WO1999037891A1 - Combined cycle power plant - Google Patents

Combined cycle power plant Download PDF

Info

Publication number
WO1999037891A1
WO1999037891A1 PCT/JP1998/000262 JP9800262W WO9937891A1 WO 1999037891 A1 WO1999037891 A1 WO 1999037891A1 JP 9800262 W JP9800262 W JP 9800262W WO 9937891 A1 WO9937891 A1 WO 9937891A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
cooled
pipe
gas turbine
mixed
Prior art date
Application number
PCT/JP1998/000262
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiko Takaoka
Sadakazu Goto
Hiroyuki Yamamoto
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP19460396A priority Critical patent/JP3825091B2/en
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to US09/381,293 priority patent/US6279311B1/en
Priority to PCT/JP1998/000262 priority patent/WO1999037891A1/en
Priority to CA002284487A priority patent/CA2284487C/en
Priority to DE19882242T priority patent/DE19882242B4/en
Publication of WO1999037891A1 publication Critical patent/WO1999037891A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/232Heat transfer, e.g. cooling characterized by the cooling medium
    • F05D2260/2322Heat transfer, e.g. cooling characterized by the cooling medium steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the present invention relates to a combined cycle power plant combining a gas turbine plant and a steam turbine plant.
  • a combined cycle power generation plant is a power generation system that combines a gas turbine plant and a steam turbine plant. It is a power generation system that has been effectively collected and used, and has recently been particularly spotlighted.
  • a cooling system must be provided for the formation of the high-temperature region in view of the heat resistance of the turbine structure, and air has been conventionally used as a cooling medium in this cooling system.
  • H05-169390 does not disclose the concept of employing steam as a cooling medium for gas turbines, but has devised and solved the details. There are many issues that need to be addressed. For example, steam heated to a high temperature by cooling the high-temperature cooling section of a gas turbine is combined with steam supplied from a reheater and introduced into a medium-pressure turbine. It has only been shown as a working steam supply system, and no consideration or consideration has been given to the point of how and where it will be merged. It is the current situation.
  • the steam which is cooled by the high-temperature cooling section of the gas turbine as described above and has a high temperature
  • the steam supplied from the reheater have different conditions such as pressure and temperature. If the mixture is introduced into the medium-pressure turbine with the proper mixing, steam at a higher or lower temperature than the set temperature is injected into the turbine as it is, May cause damage.
  • a structure is adopted in which a plurality of steam to be mixed are brought to the vicinity of the medium-pressure turbine as pipes, if the amount of pipes is large, the cost will increase immediately. Furthermore, there is a concern that a temperature difference may occur in the piping and the pipe may be cracked due to thermal stress. Disclosure of the invention
  • the present invention prevents the occurrence of such a problem when mixing a plurality of steams,
  • the purpose is to ensure the safety of the equipment and to provide equipment that operates stably for a long time.
  • the present invention combines a gas turbine plant and a steam turbine plant, and comprises an exhaust heat recovery boiler that generates steam for driving a steam turbine using exhaust heat from a gas turbine,
  • a combined cycle power plant configured to provide a steam cooling system for cooling a high-temperature cooled portion of the gas turbine with steam, and to recover superheated steam from the steam cooling system to the steam turbine;
  • To the high-temperature cooled section to control the flow rate and temperature of the steam introduced into the high-temperature cooled section.
  • a mixed superheated steam with uniform pressure, temperature, etc. is formed, and this mixed superheated steam is used as the downstream steam.
  • This is to be recovered by a turbine, for example, a medium pressure turbine.
  • the mixing pipe includes a steam inlet from a pipe end, and steam inlets from a plurality of pipe sides, and the inlets from the pipe sides are spaced apart in the pipe longitudinal direction.
  • a combined cycle power plant in which adjacent inlets are arranged at an angle to each other in the circumferential direction, and the installation position of the steam inlet is determined from the pipe end and from the pipe side. In addition, those from the side of the pipe are spaced from each other in the longitudinal direction of the pipe and the adjacent ones are angled in the circumferential direction.
  • a plurality of vapors with different conditions can be mixed well so as to have uniform conditions.
  • the present invention when forming the mixed superheated steam, by specifying the positional relationship of the plurality of steams entering the mixing pipe, it is possible to reliably promote uniform mixing of the plurality of steams having different conditions, The stability and reliability of the system were obtained by securing the stability of the steam turbine described above.
  • FIG. 1 is a system diagram of a combined cycle power plant according to one embodiment of the present invention.
