JP2009013837A - Gas turbine facility - Google Patents

Gas turbine facility Download PDF

Info

Publication number
JP2009013837A
JP2009013837A JP2007175276A JP2007175276A JP2009013837A JP 2009013837 A JP2009013837 A JP 2009013837A JP 2007175276 A JP2007175276 A JP 2007175276A JP 2007175276 A JP2007175276 A JP 2007175276A JP 2009013837 A JP2009013837 A JP 2009013837A
Authority
JP
Japan
Prior art keywords
gas turbine
pressure gas
low
turbine
cooling medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007175276A
Other languages
Japanese (ja)
Inventor
Hidetoshi Kuroki
英俊 黒木
Eitaro Murata
英太郎 村田
Nobuaki Kitsuka
宜明 木塚
Hironori Tsukidate
裕紀 槻館
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007175276A priority Critical patent/JP2009013837A/en
Publication of JP2009013837A publication Critical patent/JP2009013837A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas turbine facility with which designing of the gas turbine facility and disassembling/assembling work can be easily performed. <P>SOLUTION: In the gas turbine facility, a high pressure gas turbine and a low pressure gas turbine are axially arranged inside turbine casings 5, 5A, 5B, and a working gas flow passage 13 for leading working gas from the high pressure side gas turbine to the low pressure gas turbine is formed between the high pressure gas turbine and the low pressure gas turbine. The working gas flow passage 13 is supported by a component of an initial stage stationary blade 6 of the low pressure gas turbine. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は高圧ガスタービンと低圧ガスタービンを軸方向に配列したガスタービン設備に係り、特に、軸方向に隣接する高圧ガスタービンと低圧ガスタービンとの間に、高圧ガスタービンから低圧ガスタービンへ作動ガスを導く作動ガス流路を備えたガスタービン設備に関する。   The present invention relates to a gas turbine facility in which a high-pressure gas turbine and a low-pressure gas turbine are arranged in an axial direction, and in particular, operates from a high-pressure gas turbine to a low-pressure gas turbine between an axially adjacent high-pressure gas turbine and low-pressure gas turbine. The present invention relates to a gas turbine facility having a working gas flow path for guiding gas.

一般に、高圧ガスタービンと低圧ガスタービンを軸方向に配列したガスタービン設備は、特許文献1に示すように、回転部分を軸支する軸受が高圧ガスタービンと低圧ガスタービンとに夫々設置されているので、隣接部分に比較的大きな軸方向の空間が存在する。そして、このような空間を経由して作動ガスを高圧ガスタービンから低圧ガスタービンへ導くために、特許文献2に示すように、高圧ガスタービンと低圧ガスタービンとの間に作動ガスを導く作動ガス流路(中間ダクト)を設けている。   In general, in a gas turbine facility in which a high-pressure gas turbine and a low-pressure gas turbine are arranged in the axial direction, as shown in Patent Document 1, bearings that support a rotating portion are installed in a high-pressure gas turbine and a low-pressure gas turbine, respectively. Therefore, there is a relatively large axial space in the adjacent portion. In order to guide the working gas from the high-pressure gas turbine to the low-pressure gas turbine through such a space, as shown in Patent Document 2, the working gas guides the working gas between the high-pressure gas turbine and the low-pressure gas turbine. A flow path (intermediate duct) is provided.

特開2004−263623号公報(図1)JP 2004-263623 A (FIG. 1) 特開2005−9440号公報(図5)Japanese Patent Laying-Open No. 2005-9440 (FIG. 5)

上記特許文献2に示すガスタービン設備は、高圧ガスタービンと低圧ガスタービンとの間に独立して作動ガス流路(中間ダクト)を設けているために、組立や保守点検時の分解を考慮して作動ガス流路に対向するタービンケーシングを軸方向に分割している。その結果、タービンケーシング及びこれに支持された独立した作動ガス流路の存在により部品数が増加し、ガスタービン設備の設計や分解組立作業を煩雑にしていた。   Since the gas turbine equipment shown in Patent Document 2 has a working gas flow path (intermediate duct) provided independently between the high-pressure gas turbine and the low-pressure gas turbine, it is necessary to consider disassembly during assembly and maintenance inspection. Thus, the turbine casing facing the working gas flow path is divided in the axial direction. As a result, the number of parts increases due to the presence of the turbine casing and the independent working gas flow path supported by the turbine casing, which complicates the design and disassembly and assembly work of the gas turbine equipment.

本発明の目的は、ガスタービン設備の設計や分解組立作業が容易に行えるガスタービン設備を提供することにある。   An object of the present invention is to provide a gas turbine facility that can easily design and disassemble / assemble the gas turbine facility.

本発明は上記目的を達成するために、タービンケーシング内に高圧ガスタービンと低圧ガスタービンとを軸方向に配列すると共に、高圧ガスタービンと低圧ガスタービンとの間に高圧ガスタービン側から低圧ガスタービン側へ作動ガスを導く作動ガス流路を形成したガスタービン設備において、前記作動ガス流路を低圧ガスタービンの初段静翼の構成部材に支持させたのである。   In order to achieve the above object, the present invention arranges a high-pressure gas turbine and a low-pressure gas turbine in a turbine casing in an axial direction, and a low-pressure gas turbine from the high-pressure gas turbine side between the high-pressure gas turbine and the low-pressure gas turbine. In the gas turbine equipment in which the working gas flow path for guiding the working gas to the side is formed, the working gas flow path is supported by the constituent member of the first stage stationary blade of the low pressure gas turbine.

このように、作動ガス流路を低圧ガスタービンの初段静翼の構成部材に支持させることで、作動ガス流路を支持する専用のタービンケーシングは不要となり、その結果、部品数を低減できるので、ガスタービン設備の設計や分解組立作業を容易に行うことができるのである。   In this way, by supporting the working gas flow path on the component of the first stage stationary blade of the low-pressure gas turbine, a dedicated turbine casing that supports the working gas flow path becomes unnecessary, and as a result, the number of parts can be reduced. It is possible to easily design and disassemble / assemble the gas turbine equipment.

以下本発明によるガスタービン設備の第1の実施の形態を図1及び図2に基づいて説明する。   A gas turbine facility according to a first embodiment of the present invention will be described below with reference to FIGS.

