JPH11193701A - Turbine wing - Google Patents

Turbine wing

Info

Publication number
JPH11193701A
JPH11193701A JP30466498A JP30466498A JPH11193701A JP H11193701 A JPH11193701 A JP H11193701A JP 30466498 A JP30466498 A JP 30466498A JP 30466498 A JP30466498 A JP 30466498A JP H11193701 A JPH11193701 A JP H11193701A
Authority
JP
Japan
Prior art keywords
corner
cooling
turbine blade
airfoil
platform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30466498A
Other languages
Japanese (ja)
Inventor
Stephen Mark Chambers
スティーブン・マーク・チェインバース
Thomas Gerard Wygle
トーマス・ジェラード・ウィグル
Robert Cooper Simmons
ロバート・クーパー・サイモンズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JPH11193701A publication Critical patent/JPH11193701A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/20Specially-shaped blade tips to seal space between tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate a dead zone of a cooling flow passage and avoid excessive heat partially applied to a wing by providing an aero foil portion with a plurality of inner cooling flow passages each having a turbulence accelerator, a plurality of holes for cooling film, and a leading end cap having an opening formed around the rear edge to communicate with the cooling flow passages. SOLUTION: A wing 10 is provided with a dovetail 12 engaged with a turbine rotor and a hollow aero foil portion 16 provided with a platform portion 14 and a leading end cap 18. The aero foil portion 16 includes inner cooling flow passages having turbulence accelerator therein so as to flow a coolant for cooling. A plurality of holes 20 for cooling film are formed in a positive pressure surface 17, which communicate with the inner cooling flow passages and constitute a path through which cooling air admitted through the opening 32 in a base portion is discharged. In cooperation with an opening 46 of the leading end cap 18 positioned at the front portion of the substantially backmost of the cooling passage, the dead zone allowing no air flow can be eliminated, thus avoiding partial excessive heating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】発明の分野 本発明は一般的にはガスタービンエンジンの翼に係わ
り、特に改善された冷却特性を有するタービン翼に係わ
る。発明の背景 ガスタービンエンジンは圧縮機を含み、これにより空気
を加圧して燃焼器に流通させ、ここで燃料と混合させて
点火して高温燃焼ガスを発生する。燃焼ガスは一段以上
のタービン翼を通って下流に流れ、ここで燃焼ガスから
エネルギーを抽出して有用な仕事をもたらす。
FIELD OF THE INVENTION The present invention relates generally to gas turbine engine blades, and more particularly to turbine blades having improved cooling characteristics. BACKGROUND OF THE INVENTION Gas turbine engines include a compressor that pressurizes air through a combustor where it mixes with fuel and ignites to produce hot combustion gases. The combustion gases flow downstream through one or more stages of turbine blades, where energy is extracted from the combustion gases to provide useful work.

【0002】各タービン翼はダブテールを含んでおり、
これによって翼がロータディスクの周辺に装着され、ダ
ブテールから半径方向外側に一体の中空なエーロフォイ
ルが延びている。タービン翼は高温燃焼ガスに直接曝さ
れるので、典型的にはタービン翼には内部冷却回路が設
けられていて、これにより圧縮機ブリード空気のような
冷却剤が翼のエーロフォイル中を流通される。冷却剤は
エーロフォイルの表面に分配された多くの膜冷却用穴を
通してエーロフォイルを出ていき、これによって冷却空
気の薄膜が生成されてエーロフォイルを高温燃焼ガスか
ら保護している。
Each turbine blade includes a dovetail,
This causes the wings to be mounted around the rotor disk and an integral hollow airfoil extending radially outward from the dovetail. Because the turbine blades are directly exposed to the hot combustion gases, the turbine blades typically have internal cooling circuits that allow coolant, such as compressor bleed air, to flow through the airfoil of the blades. You. The coolant exits the airfoil through a number of film cooling holes distributed on the surface of the airfoil, thereby creating a thin film of cooling air to protect the airfoil from hot combustion gases.

【0003】前述の冷却回路は典型的には蛇行形に配列
され、その中にあって冷却空気はベース部からエーロフ
ォイルに入り、第一の流路を通って半径方向外側に向け
て翼の先端まで流れ、次いで180°方向転換して第一
の流路と並行の隣の流路に入ってエーロフォイルのベー
ス部に向かって逆向きに流れる。空気流は典型的にはこ
のような幾つかの流路を通って流れた後に最後にエーロ
フォイルから排気される。
[0003] The aforementioned cooling circuits are typically arranged in a serpentine configuration, in which cooling air enters the airfoil from a base and passes through a first flow path radially outwardly of the wings. It flows to the tip and then turns 180 ° into the next flow path parallel to the first flow path and flows in the opposite direction towards the base of the airfoil. The air stream typically exits the airfoil after flowing through several such channels.