  • FIG. 2 is a diagram showing the configuration of the mixing tube 700 of FIG. 1 in detail.
  • the combustor 103 is configured as main equipment.
  • Reference numeral 200 denotes an exhaust heat recovery poirer, which uses the exhaust gas of the gas turbine 101 as a heating source, and mainly includes a high-pressure steam generator 201, a medium-pressure steam generator 202, and a low-pressure steam generator 203. It is configured as a main part.
  • Reference numeral 300 denotes a steam turbine plant, which is a high-pressure turbine 301 supplied with high-pressure steam from the exhaust heat recovery boiler 200, and a medium-pressure turbine supplied with steam from a steam recovery system 405, which will be described later.
  • a low-pressure turbine 303 supplied with low-pressure steam from 302 and the exhaust heat recovery poir 200 is constituted as a main device.
  • Reference numeral 400 denotes a steam cooling system, which is a cooling steam supply system 401 connected to the exhaust part 304 of the high-pressure turbine 301, and which branches off from the cooling steam supply system 401 and the combustor 103.
  • a first steam cooling system 402 that cools the gas turbine 101 and a high-temperature cooled part of the gas turbine 101 branched from the cooling steam supply system 401 similarly to the first steam cooling system 402.
  • the second and third steam cooling systems 403 and 404 are configured as main equipment.
  • Reference numeral 500 denotes a bypass system, which is arranged in parallel with each of the first to third steam cooling systems to control the flow rate and temperature of steam introduced into the 402, 403, and 404.
  • the first, second, and third bypass systems 501, 502, and 503 are provided.
  • the 700 is a mixing pipe, which has a steam inlet 701 at the end of the pipe, and a plurality of steam inlets 702, 703, 704, 705 at the side of the pipe.
  • the steam inlet 701 at the end communicates with the second and third steam cooling systems 403, 404 for cooling the high-temperature cooled part of the gas turbine 101, and
  • the steam inlet 702 communicates with the first steam cooling system 402 for cooling the combustor 103, and the other steam inlets 703, 704, 705 bypasses the first to third steam cooling systems 402, 403, 404 and flows through the first to third bypass systems 501, 520, 503 It is supplied with bypass steam.
  • Reference numeral 706 denotes a steam outlet provided at a pipe end opposite to the steam inlet 701, which communicates with the inlet of the intermediate-pressure turbine 302 through a steam recovery system 405.
  • the steam inlets 72, 703, 704, and 705 on the side of the tube are spaced apart in the longitudinal direction of the tube and are arranged at an angle of 90 degrees in the circumferential direction.
  • the interval and direction apart from this number are not limited to this, and may be changed as appropriate, such as 90 degrees or an intermediate angle, depending on the number and properties of the steam sources to be mixed. Needless to say.
  • the position where the mixing pipe 700 is provided is shown only schematically in FIG. 1, but in actuality it is located as close as possible to the outlet of the high-temperature cooled part of the gas turbine 101.
  • the arrangement is such that the distance from the steam outlet 706 to the intermediate pressure turbine 302 is as long as possible. Since the present embodiment is configured as described above, the height of the gas turbine 101
  • the outlet steam from the second and third steam cooling systems 403 and 404 heated by cooling the warm cooled part is supplied from the steam inlet 701 at the pipe end to the mixing pipe 704.
  • the steam and the combustor 103 are cooled, and the steam supplied to the mixing pipe 700 through the first steam cooling system 402 through the steam inlet / outlet 702 at the pipe side is supplied to the mixing pipe 700.
  • Each of the bypass steams supplied to the mixing pipe 700 is mixed in the mixing pipe 700 to become mixed superheated steam.
  • the outlet steam entering from the steam inlet 700 at the end of the pipe advances in the axial direction of the mixing pipe 700, and the flow of the steam causes the steam inlet 720 on the pipe side and other steam to flow.
  • the steam supplied from the inlets 703 to 705 is separated by the steam inlets 702, 703, 704, and 705 in the longitudinal direction of the mixing tube 700.
  • This mixing is performed by arranging the mixing pipe 700 as close as possible to the outlet of the gas turbine high-temperature cooled part and consolidating each steam immediately after the gas turbine high-temperature cooled part. Since the distance of the path from the mixing pipe 700 to the intermediate pressure turbine 302 can be formed with a margin, the uniformization of the conditions of the mixed superheated steam is further promoted, and the amount of piping material is reduced and the cost is reduced. It greatly contributes to down.
  • the present embodiment by specifying the positional relationship of a plurality of steams entering mixing pipe 700, the conditions of mixed superheated steam to be recovered by medium-pressure turbine 302 can be made uniform. To prevent damage to the medium-pressure turbine 302 and to avoid unnecessary troubles such as cracks in the piping, and to stabilize the medium-pressure turbine 302 to improve system stability and reliability. In addition to reducing the amount of piping, it greatly contributes to cost reduction.