ガスタービン設備は、高圧ガスタービンのロータ1と低圧ガスタービンのロータ2とが軸方向に隣接して配置され、図示しない軸受によって夫々独立して回転自在に軸支されている。ロータ1には高圧ガスタービンの最下流側に位置する終段動翼3が取付けられ、ロータ2には低圧ガスタービンの最上流側に位置する初段動翼4が取付けられている。そして、これら終段動翼3及び初段動翼4を含む高圧ガスタービンと低圧ガスタービンは、水平に上下方向に分割できるタービンケーシング5で覆われている。   In the gas turbine equipment, a rotor 1 of a high-pressure gas turbine and a rotor 2 of a low-pressure gas turbine are arranged adjacent to each other in the axial direction, and are independently rotatably supported by bearings (not shown). The rotor 1 is attached with a final stage moving blade 3 positioned on the most downstream side of the high pressure gas turbine, and the rotor 2 is mounted with a first stage moving blade 4 positioned on the most upstream side of the low pressure gas turbine. The high-pressure gas turbine and the low-pressure gas turbine including the final stage moving blade 3 and the first stage moving blade 4 are covered with a turbine casing 5 that can be divided horizontally in the vertical direction.

高圧ガスタービンの終段動翼3から流出する高温の燃焼ガスGを低圧ガスタービンの初段動翼4に最適な角度で導入するために、低圧ガスタービンの初段静翼6を初段動翼4の直前に配置している。この初段静翼6は、周方向に所定間隔で複数設置されており、夫々の外径側には外輪7が、内径側には内輪8が備えられている。これら外輪7と内輪8とは、初段静翼6に対して高圧ガスタービン側に延在されており、前記ロータ1,2と同心的となるように形成されている。外輪7は軸方向の両端を、終段動翼3及び初段動翼4に対向するタービンケーシング5の内周側に設けられたケーシングシュラウド9,10に、係合溝とフックなどの係合機構を介して保持されている。したがって、外輪7は、結果的に、タービンケーシング5へ保持されることになり、この外輪7のタービンケーシング5への保持により、初段静翼6を介して内輪8もタービンケーシング5に支持されることになる。   In order to introduce the high-temperature combustion gas G flowing out from the final stage moving blade 3 of the high pressure gas turbine into the first stage moving blade 4 of the low pressure gas turbine at an optimum angle, the first stage stationary blade 6 of the low pressure gas turbine is Arranged just before. A plurality of first stage stationary blades 6 are installed at predetermined intervals in the circumferential direction, and an outer ring 7 is provided on the outer diameter side and an inner ring 8 is provided on the inner diameter side. The outer ring 7 and the inner ring 8 extend to the high-pressure gas turbine side with respect to the first stage stationary blade 6 and are formed to be concentric with the rotors 1 and 2. The outer ring 7 has an engagement mechanism such as an engagement groove and a hook provided on casing shrouds 9 and 10 provided at both ends in the axial direction on the inner peripheral side of the turbine casing 5 facing the final stage moving blade 3 and the first stage moving blade 4. Is held through. Therefore, as a result, the outer ring 7 is held in the turbine casing 5, and the inner ring 8 is also supported by the turbine casing 5 via the first stage stationary blade 6 by holding the outer ring 7 in the turbine casing 5. It will be.

また、内輪8の内径側にはダイアフラム11が係合溝とフックなどの係合機構によって取付けられており、このダイアフラム11の内径側には隔壁12が設けられて高圧ガスタービンと低圧ガスタービンとを仕切っている。したがって、高圧ガスタービンからの燃焼ガスGは、終段動翼3を出た後、初段静翼6の外輪7及び内輪8で構成された作動ガス流路13を通って低圧ガスタービンの初段静翼6に至り、初段動翼4に導入される。   Further, a diaphragm 11 is attached to the inner diameter side of the inner ring 8 by an engagement mechanism such as an engagement groove and a hook, and a partition wall 12 is provided on the inner diameter side of the diaphragm 11 so that a high pressure gas turbine and a low pressure gas turbine are provided. Partitioning. Accordingly, the combustion gas G from the high pressure gas turbine exits the final stage moving blade 3 and then passes through the working gas flow path 13 constituted by the outer ring 7 and the inner ring 8 of the first stage stationary blade 6, so The blade 6 is reached and introduced into the first stage blade 4.

尚、以上の説明は、外輪7と内輪8とで作動ガス流路13を形成したものであるが、作動ガス流路13を同心的な外周壁と内周壁とで構成し、これら外周壁と内周壁とを低圧ガスタービン側に延在させて初段静翼6の外径部と内径部とに連結し、初段静翼6の外輪7と内輪8とを兼用するようにしても良い。云い代えれば、作動ガス流路13を同心的な外周壁と内周壁とで構成し、これを初段静翼6自体あるいは初段静翼6の構成部材である外輪7と内輪8に連結してもよく、初段静翼6の外輪7と内輪8を延在させて作動ガス流路13の外周壁と内周壁としてもよい。   In the above description, the working gas flow path 13 is formed by the outer ring 7 and the inner ring 8, but the working gas flow path 13 is composed of a concentric outer peripheral wall and an inner peripheral wall. The inner peripheral wall may be extended to the low-pressure gas turbine side and connected to the outer diameter portion and the inner diameter portion of the first stage stationary blade 6, and the outer ring 7 and the inner ring 8 of the first stage stationary blade 6 may be combined. In other words, the working gas flow path 13 is constituted by concentric outer peripheral walls and inner peripheral walls, which are connected to the first stage stationary blade 6 itself or the outer ring 7 and the inner ring 8 which are constituent members of the first stage stationary blade 6. Alternatively, the outer ring 7 and the inner ring 8 of the first stage stationary blade 6 may be extended to form the outer peripheral wall and inner peripheral wall of the working gas flow path 13.

ところで、前記外輪7と内輪8とは、初段静翼6を含めて周方向に複数に分割されたセグメント構造となっている。そして、一例として内輪8を見ると、図2に示すように、隣接する内輪セグメント8A,8Bの対向面には夫々シール溝8Gが形成され、これらシール溝8Gに板状のシールキー8Sを嵌着して隙間を塞いでいる。   By the way, the outer ring 7 and the inner ring 8 have a segment structure divided into a plurality of parts in the circumferential direction including the first stage stationary blade 6. When the inner ring 8 is viewed as an example, as shown in FIG. 2, seal grooves 8G are formed on the opposing surfaces of the adjacent inner ring segments 8A and 8B, and a plate-like seal key 8S is fitted into these seal grooves 8G. I wear it to close the gap.