【0004】しばしばタービン翼の後縁に隣接した冷却
流路は”止まり”流路、即ち次の別の流路に空気を流さ
ない流路となる。空気流は最後方の冷却流路と連通して
いる翼の後縁内の穴を通して主に維持されている。この
配列では、この最後方の冷却流路の前方の半径方向最も
外側の角で空気流の減少された”デッドゾーン”が発生
しうる。このデッドゾーンは翼の局部的な過熱をもたら
して翼の破損を生ずる可能性がある。
[0004] Frequently, the cooling flow path adjacent to the trailing edge of the turbine blade is a "stop" flow path, that is, a flow path that does not allow air to flow to the next additional flow path. Airflow is maintained primarily through holes in the trailing edge of the wing in communication with the rearmost cooling flow path. In this arrangement, a reduced "dead zone" of airflow may occur at the radially outermost corner in front of the rearmost cooling flow path. This dead zone can cause local overheating of the wing and cause wing failure.

【0005】従って、このようないかなるデッドゾーン
を回避して改善された冷却を提供するタービン翼が必要
とされている。発明の要約 本発明によれば、ベース部分、プラットホーム部分およ
びエーロフォイル部分を有するタービン翼が開示され
る。エーロフォイル部分は角度付けられた乱流促進体
(または”乱流手段”)を有する複数の内部流路、複数
の膜冷却用穴、および後縁近くにスロットをもつ先端キ
ャップを備えている。これらの特徴の組合せにより翼の
冷却が改善されそして翼の周りの空気流の非効率が減少
される。
[0005] Accordingly, there is a need for a turbine blade that avoids any such dead zones and provides improved cooling. SUMMARY OF THE INVENTION In accordance with the present invention, a turbine blade having a base portion, a platform portion, and an airfoil portion is disclosed. The airfoil portion includes a plurality of internal passages having angled turbulence enhancers (or "turbulence means"), a plurality of film cooling holes, and a tip cap having a slot near the trailing edge. The combination of these features improves airfoil cooling and reduces airflow inefficiency around the airfoil.

【0006】本発明と考えられる主題は特に結論として
特許請求の範囲に特に指摘し明確に特許請求されている
が、本発明は添付の図面を参酌して以下の記載を参照す
ることにより最も良く理解されるであろう。発明の詳細な記述 図面を参照するにあたり、同じ参照番号は種々の図面全
体にわたり同じ素子を表している。図1は本発明による
タービン翼10を示している。翼10はタービンロータ
内の組合せ相手であるダブテール特徴に係合するダブテ
ール12、プラットホーム部分14、および好ましくは
鋳造物の一体部品である先端キャップ18を備えた中空
のエーロフォイル部分16を有している。エーロフォイ
ルは正圧面17および負圧面19を有している。翼10
にはまた内部冷却流路22(図2参照)が含まれてお
り、これにより冷却空気のような冷却剤が冷却のために
エーロフォイル部分16に流通される。正圧面17には
半径方向に複数整列された膜冷却用穴20があり、これ
らの穴は翼の種々の内部冷却流路22と流通していて翼
10のベース部分にある開口32を通して導入された冷
却空気に対し出口経路を提供している。
While the subject matter which is considered as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification, the invention may best be understood by reference to the following description when taken in conjunction with the accompanying drawings wherein: Will be appreciated. DETAILED DESCRIPTION OF THE INVENTION In reference to the drawings, where like reference numerals represent like elements throughout the various views. FIG. 1 shows a turbine blade 10 according to the present invention. The blade 10 has a dovetail 12, a platform portion 14, which engages a mating dovetail feature in the turbine rotor, and a hollow airfoil portion 16 with a tip cap 18, which is preferably an integral part of the cast. I have. The airfoil has a pressure side 17 and a suction side 19. Wing 10
Also includes an internal cooling passage 22 (see FIG. 2) through which a coolant, such as cooling air, is passed through the airfoil section 16 for cooling. The pressure surface 17 has a plurality of radially aligned film cooling holes 20 which flow through the various internal cooling passages 22 of the blade and are introduced through openings 32 in the base portion of the blade 10. It provides an outlet path for the cooled air.

