JPH1037704A - Stator blade of gas turbine - Google Patents
Stator blade of gas turbineInfo
- Publication number
- JPH1037704A JPH1037704A JP8190717A JP19071796A JPH1037704A JP H1037704 A JPH1037704 A JP H1037704A JP 8190717 A JP8190717 A JP 8190717A JP 19071796 A JP19071796 A JP 19071796A JP H1037704 A JPH1037704 A JP H1037704A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- air
- gas turbine
- cooling air
- shroud
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/186—Film cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/02—Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
- F01D11/04—Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/80—Platforms for stationary or moving blades
- F05D2240/81—Cooled platforms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/201—Heat transfer, e.g. cooling by impingement of a fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/205—Cooling fluid recirculation, i.e. after cooling one or more components is the cooling fluid recovered and used elsewhere for other purposes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/221—Improvement of heat transfer
- F05D2260/2212—Improvement of heat transfer by creating turbulence
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/221—Improvement of heat transfer
- F05D2260/2214—Improvement of heat transfer by increasing the heat transfer surface
- F05D2260/22141—Improvement of heat transfer by increasing the heat transfer surface using fins or ribs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/232—Heat transfer, e.g. cooling characterized by the cooling medium
- F05D2260/2322—Heat transfer, e.g. cooling characterized by the cooling medium steam
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、簡単な構成で冷却
を効果的に行なうことができるようにしたガスタービン
の静翼に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine stationary blade capable of effectively performing cooling with a simple structure.
【0002】[0002]
【従来の技術】ガスタービンのタービン翼の高温部では
従来圧縮機の吐出空気又は抽気空気で冷却を行っていた
が、ガスタービンの効率向上の手段の一つとして空気に
代って蒸気を使用してガスタービンの静翼の冷却を行う
ことが考えられている。2. Description of the Related Art Conventionally, at the high temperature portion of turbine blades of a gas turbine, cooling is performed by discharge air or bleed air of a compressor. However, steam is used instead of air as one of means for improving the efficiency of a gas turbine. It has been considered that the stationary blades of the gas turbine are cooled in such a manner.
【0003】ガスタービンの静翼の蒸気冷却において
は、蒸気はガスタービンと組合せてコンバインドサイク
ルを構成する蒸気タービンの抽気が使用されていて通常
蒸気圧力は高い。また、蒸気のガスタービン中への洩れ
は、蒸気側サイクル上極めて少くしなければならない。
従って、ガスタービンの静翼の蒸気冷却においては、 (1)蒸気圧に耐える耐圧強度があること。 (2)蒸気通路は外部に対して閉じていて供給口と回収
口を有すること。 (3)熱応力が低いこと。 (4)製作が容易であること。 などが要求される。[0003] In the steam cooling of the stationary blades of a gas turbine, steam is extracted from a steam turbine which forms a combined cycle in combination with the gas turbine, and the steam pressure is usually high. Also, the leakage of steam into the gas turbine must be extremely low on the steam side cycle.
Therefore, in steam cooling of the stationary blades of a gas turbine, (1) there must be pressure resistance to withstand steam pressure. (2) The steam passage is closed to the outside and has a supply port and a recovery port. (3) Low thermal stress. (4) Being easy to manufacture. Is required.
【0004】従来のガスタービンの静翼においては、図
3及び図4に矢印で示すように、冷却蒸気は、外側シュ
ラウド31の冷却蒸気入口32からガスタービンの静翼
内に入り、インピンジメント板39を通過した上翼部3
3に設けられた内向き冷却通路34を通って内側シュラ
ウド35でターンし、翼部33に設けられた外向き冷却
通路36を通って冷却蒸気出口37で回収される。In a conventional gas turbine stationary blade, as shown by arrows in FIGS. 3 and 4, cooling steam enters the gas turbine stationary blade from a cooling steam inlet 32 of an outer shroud 31 and is impinged on an impingement plate. Upper wing part 3 which passed 39
3 turns at the inner shroud 35 through the inward cooling passage 34, and is collected at the cooling steam outlet 37 through the outward cooling passage 36 provided in the wing 33.