また、前記内輪8の上流側は、前記終段動翼3の直まで延在させて接触しないように微小隙間14Aを設け、下流側は、前記初段動翼4の直前まで延在させて接触しないように微小隙間14Bを設けている。   Further, a minute gap 14A is provided on the upstream side of the inner ring 8 so as not to be in contact with the final stage moving blade 3 and the downstream side is extended to a position just before the first stage moving blade 4 to be in contact. A small gap 14B is provided so as not to occur.

上記構成において、高圧ガスタービンの終段動翼3から流出する燃焼ガスGは、初段静翼6の構成部材である外輪7と内輪8とで構成された作動ガス流路13に案内され、手段静翼6で整流された後、低圧ガスタービンの初段動翼4に導入される。   In the above configuration, the combustion gas G flowing out from the final stage moving blade 3 of the high pressure gas turbine is guided to the working gas flow path 13 constituted by the outer ring 7 and the inner ring 8 which are constituent members of the first stage stationary blade 6, and means. After being rectified by the stationary blade 6, it is introduced into the first stage blade 4 of the low-pressure gas turbine.

この燃焼ガスGの作動ガス流路13を通過する際、外輪7がタービンケーシング5側への燃焼ガスGの漏洩を抑制しているので、高温の燃焼ガスGがタービンケーシング5に至ることがない。その結果、燃焼ガスGの温度低下を防止できるので熱効率の低下を防止できると共に、タービンケーシング5の異常過熱を防止しできるのでタービンケーシング5の熱劣化による寿命の低下を防止できる。   When the combustion gas G passes through the working gas flow path 13, the outer ring 7 suppresses the leakage of the combustion gas G toward the turbine casing 5, so that the high-temperature combustion gas G does not reach the turbine casing 5. . As a result, the temperature drop of the combustion gas G can be prevented, so that the heat efficiency can be prevented from being lowered, and the turbine casing 5 can be prevented from being overheated.

また、作動ガス流路13は、初段静翼6と一体構造になっており、さらにセグメント構造であるので、タービンケーシング5の分割面にセグメント分割面を一致させることで、分解に際しては、タービンケーシング5の分解と同時に分解することができる。そして、タービンケーシング5の分解後に、セグメント構造の初段静翼6を含む外輪7と内輪8の分解を行うことで、分解作業を容易に行うことができる。したがって、組立作業も分解作業と逆の順序で行えばよく、容易に行うことができる。   In addition, since the working gas flow path 13 has an integral structure with the first stage stationary blade 6 and has a segment structure, the segment dividing surface is made to coincide with the dividing surface of the turbine casing 5, so that the turbine casing can be used for disassembly. 5 can be decomposed simultaneously. Then, after the turbine casing 5 is disassembled, the disassembly work can be easily performed by disassembling the outer ring 7 and the inner ring 8 including the first stage stationary blade 6 having the segment structure. Therefore, the assembling work may be performed in the reverse order of the disassembling work and can be easily performed.

このほか、本実施の形態は上述のように、初段静翼6の構成部材である外輪7と内輪8とで作動ガス流路13を構成したので、作動ガス流路13を支持するために専用のタービンケーシングを追加設置する必要はなくなり、その結果、部品数の低減を行うことができ、ガスタービン設備の設計や分解組立作業を容易に行うことができるのである。   In addition, since the working gas flow path 13 is configured by the outer ring 7 and the inner ring 8 which are constituent members of the first stage stationary blade 6 as described above, the present embodiment is dedicated to support the working gas flow path 13. This eliminates the need for additional installation of the turbine casing. As a result, the number of parts can be reduced, and the design and disassembly / assembly of the gas turbine equipment can be easily performed.

また、作動ガス流路13を初段静翼の構成部材である外輪7と内輪8で構成したので、作動ガス流路13を別個に設置していた従来に較べて作動ガスGが流れる流路全体の隙間や段差が少なくなり、作動ガスGの乱流を低減することができ、高い空力性能を得ることができる。   Further, since the working gas flow path 13 is constituted by the outer ring 7 and the inner ring 8 which are constituent members of the first stage stationary blade, the entire flow path through which the working gas G flows compared to the conventional case where the working gas flow path 13 is separately provided. Thus, the turbulent flow of the working gas G can be reduced, and high aerodynamic performance can be obtained.

さらに、作動ガス流路13を構成する外輪7と内輪8とがセグメント構造となっているので、仮に、作動ガス流路13が終段動翼3の直後から初段動翼4の直前までに流路径が大きく変化するような場合でも、環状に一体形成された外輪7及び内輪8に較べて、本実施の形態においてはセグメント分割された湾曲した周壁片の曲率と周方向の幅を変えるだけで容易に対処することができ、加工作業を容易に行うことができる。加えて、周壁片を集合させて外輪7及び内輪8を形成しているので、環状に一体形成された外輪7及び内輪8に較べて、周壁片の肉厚を厚くでき、結果的に外輪7及び内輪8の肉厚を厚くすることが可能となる。そのため、高温酸化、高温腐食、エロージョンによる減肉による外輪7及び内輪8の寿命を環状に一体形成された外輪7及び内輪8に較べて延長することができる。   Furthermore, since the outer ring 7 and the inner ring 8 constituting the working gas flow path 13 have a segment structure, it is assumed that the working gas flow path 13 flows immediately after the last stage blade 3 and immediately before the first stage blade 4. Even in the case where the path diameter changes greatly, in this embodiment, only the curvature of the segmented curved peripheral wall piece and the width in the circumferential direction are changed as compared with the outer ring 7 and the inner ring 8 integrally formed in an annular shape. It can be easily dealt with and the machining operation can be easily performed. In addition, since the outer ring 7 and the inner ring 8 are formed by gathering the peripheral wall pieces, the thickness of the peripheral wall piece can be increased compared to the outer ring 7 and the inner ring 8 that are integrally formed in an annular shape. And the thickness of the inner ring 8 can be increased. Therefore, the life of the outer ring 7 and the inner ring 8 due to high temperature oxidation, high temperature corrosion, and thinning due to erosion can be extended as compared with the outer ring 7 and the inner ring 8 integrally formed in an annular shape.

さらにまた、外輪7及び内輪8を、初段静翼6と同じ高負荷、高応力に耐える高温強度に優れた材料で構成することで、信頼性が高く長寿命の作動ガス流路13を得ることができる。   Furthermore, the outer ring 7 and the inner ring 8 are made of the same material as the first stage stationary blade 6 that has the same high load and high stress as the high temperature strength, thereby obtaining a highly reliable working gas channel 13 having a long life. Can do.