【0007】翼10は高温での運転で適当な強度を発揮
するニッケル基超合金のような適当な高温金属でできて
いる、ダブテール12、プラットホーム14、エーロフ
ォイル16および先端キャップ18のワンピース鋳造物
として成形するのが好ましい。翼10のプラットホーム
部分14は一般に4つの角、即ち正圧面前方の角24、
正圧面後方の角26、負圧面前方の角28および負圧面
後方の角30を有する方形の表面をしている。図3−5
に最も良く見ることができるように、翼10のプラット
ホーム部分14は隣接する翼のプラットホーム間上にお
ける高温ガスの流れを改善するように輪郭付けられてい
る。特に、プラットホーム部分14の正圧面前方の角2
4および負圧面後方の角30は若干内側に偏向されてお
り、一方正圧面後方の角26および負圧面前方の角28
は若干外側に偏向されている。その結果、組み立てられ
たタービンロータにおいては、タービン段に入った高温
ガスは一つの翼のプラットホームの負圧面前方の角28
から隣の翼の正圧面前方の角24に通過するときに”ス
テップダウン”し(図4参照)、そしてまた一つの翼の
プラットホームの正圧面後方の角26から隣の翼の負圧
面後方の角30へ通過するときに再び”ステップダウ
ン”する(図5参照)。こうした”プラットホームステ
ップ”の構成により、高温ガスは一つのプラットホーム
部分14から次のプラットホーム部分14への移行に急
激な移行を受けない。この特徴により高温ガスが翼のプ
ラットホーム部分14の縁部に衝突して局部的な過熱を
起こすことが排除される。
The wing 10 is made of a suitable high-temperature metal, such as a nickel-base superalloy, which exhibits suitable strength when operated at high temperatures, and is a one-piece casting of a dovetail 12, a platform 14, an airfoil 16 and a tip cap 18. It is preferred to mold as. The platform portion 14 of the wing 10 generally has four corners, a corner 24 in front of the pressure plane,
It has a rectangular surface with a corner 26 behind the pressure side, a corner 28 in front of the suction side, and a corner 30 behind the suction side. Fig. 3-5
As can best be seen, the platform portion 14 of the wing 10 is contoured to improve the flow of hot gas over the platform between adjacent wings. In particular, the corner 2 in front of the pressure surface of the platform portion 14
4 and the angle 30 behind the suction surface are slightly deflected inward, while the angle 26 behind the pressure surface and the angle 28 ahead of the suction surface.
Is slightly deflected outward. As a result, in the assembled turbine rotor, the hot gas entering the turbine stage is reduced by the angle 28 in front of the suction surface of one blade platform.
"Step-down" when passing from the pressure side of the next blade to the front corner 24 of the next blade (see FIG. 4), and again from the corner 26 behind the pressure plane of one blade platform to the rear of the suction surface of the next blade. Again "step down" when passing through the corner 30 (see FIG. 5). With this "platform step" configuration, the hot gas does not undergo an abrupt transition from one platform portion 14 to the next. This feature prevents hot gas from impinging on the edge of the wing platform portion 14 and causing local overheating.