【0005】また、以上に加えて、本特許出願人が特許
出願した特願平8−749号におけるように、内側シュ
ラウド35のみ空気冷却したものも提案されている。即
ち、特願平8−749号においては、図3に示されるよ
うに、以上に加えて、内側シュラウド35内に冷却空気
入口40より冷却空気を導入し、インピンジメント板3
9を通って冷却空気を流して内側シュラウド35を冷却
し、冷却後の空気を内側シュラウド35に設けられたフ
ィルム冷却孔38より主ガス流れF中に流してフィルム
冷却を行うようにしている。[0005] In addition to the above, there has been proposed a device in which only the inner shroud 35 is air-cooled as disclosed in Japanese Patent Application No. 8-749 filed by the present applicant. That is, in Japanese Patent Application No. 8-749, as shown in FIG. 3, in addition to the above, cooling air is introduced into the inner shroud 35 from the cooling air inlet 40, and the impingement plate 3
The cooling air flows through the inner shroud 35 to cool the inner shroud 35, and the cooled air flows into the main gas flow F from the film cooling holes 38 provided in the inner shroud 35 to cool the film.
【0006】[0006]
【発明が解決しようとする課題】現状のガスタービンの
蒸気冷却静翼は、前述のような状況にあり確かに効率上
はこれが有利であるが、閉じられた長い折れ曲った通路
は、構造が複雑で製作が困難であり、またこれに加えて
耐圧強度を楽にするために肉厚にすると翼全体が剛にな
り熱応力に対して不利になるなどの問題がある。The current steam-cooled vane of a gas turbine is in the above-mentioned situation and certainly has an advantage in terms of efficiency. However, the closed long bent passage has a structure. It is complicated and difficult to manufacture, and in addition to this, if the wall thickness is increased in order to facilitate the pressure resistance, there is a problem that the entire blade becomes rigid and disadvantageous to thermal stress.
【0007】本発明は、以上の問題点を解消するために
提供されたものである。The present invention has been provided to solve the above problems.
【0008】[0008]
【課題を解決するための手段】本発明のガスタービンの
静翼は、次の手段を講じた。The stationary blade of the gas turbine according to the present invention employs the following measures.
【0009】(1)内側シュラウドと外側シュラウドを
空気冷却することを特徴とする。(1) The inner shroud and the outer shroud are air-cooled.
【0010】(2)薄い形状を有する翼部の後端部を空
気冷却することを特徴とする。(2) The rear end of the thin wing portion is air-cooled.
【0011】(3)前記(2)の本発明において、翼部
の後端部を冷却した空気の一部を、内側シュラウド側よ
り燃焼ガス通路の内側シールエアとして排出することを
特徴とする。(3) In the present invention of the above (2), a part of the air cooled at the rear end of the wing portion is discharged from the inner shroud side as inner seal air of the combustion gas passage.
【0012】前記本発明(1)では、ガスタービンの静
翼の内側シュラウドと外側シュラウドを空気冷却するこ
とによって構成が単純化され、かつ、局所的に無冷却部
が発生して焼付けが生ずることを防止することができ
る。According to the present invention (1), the structure is simplified by air-cooling the inner shroud and the outer shroud of the stationary blade of the gas turbine, and non-cooling portions are locally generated to cause burning. Can be prevented.
【0013】前記本発明(2)では、空気性能上薄い形
状となるガスタービンの静翼の後端部を空気冷却するこ
とによって、圧力の高い蒸気で冷却する場合と比較して
強度上有利となると共に、ピンフィン冷却が可能にな
る。According to the present invention (2), by cooling the rear end portion of the stationary blade of the gas turbine, which has a thin shape in terms of air performance, with air, the strength is more advantageous than when cooling with high pressure steam. In addition, pin fin cooling becomes possible.
【0014】前記本発明(3)では、前記本発明(2)
においてガスタービンの静翼の後端部を冷却した空気の
一部を内側シュラウド側より排出することによって、構
成を複雑にすることなく燃焼ガス通路の内側シールエア
を容易に確保することができる。In the present invention (3), the present invention (2)
By discharging a portion of the air that has cooled the rear end of the stationary blade of the gas turbine from the inner shroud side, the inner seal air of the combustion gas passage can be easily secured without complicating the configuration.