次に、本発明によるガスタービン設備の第2の実施の形態を図3に基づいて説明する。尚、図1及び図2と同符号は同一構成部品を示すので、再度の詳細な説明は省略する。   Next, a second embodiment of the gas turbine equipment according to the present invention will be described with reference to FIG. The same reference numerals as those in FIGS. 1 and 2 indicate the same components, and detailed description thereof will not be repeated.

第1の実施の形態と異なる構成は、タービンケーシングを高圧側タービンケーシング5Aと低圧側タービンケーシング5Bとに分割した点である。その分割位置は、終段動翼3の直後に対向する位置で、その位置の高圧側タービンケーシング5Aと低圧側タービンケーシング5Bとにフランジ5FA,5FBを設けてボルトナットなどの締結手段で締結したのである。   The configuration different from the first embodiment is that the turbine casing is divided into a high pressure side turbine casing 5A and a low pressure side turbine casing 5B. The division position is a position facing immediately after the final stage rotor blade 3, and flanges 5FA and 5FB are provided on the high pressure side turbine casing 5A and the low pressure side turbine casing 5B at that position and fastened by fastening means such as bolts and nuts. It is.

そして、低圧側タービンケーシング5Bのフランジ5FBを形成した内径側には、ケーシングシュラウド15を第1の実施の形態と同じような手段で設け、このケーシングシュラウド15とケーシングシュラウド10とに外輪7を第1の実施の形態と同じように取付けたのである。   A casing shroud 15 is provided on the inner diameter side where the flange 5FB of the low-pressure side turbine casing 5B is formed by the same means as in the first embodiment, and the outer ring 7 is attached to the casing shroud 15 and the casing shroud 10 in the first position. It was attached in the same manner as in the first embodiment.

このように構成することで、外輪7は内輪8よりも軸方向の長さが短くなるが、ケーシングシュラウド15の内周面15Sと外輪7の内周面とを段差なく連続することで、第1の実施の形態とほぼ同じ大きさの段差のない作動ガス流路13が形成される。   By configuring in this way, the outer ring 7 has a shorter axial length than the inner ring 8, but the inner peripheral surface 15S of the casing shroud 15 and the inner peripheral surface of the outer ring 7 are continuous without any step, so that the first A working gas flow path 13 having substantially the same size as that of the first embodiment and having no step is formed.

このように構成することで、第1の実施の形態と同じ効果を奏する外、高圧側タービンケーシング5Aのみ、あるいは低圧側タービンケーシング5Bのみを夫々単独で分解することができ、保守点検性を向上させることができる。   By configuring in this way, the same effects as those of the first embodiment can be obtained, and only the high-pressure turbine casing 5A or only the low-pressure turbine casing 5B can be disassembled independently, improving the maintenance and inspection performance. Can be made.

ただ、内輪8の終段動翼3に対向する端部8Eを、高圧側タービンケーシング5Aと低圧側タービンケーシング5Bとの分割面よりも僅かに下流側に位置させて、夫々単独で分解する際に、内輪8の端部8Eが高圧ガスタービンの構成部材に接触することを避けることが必要である。   However, when the end portion 8E of the inner ring 8 facing the final stage moving blade 3 is positioned slightly downstream from the dividing surface of the high-pressure turbine casing 5A and the low-pressure turbine casing 5B, respectively, In addition, it is necessary to avoid the end 8E of the inner ring 8 from coming into contact with the components of the high-pressure gas turbine.

図4は、図1の第1の実施の形態に冷却構造を付加した第3の実施の形態を示すもので、図1及び図2と同一符号は同一構成部品を示すので再度の詳細な説明は省略する。   FIG. 4 shows a third embodiment in which a cooling structure is added to the first embodiment of FIG. 1, and the same reference numerals as those in FIGS. Is omitted.

本実施の形態では、タービンケーシング5とケーシングシュラウド9,10と外輪7とで囲まれた密閉空間を第1の冷却媒体室16とし、複数の貫通孔17Hを設けたインピンジカバー17を外輪7の外周側に空間を介して設置し、この第1の冷却媒体室16に冷却媒体を供給する冷却媒体供給孔5H,9H,10Hを夫々タービンケーシング5,ケーシングシュラウド9,10に設けている。尚、これら冷却媒体供給孔5H,9H,10Hは、ガスタービン設備の仕様や機種によって全て設ける必要はなく、選択的に設けても良い。   In the present embodiment, the sealed space surrounded by the turbine casing 5, the casing shrouds 9, 10 and the outer ring 7 is used as the first cooling medium chamber 16, and the impingement cover 17 provided with a plurality of through holes 17 </ b> H is used as the outer ring 7. Cooling medium supply holes 5H, 9H, and 10H are provided in the turbine casing 5 and the casing shrouds 9 and 10, respectively, that are installed on the outer peripheral side through a space and supply the cooling medium to the first cooling medium chamber 16. The cooling medium supply holes 5H, 9H, and 10H are not necessarily provided depending on the specifications and models of the gas turbine equipment, and may be provided selectively.

そして、外輪7には、作動ガス流路13内に貫通する複数の貫通孔7H1と、初段静翼6を径方向に貫通し冷却媒体流路を構成する中空部6Hに連通する貫通孔7H2を形成している。   The outer ring 7 has a plurality of through-holes 7H1 penetrating into the working gas passage 13 and a through-hole 7H2 penetrating through the first stage stationary blade 6 in the radial direction and communicating with the hollow portion 6H constituting the cooling medium passage. Forming.

一方、内輪8とダイアフラム11とで囲まれた密閉空間を第2の冷却媒体室18とし、複数の貫通孔19Hを設けたインピンジカバー19を内輪8の内周側に空間を介して設置し、この第2の冷却媒体室18に前記初段静翼6の中空部6Hを経由して冷却媒体を供給するために内輪8に冷却媒体供給孔8H2を設けている。   On the other hand, the sealed space surrounded by the inner ring 8 and the diaphragm 11 is used as the second cooling medium chamber 18, and the impingement cover 19 provided with a plurality of through holes 19H is installed on the inner peripheral side of the inner ring 8 through the space. In order to supply the cooling medium to the second cooling medium chamber 18 via the hollow portion 6H of the first stage stationary blade 6, the inner ring 8 is provided with a cooling medium supply hole 8H2.