【0008】図2は翼10の内部形状を図示している。
翼鋳造物には冷却空気を流すために多くの内部流路22
が蛇行形に配列されている。翼10のダブテール12中
の開口32を通して翼内に冷却空気が導入される。空気
は次いで蛇行した複数の流路22の周りを流れて翼の正
圧面17にある膜冷却用穴20を通って出ていく。最後
方の冷却流路34は翼10のベース部にあるそれ自身の
開口32を通して空気を供給される。他の流路22と違
って、最後方の流路34は”止まり”であり、即ち流路
34の半径方向外側端はそこを通る流れが隣の冷却流路
に入らない意味で閉ざされている。図6に見られるよう
に、最後方の流路34は前方部分36と後方部分38と
に半径方向に分割することができる。最後方の流路34
には正圧面17の内壁から負圧面19の内壁まで延びる
層状に整列された円柱状のピン40があり、これにより
乱流が促進されそして翼10の内側での熱伝達に対し追
加の表面積が提供される。最後方の流路34を通って流
れる空気流は翼10の正圧面17上にある膜冷却用穴2
0を通して、翼10の後縁44にある半径方向に整列さ
れた穴42を通して、および先端キャップ18内にある
開口46を通して、翼10の外に排気される。
FIG. 2 shows the internal shape of the wing 10.
The wing casting has a number of internal channels 22 to allow cooling air to flow.
Are arranged in a meandering pattern. Cooling air is introduced into the wing through openings 32 in dovetail 12 of wing 10. The air then flows around the meandering channels 22 and exits through the film cooling holes 20 in the pressure surface 17 of the blade. The rearmost cooling channel 34 is supplied with air through its own opening 32 in the base of the wing 10. Unlike the other channels 22, the last channel 34 is "stop", i.e., the radially outer end of the channel 34 is closed in the sense that flow therethrough does not enter the adjacent cooling channel. I have. As can be seen in FIG. 6, the rearmost channel 34 can be radially divided into a front portion 36 and a rear portion 38. Last channel 34
Has a layered array of cylindrical pins 40 extending from the inner wall of the pressure surface 17 to the inner wall of the suction surface 19, which promotes turbulence and provides additional surface area for heat transfer inside the airfoil 10. Provided. The air flow flowing through the rearmost flow path 34 is applied to the film cooling hole 2 on the pressure surface 17 of the blade 10.
0, exhaust through the radially aligned holes 42 in the trailing edge 44 of the wing 10 and through openings 46 in the tip cap 18 out of the wing 10.

【0009】膜冷却用穴20の殆どは翼10の正圧面1
7に沿って半径方向に整列されているが、最後方の冷却
流路34の半径方向外方前方の角において翼10の正圧
面17に1つ以上の冷却用穴48(図1を参照)が置か
れる。この追加の穴48(1つ以上)は、実質的には最
後方の冷却流路34の前方部分36に置かれている先端
キャップ18中の開口46と共働して、空気流が最後方
の冷却流路34を通って半径方向外方端まで全体に連続
して流れ、最後方の冷却流路の半径方向外方前方の角に
おける殆どまたは全く空気流のない”デッドゾーン”を
排除することを確実にする。
Most of the film cooling holes 20 are formed on the pressure surface 1 of the blade 10.
7, one or more cooling holes 48 in the pressure surface 17 of the blade 10 at the radially outwardly forward corner of the rearmost cooling channel 34 (see FIG. 1). Is placed. This additional hole 48 (one or more) cooperates with an opening 46 in the tip cap 18, which is located substantially in the forward portion 36 of the rearmost cooling channel 34, so that airflow is Through the cooling channel 34 to the radially outer end, eliminating a "dead zone" with little or no airflow at the radially outwardly forward corner of the last cooling channel. Make sure that.

【0010】先端キャップ開口46は実質的に最後方の
流路34の前方部分36において、できる限り前方に寄
せて置かれる。翼10の狭い後方部分では幅に制約があ
るので、開口46は好ましくは非−円形の形にしてその
面積を円形の穴の面積より大きくできる。開口46は翼
先端18の外の比較的圧力の低い空気流と流通する用に
置かれる。これにより開口46を横切って圧力の差が生
成され、これによって冷却空気流は最後方の冷却流路3
4においてさもなくばデッドゾーンとなる筈のゾーンを
通って流される。
The tip cap opening 46 is positioned as forward as possible, substantially in the forward portion 36 of the rearmost channel 34. Due to the limited width at the narrow aft portion of wing 10, opening 46 is preferably non-circular in shape so that its area can be larger than the area of the circular hole. Openings 46 are positioned to communicate with a relatively low pressure air flow outside of wing tip 18. This creates a pressure differential across the opening 46, whereby the cooling air flow is directed to the rearmost cooling channel 3
At 4 it is flowed through a zone that would otherwise be a dead zone.