Abstract

A combined cycle power plant which performs preferable mixing when a steam having cooled a high temperature portion being cooled, of a gas turbine to be raised in temperature, is mixed with other steams, ensures safety for downstream equipments, and stably operates over a long time. A mixing pipe (700) is provided, in which an outlet steam from a steam cooling system (400), which causes a high temperature portion being cooled, of a gas turbine (101) to be cooled by steam, is mixed with a bypass steam and the like, and the outlet steam leaving the steam cooling system (400) after heated when it cooled the high temperature portion being cooled, of the gas turbine (101), and the bypass steam and the like, having not been introduced into the high temperature portion being cooled, but bypassed in order to control a flow rate and temperature of a steam introduced into the high temperature portion being cooled, are introduced into the mixing pipe (700) to be mixed with each other, so that a mixed superheated steam having uniform pressure, temperature and the like is formed to free downstream equipment from adverse influence.

Description

明 細 書 コンバインドサイクル発電プラント 技術分野  Description Combined cycle power plant Technical field
本発明は、 ガスタービンプラントと蒸気タービンプラントとを組み合わせたコ ンバインドサイクル発電プラントに関するものである。  The present invention relates to a combined cycle power plant combining a gas turbine plant and a steam turbine plant.
^景: 技術 ^ View: Technology
コンバインドサイクル発電プラン卜は、 ガスタービンプラン卜と蒸気タービン プラントを組み合わせた発電システムであり、 熱エネルギーの高温域をガスター ビンで、 また、 低温域を蒸気タービンでそれぞれ分担して受持ち、 熱エネルギー を有効に回収し、 利用するようにしたものであり、 近年、 特に脚光を浴びている 発電システムである。  A combined cycle power generation plant is a power generation system that combines a gas turbine plant and a steam turbine plant. It is a power generation system that has been effectively collected and used, and has recently been particularly spotlighted.
このコンバインドサイクル発電プラン卜では、 効率向上のための一つのポイン 卜を、 ガスタービンの高温域を何処まで高め得るか、 という点に置いて研究開発 が進められてきた。  In this combined cycle power plant, research and development has been promoted with one point for improving efficiency in terms of how high the temperature range of the gas turbine can be raised.
一方、 高温域の形成には、 タービン構造体の耐熱性の面から冷却システムを設 けねばならず、 この冷却システムにおける冷却媒体としては従来から空気が用い られて来た。  On the other hand, a cooling system must be provided for the formation of the high-temperature region in view of the heat resistance of the turbine structure, and air has been conventionally used as a cooling medium in this cooling system.
し力、し、 冷却媒体として空気を用いる限り、 例え高温域を達成し得たとしても 、 冷却に要した空気を自らの空気圧縮機で必要圧力まで昇圧するのに要した動力 損失と、 また、 高温ガスの通過するタービン流路内に部品の冷却に使用した空気 を最終的に混合させる事により平均ガス温度を低下させてガスの持つエネルギー を低下せしめる結果になることとの両方を考慮すると、 熱効率のこれ以上の向上 は期待できないところまで来ている。 この問題点を解決し更に効率向上を図るべく、 ガスタービンの冷却媒体として 前記した空気に替えて、 蒸気を採用するものが提案されるに至った。 一例として挙げれば、 特開平 0 5— 1 6 3 9 6 0号公報のものがある。 しかし この特開平 0 5—1 6 3 9 6 0号公報に開示されたものは、 ガスタービンの冷却 媒体として蒸気を採用するという概念の開示はともかくとして、 その細部におい ては、 工夫し解決しなければならない課題が多数残されている。 例えば、 ガスタービンの高温冷却部を冷却して高温化した蒸気は、 再熱器から 供給される蒸気と合流されて中圧タービンへ導入されることになるが、 このへん の技術開示としては、 作動蒸気の供給系統として示されるに止まり、 具体的にど のような位置において、 どのようにして合流していくのか、 と言うような点につ いての配慮、 検討は何らなされていないのが現状である。 As long as air is used as the cooling medium, even if a high temperature range can be achieved, the power loss required to raise the air required for cooling to the required pressure with its own air compressor, and Considering both the fact that the air used for cooling components is finally mixed into the turbine flow path through which hot gas passes, thereby lowering the average gas temperature and reducing the energy possessed by the gas. However, further improvements in thermal efficiency have not been expected. In order to solve this problem and further improve the efficiency, a gas turbine has been proposed which employs steam instead of the above-described air as a cooling medium. As an example, there is one disclosed in Japanese Patent Application Laid-Open No. H05-166390. However, the technology disclosed in Japanese Patent Application Laid-Open No. H05-169390 does not disclose the concept of employing steam as a cooling medium for gas turbines, but has devised and solved the details. There are many issues that need to be addressed. For example, steam heated to a high temperature by cooling the high-temperature cooling section of a gas turbine is combined with steam supplied from a reheater and introduced into a medium-pressure turbine. It has only been shown as a working steam supply system, and no consideration or consideration has been given to the point of how and where it will be merged. It is the current situation.
