JP2008274818A - Gas turbine - Google Patents

Gas turbine Download PDF

Info

Publication number
JP2008274818A
JP2008274818A JP2007117927A JP2007117927A JP2008274818A JP 2008274818 A JP2008274818 A JP 2008274818A JP 2007117927 A JP2007117927 A JP 2007117927A JP 2007117927 A JP2007117927 A JP 2007117927A JP 2008274818 A JP2008274818 A JP 2008274818A
Authority
JP
Japan
Prior art keywords
turbine
stationary blade
gas turbine
cooling
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007117927A
Other languages
Japanese (ja)
Inventor
Hironori Tsukidate
裕紀 槻館
Eitaro Murata
英太郎 村田
Nobuaki Kitsuka
宣明 木塚
Hidetoshi Kuroki
英俊 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007117927A priority Critical patent/JP2008274818A/en
Publication of JP2008274818A publication Critical patent/JP2008274818A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas turbine cooling a gas turbine blade with reduced flow rate of coolant, and improving heat efficiency. <P>SOLUTION: The gas turbine has structure to reduce consumption of cooling air supplied from a compressor 3, by guiding the cooling air that cooled a turbine stator blade 21 disposed to a rear stage side with respect to a working gas flow direction, to a turbine stator blade 20 disposed on a front stage side through a flow passage in a turbine casing to surely cool each turbine blade, and then flowing the cooling air out to a working gas flow passage. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、圧縮機から抽気或いは吐出した空気を冷媒として静翼を冷却する冷却系統を有するガスタービンに関する。   The present invention relates to a gas turbine having a cooling system for cooling a stationary blade using air extracted or discharged from a compressor as a refrigerant.

従来、発電用ガスタービンは、一軸上に圧縮機とタービンが配置され、圧縮機により圧縮された圧縮空気を酸化剤として燃焼器内にて燃料を燃焼させ、高温高圧ガスを生成し、この高温高圧ガスによりタービンを駆動するように形成されている。そして、タービン軸に結合された発電機を駆動することで発電する。   Conventionally, a gas turbine for power generation has a compressor and a turbine arranged on one shaft, and burns fuel in the combustor using compressed air compressed by the compressor as an oxidant to generate high-temperature and high-pressure gas. The turbine is configured to be driven by high-pressure gas. And it produces electric power by driving the generator couple | bonded with the turbine shaft.

投入した燃料に対して、発電量は多い方が望ましく、このためにはガスタービンの性能向上が重要である。ところで、ガスタービン高温燃焼ガスの温度は、作動ガス流路周辺に用いられる材料の使用温度を超えており、現在のガスタービンでは最も高温燃焼ガスに曝されるであろうタービン翼では、タービン翼を中空構造として、その中空部に冷却媒体を供給して翼を冷却する方法が一般的に採用されている。   It is desirable that the amount of power generation is greater than the amount of fuel that has been added. For this purpose, it is important to improve the performance of the gas turbine. By the way, the temperature of the gas turbine high-temperature combustion gas exceeds the operating temperature of the material used around the working gas flow path, and in the turbine blade that would be exposed to the hottest combustion gas in the current gas turbine, As a hollow structure, a method of cooling a blade by supplying a cooling medium to the hollow portion is generally employed.

この冷却方法において重要なことは、ガスタービンにおいては、この冷却媒体となる冷却空気を圧縮機から抽気して用いることが多い。従って、冷却空気の多量の消費はガスタービンの効率を低下させることとなる。   What is important in this cooling method is that, in a gas turbine, cooling air that serves as a cooling medium is often extracted from a compressor and used. Therefore, a large amount of cooling air consumption reduces the efficiency of the gas turbine.

タービン静翼についての従来の冷却構造としては、作動媒体流れ方向に対して上流側にある静翼を冷却した冷却空気を下流側にある静翼内に再度冷却空気を導いて冷却する構造がある。   As a conventional cooling structure for a turbine stationary blade, there is a structure in which cooling air that has cooled the stationary blade on the upstream side in the working medium flow direction is cooled by introducing the cooling air into the stationary blade on the downstream side again. .