【0011】図2にはまた乱流促進体または乱流手段5
0が示されており、この乱流促進体は冷却流路22の内
壁上に翼鋳造物の一部として成形された細長いリブであ
る。乱流手段50は乱流を促進して翼10の冷却効率を
増大する働きをする。翼の設計ではできるだけ圧力降下
を低くしそして熱伝達速度を高く維持することが有益で
ある。乱流手段を角度付ければ圧力降下の改善即ち低下
を期待することができる。圧力降下は流体摩擦係数に比
例するので、乱流手段の角度を90°から流れの方向に
減少させれば流れの抵抗即ち摩擦を減少して圧力降下が
低下される。しかし、乱流手段の角度を90°から流れ
の方向に引き離すと、熱伝達速度も減少する。このリブ
を0°(空気の流れと並行)に設定すると、熱伝達と摩
擦の両方が最小に至る。実際には、乱流手段50を流れ
に対して非−直角の角度に置いて最適な熱伝達と最小の
流れの損失との妥協を計る。非−直角の角度は約40°
乃至約90°の範囲が好ましい。
FIG. 2 also shows a turbulence enhancer or turbulence means 5.
The turbulence enhancer is an elongated rib molded on the inner wall of the cooling channel 22 as part of the wing casting. The turbulence means 50 serves to promote turbulence and increase the cooling efficiency of the blade 10. In the wing design, it is beneficial to keep the pressure drop as low as possible and keep the heat transfer rate high. If the turbulence means is angled, an improvement or reduction of the pressure drop can be expected. Since the pressure drop is proportional to the coefficient of fluid friction, reducing the angle of the turbulent flow means from 90 ° in the direction of flow reduces the flow resistance or friction and reduces the pressure drop. However, when the angle of the turbulence means is moved away from 90 ° in the direction of flow, the heat transfer rate also decreases. Setting this rib at 0 ° (parallel to the air flow) minimizes both heat transfer and friction. In practice, the turbulence means 50 is placed at a non-perpendicular angle to the flow to compromise between optimal heat transfer and minimal flow loss. Non-right angle is about 40 °
A range from about 90 ° to about 90 ° is preferred.

【0012】以上本発明の好適な例示的な実施の態様と
考えられる点を記載したが、ここでの教示からすれば本
発明の他の変更例も当業者には明らかなはずであるか
ら、本発明の真の精神と範囲に入るような変更は全て特
許請求の範囲に確保されていると望まれる。
Having described what is considered a preferred exemplary embodiment of the present invention, other modifications of the present invention will be apparent to those skilled in the art in light of the teachings herein. It is hoped that all modifications that fall within the true spirit and scope of the invention are set forth in the following claims.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のタービン翼を描いた略図。FIG. 1 is a schematic diagram depicting a turbine blade of the present invention.

【図2】翼の側部断面の立面図。FIG. 2 is an elevation view of a side cross section of a wing.

【図3】2つの隣接する翼の略図。FIG. 3 is a schematic diagram of two adjacent wings.

【図4】2つの隣接する翼のプラットホームの前方部分
の周りの空気流のパターンを図解した断面図。
FIG. 4 is a cross-sectional view illustrating a pattern of airflow around the forward portions of two adjacent wing platforms.

【図5】2つの隣接する翼のプラットホームの後方部分
の周りの空気流のパターンを図解した断面図。
FIG. 5 is a cross-sectional view illustrating a pattern of air flow around the rear portions of two adjacent wing platforms.

【図6】翼の半径方向外側後方の角の拡大した側部断面
図。
FIG. 6 is an enlarged side cross-sectional view of a radially outer rear corner of the wing.

【符号の説明】[Explanation of symbols]

10:タービン翼 12:ダブテール 14:プラットホーム 16:エーロフォイル 17:正圧面 18:先端キャップ 19:負圧面 20:膜冷却用穴 22:内部冷却流路 24:正圧面前方の角 26:正圧面後方の角 28:負圧面前方の角 30:負圧面後方の角 32:開口 34:最後方の冷却流路 36:前方部分 38:後方部分 40:ピン 42:穴 44:後縁 46:開口 48:冷却用穴 50:乱流手段 10: turbine blade 12: dovetail 14: platform 16: airfoil 17: positive pressure surface 18: tip cap 19: negative pressure surface 20: film cooling hole 22: internal cooling flow channel 24: positive pressure surface front corner 26: positive pressure surface Back corner 28: Front corner of the suction surface 30: Back corner of the suction surface 32: Opening 34: Cooling channel at the rear 36: Front part 38: Back part 40: Pin 42: Hole 44: Trailing edge 46: Opening 48: Cooling hole 50: Turbulent flow means

フロントページの続き (72)発明者 ロバート・クーパー・サイモンズ アメリカ合衆国、オハイオ州、シンシナテ ィ、グレンフォールズ・コート、11847番Continued on the front page (72) Inventor Robert Cooper Simons Glen Falls Court, Cincinnati, Ohio, USA, 11847