さらに、内輪8には、作動ガス流路13内に貫通する複数の貫通孔8H1が形成され、ダイアフラム11には、終段動翼3側に冷却媒体を放出する貫通孔11H1と初段動翼4側に冷却媒体を放出する貫通孔11H2とを形成している。   Further, the inner ring 8 is formed with a plurality of through holes 8H1 penetrating into the working gas flow path 13, and the diaphragm 11 has a through hole 11H1 for discharging the cooling medium to the final stage blade 3 and the first stage blade 4. A through hole 11H2 for discharging a cooling medium is formed on the side.

上記構成において、第1の実施の形態と同じ効果を奏する外、各部の冷却を行うことができる。具体的には、外部から冷却媒体供給孔5H,9H,10Hの全部あるいは一部を経由して冷却媒体である例えば冷却空気が第1の冷却媒体室16に供給されると、インピンジカバー17の複数の貫通孔17Hから外輪7の外周部に導入され、そこから一部は貫通孔7H1から作動ガス流路13内に放出されて対流冷却及びフィルム冷却によって外輪7の冷却を行い、冷却空気の残る一部は貫通孔7H2及び初段静翼6の中空部6Hを経由して内輪8の内径側の第2の冷却媒体室18に導入される。第2の冷却媒体室18に導入され冷却空気の一部はインピンジカバー19の複数の貫通孔19Hから作動ガス流路13内に放出されて対流冷却及びフィルム冷却によって内輪8の冷却を行い、冷却空気の残る一部は貫通孔11H1,11H2から放出されて終段動翼3及び初段動翼4近傍の冷却を行うのである。   In the above configuration, each part can be cooled in addition to the same effects as those of the first embodiment. Specifically, when, for example, cooling air, which is a cooling medium, is supplied to the first cooling medium chamber 16 from the outside via all or part of the cooling medium supply holes 5H, 9H, 10H, the impingement cover 17 A plurality of through-holes 17H are introduced into the outer peripheral portion of the outer ring 7 and a part thereof is discharged from the through-hole 7H1 into the working gas flow path 13 to cool the outer ring 7 by convection cooling and film cooling. The remaining part is introduced into the second cooling medium chamber 18 on the inner diameter side of the inner ring 8 through the through hole 7H2 and the hollow portion 6H of the first stage stationary blade 6. A part of the cooling air introduced into the second cooling medium chamber 18 is discharged into the working gas flow path 13 from the plurality of through holes 19H of the impingement cover 19, and cools the inner ring 8 by convection cooling and film cooling. The remaining part of the air is discharged from the through holes 11H1 and 11H2 to cool the vicinity of the final stage moving blade 3 and the first stage moving blade 4.

このように本実施の形態によれば、第1の実施の形態と同様な効果を奏する外、各部の冷却を行うことができる。   Thus, according to the present embodiment, each part can be cooled in addition to the same effects as those of the first embodiment.

図5は、図4の第3の実施の形態を基に、ロータ1,2の冷却構成を主体として構成されたもので、図1及び図4と同一符号は同一構成部品を示すので、再度の詳細な説明は省略する。   FIG. 5 is based on the third embodiment of FIG. 4 and is mainly composed of the cooling structure of the rotors 1 and 2. The same reference numerals as those in FIGS. 1 and 4 indicate the same components. The detailed description of is omitted.

タービンケーシング5とケーシングシュラウド9,10と外輪7とで形成された第1の冷却媒体室16に供給される冷却媒体を、初段静翼6の中空部6Hを経由して内輪8とダイアフラム11とで形成した第2の冷却媒体室18に導くように構成されていると共に、ダイアフラム11は2枚の隔壁12A,12Bに接続されている。そして、二枚の隔壁12A,12Bには夫々冷却媒体供給路20A,20Bが形成されており、この冷却媒体供給路20A.20Bへ冷却媒体を流す貫通孔11HA,11HBが前記ダイアフラム11に形成されている。   The cooling medium supplied to the first cooling medium chamber 16 formed by the turbine casing 5, the casing shrouds 9 and 10, and the outer ring 7 is passed through the inner ring 8 and the diaphragm 11 via the hollow portion 6 </ b> H of the first stage stationary blade 6. The diaphragm 11 is connected to the two partition walls 12A and 12B. The diaphragm 11 is connected to the two partition walls 12A and 12B. The two partition walls 12A and 12B are formed with cooling medium supply paths 20A and 20B, respectively. Through-holes 11HA and 11HB for flowing a cooling medium to 20B are formed in the diaphragm 11.

このように構成することで、第1の冷却媒体室16内の冷却媒体は、冷却媒体流路となる初段静翼6の中空部6Hを経由して内輪8側の第2の冷却媒体室18に導かれる。第2の冷却媒体室18に導かれた冷却媒体は、夫々冷却媒体流路20A,20Bに圧入されて内径側に圧送される。冷却媒体流路20A,20Bの内径側には、夫々対向するロータ1,2に対向するように冷媒噴出口20AH,20BHが軸方向に開口しているので、冷媒噴出口20AH,20BHから吹き出された冷却媒体の一部はそのまま進んでロータ1,2の内径部に形成した中心孔1R,2Rに入ってロータ1,2を内径側から冷却し、残る一部は外径方向に進んでロータ表面を冷却するのである。   With this configuration, the cooling medium in the first cooling medium chamber 16 passes through the hollow portion 6H of the first stage stationary blade 6 serving as a cooling medium flow path, and the second cooling medium chamber 18 on the inner ring 8 side. Led to. The cooling medium guided to the second cooling medium chamber 18 is press-fitted into the cooling medium flow paths 20A and 20B, and is pumped to the inner diameter side. Since the coolant jets 20AH and 20BH are opened in the axial direction on the inner diameter side of the coolant flow paths 20A and 20B so as to face the rotors 1 and 2 facing each other, they are blown out from the coolant jets 20AH and 20BH. A part of the cooling medium proceeds as it is and enters the center holes 1R and 2R formed in the inner diameter portions of the rotors 1 and 2 to cool the rotors 1 and 2 from the inner diameter side, and the remaining part proceeds in the outer diameter direction to the rotor. The surface is cooled.

