced apart in the longitudinal direction of the tube and adjacent to each other. Since the matching items have an angle in the circumferential direction, a plurality of vapors with different conditions entering from the respective steam inlets can be mixed well so as to achieve uniform conditions It is.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
[0017]
A gas turbine plant 100 includes a gas turbine 101, an air compressor 102 driven by the gas turbine 101, and a combustor 103 that burns compressed air supplied from the air compressor 102 together with fuel as main components. Yes.
[0018]
An exhaust heat recovery boiler 200 uses the exhaust gas of the gas turbine 101 as a heating source, and includes a high-pressure steam generator 201, an intermediate-pressure steam generator 202, and a low-pressure steam generator 203 as main parts.
[0019]
Reference numeral 300 denotes a steam turbine plant. From the high-pressure turbine 301 to which high-pressure steam is supplied from the exhaust heat recovery boiler 200, the intermediate-pressure turbine 302 to which steam from a steam recovery system 405, which will be described later, and the exhaust heat recovery boiler 200 are supplied. Low-pressure steam is supplied and the low-pressure turbine 303 is configured as a main device.
[0020]
A steam cooling system 400 includes a cooling steam supply system 401 connected to the exhaust 304 of the high-pressure turbine 301, a first steam cooling system 402 that branches from the cooling steam supply system 401 and cools the combustor 103, Similarly to the first steam cooling system 402, the second and third steam cooling systems 403 and 404 that branch from the cooling steam supply system 401 and cool the high-temperature cooled parts of the gas turbine 101 are configured as main devices. Has been.
[0021]
Reference numeral 500 denotes a bypass system, which is arranged in parallel with each cooling system to control the flow rate and temperature of the steam introduced into the first to third steam cooling systems 402, 403, 404. 3 bypass systems 501, 502, and 503.
[0022]
Reference numeral 700 denotes a mixing pipe, which has a steam inlet 701 at the pipe end and a plurality of steam inlets 702, 703, 704, 705 at the pipe side. The second and third steam cooling systems 403 and 404 that cool the high-temperature cooled parts of the pipe are connected to the steam inlet 702 on the side of the pipe of the first steam cooling system 402 that cools the combustor 103. The other steam inlets 703, 704, 705 connected to the system bypass the first to third steam cooling systems 402, 403, 404 and the first to third bypass systems 501, A supply of bypass steam flowing through 502 and 503 is received.
[0023]
A steam outlet 706 is provided at the other end of the pipe and communicates with the intermediate pressure turbine 302 via a steam recovery system 405.
[0024]
The steam inlets 702, 703, 704, and 705 on the side of the tube are spaced apart in the longitudinal direction of the tube and arranged at an angle of 90 degrees in the circumferential direction.
[0025]
A steam outlet 706 is located at the end of the pipe opposite to the steam inlet 701 and communicates with the inlet of the intermediate pressure turbine 302.
[0026]
Here, four steam inlets 702 to 705 are provided on the side of the pipe, separated upstream and downstream, and arranged at an angle of 90 degrees in the circumferential direction. It is needless to say that the direction and the like are not limited to this, and can be appropriately changed to 90 degrees or an intermediate angle depending on the number and properties of the steam sources to be mixed.
[0027]
In addition, the position where the mixing pipe 700 is disposed is merely schematically shown in FIG. 1, but is actually disposed as close as possible to the outlet of the high temperature cooled portion of the gas turbine 101, As a result, the arrangement is preferably such that the distance from the steam outlet 706 to the intermediate pressure turbine 302 is as long as possible.
[0028]