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 翼をロータディスクに装着するためのダ
ブテール、ダブテールに接合されたプラットホーム、プ
ラットホームから外側に延びていて先端キャップおよび
横方向に対向した正圧面と負圧面を含むエーロフォイ
ル、およびエーロフォイルに複数配置された内部冷却流
路でその最後方の冷却流路に前方部分と後方部分が設け
られている内部冷却流路を含んでおり、前記先端キャッ
プ内に開口が形成されており、該開口が実質的に前記最
後方の冷却流路と流通して前記前方部分に位置づけられ
ている、タービン翼。
1. A dovetail for mounting wings to a rotor disk, a platform joined to the dovetail, an airfoil extending outwardly from the platform and including a tip cap and laterally opposed pressure and suction surfaces, and an airfoil. A plurality of internal cooling passages arranged in the foil include an internal cooling passage provided with a front portion and a rear portion in the rearmost cooling passage, and an opening is formed in the tip cap, The turbine blade, wherein the opening is substantially located in the front portion in communication with the rearmost cooling flow path.
【請求項2】 前記開口が非−円形のスロットである請
求項1記載のタービン翼。
2. The turbine blade according to claim 1, wherein said openings are non-circular slots.
【請求項3】 前記先端キャップが前記エーロフォイル
の一体部分である請求項1記載のタービン翼。
3. The turbine blade according to claim 1, wherein said tip cap is an integral part of said airfoil.
【請求項4】 更に前記エーロフォイル内に複数の膜冷
却用穴が形成されており、該膜冷却用穴の少なくとも1
つが前記最後方の冷却流路と流通して前記正圧面上に位
置づけられており、この少なくとも1つの膜冷却用穴が
実質的に前記前方部分に位置づけられそして実質的に前
記最後方の冷却流路の半径方向最も外側の角に位置づけ
られている請求項1記載のタービン翼。
4. A plurality of film cooling holes are formed in the airfoil, and at least one of the film cooling holes is formed.
One is positioned on the pressure side in communication with the rearmost cooling flow path, the at least one film cooling hole is positioned substantially in the front portion, and substantially the rearmost cooling flow The turbine blade of claim 1, wherein the turbine blade is located at a radially outermost corner of the path.
【請求項5】 前記最後方の冷却流路が内部に複数のピ
ンを形成されている請求項1記載のタービン翼。
5. The turbine blade according to claim 1, wherein the rearmost cooling flow path has a plurality of pins formed therein.
【請求項6】 前記プラットホームが正圧面前方の角、
正圧面後方の角、負圧面前方の角および負圧面後方の角
を含んでおり、前記負圧面前方の角が前記正圧面前方の
角より半径方向外側に配置されそして前記正圧面後方の
角が前記負圧面後方の角より半径方向外側に配置される
ように前記プラットホームが輪郭づけられている請求項
1記載のタービン翼。
6. The system according to claim 6, wherein said platform is a corner in front of a pressure surface,
A back surface corner, a suction surface front corner, and a suction surface rear corner, wherein the suction surface front corner is disposed radially outward of the pressure surface front corner and the suction surface rear corner. The turbine blade of claim 1, wherein the platform is contoured such that a corner of the platform is disposed radially outward of a corner behind the suction surface.
【請求項7】 更に前記内部冷却流路内に複数の乱流促
進体が形成されていて、該乱流促進体がそれぞれの冷却
流路を通る流れの方向に対して非−直角の角度で配置さ
れている請求項1記載のタービン翼。
7. A plurality of turbulence enhancers are formed in the internal cooling passage, and the turbulence enhancers are formed at a non-perpendicular angle to the direction of flow through each cooling passage. The turbine blade according to claim 1, wherein the turbine blade is arranged.
【請求項8】 前記の非−直角の角度が約40°乃至約
90°である請求項7記載のタービン翼。
8. The turbine blade according to claim 7, wherein said non-perpendicular angle is between about 40 ° and about 90 °.
【請求項9】 翼をロータディスクに装着するためのダ
ブテール、ダブテールに接合されたプラットホームおよ
びプラットホームから外側に延びたエーロフォイルを含
んでなり、前記エーロフォイルが先端キャップおよび横
方向に対向した正圧面と負圧面を含んでおり、前記先端
キャップが前記エーロフォイルの一体部分であり、前記
プラットホームが正圧面前方の角、正圧面後方の角、負
圧面前方の角および負圧面後方の角を含んでおり、前記
負圧面前方の角が前記正圧面前方の角より半径方向外側
に配置されそして前記正圧面後方の角が前記負圧面後方
の角より半径方向外側に配置されるように前記プラット
ホームが輪郭づけられており、前記エーロフォイルに複
数の内部冷却流路が配置されており、該冷却流路の最後
方の冷却流路に前方部分と後方部分が設けられており、
前記先端キャップ内に開口が形成されており、該開口が
実質的に前記最後方の冷却流路と流通して前記前方部分
に位置づけられており、前記エーロフォイル内に複数の
膜冷却用穴が形成されており、該膜冷却用穴の少なくと
も1つが前記最後方の冷却流路と流通して前記正圧面上
に位置づけられており、この少なくとも1つの膜冷却用
穴が実質的に前記前方部分に位置づけられそして実質的
に前記最後方の冷却流路の半径方向最も外側の角に位置
づけられており、前記内部冷却流路内に複数の乱流促進
体が形成されており、そして該乱流促進体がそれぞれの
冷却流路を通る流れの方向に対して非−直角の角度で配
置されている、タービン翼。
9. A dovetail for mounting wings to a rotor disk, a platform joined to the dovetail, and an airfoil extending outwardly from the platform, the airfoil having a tip cap and a laterally opposed pressure surface. And a suction surface, wherein the tip cap is an integral part of the airfoil and the platform defines a corner in front of the pressure surface, a corner in rear of the pressure surface, a corner in front of the suction surface and a corner in back of the suction surface. The suction surface front corner is disposed radially outward of the pressure surface front corner and the pressure surface rear corner is disposed radially outward of the suction surface rear corner. The platform is contoured, and the airfoil has a plurality of internal cooling passages disposed therein, the cooling passage being the last one of the cooling passages. There is a part and a rear part,
An opening is formed in the tip cap, and the opening is substantially located in the front portion in communication with the rearmost cooling channel, and a plurality of film cooling holes are formed in the airfoil. At least one of the film cooling holes is located on the pressure surface in communication with the rearmost cooling flow path, and the at least one film cooling hole is substantially at the front portion. And substantially positioned at a radially outermost corner of the rearmost cooling flow path, wherein a plurality of turbulence enhancers are formed within the internal cooling flow path; and Turbine blades wherein the enhancers are positioned at a non-perpendicular angle to the direction of flow through the respective cooling passages.
【請求項10】 前記開口が非−円形のスロットである
請求項9記載のタービン翼。
10. The turbine blade according to claim 9, wherein said openings are non-circular slots.
【請求項11】 前記の非−直角の角度が約40°乃至
約90°である請求項9記載のタービン翼。
11. The turbine blade of claim 9, wherein said non-perpendicular angle is between about 40 ° and about 90 °.
【請求項12】 前記最後方の冷却流路が内部に複数の
ピンを形成されている請求項9記載のタービン翼。
12. The turbine blade according to claim 9, wherein the rearmost cooling passage has a plurality of pins formed therein.
JP30466498A 1997-10-31 1998-10-27 Turbine wing Pending JPH11193701A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US96212897A 1997-10-31 1997-10-31
US08/962128 1997-10-31