したがって、本実施の形態によれば、第1の実施の形態と同等の効果を奏する外、ロータ1,2の冷却効果を高めることができる。   Therefore, according to the present embodiment, the cooling effect of the rotors 1 and 2 can be enhanced in addition to the effects equivalent to those of the first embodiment.

ところで、各実施の形態は、夫々単独で実施してもよいが、ガスタービン設備の仕様や用途に応じて各実施の形態の各構成を適宜取り入れて組合せて実施しても良いことは勿論である。   By the way, although each embodiment may be implemented independently, it is needless to say that each configuration of each embodiment may be appropriately incorporated and combined according to the specifications and applications of the gas turbine equipment. is there.

また、第3の実施の形態において、インピンジカバー17,19の軸方向の長さは、作動ガス流路13のほぼ全長に亘って設けてもよく、あるいは高圧ガスタービン寄りに部分的に設けてもよい。さらに、部品点数を低減したいのであればインピンジカバー17,19自体は必ずしも設ける必要はない。   Further, in the third embodiment, the impingement covers 17 and 19 may be provided in the axial direction over almost the entire length of the working gas flow path 13 or partially provided near the high-pressure gas turbine. Also good. Furthermore, the impingement covers 17 and 19 themselves are not necessarily provided if it is desired to reduce the number of parts.

また、重要なことは、前記各実施の形態において、初段静翼6の外輪7及び内輪8で作動ガス流路13を構成したが、初段静翼6の構成部材とは別の部材で作動ガス流路の外周壁と内周壁を形成し、これら内外周壁を初段静翼6の構成部材である外輪7及び内輪8に接続するように構成しても良いことは勿論である。   Further, it is important that the working gas flow path 13 is configured by the outer ring 7 and the inner ring 8 of the first stage stationary blade 6 in each of the above embodiments, but the working gas is a member different from the constituent members of the first stage stationary blade 6. Of course, the outer peripheral wall and the inner peripheral wall of the flow path may be formed, and the inner and outer peripheral walls may be connected to the outer ring 7 and the inner ring 8 which are constituent members of the first stage stationary blade 6.

本発明によるガスタービン設備の第1の実施の形態を示す要部縦断側面図。The principal part vertical side view which shows 1st Embodiment of the gas turbine equipment by this invention. 図1のA−A線に沿う拡大断面図。The expanded sectional view which follows the AA line of FIG. 本発明によるガスタービン設備の第2の実施の形態を示す要部縦断側面図。The principal part vertical side view which shows 2nd Embodiment of the gas turbine equipment by this invention. 本発明によるガスタービン設備の第3の実施の形態を示す要部縦断側面図。The principal part vertical side view which shows 3rd Embodiment of the gas turbine equipment by this invention. 本発明によるガスタービン設備の第4の実施の形態を示す要部縦断側面図。The principal part vertical side view which shows 4th Embodiment of the gas turbine equipment by this invention.

符号の説明Explanation of symbols

1,2…ロータ、1R,2R…中心孔、3…終段動翼、4…初段動翼、5…タービンケーシング、6…初段静翼、7…外輪、8…内輪、8A,8B…内輪セグメント、8S…シールキー、9,10,15…ケーシングシュラウド、11…ダイアフラム、12,12A,12B…隔壁、13…作動ガス流路、14A,14B…微小隙間、16,18…密閉空間、17,19…インピンジカバー、7H1,7H2,11H1,11H2,17H,19H…貫通孔、20A,20B…冷却媒体流路。   DESCRIPTION OF SYMBOLS 1, 2 ... Rotor, 1R, 2R ... Center hole, 3 ... Final stage moving blade, 4 ... First stage moving blade, 5 ... Turbine casing, 6 ... First stage stationary blade, 7 ... Outer ring, 8 ... Inner ring, 8A, 8B ... Inner ring Segment, 8S ... Seal key, 9, 10, 15 ... Casing shroud, 11 ... Diaphragm, 12, 12A, 12B ... Partition, 13 ... Working gas flow path, 14A, 14B ... Micro gap, 16, 18 ... Sealed space, 17 , 19 ... Impingement cover, 7H1, 7H2, 11H1, 11H2, 17H, 19H ... Through-hole, 20A, 20B ... Cooling medium flow path.

Claims (12)