Since the present embodiment is configured as described above, the outlet steam from the second and third steam cooling systems 403 and 404 heated by cooling the high temperature cooled part of the gas turbine 101 is piped. The steam was supplied to the mixing pipe 700 from the steam inlet 701 at the end, and the steam and the combustor 103 were cooled and supplied to the mixing pipe 700 from the first steam cooling system 402 via the steam inlet 702 on the side of the pipe. Each of the outlet steam and the bypass steam supplied from the other steam inlets 703, 704, 705 to the mixing pipe 700 through the first to third bypass systems 501, 502, 503 is supplied to the mixing pipe 700. It is mixed in and becomes mixed superheated steam.
[0029]
At this time, the exit steam entering from the steam inlet 701 at the end of the pipe advances in the axial direction of the mixing pipe 700, and from the steam inlet 702 and other steam inlets 703 to 705 on the side of the pipe with respect to this steam flow. The supplied steam has the same steam inlets 702, 703, 704, and 705 spaced apart in the longitudinal direction of the mixing tube 700 and at an angle of 90 degrees in the circumferential direction (or in the middle). Since they are arranged, mixing is performed sequentially at different positions along the flow direction, and the steams having different conditions entering from the respective steam inlets 701, 702, 703, 704, and 705 are well mixed. Thus, mixed superheated steam having uniform pressure, temperature, etc. can be formed.
[0030]
This mixing is performed by placing the mixing pipe 700 as close as possible to the outlet of the gas turbine high temperature cooled section, and concentrating each steam immediately after the gas turbine high temperature cooled section, thereby leaving the mixing pipe 700. In addition, since the distance of the path to the intermediate pressure turbine 302 can be formed with a margin, uniformizing the conditions of the mixed superheated steam is further promoted, and the amount of pipes is reduced and the cost is greatly reduced.
[0031]
In this way, according to the present embodiment, the condition of the mixed superheated steam recovered by the intermediate pressure turbine is made uniform to prevent damage to the intermediate pressure turbine, and further, the amount of piping is reduced and the cost is greatly reduced. To do.
[0032]
Although the present invention has been described with reference to the illustrated embodiment, the present invention is not limited to this embodiment, and it goes without saying that various modifications may be made to the specific structure within the scope of the present invention. Absent.
[0033]
【The invention's effect】
As described above, according to the present invention, a plurality of steams having different conditions such as pressure and temperature are collected from the inlets provided at the pipe end and the pipe side part, and these conditions form a uniform superheated steam. Since it is collected by a downstream steam turbine, for example, an intermediate pressure turbine, unnecessary troubles such as damage to the steam turbine due to unstable steam conditions and cracks in the piping can be avoided. .
[0034]
In addition , according to the present invention, when the mixed superheated steam is formed, the plurality of steams having different conditions are formed by forming the positional relationship of the plurality of steams entering the mixing pipe from the side of the pipe at an angle in the circumferential direction. Thus, the uniform mixing of the steam turbine is surely promoted, the stabilization of the steam turbine described above is ensured, and the stability and reliability of the system can be obtained.
[Brief description of the drawings]
FIG. 1 is a system diagram of a combined cycle power plant according to an embodiment of the present invention.
FIG. 2 is an explanatory view of a mixing tube extracted from the mixing tube shown in FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 100 Gas turbine plant 101 Gas turbine 102 Air compressor 103 Combustor 200 Waste heat recovery boiler 201 High pressure steam generation part 202 Medium pressure steam generation part 203 Low pressure steam generation part 300 Steam turbine plant 301 High pressure turbine 302 Medium pressure turbine 303 Low pressure turbine 304 Exhaust unit 400 Steam cooling system 401 Cooling steam supply system 402 First steam cooling system 403 Second steam cooling system 404 Third steam cooling system 405 Steam recovery system 500 Bypass system 501 First bypass system 502 Second bypass System 503 Third bypass system 700 Mixing pipe 701 Steam inlet 702 Steam inlet 703 Steam inlet 704 Steam inlet 705 Steam inlet 706 Steam outlet