即ち、 ガスタービンの高温冷却部を蒸気で冷却するという試みは、 未だ試行錯 誤の段階という状況であり、 解明し解決しなければならない課題が山積されてい るのが実情である。 前記したように特開平 0 5— 1 6 3 9 6 0号公報に開示されたものをはじめと して、 従来の技術としては、 中圧タービンへ導入する複数の蒸気の混合について 格別掘り下げた検討がなされておらず、 また問題意識も見当たらない。  In other words, attempts to cool the high-temperature cooling section of a gas turbine with steam are still in a trial-and-error stage, and there are many problems that need to be clarified and solved. As described above, in addition to the technique disclosed in Japanese Patent Application Laid-Open No. H05-166390, as a conventional technique, the study of the mixing of a plurality of steams to be introduced into a medium-pressure turbine is studied in particular. There is no awareness of the problem.
しかし、 前記したようなガスタービンの高温冷却部を冷却して高温化した蒸気 と再熱器から供給される蒸気とは、 圧力、 温度等の条件が異なるため、 このよう な蒸気どうしが不十分な混合のまま中圧タービンへ導入される様な場合には、 設 定温度に対して高い温度の蒸気、 もしくは低い温度の蒸気がそのままの状態でタ 一ビンに投入されることとなり、 タービン本体の損傷を招くおそれがある。 また、 この混合する複数の蒸気を配管のまま中圧タービンの付近まで持って行 く構造にすると、 配管物量が多くかかリ直ちにコストアツプにつながるととにな る。 さらにまた、 配管中に温度差がつき、 熱応力による配管の割れ、 という懸念 もでてくる。 発明の開示  However, the steam, which is cooled by the high-temperature cooling section of the gas turbine as described above and has a high temperature, and the steam supplied from the reheater have different conditions such as pressure and temperature. If the mixture is introduced into the medium-pressure turbine with the proper mixing, steam at a higher or lower temperature than the set temperature is injected into the turbine as it is, May cause damage. In addition, if a structure is adopted in which a plurality of steam to be mixed are brought to the vicinity of the medium-pressure turbine as pipes, if the amount of pipes is large, the cost will increase immediately. Furthermore, there is a concern that a temperature difference may occur in the piping and the pipe may be cracked due to thermal stress. Disclosure of the invention
本発明は、 複数の蒸気を混合するに際してこのような不具合の発生を防止し、 装置の安全を確保し、 長期にわたって安定して作動する装置を提供することを目 的とするものである。 The present invention prevents the occurrence of such a problem when mixing a plurality of steams, The purpose is to ensure the safety of the equipment and to provide equipment that operates stably for a long time.
上記目的を達成するために、 本発明は、 ガスタービンプラントと蒸気タービン プラントとを組合せ、 ガスタービンからの排熱を利用して蒸気タービン駆動用蒸 気を発生させる排熱回収ボイラを備えるとともに、 前記ガスタービンの高温被冷 却部を蒸気で冷却する蒸気冷却システムを設け、 この蒸気冷却システムからの過 熱蒸気を蒸気タービンに回収させるように構成したコンバインドサイクル発電プ ラントにおいて、 前記蒸気冷却システムの出口蒸気とバイパス蒸気とを混合する 混合管を設けたコンバインドサイクル発電プラントを提供し、 前記ガスタービン の高温被冷却部を冷却することによリ加熱され、 蒸気冷却システムから出てきた 出口蒸気と、 高温被冷却部の導入蒸気の流量■温度を制御するために同高温被冷 却部に導入されることなく迂回してきたバイパス蒸気とを、 混合管に導入してこ れを混合することにより、 圧力、 温度等が均一な混合過熱蒸気を形成し、 この混 合した過熱蒸気を後流の蒸気タービン、 例えば中圧タービンに回収させるように したものである。  In order to achieve the above object, the present invention combines a gas turbine plant and a steam turbine plant, and comprises an exhaust heat recovery boiler that generates steam for driving a steam turbine using exhaust heat from a gas turbine, A combined cycle power plant configured to provide a steam cooling system for cooling a high-temperature cooled portion of the gas turbine with steam, and to recover superheated steam from the steam cooling system to the steam turbine; To provide a combined cycle power plant provided with a mixing pipe for mixing the outlet steam and the bypass steam of the gas turbine, and the reheated by cooling the high temperature cooled part of the gas turbine, and the outlet steam coming out of the steam cooling system To the high-temperature cooled section to control the flow rate and temperature of the steam introduced into the high-temperature cooled section. By introducing the bypass steam that has bypassed without being introduced into the mixing pipe and mixing it, a mixed superheated steam with uniform pressure, temperature, etc. is formed, and this mixed superheated steam is used as the downstream steam. This is to be recovered by a turbine, for example, a medium pressure turbine.