特開2002−327627号公報JP 2002-327627 A

ガスタービンの作動媒体の温度は、燃焼器出口が最も高く、作動媒体の流れ方向に対して下流側に進むに従って低下していく。したがって、作動媒体に曝される静翼の温度も作動媒体流れ方向に対し、下流側に進むに従って静翼の温度も低下していく。   The temperature of the working medium of the gas turbine is highest at the combustor outlet, and decreases as it proceeds downstream with respect to the flow direction of the working medium. Therefore, the temperature of the stationary blades exposed to the working medium also decreases as the temperature of the stationary blades moves downstream with respect to the working medium flow direction.

ここで、上述した従来技術のように、作動媒体の流れ方向に対して上流側にある静翼から冷却し、上流側にある静翼を冷却した冷却空気を用いて下流側にある静翼を冷却した場合、上流側にある静翼を冷却した冷却空気の温度は上流側にある静翼を冷却する前の冷却空気の温度よりも高く、必ずしも下流側にある静翼の温度よりも低いとは限らない。   Here, as in the prior art described above, cooling is performed from the stationary blade on the upstream side with respect to the flow direction of the working medium, and the stationary blade on the downstream side is cooled using the cooling air that has cooled the stationary blade on the upstream side. When cooled, the temperature of the cooling air that has cooled the stationary blade on the upstream side is higher than the temperature of the cooling air before cooling the stationary blade on the upstream side, and is necessarily lower than the temperature of the stationary blade on the downstream side. Is not limited.

本発明の目的は、少ない冷媒流量でガスタービン翼を冷却し、かつ熱効率の向上を図ることが可能なガスタービンを提供することにある。   An object of the present invention is to provide a gas turbine capable of cooling gas turbine blades with a small refrigerant flow rate and improving thermal efficiency.

上記目的を達成するために、空気を圧縮する圧縮機と、複数段のタービン段落を有するタービンと、前記圧縮機から抽気或いは吐出した空気を前記タービンの静翼及びタービンホイールを冷却する冷却系統と備えたガスタービンにおいて、前記圧縮機からタービンに供給される冷却空気が、作動ガスの流れ方向に対して後段側に配置された静翼の内部流路、タービンケーシングに設けた流路、前段側に配置された静翼の内部経路の順に流入して、前記前段側の静翼から作動ガス流路に流出するように前記冷却系統を構成したことを特徴とする。   To achieve the above object, a compressor for compressing air, a turbine having a plurality of turbine stages, and a cooling system for cooling the stationary blades and turbine wheels of the turbine with air extracted or discharged from the compressor, In the gas turbine provided, the cooling air supplied from the compressor to the turbine is an internal flow path of a stationary blade disposed on the rear stage side with respect to the flow direction of the working gas, a flow path provided in the turbine casing, the front stage side The cooling system is configured so as to flow in the order of the internal path of the stationary blades arranged in the flow, and to flow out from the preceding stationary blade to the working gas flow path.

本発明によれば、少ない冷媒流量でガスタービン翼を冷却し、かつ熱効率の向上を図ることが可能なガスタービンを提供することができる。   According to the present invention, it is possible to provide a gas turbine capable of cooling gas turbine blades with a small refrigerant flow rate and improving thermal efficiency.

図1は、ガスタービン全体構成を簡略的に表す回路図である。図1に示すように、ガスタービンは、吸気した空気を圧縮して圧縮空気を供給する圧縮機1と、圧縮機1からの圧縮空気を燃料とともに燃焼し高温高圧の燃焼ガスを生じさせる燃焼器2と、燃焼器2からの燃焼ガスによって回転動力を得るタービン3とを備えている。圧縮機1の圧縮機ロータ(図示せず)は、中心軸4によってタービン3のタービンロータ6(後述の図2参照)と同心状に連結されている。得られた回転力は、例えばタービンロータ6に、更に発電機ロータ(図示せず)が同心状に連結され、電気エネルギーに変換される。   FIG. 1 is a circuit diagram schematically showing the entire configuration of a gas turbine. As shown in FIG. 1, a gas turbine includes a compressor 1 that compresses intake air and supplies the compressed air, and a combustor that burns the compressed air from the compressor 1 together with fuel to generate high-temperature and high-pressure combustion gas. 2 and a turbine 3 that obtains rotational power by the combustion gas from the combustor 2. A compressor rotor (not shown) of the compressor 1 is concentrically connected to a turbine rotor 6 (see FIG. 2 described later) of the turbine 3 by a central shaft 4. For example, a generator rotor (not shown) is concentrically connected to the turbine rotor 6 and converted into electric energy.

図2は本発明のガスタービンの実施形態の要部であるタービンの詳細構造を示す断面図である。本実施形態に備えられたタービン3は、ケーシング10と、このケーシング10の内周に配置された静翼20,21と、ケーシング10内側に回転可能に配置されたタービンロータ6とを備えている。   FIG. 2 is a cross-sectional view showing a detailed structure of the turbine which is a main part of the embodiment of the gas turbine of the present invention. The turbine 3 provided in the present embodiment includes a casing 10, stationary blades 20 and 21 disposed on the inner periphery of the casing 10, and a turbine rotor 6 disposed rotatably inside the casing 10. .

ケーシング10は、概略円筒形状の周壁11と、この周壁11の内周部にタービンロータ長手方向に所定の間隔で配置されたシュラウド12,13とを備えている。前記シュラウド13は圧縮空気流路14を有する。タービンロータ6の長手方向に隣り合うシュラウド12,13には、静翼20の外輪22と静翼21の外輪23とが支持されており、静翼外輪22,23、タービンロータ6の長手方向に隣接するシュラウド12,13、静翼20の外周側のケーシング周壁11に固定された隔壁およびケーシング周壁11によって、静翼20外周側にキャビティ15と、静翼21外周側にキャビティ16,17が区画形成されている。ケーシング周壁11には、キャビティ17に接続する単数若しくは複数の空気導入孔18が設けられている。空気導入孔18は、圧縮機1の圧縮空気流路中の所要圧力の抽気段に設けた抽気スリット等に対し、それぞれ独立した配管5を介して接続している。   The casing 10 includes a substantially cylindrical peripheral wall 11, and shrouds 12 and 13 arranged at predetermined intervals in the turbine rotor longitudinal direction on the inner peripheral portion of the peripheral wall 11. The shroud 13 has a compressed air flow path 14. The outer ring 22 of the stationary blade 20 and the outer ring 23 of the stationary blade 21 are supported on the shrouds 12 and 13 adjacent to each other in the longitudinal direction of the turbine rotor 6, and in the longitudinal direction of the stationary blade outer rings 22 and 23 and the turbine rotor 6. The adjacent shrouds 12 and 13, the partition wall fixed to the casing peripheral wall 11 on the outer peripheral side of the stationary blade 20, and the casing peripheral wall 11 define the cavity 15 on the outer peripheral side of the stationary blade 20 and the cavities 16 and 17 on the outer peripheral side of the stationary blade 21. Is formed. The casing peripheral wall 11 is provided with one or a plurality of air introduction holes 18 connected to the cavity 17. The air introduction hole 18 is connected to an extraction slit or the like provided in an extraction stage having a required pressure in the compressed air flow path of the compressor 1 via independent pipes 5.

静翼外輪22には、キャビティ15と静翼内流路24とをつなぐための開口25が設けられている。さらに、静翼外輪23には、キャビティ16と静翼内流路26とをつなぐための開口27と、キャビティ17と静翼内流路26とをつなぐための開口28とが設けられている。また、静翼20,21は周方向に所定の間隔で複数枚配置されていて1段の静翼翼列を構成しており、内周側を連結する静翼内輪29,30を介して支持された静翼ダイヤフラム31,32が備えられている。静翼内輪29には、静翼内流路24と静翼ダイヤフラム31内のキャビティ33とをつなぐ開口35が設けられている。また、静翼内輪30には、静翼内流路26と静翼ダイヤフラム32のキャビティ34とをつなぐ開口36が設けられている。静翼ダイヤフラム31,32の前側にはオリフィスが備えられている。動翼40は、タービンロータ外周に環状に複数配置され、動翼翼列を構成している。各段の動翼翼列の前側に、それぞれ同段落の静翼翼列が配置される。   The stationary blade outer ring 22 is provided with an opening 25 for connecting the cavity 15 and the stationary blade inner flow path 24. Further, the stationary blade outer ring 23 is provided with an opening 27 for connecting the cavity 16 and the flow channel 26 in the stationary blade, and an opening 28 for connecting the cavity 17 and the flow channel 26 in the stationary blade. A plurality of stationary blades 20 and 21 are arranged at a predetermined interval in the circumferential direction to form a single-stage stationary blade cascade, and are supported via stationary blade inner rings 29 and 30 that connect the inner circumferential sides. The stationary vane diaphragms 31 and 32 are provided. The vane inner ring 29 is provided with an opening 35 that connects the vane inner flow path 24 and the cavity 33 in the vane diaphragm 31. Further, the stator blade inner ring 30 is provided with an opening 36 that connects the stator blade inner flow path 26 and the cavity 34 of the stator blade diaphragm 32. An orifice is provided in front of the stationary blade diaphragms 31 and 32. A plurality of rotor blades 40 are annularly arranged on the outer periphery of the turbine rotor to constitute a rotor blade cascade. The stationary blade cascade of the same paragraph is arranged on the front side of the rotor blade cascade of each stage.

上記構成のガスタービンを運転すると、点線矢印50で示したように、例えば圧縮機1から抽気された圧縮空気が、配管5および空気導入孔18を通じて、静翼21外周側のキャビティ17に流入する。キャビティ17内の圧縮空気は、静翼外輪23に設けた開口28を通じて静翼内流路26に流入し、静翼21を冷却する。静翼内流路26に流入した圧縮空気は、静翼内輪30に設けた開口36入口で点線矢印51で示したように点線矢印50から分岐する。点線矢印51で示した圧縮空気は、静翼内輪30に設けた開口36,静翼ダイヤフラム32に設けたキャビティ34およびオリフィス38を通じて、タービンロータ6を冷却した後、作動媒体流路7に合流する。   When the gas turbine having the above configuration is operated, as indicated by a dotted arrow 50, for example, compressed air extracted from the compressor 1 flows into the cavity 17 on the outer peripheral side of the stationary blade 21 through the pipe 5 and the air introduction hole 18. . The compressed air in the cavity 17 flows into the stationary blade inner passage 26 through the opening 28 provided in the stationary blade outer ring 23, and cools the stationary blade 21. The compressed air that has flowed into the stationary blade inner passage 26 branches off from the dotted arrow 50 at the inlet 36 of the opening provided in the stationary blade inner ring 30 as indicated by the dotted arrow 51. The compressed air indicated by the dotted arrow 51 cools the turbine rotor 6 through the opening 36 provided in the stationary blade inner ring 30, the cavity 34 provided in the stationary blade diaphragm 32, and the orifice 38, and then joins the working medium flow path 7. .

ガスタービンにおいて、作動媒体の温度は燃焼器出口での温度が最も高く、作動媒体流れ方向に対し、下流側に進むに従って作動媒体温度は低下していく。したがって、作動媒体に曝される静翼温度も作動媒体流れ方向に対し、下流側に進むに従って静翼の温度も低下していく。従って、圧縮空気が静翼外輪23に設けた開口27を通過する段階で、圧縮空気の温度は最高でも静翼21のメタル温度であり、確実に静翼20のメタル温度より低いため、圧縮空気が静翼外輪23に設けた開口27を通過する段階における圧縮空気を用いて、静翼21より上流段に位置する静翼20を冷却することができる。   In the gas turbine, the temperature of the working medium is the highest at the combustor outlet, and the working medium temperature decreases as it proceeds downstream in the working medium flow direction. Accordingly, the temperature of the stationary blades exposed to the working medium also decreases as the temperature of the stationary blades goes downstream with respect to the working medium flow direction. Therefore, at the stage where the compressed air passes through the opening 27 provided in the stationary blade outer ring 23, the temperature of the compressed air is at most the metal temperature of the stationary blade 21, and is surely lower than the metal temperature of the stationary blade 20. Can cool the stationary blade 20 positioned upstream of the stationary blade 21 by using compressed air at the stage of passing through the opening 27 provided in the stationary blade outer ring 23.

それゆえ、点線矢印52で示した圧縮空気は、静翼外輪23に設けた開口27,キャビティ16,シュラウド13に設けた圧縮空気流路14,静翼20外側にあるキャビティ15および静翼外輪22に設けた開口25を通じて静翼内流路24へ流入し、静翼20を冷却する。点線矢印52で示した圧縮空気は、静翼内輪29に設けた開口35,静翼ダイヤフラム31に設けたキャビティ33およびオリフィス37を通じて、タービンロータ6を冷却した後、作動媒体流路7に合流する。   Therefore, the compressed air indicated by the dotted arrow 52 includes the opening 27 provided in the stationary blade outer ring 23, the cavity 16, the compressed air flow path 14 provided in the shroud 13, the cavity 15 outside the stationary blade 20 and the stationary blade outer ring 22. The air flows into the stationary blade flow path 24 through the opening 25 provided to cool the stationary blade 20. The compressed air indicated by the dotted arrow 52 cools the turbine rotor 6 through the opening 35 provided in the stationary blade inner ring 29, the cavity 33 provided in the stationary blade diaphragm 31, and the orifice 37, and then joins the working medium flow path 7. .

上記実施例において冷却系統について説明したが、例えば静翼20にフイルム冷却を実施するための静翼内流路24と作動媒体流路7を連結する冷却孔がある場合にも、本発明を適用することは有効である。   Although the cooling system has been described in the above embodiment, for example, the present invention is applied to the case where the stationary blade 20 has a cooling hole for connecting the stationary blade flow path 24 and the working medium flow path 7 for performing film cooling. It is effective to do.

ガスタービンのシステム系統図。The system system diagram of a gas turbine. 本発明の一実施例であるガスタービンのロータ長手方向断面図。1 is a longitudinal sectional view of a rotor of a gas turbine that is an embodiment of the present invention.

符号の説明Explanation of symbols

1 圧縮機
2 燃焼器
3 タービン
6 タービンロータ
10 ケーシング
11 周壁
12,13 シュラウド
14 圧縮空気流路
15,16,17,33,34 キャビティ
18 空気導入孔
20,21 静翼
22,23 静翼外輪
24,26 静翼内流路
25,27,28 開口
29,30 静翼内輪
31,32 静翼ダイヤフラム
40 動翼
DESCRIPTION OF SYMBOLS 1 Compressor 2 Combustor 3 Turbine 6 Turbine rotor 10 Casing 11 Circumferential wall 12, 13 Shroud 14 Compressed air flow path 15, 16, 17, 33, 34 Cavity 18 Air introduction hole 20, 21 Stator blade 22, 23 Stator blade outer ring 24 , 26 Inner flow passages 25, 27, 28 Openings 29, 30 Stator blade inner rings 31, 32 Stator blade diaphragm 40 Moving blade

Claims (1)

空気を圧縮する圧縮機と、複数段のタービン段落を有するタービンと、前記圧縮機から抽気或いは吐出した空気を前記タービンの静翼及びタービンホイールを冷却する冷却系統と備えたガスタービンにおいて、
前記圧縮機からタービンに供給される冷却空気が、作動ガスの流れ方向に対して後段側に配置された静翼の内部流路、タービンケーシングに設けた流路、前段側に配置された静翼の内部経路の順に流入して、前記前段側の静翼から作動ガス流路に流出するように前記冷却系統を構成したことを特徴とするガスタービン。
In a gas turbine comprising: a compressor that compresses air; a turbine having a plurality of turbine stages; and a cooling system that cools a stationary blade and a turbine wheel of the turbine with air extracted or discharged from the compressor.
The cooling air supplied from the compressor to the turbine is a flow path of a stationary blade disposed on the rear stage side with respect to the flow direction of the working gas, a flow path provided in the turbine casing, and a stationary blade disposed on the front stage side. A gas turbine characterized in that the cooling system is configured so as to flow in the order of the internal paths and flow out from the preceding stage stationary vane to the working gas flow path.
JP2007117927A 2007-04-27 2007-04-27 Gas turbine Withdrawn JP2008274818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007117927A JP2008274818A (en) 2007-04-27 2007-04-27 Gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007117927A JP2008274818A (en) 2007-04-27 2007-04-27 Gas turbine

Publications (1)

Publication Number Publication Date
JP2008274818A true JP2008274818A (en) 2008-11-13

Family

ID=40053091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007117927A Withdrawn JP2008274818A (en) 2007-04-27 2007-04-27 Gas turbine

Country Status (1)

Country Link
JP (1) JP2008274818A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016194295A (en) * 2015-03-31 2016-11-17 ゼネラル・エレクトリック・カンパニイ System for cooling turbine engine
WO2018209955A1 (en) * 2017-05-16 2018-11-22 格力电器(武汉)有限公司 Stator vane, compressor structure, and compressor
JP2019190284A (en) * 2018-04-18 2019-10-31 三菱重工業株式会社 Gas turbine system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2896906A (en) * 1956-03-26 1959-07-28 William J Durkin Turbine cooling air metering system
JPH0396628A (en) * 1989-07-28 1991-04-22 General Electric Co <Ge> Cooling gas turbine engine by steam
JPH10510897A (en) * 1994-12-12 1998-10-20 ウエスチングハウス・エレクトリック・コーポレイション Heat recovery steam cooled gas turbine
JPH1122488A (en) * 1997-07-04 1999-01-26 Mitsubishi Heavy Ind Ltd Combined cycle power plant
JP2002327627A (en) * 2001-03-30 2002-11-15 Siemens Ag Gas turbine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2896906A (en) * 1956-03-26 1959-07-28 William J Durkin Turbine cooling air metering system
JPH0396628A (en) * 1989-07-28 1991-04-22 General Electric Co <Ge> Cooling gas turbine engine by steam
JPH10510897A (en) * 1994-12-12 1998-10-20 ウエスチングハウス・エレクトリック・コーポレイション Heat recovery steam cooled gas turbine
JPH1122488A (en) * 1997-07-04 1999-01-26 Mitsubishi Heavy Ind Ltd Combined cycle power plant
JP2002327627A (en) * 2001-03-30 2002-11-15 Siemens Ag Gas turbine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016194295A (en) * 2015-03-31 2016-11-17 ゼネラル・エレクトリック・カンパニイ System for cooling turbine engine
US10400627B2 (en) 2015-03-31 2019-09-03 General Electric Company System for cooling a turbine engine
WO2018209955A1 (en) * 2017-05-16 2018-11-22 格力电器(武汉)有限公司 Stator vane, compressor structure, and compressor
US11408440B2 (en) 2017-05-16 2022-08-09 Gree Electric Appliances (Wuhan) Co., Ltd. Stator blade, compressor structure and compressor
JP2019190284A (en) * 2018-04-18 2019-10-31 三菱重工業株式会社 Gas turbine system
JP7096058B2 (en) 2018-04-18 2022-07-05 三菱重工業株式会社 Gas turbine system

Similar Documents

Publication Publication Date Title
US8087249B2 (en) Turbine cooling air from a centrifugal compressor
JP6161897B2 (en) Turbine nozzle compartment cooling system
JP2017101671A (en) Intercooling system and method for gas turbine engine
JP5460294B2 (en) Centrifugal compressor forward thrust and turbine cooling system
JP2017106441A (en) Closed loop cooling method and system with heat pipes for gas turbine engine
EP2692998B1 (en) Turbine exhaust structure and gas turbine
US20130084162A1 (en) Gas Turbine
JP2000257446A (en) Cooling air flow compressor, turbine engine, and method for reducing cooling air flow
JP2008121671A (en) Interstage cooled turbine engine
JP2012107620A (en) Turbomachine vane and method of cooling the same
US9670785B2 (en) Cooling assembly for a gas turbine system
JP2010159760A (en) Rotor cooling circuit
WO2016067978A1 (en) Exhaust apparatus and gas turbine
CN101981275A (en) Gas turbine, intermediate shaft for gas turbine, and method of cooling gas turbine compressor
JPH11343867A (en) Cooling air taking out device in suction side of diffuser blade of radial flow compressor stage of gas turbine
JP2017096270A (en) Gas turbine engine with vane having cooling inlet
JP2012072708A (en) Gas turbine and method for cooling gas turbine
JP2015520327A (en) Centrifugal compressor impeller cooling
JP2017141825A (en) Airfoil for gas turbine engine
US9057275B2 (en) Nozzle diaphragm inducer
JP6580494B2 (en) Exhaust frame
JP2008274818A (en) Gas turbine
US9810151B2 (en) Turbine last stage rotor blade with forced driven cooling air
JP2019056366A (en) Shield for turbine engine airfoil
JP4909113B2 (en) Steam turbine casing structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110606