【0015】[0015]
【発明の実施の形態】本発明の実施の一形態を、図1及
び図2によって説明する。本実施の形態では、図3及び
図4に示す従来のものと同様に、冷却蒸気は、外側シュ
ラウド3側の冷却蒸気入口13から翼部6に設けられた
内向き冷却通路8に入り、同通路8を通って内側シュラ
ウド1側でターンし、翼部6に設けられた外向き冷却通
路9を通って冷却蒸気出口14で回収される。ただ、前
記図4及び図5に示すものにおけるように、外側シュラ
ウド内に前記冷却蒸気が供給されるのではなく、冷却蒸
気は、翼部6の前記内向き冷却通路8に直接供給され、
かつ、前記外向き冷却通路9から冷却蒸気出口14に排
出されるようになっている。DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. In the present embodiment, the cooling steam flows from the cooling steam inlet 13 on the outer shroud 3 side to the inward cooling passage 8 provided in the blade 6, similarly to the conventional one shown in FIGS. It turns on the inner shroud 1 side through the passage 8, and is collected at the cooling steam outlet 14 through the outward cooling passage 9 provided in the wing 6. However, instead of the cooling steam being supplied into the outer shroud as in FIGS. 4 and 5, the cooling steam is directly supplied to the inward cooling passage 8 of the wing portion 6,
Further, the cooling water is discharged from the outward cooling passage 9 to the cooling steam outlet 14.
【0016】ガスタービンの静翼の内側シュラウド1及
び外側シュラウド2には、空気冷却を行うため冷却空気
入口孔3が設けられており、同冷却空気入口孔3の反対
側には、多数の小径の通孔を有するインピンジメント板
4を介して冷却空気出口孔5が設けられている。The inner shroud 1 and the outer shroud 2 of the stationary blade of the gas turbine are provided with cooling air inlet holes 3 for performing air cooling, and a plurality of small diameter holes are provided on the opposite side of the cooling air inlet holes 3. A cooling air outlet hole 5 is provided through an impingement plate 4 having a through hole.
【0017】また、空気性能上薄い形状となる翼部6の
後端部7には、同後端部7を空気冷却するため、一組の
内向き冷却通路8と外向き冷却通路9に相当する部分に
ピンフィンを設けた一つの空気通路10が設けられてお
り、同空気通路10内を冷却空気が、矢印に示すよう
に、外側シュラウド2側から内側シュラウド1側へ流れ
るようになっている。The rear end 7 of the wing 6 which has a thin shape in terms of air performance corresponds to a pair of inward cooling passages 8 and outward cooling passages 9 for cooling the rear end 7 with air. One air passage 10 provided with a pin fin is provided at a portion where the cooling air flows, and the cooling air flows in the air passage 10 from the outer shroud 2 side to the inner shroud 1 side as shown by an arrow. .
【0018】前記空気通路10の翼尾側には多数の孔1
1が設けられていて、矢印に示すように、空気通路10
内を流れる冷却空気が孔1より排出される主ガス流れF
に合流する。また、空気通路10の内側シュラウド1側
にも翼高さ方向に孔12が設けられており、同孔12は
空気通路10内を流れた冷却空気の一部を燃焼ガス通路
の内側シールエアとして排出する供給口としている。A large number of holes 1 are provided at the tail side of the air passage 10.
1 is provided, and as shown by the arrow, the air passage 10
Main gas flow F in which cooling air flowing through
To join. A hole 12 is also provided on the inner shroud 1 side of the air passage 10 in the blade height direction. Supply port.
【0019】以上のように構成された本実施の形態で
は、翼部6の後端部7以外の部分は、内向き冷却通路8
と外向き冷却通路9内を流れる冷却蒸気によって冷却さ
れる。In the present embodiment configured as described above, portions other than the rear end 7 of the wing 6 are provided with the inward cooling passage 8.
And cooling by the cooling steam flowing in the outward cooling passage 9.
【0020】また、内側シュラウド1と外側シュラウド
2は冷却空気入口孔3より流入し冷却空気出口孔5から
排出される冷却空気によって冷却されるようになってい
て、構造を単純化することができ、かつ、局所的に無冷
却の部分が発生して焼付けを生ずることを防止すること
ができる。更に、内側シュラウド1内と外側シュラウド
2内に供給された冷却空気は、インピンジメント板4を
通って冷却空気出口孔5から翼部6の表面側に排出され
て翼部6の表面をフィルム冷却し、冷却空気を効果的に
活用することができる。Further, the inner shroud 1 and the outer shroud 2 are cooled by cooling air flowing in from the cooling air inlet hole 3 and discharged from the cooling air outlet hole 5, so that the structure can be simplified. In addition, it is possible to prevent the occurrence of local uncooled portions and burning. Further, the cooling air supplied into the inner shroud 1 and the outer shroud 2 passes through the impingement plate 4 and is discharged from the cooling air outlet hole 5 to the surface side of the wing portion 6 to cool the surface of the wing portion 6 by film cooling. Thus, the cooling air can be effectively used.
【0021】また更に、空気性能上薄い形状になる翼部
6の後端部7は空気通路10内を流れる空気によって冷
却されるので、圧力の高い蒸気を用いる場合に比較して
強度上有利となり、空気通路10の断面積を大きくし、
かつ、翼部6の後端部7の肉厚を薄くすることが可能で
効果的な冷却を行なうことができ、かつ、ピンフィン冷
却が可能となる。Further, since the rear end portion 7 of the wing portion 6 which is thinner in terms of air performance is cooled by the air flowing through the air passage 10, the strength is more advantageous than when high pressure steam is used. , The cross-sectional area of the air passage 10 is increased,
Further, the thickness of the rear end portion 7 of the wing portion 6 can be reduced, so that effective cooling can be performed and pin fin cooling can be performed.
【0022】前記翼部6の後端部7を冷却した冷却空気
は翼部6の後端部7の翼尾側に設けられた多数の孔11
から排出されて主ガス流れFに合流すると共に、前記冷
却空気の一部は空気通路10の内側シュラウド側の孔1
2より内向きに排出されて燃焼ガス通路の内側シールエ
アとなり、同内側シールエアを容易に確保することがで
きる。The cooling air that has cooled the rear end 7 of the wing 6 is provided with a number of holes 11 provided on the tail side of the rear end 7 of the wing 6.
And the cooling air is merged with the main gas flow F, and a part of the cooling air is
The air is discharged inward from the second and becomes the inner seal air of the combustion gas passage, and the inner seal air can be easily secured.
【0023】[0023]
【発明の効果】本発明に係るガスタービンの静翼によれ
ば、従来の蒸気冷却静翼の問題点であった構造の複雑さ
を製作の困難さを、静翼の一部を空気冷却としたことに
よって解消することができるとともに、燃焼ガス通路内
側のシールエアを容易に確保することができる。また、
強度的に有利となって熱応力に対しても無理がない。従
って、ガスタービンの信頼性を一段と向上させることが
できる。According to the vane of the gas turbine according to the present invention, the problem of the conventional steam-cooled vane is reduced by the complicated structure, and the part of the vane is air-cooled. This can solve the problem, and can easily secure the seal air inside the combustion gas passage. Also,
It is advantageous in terms of strength, and it is reasonable for thermal stress. Therefore, the reliability of the gas turbine can be further improved.
【図1】本発明の実施の一形態の断面図である。FIG. 1 is a sectional view of an embodiment of the present invention.
【図2】図1のA−A矢視断面図である。FIG. 2 is a sectional view taken along the line AA of FIG.
【図3】従来の蒸気冷却方式のガスタービンの静翼の断
面図である。FIG. 3 is a sectional view of a stationary blade of a conventional steam-cooled gas turbine.
【図4】図3のB−B矢視断面図である。FIG. 4 is a sectional view taken along the line BB of FIG. 3;
1 内側シュラウド 2 外側シュラウド 3 冷却空気入口孔 4 インピンジメント板 5 冷却空気出口孔 6 翼部 7 翼部の後端部 8 内向き冷却通路 9 外向き冷却通路 10 空気通路 11,12 孔 13 冷却蒸気入口 14 冷却蒸気出口 31 外側シュラウド 32 冷却蒸気入口 33 翼部 34 内向き冷却通路 35 内側シュラウド 36 外向き冷却通路 37 冷却蒸気出口 38 フィルム冷却孔 39 インピンジメント板 40 冷却空気入口 F 主ガス流れ REFERENCE SIGNS LIST 1 inner shroud 2 outer shroud 3 cooling air inlet hole 4 impingement plate 5 cooling air outlet hole 6 wing 7 rear end 8 of wing 8 inward cooling passage 9 outward cooling passage 10 air passage 11, 12 hole 13 cooling steam Inlet 14 Cooling steam outlet 31 Outer shroud 32 Cooling steam inlet 33 Wing 34 Inward cooling passage 35 Inner shroud 36 Outward cooling passage 37 Cooling steam outlet 38 Film cooling hole 39 Impingement plate 40 Cooling air inlet F Main gas flow
Claims (3)
冷却することを特徴とするガスタービンの静翼。1. A vane for a gas turbine, wherein an inner shroud and an outer shroud are air-cooled.
却することを特徴とするガスタービンの静翼。2. A vane for a gas turbine, wherein a rear end of a blade having a thin shape is air-cooled.
を、内側シュラウド側より燃焼ガス通路の内側シールエ
アとして排出することを特徴とする請求項2に記載のガ
スタービンの静翼。3. The gas turbine vane according to claim 2, wherein a part of the air cooled at the rear end of the blade is discharged from the inner shroud side as inner seal air of the combustion gas passage. .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8190717A JPH1037704A (en) | 1996-07-19 | 1996-07-19 | Stator blade of gas turbine |
PCT/JP1998/000184 WO1999036675A1 (en) | 1996-07-19 | 1998-01-20 | Stationary blade of gas turbine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8190717A JPH1037704A (en) | 1996-07-19 | 1996-07-19 | Stator blade of gas turbine |
PCT/JP1998/000184 WO1999036675A1 (en) | 1996-07-19 | 1998-01-20 | Stationary blade of gas turbine |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007118031A Division JP4146496B2 (en) | 2007-04-27 | 2007-04-27 | Gas turbine stationary blades |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1037704A true JPH1037704A (en) | 1998-02-10 |
Family
ID=26439120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8190717A Pending JPH1037704A (en) | 1996-07-19 | 1996-07-19 | Stator blade of gas turbine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH1037704A (en) |
WO (1) | WO1999036675A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999036675A1 (en) * | 1996-07-19 | 1999-07-22 | Mitsubishi Heavy Industries, Ltd. | Stationary blade of gas turbine |
JPH11270353A (en) * | 1998-03-25 | 1999-10-05 | Hitachi Ltd | Gas turbine and stationary blade of gas turbine |
JP2001271604A (en) * | 2000-03-23 | 2001-10-05 | General Electric Co <Ge> | Turbine stationary blade segment having internal cooling circuit |
US6315518B1 (en) | 1998-01-20 | 2001-11-13 | Mitsubishi Heavy Industries, Ltd. | Stationary blade of gas turbine |
EP1052374A3 (en) * | 1999-05-10 | 2003-12-03 | General Electric Company | Cooling circuit for steam and air-cooled turbine nozzle stage |
JP2004044573A (en) * | 2002-07-10 | 2004-02-12 | Mitsubishi Heavy Ind Ltd | Stationary blade of gas turbine and gas turbine equipped with this stationary blade |
JP2009013837A (en) * | 2007-07-03 | 2009-01-22 | Hitachi Ltd | Gas turbine facility |
CN113266436A (en) * | 2021-05-14 | 2021-08-17 | 西安交通大学 | Channel structure for cooling inside of gas turbine stationary blade and gas turbine stationary blade |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE50210878D1 (en) | 2001-07-05 | 2007-10-25 | Alstom Technology Ltd | Method for mounting a baffle plate |
DE50208671D1 (en) | 2001-07-13 | 2006-12-21 | Alstom Technology Ltd | Gas turbine section with cooling air hole |
DE10217484B4 (en) | 2001-11-02 | 2018-05-17 | Ansaldo Energia Ip Uk Limited | Guide vane of a thermal turbomachine |
US6929445B2 (en) * | 2003-10-22 | 2005-08-16 | General Electric Company | Split flow turbine nozzle |
KR102207971B1 (en) * | 2019-06-21 | 2021-01-26 | 두산중공업 주식회사 | Vane for turbine, turbine including the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3142850B2 (en) * | 1989-03-13 | 2001-03-07 | 株式会社東芝 | Turbine cooling blades and combined power plants |
JP3260437B2 (en) * | 1992-09-03 | 2002-02-25 | 株式会社日立製作所 | Gas turbine and stage device of gas turbine |
JPH08165902A (en) * | 1994-10-12 | 1996-06-25 | Hitachi Ltd | Ceramic stator blade |
JP2971386B2 (en) * | 1996-01-08 | 1999-11-02 | 三菱重工業株式会社 | Gas turbine vane |
JP3150610B2 (en) * | 1996-03-28 | 2001-03-26 | 三菱重工業株式会社 | Gas turbine vane |
JPH1037704A (en) * | 1996-07-19 | 1998-02-10 | Mitsubishi Heavy Ind Ltd | Stator blade of gas turbine |
-
1996
- 1996-07-19 JP JP8190717A patent/JPH1037704A/en active Pending
-
1998
- 1998-01-20 WO PCT/JP1998/000184 patent/WO1999036675A1/en active Application Filing
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999036675A1 (en) * | 1996-07-19 | 1999-07-22 | Mitsubishi Heavy Industries, Ltd. | Stationary blade of gas turbine |
US6315518B1 (en) | 1998-01-20 | 2001-11-13 | Mitsubishi Heavy Industries, Ltd. | Stationary blade of gas turbine |
JPH11270353A (en) * | 1998-03-25 | 1999-10-05 | Hitachi Ltd | Gas turbine and stationary blade of gas turbine |
EP1052374A3 (en) * | 1999-05-10 | 2003-12-03 | General Electric Company | Cooling circuit for steam and air-cooled turbine nozzle stage |
JP2001271604A (en) * | 2000-03-23 | 2001-10-05 | General Electric Co <Ge> | Turbine stationary blade segment having internal cooling circuit |
JP2004044573A (en) * | 2002-07-10 | 2004-02-12 | Mitsubishi Heavy Ind Ltd | Stationary blade of gas turbine and gas turbine equipped with this stationary blade |
JP2009013837A (en) * | 2007-07-03 | 2009-01-22 | Hitachi Ltd | Gas turbine facility |
CN113266436A (en) * | 2021-05-14 | 2021-08-17 | 西安交通大学 | Channel structure for cooling inside of gas turbine stationary blade and gas turbine stationary blade |
Also Published As
Publication number | Publication date |
---|---|
WO1999036675A1 (en) | 1999-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3316405B2 (en) | Gas turbine cooling vane | |
JP3316415B2 (en) | Gas turbine cooling vane | |
JP2971386B2 (en) | Gas turbine vane | |
JP3978143B2 (en) | Stator blade cooling structure and gas turbine | |
JP5947524B2 (en) | Turbomachine vane and method for cooling turbomachine vane | |
JP3457831B2 (en) | Gas turbine blade cooling platform | |
JP4659971B2 (en) | Turbine vane segment with internal cooling circuit | |
JP4641916B2 (en) | Turbine nozzle with corners cooled | |
EP0955449B1 (en) | Gas turbine blade | |
JP4130540B2 (en) | Apparatus and method for locally cooling a gas turbine nozzle wall | |
JPH06257405A (en) | Turbine | |
JPH10252410A (en) | Blade cooling air supply system for gas turbine | |
JPH08177405A (en) | Cooling circuit for rear edge of stator vane | |
JPH02233802A (en) | Cooling type turbine blade | |
JPH10280904A (en) | Cooled rotor blade for gas turbine | |
JP4393667B2 (en) | Cooling circuit for steam / air cooled turbine nozzle stage | |
CA2231690A1 (en) | Cooled stationary blade for a gas turbine | |
JPH1037704A (en) | Stator blade of gas turbine | |
JPH10238308A (en) | Gas turbine stationary blade | |
JP2003083001A (en) | Gas turbine and stationary blade thereof | |
JP3276305B2 (en) | Gas turbine cooling vanes | |
CA2263576C (en) | Stationary blade of gas turbine | |
JP2818266B2 (en) | Gas turbine cooling blade | |
JPH11193701A (en) | Turbine wing | |
JPH11200807A (en) | Coolant recovery type gas turbine, and its stationary blade |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20031217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20031224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040218 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040615 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040810 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040817 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20040924 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070427 |