Publications (1)

Publication Number Publication Date
JPH11193701A true JPH11193701A (en) 1999-07-21

Family

ID=25505455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30466498A Pending JPH11193701A (en) 1997-10-31 1998-10-27 Turbine wing

Country Status (2)

Country Link
EP (1) EP0913556A3 (en)
JP (1) JPH11193701A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028093A (en) * 2002-05-31 2004-01-29 General Electric Co <Ge> Method and device for dropping temperature of turbine blade tip area
JP2006029330A (en) * 2004-07-13 2006-02-02 General Electric Co <Ge> Turbine blade with skirt
JP2006342805A (en) * 2005-06-06 2006-12-21 General Electric Co <Ge> Turbine airfoil with integrated impingement and serpentine cooling circuit
JP2007064226A (en) * 2005-08-31 2007-03-15 General Electric Co <Ge> Pattern cooling type turbine blade pattern
CN101482030A (en) * 2008-01-10 2009-07-15 通用电气公司 Turbine blade tip shroud
WO2020148981A1 (en) * 2019-01-17 2020-07-23 三菱日立パワーシステムズ株式会社 Turbine moving blade and gas turbine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6331098B1 (en) * 1999-12-18 2001-12-18 General Electric Company Coriolis turbulator blade
US6579061B1 (en) * 2001-07-27 2003-06-17 General Electric Company Selective step turbine nozzle
US6672832B2 (en) 2002-01-07 2004-01-06 General Electric Company Step-down turbine platform
US7121802B2 (en) 2004-07-13 2006-10-17 General Electric Company Selectively thinned turbine blade
US20150064019A1 (en) * 2013-08-30 2015-03-05 General Electric Company Gas Turbine Components with Porous Cooling Features