このように、 本発明によれば、 圧力、 温度等の条件の異なる複数の蒸気を集約 し、 これらの条件が均一な混合過熱蒸気を形成してこれを後流の蒸気タービン、 例えば中圧タービンに回収させるので、 蒸気条件の不安定に起因する蒸気タービ ンの損傷発生とか、 配管の割れ発生というような不要なトラブルを回避すること ができる。 また本発明は、 前記混合管は、 管端部からの蒸気導入口と、 複数の管側部から の蒸気導入口とを備え、 管側部からの導入口は管長手方向に間隔をおいて配置さ れるとともに、 隣り合う導入口同士を円周方向に角度をもたせて配置したコンパ インドサイクル発電プラントを提供し、 このように蒸気導入口の設置位置を、 管 端部からと管側部からとに分け、 しかも管側部からのものについては、 管長手方 向に間隔を置くとともに隣り合うもの同士を円周方向に角度をもたせるようにし ているので、 それぞれの蒸気導入口から入ってくる条件のそれぞれ異なる複数の 蒸気を、 均一条件のものとなるように良く混合することができるものである。 このように、 本発明によれば、 前記混合過熱蒸気の形成に際し、 混合管に入る 複数の蒸気の位置関係を特定することにより、 条件のそれぞれ異なる複数の蒸気 の均一混合を確実に促進し、 前記した蒸気タービンの安定化を確保して、 システ ムの安定性、 信頼性を得ることができたものである。 図面の簡単な説明 As described above, according to the present invention, a plurality of steams having different conditions such as pressure and temperature are aggregated to form a mixed superheated steam having a uniform condition, and the mixed superheated steam is formed into a downstream steam turbine, for example, a medium-pressure turbine. Because of this, unnecessary troubles such as steam turbine damage due to unstable steam conditions and pipe cracking can be avoided. Further, according to the present invention, the mixing pipe includes a steam inlet from a pipe end, and steam inlets from a plurality of pipe sides, and the inlets from the pipe sides are spaced apart in the pipe longitudinal direction. Provided is a combined cycle power plant in which adjacent inlets are arranged at an angle to each other in the circumferential direction, and the installation position of the steam inlet is determined from the pipe end and from the pipe side. In addition, those from the side of the pipe are spaced from each other in the longitudinal direction of the pipe and the adjacent ones are angled in the circumferential direction. A plurality of vapors with different conditions can be mixed well so as to have uniform conditions. As described above, according to the present invention, when forming the mixed superheated steam, by specifying the positional relationship of the plurality of steams entering the mixing pipe, it is possible to reliably promote uniform mixing of the plurality of steams having different conditions, The stability and reliability of the system were obtained by securing the stability of the steam turbine described above. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の一形態に係わるコンバインドサイクル発電プラントの 系統図である。  FIG. 1 is a system diagram of a combined cycle power plant according to one embodiment of the present invention.
図 2は、 図 1の混合管 7 0 0の構成を詳細に示す図である。 発明を実施するための最良の形態  FIG. 2 is a diagram showing the configuration of the mixing tube 700 of FIG. 1 in detail. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施の一形態を図 1および図 2に基づいて説明する。  An embodiment of the present invention will be described with reference to FIGS.
1 0 0はガスタービンプラントで、 ガスタービン 1 0 1、 同ガスタービン 1 0 1で駆動される空気圧縮機 1 0 2、 同空気圧縮機 1 0 2から供給される圧縮空気 を燃料と共に燃焼させる燃焼器 1 0 3を主要機器として構成されている。  100 is a gas turbine plant, which burns the gas turbine 101, the air compressor 102 driven by the gas turbine 101, and the compressed air supplied from the air compressor 102 together with fuel. The combustor 103 is configured as main equipment.
2 0 0は排熱回収ポイラで、 前記ガスタービン 1 0 1の排気ガスを加熱源とし 、 高圧蒸気発生部 2 0 1、 中圧蒸気発生部 2 0 2及び低圧蒸気発生部 2 0 3を主 要部として構成されている。  Reference numeral 200 denotes an exhaust heat recovery poirer, which uses the exhaust gas of the gas turbine 101 as a heating source, and mainly includes a high-pressure steam generator 201, a medium-pressure steam generator 202, and a low-pressure steam generator 203. It is configured as a main part.
3 0 0は蒸気タービンプラントで、 前記排熱回収ボイラ 2 0 0から高圧蒸気を 供給される高圧タービン 3 0 1、 後述する蒸気回収系統 4 0 5等からの蒸気を供 給される中圧タービン 3 0 2および前記排熱回収ポイラ 2 0 0から低圧蒸気を供 給される低圧タービン 3 0 3を主要機器として構成されている。  Reference numeral 300 denotes a steam turbine plant, which is a high-pressure turbine 301 supplied with high-pressure steam from the exhaust heat recovery boiler 200, and a medium-pressure turbine supplied with steam from a steam recovery system 405, which will be described later. A low-pressure turbine 303 supplied with low-pressure steam from 302 and the exhaust heat recovery poir 200 is constituted as a main device.