タービンケーシング内に高圧ガスタービンと低圧ガスタービンとを軸方向に配列すると共に、高圧ガスタービンと低圧ガスタービンとの間に高圧ガスタービン側から低圧ガスタービン側へ作動ガスを導く作動ガス流路を形成したガスタービン設備において、前記作動ガス流路を低圧ガスタービンの初段静翼の構成部材に支持させたことを特徴とするガスタービン設備。   A high-pressure gas turbine and a low-pressure gas turbine are arranged in the turbine casing in the axial direction, and a working gas passage for guiding the working gas from the high-pressure gas turbine side to the low-pressure gas turbine side is provided between the high-pressure gas turbine and the low-pressure gas turbine. In the formed gas turbine equipment, the working gas flow path is supported by a constituent member of a first stage stationary blade of a low-pressure gas turbine. タービンケーシング内に高圧ガスタービンと低圧ガスタービンとを軸方向に配列すると共に、高圧ガスタービンと低圧ガスタービンとの間に高圧ガスタービン側から低圧ガスタービン側へ作動ガスを導く作動ガス流路を形成したガスタービン設備において、前記作動ガス流路は同心状の内周壁及び外周壁を有し、これら内周壁と外周壁を低圧ガスタービンの初段静翼の内径側に設けられた内輪と外径側に設けられた外輪とに支持させたことを特徴とするガスタービン設備。   A high-pressure gas turbine and a low-pressure gas turbine are arranged in the turbine casing in the axial direction, and a working gas passage for guiding the working gas from the high-pressure gas turbine side to the low-pressure gas turbine side is provided between the high-pressure gas turbine and the low-pressure gas turbine. In the formed gas turbine equipment, the working gas flow path has concentric inner and outer peripheral walls, and these inner and outer peripheral walls are connected to an inner ring and an outer diameter provided on the inner diameter side of the first stage stationary blade of the low-pressure gas turbine. Gas turbine equipment, characterized by being supported by an outer ring provided on the side. ケーシング内に高圧ガスタービンと低圧ガスタービンとを軸方向に配列すると共に、高圧ガスタービンと低圧ガスタービンとの間に高圧ガスタービン側から低圧ガスタービン側へ作動ガスを導く作動ガス流路を形成したガスタービン設備において、低圧ガスタービンの初段静翼は、外径側に設けられた外輪と内径側に設けられた内輪とを有し、これら内輪と外輪とで前記作動ガス流路を構成する同心状の内周壁及び外周壁を形成したことを特徴とするガスタービン設備。   A high pressure gas turbine and a low pressure gas turbine are arranged in the casing in the axial direction, and a working gas flow path is formed between the high pressure gas turbine and the low pressure gas turbine to guide the working gas from the high pressure gas turbine side to the low pressure gas turbine side. In the gas turbine equipment, the first stage stationary blade of the low-pressure gas turbine has an outer ring provided on the outer diameter side and an inner ring provided on the inner diameter side, and the inner gas and the outer ring constitute the working gas flow path. A gas turbine facility characterized in that concentric inner and outer peripheral walls are formed. 軸方向に沿って配列した高圧ガスタービン及び低圧ガスタービンと、これらのガスタービンを覆うタービンケーシングと、高圧ガスタービンと低圧ガスタービンとの間に同心状に配置された内周壁及び外周壁で形成され高圧ガスタービン側から低圧ガスタービン側へ作動ガスを導く作動ガス流路と、この作動ガス流路の内周壁及び外周壁を支持する前記低圧ガスタービンの初段静翼の構成部材とを備えたガスタービン設備。   Formed by a high-pressure gas turbine and a low-pressure gas turbine arranged along the axial direction, a turbine casing covering these gas turbines, and an inner peripheral wall and an outer peripheral wall arranged concentrically between the high-pressure gas turbine and the low-pressure gas turbine A working gas flow path for guiding the working gas from the high pressure gas turbine side to the low pressure gas turbine side, and a constituent member of the first stage stationary vane of the low pressure gas turbine supporting the inner peripheral wall and the outer peripheral wall of the working gas flow path. Gas turbine equipment. 軸方向に沿って配列した高圧ガスタービン及び低圧ガスタービンと、これらのガスタービンを覆うタービンケーシングと、高圧ガスタービンと低圧ガスタービンとの間に高圧ガスタービン側から低圧ガスタービン側へ作動ガスを導く作動ガス流路と、この作動ガス流路を構成する内周壁及び外周壁を支持する前記低圧ガスタービンの初段静翼の構成部材と、前記外周壁とタービンケーシングとの間に形成した第1の冷却媒体室と、前記内周壁の内径側に形成した第2の冷却媒体室と、冷却媒体を第1の冷却媒体質から前記初段静翼を経由して第2の冷却媒体室へ導く冷却媒体流路とを備えたガスタービン設備。   High pressure gas turbines and low pressure gas turbines arranged along the axial direction, turbine casings covering these gas turbines, and working gas from the high pressure gas turbine side to the low pressure gas turbine side between the high pressure gas turbine and the low pressure gas turbine. A first working gas passage formed between the outer peripheral wall and the turbine casing; a working gas passage for guiding; a constituent member of the first stage stationary blade of the low-pressure gas turbine supporting the inner and outer peripheral walls constituting the working gas passage; Cooling medium chamber, a second cooling medium chamber formed on the inner diameter side of the inner peripheral wall, and cooling that guides the cooling medium from the first cooling medium quality to the second cooling medium chamber via the first stage stationary blade. Gas turbine equipment comprising a medium flow path. 前記初段静翼は周方向に分割された複数の静翼セグメントから構成されており、前記作動ガス流路を構成する内周壁及び外周壁も静翼セグメントと同数の内周壁セグメント及び外周壁セグメントから構成されていることを特徴とする請求項5記載のガスタービン設備。   The first stage stationary blade is composed of a plurality of stationary blade segments divided in the circumferential direction, and the inner circumferential wall and the outer circumferential wall constituting the working gas flow path are also composed of the same number of inner circumferential wall segments and outer circumferential wall segments as the stationary blade segments. The gas turbine equipment according to claim 5, wherein the gas turbine equipment is configured. 前記内周壁セグメント及び外周壁セグメントは、シールキーによって隣接セグメント間の隙間を塞いでいることを特徴とする請求項6記載のガスタービン設備。   The gas turbine equipment according to claim 6, wherein the inner peripheral wall segment and the outer peripheral wall segment close a gap between adjacent segments with a seal key. 前記外周壁には前記作動ガス流路に冷却媒体を放出する貫通孔が設けられ、前記内周壁には前記作動ガス流路に冷却媒体を放出する貫通孔が設けられていることを特徴とする請求項5記載のガスタービン設備。   The outer peripheral wall is provided with a through hole for discharging the cooling medium into the working gas flow path, and the inner peripheral wall is provided with a through hole for discharging the cooling medium into the working gas flow path. The gas turbine equipment according to claim 5. 前記第2の冷却媒体室には、前記内周壁の内径側に冷却媒体を放出する貫通孔が設けられていることを特徴とする請求項5記載のガスタービン設備。   The gas turbine equipment according to claim 5, wherein the second cooling medium chamber is provided with a through hole that discharges the cooling medium on an inner diameter side of the inner peripheral wall. 前記第2の冷却媒体室からは、前記高圧ガスタービン及び前記低圧ガスタービンのロータ中心部側に冷却媒体を導く冷却媒体供給路が形成されていることを特徴とする請求項5記載のガスタービン設備。   The gas turbine according to claim 5, wherein a cooling medium supply path is formed from the second cooling medium chamber to guide the cooling medium to a rotor center portion side of the high pressure gas turbine and the low pressure gas turbine. Facility. 前記外周壁の軸方向両端部は、ケーシングシュラウドを介して前記タービンケーシングに支持されており、前記内周壁は前記高圧ガスタービンと低圧ガスタービンを仕切る隔壁に支持されていることを特徴とする請求項2〜9のいずれかに記載のガスタービン設備。   The axially opposite ends of the outer peripheral wall are supported by the turbine casing via a casing shroud, and the inner peripheral wall is supported by a partition wall that partitions the high pressure gas turbine and the low pressure gas turbine. Item 10. The gas turbine equipment according to any one of Items 2 to 9. 前記タービンケーシングは、高圧側タービンの下流側動翼よりも下流側の位置で、高圧側タービンケーシングと低圧側タービンケーシングとに分割されていることを特徴とする請求項1〜9のいずれかに記載のガスタービン設備。   10. The turbine casing according to claim 1, wherein the turbine casing is divided into a high-pressure turbine casing and a low-pressure turbine casing at a position downstream of the downstream blades of the high-pressure turbine. The gas turbine equipment described.
JP2007175276A 2007-07-03 2007-07-03 Gas turbine facility Pending JP2009013837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007175276A JP2009013837A (en) 2007-07-03 2007-07-03 Gas turbine facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007175276A JP2009013837A (en) 2007-07-03 2007-07-03 Gas turbine facility