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4135857A (en) * 1977-06-09 1979-01-23 United Technologies Corporation Reduced drag airfoil platforms
US4278400A (en) * 1978-09-05 1981-07-14 United Technologies Corporation Coolable rotor blade
JPS62228603A (en) * 1986-03-31 1987-10-07 Toshiba Corp Gas turbine blade
US4753575A (en) * 1987-08-06 1988-06-28 United Technologies Corporation Airfoil with nested cooling channels
GB2250548A (en) * 1990-12-06 1992-06-10 Rolls Royce Plc Cooled turbine aerofoil blade
JP3006174B2 (en) * 1991-07-04 2000-02-07 株式会社日立製作所 Member having a cooling passage inside
US5243759A (en) * 1991-10-07 1993-09-14 United Technologies Corporation Method of casting to control the cooling air flow rate of the airfoil trailing edge
US5387085A (en) * 1994-01-07 1995-02-07 General Electric Company Turbine blade composite cooling circuit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004028093A (en) * 2002-05-31 2004-01-29 General Electric Co <Ge> Method and device for dropping temperature of turbine blade tip area
JP2006029330A (en) * 2004-07-13 2006-02-02 General Electric Co <Ge> Turbine blade with skirt
JP2006342805A (en) * 2005-06-06 2006-12-21 General Electric Co <Ge> Turbine airfoil with integrated impingement and serpentine cooling circuit
JP2007064226A (en) * 2005-08-31 2007-03-15 General Electric Co <Ge> Pattern cooling type turbine blade pattern
CN101482030A (en) * 2008-01-10 2009-07-15 通用电气公司 Turbine blade tip shroud
WO2020148981A1 (en) * 2019-01-17 2020-07-23 三菱日立パワーシステムズ株式会社 Turbine moving blade and gas turbine
JP2020112146A (en) * 2019-01-17 2020-07-27 三菱日立パワーシステムズ株式会社 Turbine rotor blade and gas turbine
US11939882B2 (en) 2019-01-17 2024-03-26 Mitsubishi Heavy Industries, Ltd. Turbine rotor blade and gas turbine

Also Published As

Publication number Publication date
EP0913556A2 (en) 1999-05-06
EP0913556A3 (en) 2000-07-26

Similar Documents

Publication Publication Date Title
JP4576177B2 (en) Converging pin cooled airfoil
JP4546760B2 (en) Turbine blade with integrated bridge
EP1001137B1 (en) Gas turbine airfoil with axial serpentine cooling circuits
US6607355B2 (en) Turbine airfoil with enhanced heat transfer
US6491496B2 (en) Turbine airfoil with metering plates for refresher holes
JP4256704B2 (en) Method and apparatus for cooling a gas turbine engine nozzle assembly
US6471479B2 (en) Turbine airfoil with single aft flowing three pass serpentine cooling circuit
US5690473A (en) Turbine blade having transpiration strip cooling and method of manufacture
US5356265A (en) Chordally bifurcated turbine blade
JP4659206B2 (en) Turbine nozzle with graded film cooling
JP4063938B2 (en) Turbulent structure of the cooling passage of the blade of a gas turbine engine
EP1008724B1 (en) Gas turbine engine airfoil
US6607356B2 (en) Crossover cooled airfoil trailing edge
US8535006B2 (en) Near-wall serpentine cooled turbine airfoil
JPH0610704A (en) Air foil device
JP2001140601A (en) Slotted impingement cooling of blade shaped part front edge
JP4341231B2 (en) Method and apparatus for cooling a gas turbine nozzle
JPH11193701A (en) Turbine wing
EP1361337B1 (en) Turbine airfoil cooling configuration
JP4137508B2 (en) Turbine airfoil with metering plate for refresh holes
JP2003322003A (en) Turbine airfoil part having single three-passage zigzag cooling circuit flowing rearward
EP1362982A1 (en) Turbine airfoil with single aft flowing three pass serpentine cooling circuit
JPS6215724B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030715