4 0 0は蒸気冷却システムで、 前記高圧タービン 3 0 1の排気部 3 0 4に連結 した冷却蒸気供給系統 4 0 1、 同冷却蒸気供給系統 4 0 1から分岐して前記燃焼 器 1 0 3を冷却する第 1の蒸気冷却系統 4 0 2、 同第 1の蒸気冷却系統 4 0 2と 同様にそれぞれ前記冷却蒸気供給系統 4 0 1から分岐して前記ガスタービン 1 0 1の高温被冷却部を冷却する第 2、 第 3の蒸気冷却系統 4 0 3、 4 0 4を主要機 器として構成されている。 5 0 0はバイパス系統で、 前記第 1ないし第 3の蒸気冷却系統 4 0 2、 4 0 3 、 4 0 4へ導入する蒸気の流量および温度を制御するために各冷却系統に並行し て配置した第 1、 第 2、 第 3のバイパス系統 5 0 1、 5 0 2、 5 0 3で構成され ている。 Reference numeral 400 denotes a steam cooling system, which is a cooling steam supply system 401 connected to the exhaust part 304 of the high-pressure turbine 301, and which branches off from the cooling steam supply system 401 and the combustor 103. A first steam cooling system 402 that cools the gas turbine 101 and a high-temperature cooled part of the gas turbine 101 branched from the cooling steam supply system 401 similarly to the first steam cooling system 402. The second and third steam cooling systems 403 and 404 are configured as main equipment. Reference numeral 500 denotes a bypass system, which is arranged in parallel with each of the first to third steam cooling systems to control the flow rate and temperature of steam introduced into the 402, 403, and 404. The first, second, and third bypass systems 501, 502, and 503 are provided.
7 0 0は混合管で、 管端部に蒸気導入口 7 0 1を、 管側部には複数の蒸気導入 口 7 0 2、 7 0 3、 7 0 4、 7 0 5を有し、 管端部の蒸気導入口 7 0 1は前記ガ スタービン 1 0 1の高温被冷却部を冷却する第 2、 第 3の蒸気冷却系統 4 0 3、 4 0 4の系統に連通し、 管側部の蒸気導入口 7 0 2は前記燃焼器 1 0 3を冷却す る第 1の蒸気冷却系統 4 0 2の系統に連通し、 また管側部の他の蒸気導入口 7 0 3、 7 0 4、 7 0 5は、 第 1ないし第 3の蒸気冷却系統 4 0 2、 4 0 3、 4 0 4 をバイパスし、 第 1ないし第 3のバイパス系統 5 0 1、 5 0 2、 5 0 3を流れる バイパス蒸気の供給を受けるようになつている。  700 is a mixing pipe, which has a steam inlet 701 at the end of the pipe, and a plurality of steam inlets 702, 703, 704, 705 at the side of the pipe. The steam inlet 701 at the end communicates with the second and third steam cooling systems 403, 404 for cooling the high-temperature cooled part of the gas turbine 101, and The steam inlet 702 communicates with the first steam cooling system 402 for cooling the combustor 103, and the other steam inlets 703, 704, 705 bypasses the first to third steam cooling systems 402, 403, 404 and flows through the first to third bypass systems 501, 520, 503 It is supplied with bypass steam.
7 0 6は、 前記蒸気導入口 7 0 1 と反対側の管端部に設けた蒸気出口で、 蒸気 回収系統 4 0 5を経て中圧タービン 3 0 2の入口へ連通している。  Reference numeral 706 denotes a steam outlet provided at a pipe end opposite to the steam inlet 701, which communicates with the inlet of the intermediate-pressure turbine 302 through a steam recovery system 405.
そして前記管側部の蒸気導入口 7 0 2、 7 0 3、 7 0 4、 および 7 0 5は管長 手方向に間隔をおくとともに、 円周方向で 9 0度の角度をもたせて配置されてい る。 なお、 ここでは前記管側部の蒸気導入口は 7 0 2ないし 7 0 5の 4個とし、 上 流と下流に離れ、 かつ周方向で 9 0度の角度ずらして配置したものを示したが、 この個数と離れる間隔および方向等は、 これに限定されるものではなく、 混合す る蒸気源の数、 性状等に応じて、 9 0度またはその中間の角度というように、 適 宜変更しうることは言うまでもいない。  The steam inlets 72, 703, 704, and 705 on the side of the tube are spaced apart in the longitudinal direction of the tube and are arranged at an angle of 90 degrees in the circumferential direction. You. Here, there are four steam inlets at the side of the pipe, from 702 to 705, which are separated from the upstream and downstream, and are arranged at an angle of 90 degrees in the circumferential direction. However, the interval and direction apart from this number are not limited to this, and may be changed as appropriate, such as 90 degrees or an intermediate angle, depending on the number and properties of the steam sources to be mixed. Needless to say.
また、 混合管 7 0 0を配設する位置については、 図 1では単に模式的に表示し ているにすぎないが、 実際はガスタービン 1 0 1の高温被冷却部の出口に限りな く近いところに配置し、 その結果として蒸気出口 7 0 6から中圧タービン 3 0 2 までの距離をできるだけ長くするような配列とすることが好ましい。 本実施の形態は前記したように構成されているので、 ガスタービン 1 0 1の高 温被冷却部を冷却することにより加熱された第 2、 第 3の蒸気冷却系統 4 0 3、 4 0 4からの出口蒸気は、 管端部の蒸気導入口 7 0 1から混合管 7 0 0に供給さ れ、 この蒸気と燃焼器 1 0 3を冷却して第 1の蒸気冷却系統 4 0 2から管側部の 蒸気導入出 7 0 2を径て混合管 7 0 0に供給された出口蒸気、 及び第 1ないし第 3のバイパス系統 5 0 1 、 5 0 2、 5 0 3を経て管側部の他の蒸気導人口 7 0 3 、 7 0 4、 7 0 5から混合管 7 0 0に供給されたバイパス蒸気のそれぞれが同混 合管 7 0 0内で混合されて混合過熱蒸気となる。 In addition, the position where the mixing pipe 700 is provided is shown only schematically in FIG. 1, but in actuality it is located as close as possible to the outlet of the high-temperature cooled part of the gas turbine 101. Preferably, the arrangement is such that the distance from the steam outlet 706 to the intermediate pressure turbine 302 is as long as possible. Since the present embodiment is configured as described above, the height of the gas turbine 101 The outlet steam from the second and third steam cooling systems 403 and 404 heated by cooling the warm cooled part is supplied from the steam inlet 701 at the pipe end to the mixing pipe 704. The steam and the combustor 103 are cooled, and the steam supplied to the mixing pipe 700 through the first steam cooling system 402 through the steam inlet / outlet 702 at the pipe side is supplied to the mixing pipe 700. Mixing pipes from steam and other steam-carrying populations 703, 704, 705 on the side of the pipe via the first to third bypass systems 501, 502, 503 Each of the bypass steams supplied to the mixing pipe 700 is mixed in the mixing pipe 700 to become mixed superheated steam.
この時、 管端部の蒸気導入口 7 0 1から入る出口蒸気は、 混合管 7 0 0の軸線 方向に進み、 この蒸気の流れに対し管側部の蒸気導入口 7 0 2および他の蒸気導 入口 7 0 3ないし 7 0 5から供給される蒸気は、 同蒸気導入口 7 0 2、 7 0 3、 7 0 4、 および 7 0 5が混合管 7 0 0の管長手方向に間隔を置くとともに互いに 円周方向で 9 0度の角度 (またはその中間の場合も同様) をもって配列されてい るので、 流れ方向に沿って異なる位置で順次混合が行われることとなり、 それぞ れの蒸気導入口 7 0 1 、 7 0 2、 7 0 3、 7 0 4、 および 7 0 5から入ってくる 条件のそれぞれ異なる蒸気が、 良く混合されて圧力、 温度等が均一条件の混合過 熱蒸気を形成することができる。  At this time, the outlet steam entering from the steam inlet 700 at the end of the pipe advances in the axial direction of the mixing pipe 700, and the flow of the steam causes the steam inlet 720 on the pipe side and other steam to flow. The steam supplied from the inlets 703 to 705 is separated by the steam inlets 702, 703, 704, and 705 in the longitudinal direction of the mixing tube 700. Are arranged at an angle of 90 degrees in the circumferential direction with each other (or even in the middle), so that mixing is performed sequentially at different positions along the flow direction, and the respective steam inlets Vapors with different conditions coming in from 701, 702, 703, 704, and 705 are mixed well to form a mixed superheated steam with uniform pressure, temperature, etc. be able to.
そしてこの混合は、 混合管 7 0 0をガスタービン高温被冷却部の出口に限リな く近いところに配置し、 各蒸気をガスタービン高温被冷却部の直後で集約して行 うことにより、 混合管 7 0 0を出たあと中圧タービン 3 0 2までの経路の距離を 余裕をもって形成することができるので、 混合過熱蒸気の条件均一化が一層促進 されるとともに、 配管物量を節減しコストダウンに大いに貢献するものである。 このようにして、 本実施の形態によれば、 混合管 7 0 0に入る複数の蒸気の位 置関係を特定することにより、 中圧タービン 3 0 2で回収させる混合過熱蒸気の 条件を均一化し、 中圧タービン 3 0 2の損傷防止や、 配管の割れ発生というよう な不要なトラブルの回避を図り、 中圧タービン 3 0 2の安定化を確保して、 シス テムの安定性、 信頼性を得るとともに、 しかも、 配管物量を節減しコストダウン に大いに貢献するものである。  This mixing is performed by arranging the mixing pipe 700 as close as possible to the outlet of the gas turbine high-temperature cooled part and consolidating each steam immediately after the gas turbine high-temperature cooled part. Since the distance of the path from the mixing pipe 700 to the intermediate pressure turbine 302 can be formed with a margin, the uniformization of the conditions of the mixed superheated steam is further promoted, and the amount of piping material is reduced and the cost is reduced. It greatly contributes to down. In this way, according to the present embodiment, by specifying the positional relationship of a plurality of steams entering mixing pipe 700, the conditions of mixed superheated steam to be recovered by medium-pressure turbine 302 can be made uniform. To prevent damage to the medium-pressure turbine 302 and to avoid unnecessary troubles such as cracks in the piping, and to stabilize the medium-pressure turbine 302 to improve system stability and reliability. In addition to reducing the amount of piping, it greatly contributes to cost reduction.
以上 本発明を図示の実施の形態について説明したが、 本発明はかかる実施の 形態に限定されず、 本発明の範囲内でその具体的構造に種々の変更を加えてよい ことはいうまでもない。 The present invention has been described above with reference to the illustrated embodiments. It is needless to say that the present invention is not limited to the embodiment, and various modifications may be made to the specific structure within the scope of the present invention.

Claims

請求の範囲 The scope of the claims
1 . ガスタービンプラントと蒸気タービンプラントとを組合せ、 ガスタービン からの排熱を利用して蒸気タービン駆動用蒸気を発生させる排熱回収ポイラを備 えるとともに、 前記ガスタービンの高温被冷却部を蒸気で冷却する蒸気冷却シス テムを設け、 この蒸気冷却システムからの過熱蒸気を蒸気タービンに回収させる ように構成したコンバインドサイクル発電プラントにおいて、 1. Combination of a gas turbine plant and a steam turbine plant, equipped with an exhaust heat recovery poirer that generates steam for driving the steam turbine by using exhaust heat from the gas turbine, In a combined cycle power plant configured to provide a steam cooling system for cooling by
前記蒸気冷却システムの出口蒸気とバイパス蒸気とを混合する混合管を設けた コンバインドサイクル発電プラント。  A combined cycle power plant having a mixing pipe for mixing outlet steam and bypass steam of the steam cooling system.
2 . 前記混合管は、 管端部からの蒸気導入口と、 複数の管側部からの蒸気導入 口とを備え、 管側部からの導入口は管長手方向に間隔をおいて配置されるととも に、 隣り合う導入口同士を円周方向に角度をもたせて配置した請求の範囲第 1項 に記載のコンバインドサイクル発電プラント。 2. The mixing pipe has a steam inlet from a pipe end and steam inlets from a plurality of pipe sides, and the inlets from the pipe sides are arranged at intervals in the pipe longitudinal direction. 2. The combined cycle power plant according to claim 1, wherein adjacent inlets are arranged at an angle in a circumferential direction.
PCT/JP1998/000262 1996-07-24 1998-01-23 Combined cycle power plant WO1999037891A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19460396A JP3825091B2 (en) 1996-07-24 1996-07-24 Combined cycle power plant
US09/381,293 US6279311B1 (en) 1998-01-23 1998-01-23 Combined cycle power plant
PCT/JP1998/000262 WO1999037891A1 (en) 1996-07-24 1998-01-23 Combined cycle power plant
CA002284487A CA2284487C (en) 1998-01-23 1998-01-23 Combined cycle power plant
DE19882242T DE19882242B4 (en) 1998-01-23 1998-01-23 Gas and steam turbine power plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP19460396A JP3825091B2 (en) 1996-07-24 1996-07-24 Combined cycle power plant
PCT/JP1998/000262 WO1999037891A1 (en) 1996-07-24 1998-01-23 Combined cycle power plant

Publications (1)

Publication Number Publication Date
WO1999037891A1 true WO1999037891A1 (en) 1999-07-29

Family

ID=26439127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000262 WO1999037891A1 (en) 1996-07-24 1998-01-23 Combined cycle power plant

Country Status (2)

Country Link
JP (1) JP3825091B2 (en)
WO (1) WO1999037891A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH094417A (en) * 1995-04-05 1997-01-07 General Electric Co <Ge> Composite cycle-system
JPH09112215A (en) * 1995-10-16 1997-04-28 Toshiba Corp Gas turbine power plant and method of operating thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH094417A (en) * 1995-04-05 1997-01-07 General Electric Co <Ge> Composite cycle-system
JPH09112215A (en) * 1995-10-16 1997-04-28 Toshiba Corp Gas turbine power plant and method of operating thereof

Also Published As

Publication number Publication date
JPH1037714A (en) 1998-02-10
JP3825091B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
US6499302B1 (en) Method and apparatus for fuel gas heating in combined cycle power plants
US6263662B1 (en) Combined cycle power generation plant and cooling steam supply method thereof
US8505309B2 (en) Systems and methods for improving the efficiency of a combined cycle power plant
EP2573360B1 (en) Fuel heating in combined cycle turbomachinery
CN109653875B (en) Fuel preheating system for combustion turbine engine
JPH094417A (en) Composite cycle-system
US8205451B2 (en) System and assemblies for pre-heating fuel in a combined cycle power plant
JP3564241B2 (en) Combined cycle power plant
MX2013007023A (en) A supercritical heat recovery steam generator reheater and supercritical evaporator arrangement.
JP2003533624A (en) Gas turbine plant and method for increasing the power of the plant
EP3077632B1 (en) Combined cycle system
JP3095745B1 (en) Ultra high temperature power generation system
US20090126338A1 (en) Combined cycle power generating plant
US9404395B2 (en) Selective pressure kettle boiler for rotor air cooling applications
JP4842007B2 (en) Waste heat recovery boiler
JP3586542B2 (en) Multi-shaft combined cycle power plant
WO1999037891A1 (en) Combined cycle power plant
EP3318733B1 (en) Feedwater bypass system for a desuperheater
JP4172568B2 (en) Waste heat recovery boiler
JP4434513B2 (en) Combined cycle power plant
CA2284487C (en) Combined cycle power plant
JP3880746B2 (en) Waste heat recovery device and operation method thereof
JPH1047082A (en) Steam cooling gas turbine
JP3586538B2 (en) Combined cycle power plant
JP2000130107A (en) Combined cycle power plant with gas turbine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA DE US

ENP Entry into the national phase

Ref document number: 2284487

Country of ref document: CA

Ref document number: 2284487

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09381293

Country of ref document: US

RET De translation (de og part 6b)

Ref document number: 19882242

Country of ref document: DE

Date of ref document: 20000316

WWE Wipo information: entry into national phase

Ref document number: 19882242

Country of ref document: DE