Publications (1)

Publication Number Publication Date
JP2009013837A true JP2009013837A (en) 2009-01-22

Family

ID=40355042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007175276A Pending JP2009013837A (en) 2007-07-03 2007-07-03 Gas turbine facility

Country Status (1)

Country Link
JP (1) JP2009013837A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180878A (en) * 2009-02-06 2010-08-19 General Electric Co <Ge> Ceramic matrix composite turbine engine
JP2011001950A (en) * 2009-05-19 2011-01-06 Hitachi Ltd Two-shaft gas turbine
JP2016094916A (en) * 2014-11-17 2016-05-26 三菱日立パワーシステムズ株式会社 Gas turbine constitution member and gas turbine
US9360216B2 (en) 2012-07-19 2016-06-07 Mitsubishi Heavy Industries Aero Engines, Ltd. Gas turbine
CN109184808A (en) * 2018-10-29 2019-01-11 中国航发湖南动力机械研究所 Segmented turbine guider link construction, installation method and gas-turbine unit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1037704A (en) * 1996-07-19 1998-02-10 Mitsubishi Heavy Ind Ltd Stator blade of gas turbine
JP2003035105A (en) * 2001-07-19 2003-02-07 Mitsubishi Heavy Ind Ltd Gas turbine separating wall
JP2004245223A (en) * 2003-02-14 2004-09-02 Snecma Moteurs Annular platform for nozzle of low-pressure turbine in turbomachine
JP2004353675A (en) * 2003-05-29 2004-12-16 General Electric Co <Ge> Horizontal joint seal system for steam turbine diaphragm assembly
JP2005127326A (en) * 2003-10-22 2005-05-19 General Electric Co <Ge> Split flow turbine nozzle
JP2005240573A (en) * 2004-02-24 2005-09-08 Hitachi Ltd Two-shaft gas turbine and its cooling air admission method
JP2005256607A (en) * 2004-03-09 2005-09-22 Hitachi Ltd Two-shaft gas turbine, and manufacturing method and modifying method for two-shaft gas turbine
JP2006342798A (en) * 2005-06-06 2006-12-21 General Electric Co <Ge> Integrated contra-rotation turbofan

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1037704A (en) * 1996-07-19 1998-02-10 Mitsubishi Heavy Ind Ltd Stator blade of gas turbine
JP2003035105A (en) * 2001-07-19 2003-02-07 Mitsubishi Heavy Ind Ltd Gas turbine separating wall
JP2004245223A (en) * 2003-02-14 2004-09-02 Snecma Moteurs Annular platform for nozzle of low-pressure turbine in turbomachine
JP2004353675A (en) * 2003-05-29 2004-12-16 General Electric Co <Ge> Horizontal joint seal system for steam turbine diaphragm assembly
JP2005127326A (en) * 2003-10-22 2005-05-19 General Electric Co <Ge> Split flow turbine nozzle
JP2005240573A (en) * 2004-02-24 2005-09-08 Hitachi Ltd Two-shaft gas turbine and its cooling air admission method
JP2005256607A (en) * 2004-03-09 2005-09-22 Hitachi Ltd Two-shaft gas turbine, and manufacturing method and modifying method for two-shaft gas turbine
JP2006342798A (en) * 2005-06-06 2006-12-21 General Electric Co <Ge> Integrated contra-rotation turbofan

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010180878A (en) * 2009-02-06 2010-08-19 General Electric Co <Ge> Ceramic matrix composite turbine engine
JP2011001950A (en) * 2009-05-19 2011-01-06 Hitachi Ltd Two-shaft gas turbine
US9360216B2 (en) 2012-07-19 2016-06-07 Mitsubishi Heavy Industries Aero Engines, Ltd. Gas turbine
JP2016094916A (en) * 2014-11-17 2016-05-26 三菱日立パワーシステムズ株式会社 Gas turbine constitution member and gas turbine
CN109184808A (en) * 2018-10-29 2019-01-11 中国航发湖南动力机械研究所 Segmented turbine guider link construction, installation method and gas-turbine unit

Similar Documents

Publication Publication Date Title
US6508623B1 (en) Gas turbine segmental ring
CA2612616C (en) Turbine shroud segment transpiration cooling with individual cast inlet and outlet cavities
EP2419609B1 (en) Cooled one piece casing of a turbo machine
JP5043347B2 (en) Bleed manifold and compressor / case assembly
US10669893B2 (en) Air bearing and thermal management nozzle arrangement for interdigitated turbine engine
US20170138211A1 (en) Ring segment cooling structure and gas turbine having the same
US20130011246A1 (en) Gas-Turbine Aircraft Engine With Structural Surface Cooler
CA2687800A1 (en) Turbine cooling air from a centrifugal compressor
KR20070076393A (en) Turbine airfoil with improved cooling
US10422244B2 (en) System for cooling a turbine shroud
JP2017020494A (en) Method of cooling gas turbine, and gas turbine executing the same
US20190218925A1 (en) Turbine engine shroud
JP2009501860A (en) Impingement cooling of turbine shroud segment in vane outer shroud
JP2009013837A (en) Gas turbine facility
US7011492B2 (en) Turbine vane cooled by a reduced cooling air leak
EP3196422B1 (en) Exhaust frame
US10408075B2 (en) Turbine engine with a rim seal between the rotor and stator
US9689272B2 (en) Gas turbine and outer shroud
US9995172B2 (en) Turbine nozzle with cooling channel coolant discharge plenum
JP4909113B2 (en) Steam turbine casing structure
JP6961340B2 (en) Rotating machine
JP2015127538A (en) Turbine nozzle and method for cooling turbine nozzle of gas turbine engine
JP4913326B2 (en) Seal structure and turbine nozzle
EP3486498B1 (en) Axial compressor for gas turbine engines and gas turbine engine incorporating said axial compressor
CN115349047A (en) Assembly of a turbine ring and a stator of a turbomachine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

A977 Report on retrieval

Effective date: 20110329

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A02 Decision of refusal

Effective date: 20120703

Free format text: JAPANESE INTERMEDIATE CODE: A02