Claims (1)

ガスタービンプラントと蒸気タービンプラントとを組合せ、ガスタービンからの排熱を利用して蒸気タービン駆動用蒸気を発生させる排熱回収ボイラを備えるとともに、前記ガスタービンの高温被冷却部を蒸気で冷却する蒸気冷却システムを設け、この蒸気冷却システムからの過熱蒸気を蒸気タービンに回収させるように構成したコンバインドサイクル発電プラントにおいて、前記蒸気冷却システムの出口蒸気とバイパス蒸気とを混合する混合管を設け、同混合管は、管端部からの蒸気導入口と、複数の管側部からの蒸気導入口とを備え、管側部からの導入口は管長手方向に間隔をおいて配置されるとともに、隣り合う導入口同士を円周方向に角度をもたせて配置したことを特徴とするコンバインドサイクル発電プラント。A gas turbine plant and a steam turbine plant are combined, and an exhaust heat recovery boiler that generates steam for driving a steam turbine using exhaust heat from the gas turbine is provided, and a high-temperature cooled part of the gas turbine is cooled with steam. In a combined cycle power plant configured to provide a steam cooling system and to collect the superheated steam from the steam cooling system in a steam turbine, a mixing pipe for mixing the outlet steam and bypass steam of the steam cooling system is provided , and The mixing pipe includes a steam inlet from the pipe end and steam inlets from a plurality of pipe sides, and the inlets from the pipe side are arranged at intervals in the longitudinal direction of the pipe and adjacent to each other. A combined cycle power plant characterized in that matching inlets are arranged at an angle in the circumferential direction .
JP19460396A 1996-07-24 1996-07-24 Combined cycle power plant Expired - Fee Related JP3825091B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP19460396A JP3825091B2 (en) 1996-07-24 1996-07-24 Combined cycle power plant
PCT/JP1998/000262 WO1999037891A1 (en) 1996-07-24 1998-01-23 Combined cycle power plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19460396A JP3825091B2 (en) 1996-07-24 1996-07-24 Combined cycle power plant
PCT/JP1998/000262 WO1999037891A1 (en) 1996-07-24 1998-01-23 Combined cycle power plant

Publications (2)

Publication Number Publication Date
JPH1037714A JPH1037714A (en) 1998-02-10
JP3825091B2 true JP3825091B2 (en) 2006-09-20

Family

ID=26439127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19460396A Expired - Fee Related JP3825091B2 (en) 1996-07-24 1996-07-24 Combined cycle power plant

Country Status (2)

Country Link
JP (1) JP3825091B2 (en)
WO (1) WO1999037891A1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5628179A (en) * 1993-11-04 1997-05-13 General Electric Co. Steam attemperation circuit for a combined cycle steam cooled gas turbine
JPH09112215A (en) * 1995-10-16 1997-04-28 Toshiba Corp Gas turbine power plant and method of operating thereof

Also Published As

Publication number Publication date
JPH1037714A (en) 1998-02-10
WO1999037891A1 (en) 1999-07-29

Similar Documents

Publication Publication Date Title
EP0736669B1 (en) Steamed cooled gas turbine
US6499302B1 (en) Method and apparatus for fuel gas heating in combined cycle power plants
KR101536988B1 (en) A supercritical heat recovery steam generator reheater and supercritical evaporator arrangement
EP2573360B1 (en) Fuel heating in combined cycle turbomachinery
CN109653875B (en) Fuel preheating system for combustion turbine engine
CN102828830A (en) Systems and method for improving the efficiency of a combined cycle power plant
CN101684748A (en) Integrated gas turbine exhaust diffuser and heat recovery steam generation system
JP3564241B2 (en) Combined cycle power plant
US8205451B2 (en) System and assemblies for pre-heating fuel in a combined cycle power plant
CN110234847A (en) Hydrogen-oxygen equivalent combustion turbine system
EP3077632B1 (en) Combined cycle system
JP3310900B2 (en) Cooling structure of combustor transition piece
JP3825091B2 (en) Combined cycle power plant
US7954324B2 (en) Gas turbine engine
JP3586542B2 (en) Multi-shaft combined cycle power plant
CA2284487C (en) Combined cycle power plant
JPH06212909A (en) Compound electric power plant
JP3389019B2 (en) Steam cooled gas turbine
JPS61152929A (en) Compound generating system
JP2001214758A (en) Gas turbine combined power generation plant facility
JP3586538B2 (en) Combined cycle power plant
JP2729010B2 (en) Combined plant
JPH10325338A (en) Combined cycle generating plant
JP2000130107A (en) Combined cycle power plant with gas turbine
JPH09170405A (en) Pressurized fluidized bed compound power generation facility

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees