JP4909113B2 - Steam turbine casing structure - Google Patents

Steam turbine casing structure Download PDF

Info

Publication number
JP4909113B2
JP4909113B2 JP2007036430A JP2007036430A JP4909113B2 JP 4909113 B2 JP4909113 B2 JP 4909113B2 JP 2007036430 A JP2007036430 A JP 2007036430A JP 2007036430 A JP2007036430 A JP 2007036430A JP 4909113 B2 JP4909113 B2 JP 4909113B2
Authority
JP
Japan
Prior art keywords
steam
turbine
partition member
blade ring
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007036430A
Other languages
Japanese (ja)
Other versions
JP2008202419A (en
Inventor
忠士 杉村
英司 齋藤
滋敏 国分
直人 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007036430A priority Critical patent/JP4909113B2/en
Publication of JP2008202419A publication Critical patent/JP2008202419A/en
Application granted granted Critical
Publication of JP4909113B2 publication Critical patent/JP4909113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Description

本発明は、舶用及び陸用の再熱タービンに適用される蒸気タービン車室構造に係り、特に、中圧段のサーマルシールドを改良した蒸気タービン車室構造に関する。   The present invention relates to a steam turbine casing structure applied to marine and land reheat turbines, and more particularly, to a steam turbine casing structure with an improved intermediate-stage thermal shield.

従来、舶用及び陸用(発電プラント等)に広く用いられている蒸気タービンは、外部で発生させた高温の蒸気をタービン(羽根車)に吹きつけて回転させ、推進力や動力を発生させる外燃機関である。このような蒸気タービンには、タービンで膨張する蒸気を取り出して加熱することにより、熱効率を向上させた再熱タービンがある。
Conventionally, steam turbines widely used for marine and land use (power plants, etc.) are used to generate propulsive power and power by blowing high-temperature steam generated externally onto the turbine (impeller) and rotating it. It is a combustion engine. Among such steam turbines, there is a reheat turbine in which thermal efficiency is improved by taking out and heating steam that expands in the turbine.

図6は、従来の蒸気タービン車室構造として、再熱タービンの中圧段付近を示す要部断面図である。
図示の蒸気タービン10は、外車室11の内部に配設されたロータ12が蒸気の供給を受けて回転する再熱タービンである。ロータ12の中圧段には、複数段の中圧段動翼13が取り付けられている。また、外車室11の中圧段内側には、複数段の中圧段静翼14が中圧段動翼13と軸方向へ交互に取り付けられている。従って、中圧蒸気入口15から車室内に供給された再熱蒸気が中圧段動翼13及び中圧段静翼14の間を通過して流れることにより(図中の矢印S参照)、同軸の高圧段(不図示)等と協働してロータ12に回転力を発生させることができる。
FIG. 6 is a cross-sectional view of the main part showing the vicinity of the intermediate pressure stage of the reheat turbine as a conventional steam turbine casing structure.
The illustrated steam turbine 10 is a reheat turbine in which a rotor 12 disposed inside an outer casing 11 rotates upon receiving supply of steam. A plurality of intermediate pressure blades 13 are attached to the intermediate pressure stage of the rotor 12. A plurality of intermediate-pressure stage stationary blades 14 are alternately attached to the intermediate-pressure stage moving blades 13 in the axial direction inside the intermediate pressure stage of the outer casing 11. Accordingly, the reheated steam supplied from the intermediate pressure steam inlet 15 into the passenger compartment flows between the intermediate pressure stage moving blade 13 and the intermediate pressure stage stationary blade 14 (see arrow S in the figure), so that the coaxial high pressure is supplied. A rotational force can be generated in the rotor 12 in cooperation with a stage (not shown) or the like.

上述した蒸気タービン10においては、中圧蒸気入口15に導入した高温の再熱蒸気が外車室11の内面と直接接触するのを防止するため、サーマルシールド(仕切部材)16を設けて中圧蒸気入口15の内部を分割している。なお、図中の符号17は中圧段静翼14を支持する翼環であり、中圧段静翼14の各段間に設けた仕切板ともなる。
上述したサーマルシールド16の類似技術としては、内車室の外周面に沿って隙間を形成するようにサーマルシールド板を設けることにより、内車室の熱応力を小さくして車室の熱変形や熱応力を抑制したものがある。(たとえば、特許文献1参照)
実公平2−48642号公報(図1及び図2参照)
In the steam turbine 10 described above, a thermal shield (partition member) 16 is provided to prevent the high-temperature reheat steam introduced into the intermediate pressure steam inlet 15 from coming into direct contact with the inner surface of the outer casing 11, thereby providing intermediate pressure steam. The inside of the inlet 15 is divided. In addition, the code | symbol 17 in a figure is a blade ring which supports the intermediate pressure stage stationary blade 14, and becomes a partition plate provided between each stage of the intermediate pressure stage stationary blade 14. FIG.
As a similar technique of the thermal shield 16 described above, by providing a thermal shield plate so as to form a gap along the outer peripheral surface of the inner casing, the thermal stress of the inner casing can be reduced by reducing the thermal stress of the inner casing. Some have suppressed thermal stress. (For example, see Patent Document 1)
Japanese Utility Model Publication No. 2-48642 (see FIGS. 1 and 2)

ところで、上述した再熱タービンの蒸気タービン車室構造は、蒸気を有効利用して高効率化するため、再熱蒸気を使用する中圧段のタービンが追加されるとともに、使用する蒸気についても高温高圧化されている。このため、蒸気タービン車室構造は軸方向に伸張して大型化する傾向にあるが、特に、設置スペースの制約を受ける舶用蒸気タービンでは、タービン軸方向のコンパクト化が強く求められている。   By the way, in the steam turbine casing structure of the reheat turbine described above, in order to increase the efficiency by effectively using the steam, an intermediate pressure turbine using the reheat steam is added, and the steam to be used is also high in temperature. High pressure. For this reason, the steam turbine casing structure tends to increase in size in the axial direction, but in particular, marine steam turbines that are restricted in installation space are strongly required to be compact in the axial direction of the turbine.

しかし、図6に示した蒸気タービン車室構造においては、中圧側1段及び2段の仕切部材となる翼環17が外車室11の肉厚に直接埋め込まれた状態で嵌合しているので、外車室11の内壁面が仕切部材17を介して高温の再熱蒸気にさらされた状態となる。このため、従来の蒸気タービン車室構造では、再熱蒸気の熱影響を受けやすく、従って、外車室11のタービン軸方向に温度勾配が発生し、蒸気リークの原因となる車室変形を生じやすい構造となっている。
また、従来の蒸気タービン車室構造は、翼環17と別体のサーマルシールド16を使用しているので、部品点数が多くメンテナンスを困難にしているとの指摘もある。
However, in the steam turbine casing structure shown in FIG. 6, the blade ring 17 serving as the intermediate pressure side first and second stage partitioning members is fitted in a state of being directly embedded in the thickness of the outer casing 11. The inner wall surface of the outer casing 11 is exposed to the high-temperature reheat steam through the partition member 17. For this reason, in the conventional steam turbine casing structure, it is easily affected by the heat of the reheated steam. Therefore, a temperature gradient is generated in the turbine axis direction of the outer casing 11, and the casing is likely to be deformed causing steam leakage. It has a structure.
In addition, it is pointed out that the conventional steam turbine casing structure uses a thermal shield 16 that is separate from the blade ring 17, so that the number of parts is large and maintenance is difficult.

このような背景から、外車室のタービン軸方向に発生する温度勾配を低減することができ、しかも、部品点数の低減によりメンテナンスを容易にした蒸気タービン車室構造の開発が望まれる。
本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、外車室のタービン軸方向に発生する温度勾配低減と、部品点数低減とが可能になる蒸気タービン車室構造を提供することにある。
From such a background, it is desired to develop a steam turbine casing structure that can reduce the temperature gradient generated in the turbine axial direction of the outer casing and that facilitates maintenance by reducing the number of components.
The present invention has been made in view of the above circumstances, and the object of the present invention is to provide a steam turbine casing structure capable of reducing a temperature gradient generated in the turbine axial direction of the outer casing and reducing the number of parts. Is to provide.

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明に係る蒸気タービン構造は、タービン部に供給される蒸気を車室内に導入する蒸気入口部が、前記蒸気と車室内壁面との接触を遮断する仕切部材により分割されている蒸気タービン車室構造において、前記蒸気入口部が、前記タービン部の上流側から少なくとも1段の静翼を支持している翼環と前記仕切部材とを一体化した翼環一体型仕切部材により分割され、該翼環一体型仕切部材に前記車室内壁面の凸部を嵌合させて前記翼環一体型仕切部材との間に形成される分割空間に冷却蒸気として高圧段の排気蒸気を導入し、前記冷却蒸気が前記分割空間を通過して前記タービン部の下流段に供給される蒸気流路を備えていることを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
The steam turbine structure according to the present invention has a steam turbine casing in which a steam inlet for introducing steam supplied to the turbine section into the passenger compartment is divided by a partition member that blocks contact between the steam and the vehicle interior wall surface. In the structure, the steam inlet portion is divided by a blade ring-integrated partition member in which a blade ring supporting at least one stage of stationary blades from the upstream side of the turbine portion and the partition member are integrated, and the blade A convex portion of the wall surface of the vehicle interior is fitted to the ring-integrated partition member, and high-pressure stage exhaust steam is introduced as cooling steam into a divided space formed between the blade ring-integrated partition member and the cooling steam. Is provided with a steam flow path that passes through the divided space and is supplied to the downstream stage of the turbine section .

このような蒸気タービン車室構造によれば、タービン部に供給される蒸気を車室内に導入する蒸気入口部が、タービン部の上流側から少なくとも1段の静翼を支持している翼環と仕切部材とを一体化した翼環一体型仕切部材により分割され、該翼環一体型仕切部材に車室内壁面の凸部を嵌合させた構造としたので、蒸気温度の高いタービン部の上流側では少なくとも1段目に翼環一体型仕切部材が使用される。このため、部品の一体化による部品点数の低減に加えて、蒸気温度の高いタービン部の上流側では、翼環一体型仕切部材が車室内壁面の凸部に嵌合されているので、車室内壁面に高温の蒸気が直接接触しないため熱影響を受けにくくなる。
なお、翼環一体型仕切部材に支持させる静翼は、高温蒸気の流れ方向において上流側となる1段目のみでもよいし、あるいは、1段目から複数段目までとしてよく、特に限定されるものではない。
According to such a steam turbine casing structure, the steam inlet portion for introducing the steam supplied to the turbine section into the casing is a blade ring supporting at least one stage of the stationary blade from the upstream side of the turbine section. It is divided by a blade ring-integrated partition member that is integrated with the partition member, and has a structure in which a convex portion of the wall surface of the vehicle interior is fitted to the blade ring-integrated partition member, so that the upstream side of the turbine section with high steam temperature Then, the blade ring-integrated partition member is used in at least the first stage. For this reason, in addition to the reduction in the number of parts due to the integration of the parts, the blade ring-integrated partition member is fitted to the convex part of the vehicle interior wall surface on the upstream side of the turbine part having a high steam temperature. High-temperature steam is not in direct contact with the wall, making it less susceptible to thermal effects.
The stationary blade supported by the blade ring-integrated partition member may be only the first stage on the upstream side in the flow direction of the high-temperature steam, or may be from the first stage to a plurality of stages, and is particularly limited. It is not a thing.

上述した本発明においては、前記翼環一体型仕切部材と前記車室内壁面との間に形成される分割空間に冷却蒸気を導入することが好ましく、これにより、分割空間に面した車室内壁面が蒸気から受ける熱影響をより一層低減することができる。
この場合、前記冷却蒸気を高圧段の排気蒸気とし、前記分割空間を通過してから前記タービン部に合流させることが好ましく、これにより、蒸気タービンに供給された蒸気を有効利用することができる。なお、分割空間に導入した冷却蒸気は、下記に示すいずれかの流路を通ってタービン部に合流させればよい。
(1)翼環一体型仕切部材の仕切部材部分を貫通する流路
(2)翼環一体型仕切部材の翼環部分を貫通する流路
(3)車室の凸部を貫通する流路
(4)上記(1)〜(3)の組合せ
特に、(2)や(3)のような蒸気流路を設けておくことにより、分割空間を通過した冷却空気の少なくとも一部は、再熱温度蒸気の温度が低下したタービン部の下流段に供給されるため、再熱空気より低温の冷却空気が合流することにより、タービン部を流れる再熱蒸気の温度低下を小さくすることができる。
In the present invention described above, it is preferable to introduce cooling steam into a divided space formed between the blade ring-integrated partition member and the vehicle interior wall surface. The thermal influence received from the steam can be further reduced.
In this case, it is preferable to use the cooling steam as high-pressure stage exhaust steam and merge it with the turbine section after passing through the divided space, so that the steam supplied to the steam turbine can be effectively used. In addition, what is necessary is just to join the cooling steam introduce | transduced into division space to a turbine part through one of the flow paths shown below.
(1) A flow path that penetrates the partition member portion of the blade ring-integrated partition member (2) A flow path that penetrates the blade ring portion of the blade ring-integrated partition member (3) A flow path that penetrates the convex portion of the vehicle compartment ( 4) Combination of (1) to (3) above
In particular, by providing a steam flow path as in (2) or (3), at least a part of the cooling air that has passed through the divided space is in the downstream stage of the turbine section where the temperature of the reheat temperature steam has decreased. Since the cooling air that is cooler than the reheated air joins, the temperature drop of the reheated steam that flows through the turbine section can be reduced.

上述した本発明によれば、少なくとも蒸気入口に近い1段目に翼環一体型仕切部材が使用されるので、蒸気温度の高い蒸気入口部及びタービン部の上流側では、車室内壁面に高温の蒸気が直接接触しないため熱影響を受けにくくなる。このため、車室に作用する熱応力や変形の発生を防止または抑制することができ、車室の局部的な高温化や軸方向に過度の温度勾配が発生することを回避し、車室の蒸気漏れを防止することができるという顕著な効果が得られる。
また、翼環と仕切部材との一体化により、部品点数が減少するので、部品管理や保守点検が容易になる。
According to the present invention described above, since the blade ring-integrated partition member is used at least in the first stage close to the steam inlet, on the upstream side of the steam inlet portion and the turbine portion where the steam temperature is high, Since steam does not come into direct contact, it is less susceptible to heat. For this reason, it is possible to prevent or suppress the occurrence of thermal stress and deformation acting on the passenger compartment, avoiding the local high temperature of the passenger compartment and excessive temperature gradient in the axial direction, A significant effect that steam leakage can be prevented is obtained.
In addition, since the number of parts is reduced by integrating the blade ring and the partition member, parts management and maintenance inspection are facilitated.

以下、本発明に係る蒸気タービン車室構造の一実施形態を図面に基づいて説明する。
図2は、蒸気タービン車室構造の一例として、再熱タービン(蒸気タービン)の高中圧段概略構成を示す断面図である。図示の蒸気タービン20は、外車室21内に高中圧段を一体にしたロータ22が回転自在に支持された状態で収納されている。
外車室21は、主蒸気を導入する主蒸気入口23と、主蒸気入口23より紙面左側となる高圧段を通過した主蒸気が流出する主蒸気出口24と、再熱蒸気を導入する再熱蒸気入口25と、再熱蒸気入口25より紙面右側となる中圧段を通過した再熱蒸気が流出する再熱蒸気出口26とを備えている。
Hereinafter, an embodiment of a steam turbine casing structure according to the present invention will be described with reference to the drawings.
FIG. 2 is a cross-sectional view showing a schematic configuration of a high and intermediate pressure stage of a reheat turbine (steam turbine) as an example of a steam turbine casing structure. The illustrated steam turbine 20 is accommodated in an outer casing 21 in a state in which a rotor 22 integrated with a high and medium pressure stage is rotatably supported.
The outer casing 21 includes a main steam inlet 23 that introduces main steam, a main steam outlet 24 from which main steam that has passed through the high-pressure stage on the left side of the page from the main steam inlet 23, and reheat steam that introduces reheat steam. An inlet 25 and a reheat steam outlet 26 through which the reheat steam that has passed through the intermediate pressure stage on the right side of the paper surface from the reheat steam inlet 25 flow out are provided.

ロータ22の中圧段側には、図1に示すように、中圧段動翼26及び中圧段静翼27が軸方向へ交互に配置されて中圧段のタービン部を形成している。
中圧段動翼26は、ロータ22に固定して取り付けられている。中圧段静翼27は、外車室21の内壁面及び後述する翼環一体型仕切部材30に固定して取り付けられており、この中圧段静翼27を取り付ける部分は翼環と呼ばれている。
As shown in FIG. 1, the intermediate pressure stage moving blades 26 and the intermediate pressure stage stationary blades 27 are alternately arranged in the axial direction on the intermediate pressure stage side of the rotor 22 to form an intermediate pressure stage turbine section.
The intermediate pressure stage moving blade 26 is fixedly attached to the rotor 22. The intermediate pressure stage stationary blade 27 is fixedly attached to the inner wall surface of the outer casing 21 and a blade ring integrated partition member 30 described later, and a portion to which the intermediate pressure stage stationary blade 27 is attached is called a blade ring.

タービン部の上流側には、再熱蒸気入口25に連通する蒸気入口部28となる空間が形成されている。この蒸気入口部28は、ロータ12の外周に形成されたリング状の空間である。すなわち、蒸気入口部28は、ロータ22の外周面と翼環一体型仕切部材30の内周面との間に形成された空間であり、翼環一体型仕切部材30は、外車室21の内周面とロータ22の外周面との間に配設されている環状部材となる。   A space serving as a steam inlet portion 28 communicating with the reheat steam inlet 25 is formed on the upstream side of the turbine portion. The steam inlet portion 28 is a ring-shaped space formed on the outer periphery of the rotor 12. That is, the steam inlet portion 28 is a space formed between the outer peripheral surface of the rotor 22 and the inner peripheral surface of the blade ring-integrated partition member 30, and the blade ring-integrated partition member 30 is located inside the outer casing 21. The annular member is disposed between the peripheral surface and the outer peripheral surface of the rotor 22.

翼環一体型仕切部材30は、タービン部の上流側に位置する中圧段静翼27を少なくとも1段支持する翼環部31と、蒸気入口部28となる空間の外周面を形成する仕切部材32とが一体化された部材である。図示の構成例では、蒸気入口部28に近い上流側の1段目及び2段目について、翼環部31が中圧段静翼27を支持するようになっているが、これに限定されることはない。   The blade ring-integrated partition member 30 includes a blade ring portion 31 that supports at least one intermediate pressure stage stationary blade 27 positioned upstream of the turbine portion, and a partition member 32 that forms an outer peripheral surface of a space serving as the steam inlet portion 28. Is an integrated member. In the illustrated configuration example, the blade ring portion 31 supports the intermediate pressure stage stationary blade 27 for the first stage and the second stage on the upstream side close to the steam inlet portion 28, but the present invention is not limited to this. Absent.

蒸気入口部28の外周側には、翼環一体型仕切部材30の仕切部材32と外車室21の内周面との間に形成された分割空間29が形成されている。すなわち、この分割空間29は、外車室21の内周面とロータ22の外周面との間に形成される空間の半径方向を仕切部材32により分割して形成される外周側の空間である。
翼環一体型仕切部材30は、外車室21の内壁面に設けた凸部21aを外周面の凹部33に嵌合させて取り付けられている。すなわち、翼環一体型仕切部材30は、外車室21の内壁面との間に隙間を形成することにより、接触面積が比較的少ない状態で取り付けられている。
A divided space 29 formed between the partition member 32 of the blade ring integrated partition member 30 and the inner peripheral surface of the outer casing 21 is formed on the outer peripheral side of the steam inlet portion 28. That is, the divided space 29 is a space on the outer peripheral side formed by dividing the radial direction of the space formed between the inner peripheral surface of the outer casing 21 and the outer peripheral surface of the rotor 22 by the partition member 32.
The blade ring-integrated partition member 30 is attached by fitting a convex portion 21 a provided on the inner wall surface of the outer casing 21 to a concave portion 33 on the outer peripheral surface. That is, the blade ring-integrated partition member 30 is attached with a relatively small contact area by forming a gap with the inner wall surface of the outer casing 21.

このように構成されたタービン車室構造によれば、再熱蒸気入口25から蒸気入口部28に導入された高温の再熱蒸気は、図中に矢印Sで示すように、中圧段動翼26及び中圧段静翼27により構成されるタービン部を通過して流れる際、ロータ22に回転力を発生させる。このとき、高温の再熱蒸気は、タービン部を下流側へ流れるにつれて温度が低下するので、蒸気入口部28が最も高温となる。
しかし、最も高温の再熱蒸気が接するのは翼環一体型仕切部材30の内周面であり、この翼環一体型仕切部材30は、実質的に凹部33に嵌合する凸部21aでのみ外車室21に接している。このため、高温の再熱蒸気が直接外車室21と接触することはなく、しかも、外車室21と翼環一体型仕切部材30との接触面積も凹凸部の嵌合部のみと比較的小さく抑えられているので、高温の再熱蒸気から外車室21に熱伝達されて生じる温度上昇を抑制することができる。
According to the turbine casing structure configured as described above, the high-temperature reheat steam introduced from the reheat steam inlet 25 to the steam inlet portion 28 is, as indicated by an arrow S in the drawing, an intermediate pressure stage moving blade. The rotor 22 is caused to generate a rotational force when flowing through the turbine section constituted by the intermediate pressure stage 26 and the intermediate pressure stage stationary vane 27. At this time, since the temperature of the high-temperature reheated steam decreases as it flows through the turbine portion to the downstream side, the steam inlet portion 28 has the highest temperature.
However, the hottest reheat steam contacts the inner peripheral surface of the blade ring-integrated partition member 30, and this blade ring-integrated partition member 30 is substantially only at the convex portion 21 a fitted into the concave portion 33. It is in contact with the outer compartment 21. For this reason, the high-temperature reheat steam does not directly contact the outer casing 21, and the contact area between the outer casing 21 and the blade ring-integrated partition member 30 is kept relatively small only by the fitting portion of the uneven portion. Therefore, it is possible to suppress a temperature rise caused by heat transfer from the high-temperature reheated steam to the outer casing 21.

従って、外車室21においては、タービン軸方向に過度の温度勾配が発生せず、すなわち、タービン軸方向における温度勾配の形成が抑制されるため、外車室21に作用する熱応力が小さくなって車室変形を防止または抑制することができる。換言すれば、蒸気タービン20においては、外車室21に局所的な高温部が形成されることを防止し、タービン軸方向に過度の温度勾配が形成されることを回避できるようになるので、外車室21の蒸気漏れを防止して効率のよい運転を維持することができる。
また、翼環一体型仕切部材30を採用したことにより、従来複数部品であった翼環部31と仕切部材32とが一体化されたので、部品点数の減少により部品管理やメンテナンス作業が容易になる。
Accordingly, in the outer casing 21, an excessive temperature gradient is not generated in the turbine axis direction, that is, the formation of the temperature gradient in the turbine axis direction is suppressed, so that the thermal stress acting on the outer casing 21 is reduced and the vehicle is reduced. Chamber deformation can be prevented or suppressed. In other words, in the steam turbine 20, it is possible to prevent a local high temperature portion from being formed in the outer casing 21, and to avoid an excessive temperature gradient in the turbine axial direction. Efficient operation can be maintained by preventing steam leakage in the chamber 21.
In addition, since the blade ring part 31 and the partition member 32, which have conventionally been a plurality of parts, are integrated by adopting the blade ring integrated partition member 30, parts management and maintenance work can be facilitated by reducing the number of parts. Become.

続いて、上述した蒸気タービン車室構造について、他の実施形態を図3に基づいて説明する。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
この実施形態では、図中に矢印Scで示すように、分割空間29に冷却蒸気を導入している。この冷却蒸気は、再熱蒸気より低温の蒸気であれば使用可能であるが、特に、再熱蒸気より温度が適度に低い高圧段の排気蒸気が好適である。ちなみに、再熱蒸気及び冷却蒸気の温度について一例を示すと、再熱蒸気入口25の再熱蒸気温度が500℃程度であり、冷却蒸気となる高圧段の排気蒸気温度が350℃〜400℃程度となる。
Next, another embodiment of the above-described steam turbine casing structure will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the part similar to embodiment mentioned above, and the detailed description is abbreviate | omitted.
In this embodiment, the cooling steam is introduced into the divided space 29 as indicated by an arrow Sc in the drawing. The cooling steam can be used as long as it has a temperature lower than that of the reheat steam, but in particular, a high-pressure stage exhaust steam having a temperature moderately lower than that of the reheat steam is suitable. By way of example, the temperature of the reheat steam and the cooling steam is shown as follows. The reheat steam temperature at the reheat steam inlet 25 is about 500 ° C., and the exhaust steam temperature of the high-pressure stage that becomes the cooling steam is about 350 ° C. to 400 ° C. It becomes.

このような冷却蒸気を分割空間29に導入すると、外車室21に対する再熱蒸気の熱影響はより一層小さくなる。すなわち、分割空間29に再熱蒸気より低温の冷却蒸気を導入して外車室21を冷却しているので、外車室21に作用する熱応力がより一層小さくなって熱変形を抑制することができる。
ところで、上述した冷却蒸気は、蒸気を有効に利用するため、分割空間29を冷却した後に再熱蒸気と合流してタービン部に供給される。従って、冷却蒸気の温度を低く設定すれば外車室21の冷却能力が高くなる反面、再熱蒸気の温度を下げて蒸気タービン20の運転効率を低下させる原因になるので、再熱タービンの中圧段に対しては、高圧段の排気蒸気を利用することが運転効率上最も好ましい。
When such cooling steam is introduced into the divided space 29, the thermal effect of the reheat steam on the outer casing 21 is further reduced. That is, since the outer casing 21 is cooled by introducing cooling steam at a temperature lower than the reheated steam into the divided space 29, the thermal stress acting on the outer casing 21 is further reduced, and thermal deformation can be suppressed. .
By the way, since the cooling steam described above effectively uses the steam, it cools the divided space 29 and then merges with the reheated steam and is supplied to the turbine section. Accordingly, if the temperature of the cooling steam is set low, the cooling capacity of the outer casing 21 is increased, but the temperature of the reheat steam is lowered and the operation efficiency of the steam turbine 20 is lowered. For the stage, it is most preferable in terms of operating efficiency to use the high-pressure stage exhaust steam.

分割空間29を冷却した冷却蒸気を再熱蒸気と合流させてタービン部に供給する流路としては、図3に示すように、翼環一体型仕切部材30の仕切部材32に穿設した貫通孔34を利用する。この構造では、冷却蒸気と再熱蒸気とが再熱蒸気入口28で合流してタービン部に供給される。   As shown in FIG. 3, a through hole formed in the partition member 32 of the blade ring integrated partition member 30 is used as a flow path for supplying the cooling steam that has cooled the divided space 29 to the reheated steam and supplying it to the turbine section 34 is used. In this structure, the cooling steam and the reheat steam join at the reheat steam inlet 28 and are supplied to the turbine section.

図4は、上述した他の実施形態の第1変形例である。この変形例は、分割空間29を冷却した冷却蒸気をタービン部に供給して再熱蒸気と合流させる流路が異なっている。すなわち、この変形例では、翼環部31を貫通して設けた蒸気流路35を通り、再熱蒸気の温度が低下したタービン部の下流段(たとえば3段目)に供給している。従って、再熱蒸気より低温の冷却蒸気が合流することにより、タービン部を流れる再熱蒸気の温度低下を小さくすることができる。なお、蒸気流路35は、翼環部31の円周方向に適当なピッチで多数設けられている。 FIG. 4 is a first modification of the other embodiment described above. In this modified example, the flow path for supplying the cooling steam that has cooled the divided space 29 to the turbine portion and joining the reheated steam is different. That is, in this modified example, the steam flows through the blade ring portion 31 and is supplied to the downstream stage (for example, the third stage) of the turbine section where the temperature of the reheated steam is lowered. Therefore, by low-temperature cooling steam from the reheat steam merge, it is possible to reduce the temperature drop of the reheat steam flowing in the turbine section. A number of steam flow paths 35 are provided at appropriate pitches in the circumferential direction of the blade ring portion 31.

また、図5に示す第2変形例は、第1変形例と同様に、分割空間29を冷却した冷却蒸気をタービン部に供給して再熱蒸気と合流させる流路が異なっている。すなわち、この変形例では、外車室21の凸部21aを貫通して設けた蒸気流路36を通り、再熱蒸気の温度が低下したタービン部の下流段(たとえば3断面)に供給している。従って、第1変形例と同様に、再熱蒸気より低温の冷却蒸気が合流することにより、タービン部を流れる再熱蒸気の温度低下を小さくすることができる。
なお、上述した貫通孔34、蒸気流路35,36については、いずれか1つを採用してもよいし、あるいは、適宜組み合わせて併用してもよい。
Moreover, the 2nd modification shown in FIG. 5 differs in the flow path which supplies the cooling steam which cooled the division | segmentation space 29 to a turbine part, and merges with a reheat steam similarly to the 1st modification. That is, in this modified example, the steam passes through the steam passage 36 provided through the convex portion 21a of the outer casing 21, and is supplied to the downstream stage (for example, three cross sections) of the turbine section where the temperature of the reheat steam is lowered. . Therefore, as in the first modification, by a low temperature of cooling steam from the reheat steam merge, it is possible to reduce the temperature drop of the reheat steam flowing in the turbine section.
In addition, about the through-hole 34 and the steam flow paths 35 and 36 mentioned above, any one may be employ | adopted or you may use together combining suitably.

このように、本発明の蒸気タービン構造によれば、少なくとも再生蒸気入口28に近い1段目に翼環一体型仕切部材30が使用されるので、蒸気温度の高い再生蒸気入口部28及びタービン部の上流側(たとえば1段目や2段目など)では、外車室21の内壁面に高温の再熱蒸気が直接接触しないため熱影響を受けにくくなる。従って、外車室21に作用する熱応力や変形の発生を防止または抑制することができ、外車室21の局部的な高温化や軸方向に過度の温度勾配が発生することを回避し、外車室21の蒸気漏れを防止することができる。
なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
As described above, according to the steam turbine structure of the present invention, the blade ring-integrated partition member 30 is used at least in the first stage close to the regeneration steam inlet 28. Therefore, the regeneration steam inlet section 28 and the turbine section having a high steam temperature. On the upstream side (for example, the first stage, the second stage, etc.), the high-temperature reheated steam does not directly contact the inner wall surface of the outer casing 21, so that it is not easily affected by heat. Therefore, it is possible to prevent or suppress the occurrence of thermal stress and deformation acting on the outer casing 21, avoid the local high temperature of the outer casing 21 and excessive temperature gradient in the axial direction, and the outer casing. 21 steam leakage can be prevented.
In addition, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary of this invention, it can change suitably.

本発明に係る蒸気タービン車室構造の一実施形態として、中圧段の要部を示す断面図である。It is sectional drawing which shows the principal part of an intermediate pressure stage as one Embodiment of the steam turbine casing structure which concerns on this invention. 蒸気タービン車室構造の一例として、再熱タービンの高中圧段概略構成を示す断面図である。1 is a cross-sectional view showing a schematic configuration of a high and intermediate pressure stage of a reheat turbine as an example of a steam turbine casing structure. 本発明に係る蒸気タービン車室構造の他の実施形態として、中圧段の要部を示す断面図である。It is sectional drawing which shows the principal part of an intermediate pressure stage as other embodiment of the steam turbine casing structure which concerns on this invention. 図3に示した他の実施形態の第1変形例を示す断面図である。It is sectional drawing which shows the 1st modification of other embodiment shown in FIG. 図3に示した他の実施形態の第2変形例を示す断面図である。It is sectional drawing which shows the 2nd modification of other embodiment shown in FIG. 従来の上記タービン車室構造を示す要部の断面図である。It is sectional drawing of the principal part which shows the said conventional turbine casing structure.

符号の説明Explanation of symbols

20 蒸気タービン
21 外車室
21a 凸部
22 ロータ
26 中圧段動翼
27 中圧段静翼
28 蒸気入口部
29 分割空間
30 翼環一体型仕切部材
31 翼環部
32 仕切部材
33 凹部
34 貫通孔
35,36 蒸気流路
DESCRIPTION OF SYMBOLS 20 Steam turbine 21 Outer casing 21a Convex part 22 Rotor 26 Medium pressure stage moving blade 27 Medium pressure stage stationary blade 28 Steam inlet part 29 Divided space 30 Blade ring integral partition member 31 Blade ring part 32 Partition member 33 Concave part 34 Through hole 35, 36 Steam flow path

Claims (1)

タービン部に供給される蒸気を車室内に導入する蒸気入口部が、前記蒸気と車室内壁面との接触を遮断する仕切部材により分割されている蒸気タービン車室構造において、
前記蒸気入口部が、前記タービン部の上流側から少なくとも1段の静翼を支持している翼環と前記仕切部材とを一体化した翼環一体型仕切部材により分割され、該翼環一体型仕切部材に前記車室内壁面の凸部を嵌合させて前記翼環一体型仕切部材との間に形成される分割空間に冷却蒸気として高圧段の排気蒸気を導入し、
前記冷却蒸気が前記分割空間を通過して前記タービン部の下流段に供給される蒸気流路を備えていることを特徴とする蒸気タービン車室構造。
In the steam turbine casing structure in which a steam inlet portion for introducing steam supplied to the turbine section into the vehicle compartment is divided by a partition member that blocks contact between the steam and the vehicle interior wall surface,
The steam inlet portion is divided by a blade ring integrated partition member in which a blade ring supporting at least one stage of stationary vanes from the upstream side of the turbine portion and the partition member are integrated, and the blade ring integrated type Injecting high-pressure stage exhaust steam as cooling steam into the partition space formed between the partition member and the blade ring-integrated partition member by fitting the convex portion of the vehicle interior wall surface to the partition member,
A steam turbine casing structure comprising a steam flow path through which the cooling steam passes through the divided space and is supplied to a downstream stage of the turbine section .
JP2007036430A 2007-02-16 2007-02-16 Steam turbine casing structure Active JP4909113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007036430A JP4909113B2 (en) 2007-02-16 2007-02-16 Steam turbine casing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007036430A JP4909113B2 (en) 2007-02-16 2007-02-16 Steam turbine casing structure

Publications (2)

Publication Number Publication Date
JP2008202419A JP2008202419A (en) 2008-09-04
JP4909113B2 true JP4909113B2 (en) 2012-04-04

Family

ID=39780197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007036430A Active JP4909113B2 (en) 2007-02-16 2007-02-16 Steam turbine casing structure

Country Status (1)

Country Link
JP (1) JP4909113B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2333245A1 (en) * 2009-12-01 2011-06-15 Siemens Aktiengesellschaft Rotor assembly for a reheat steam turbine
JP5747403B2 (en) * 2010-12-08 2015-07-15 三菱重工業株式会社 Turbo rotating machine and operation method thereof
US9194246B2 (en) 2011-09-23 2015-11-24 General Electric Company Steam turbine LP casing cylindrical struts between stages
JP5968260B2 (en) * 2013-04-26 2016-08-10 三菱重工業株式会社 Marine steam turbine and cooling method for turbine casing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0641723B2 (en) * 1984-06-20 1994-06-01 株式会社日立製作所 Steam turbine
JPH0749002A (en) * 1993-08-04 1995-02-21 Mitsubishi Heavy Ind Ltd Steam turbine high pressure casing

Also Published As

Publication number Publication date
JP2008202419A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
CN106014493B (en) System for cooling a turbine engine
US9080458B2 (en) Blade outer air seal with multi impingement plate assembly
US8181443B2 (en) Heat exchanger to cool turbine air cooling flow
US9988934B2 (en) Gas turbine engines including channel-cooled hooks for retaining a part relative to an engine casing structure
US20130078080A1 (en) Air system architecture for a mid-turbine frame module
US8348608B2 (en) Turbomachine rotor cooling
JP2017025911A (en) Shroud assembly for gas turbine engine
JP2008508471A (en) Steam turbine and operation method thereof
JP6223111B2 (en) gas turbine
US10053991B2 (en) Gas turbine engine component having platform cooling channel
JP5692966B2 (en) Method and apparatus for cooling rotating parts inside a steam turbine
EP2653659B1 (en) Cooling assembly for a gas turbine system
JP4909113B2 (en) Steam turbine casing structure
JP2012072708A (en) Gas turbine and method for cooling gas turbine
WO2017158637A1 (en) Turbine and turbine stator blade
JP6496534B2 (en) Steam turbine and method for assembling the same
JP4867203B2 (en) gas turbine
US10683760B2 (en) Gas turbine engine component platform cooling
US9920652B2 (en) Gas turbine engine having section with thermally isolated area
JP2009013837A (en) Gas turbine facility
EP3246522B1 (en) Internal cooling of stator vanes
US10634055B2 (en) Gas turbine engine having section with thermally isolated area
RU2352788C1 (en) High-temperature gas turbine
US20210262361A1 (en) Turbine
JP2004316542A (en) Turbine nozzle cooling structure for gas turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4909113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3