JP3276305B2 - Gas turbine cooling vanes - Google Patents

Gas turbine cooling vanes

Info

Publication number
JP3276305B2
JP3276305B2 JP11384597A JP11384597A JP3276305B2 JP 3276305 B2 JP3276305 B2 JP 3276305B2 JP 11384597 A JP11384597 A JP 11384597A JP 11384597 A JP11384597 A JP 11384597A JP 3276305 B2 JP3276305 B2 JP 3276305B2
Authority
JP
Japan
Prior art keywords
steam
cooling
passage
shroud
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11384597A
Other languages
Japanese (ja)
Other versions
JPH10306706A (en
Inventor
康意 富田
素直 青木
潔 末永
達男 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11384597A priority Critical patent/JP3276305B2/en
Priority to US09/202,594 priority patent/US6092983A/en
Priority to EP98917726A priority patent/EP0911488B1/en
Priority to CA002261184A priority patent/CA2261184C/en
Priority to PCT/JP1998/001958 priority patent/WO1998050684A1/en
Priority to DE69821312T priority patent/DE69821312T2/en
Publication of JPH10306706A publication Critical patent/JPH10306706A/en
Application granted granted Critical
Publication of JP3276305B2 publication Critical patent/JP3276305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/80Platforms for stationary or moving blades
    • F05D2240/81Cooled platforms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • F05D2260/22141Improvement of heat transfer by increasing the heat transfer surface using fins or ribs

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はガスタービンの蒸気
冷却静翼に関し、冷却媒体として蒸気を用い、翼と共に
内側シュラウドも蒸気冷却するようにしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam-cooled stationary blade for a gas turbine, which uses steam as a cooling medium, and also cools an inner shroud together with the blade.

【0002】[0002]

【従来の技術】図5は従来の代表的なガスタービン静翼
の空気冷却方式を示す図である。図において、40は静
翼であり、41がその外側シュラウド、42が内側シュ
ラウドである。43A,43B,43C,43D,43
Eは空気通路であり、45は後縁であり、44は後縁の
空気噴出穴、46はこれら空気通路43A〜43E内壁
に設けられたタービュレータで、流入する空気流を乱
し、熱伝達を向上させるものである。
2. Description of the Related Art FIG. 5 is a diagram showing a conventional typical air cooling system for a gas turbine stationary blade. In the figure, 40 is a stationary blade, 41 is its outer shroud, and 42 is its inner shroud. 43A, 43B, 43C, 43D, 43
E is an air passage, 45 is a trailing edge, 44 is a trailing edge air ejection hole, and 46 is a turbulator provided on the inner wall of these air passages 43A to 43E. It is to improve.

【0003】上記の静翼の冷却方式では、冷却空気47
が外側シュラウド41から空気通路43Aに流入し、基
部側に流れ、基部側より次の空気通路43Bに入り、先
端部に流れて次の空気通路43Cに入り、以下同様に4
3D,43Eと順次流れ、翼を冷却して空気通路43E
では後縁の空気噴出穴44より空気を吹出すと共に、残
りの空気は内側シュラウド42の下方から流出する。
[0003] In the above-described cooling method of the stationary blade, the cooling air 47 is used.
Flows into the air passage 43A from the outer shroud 41, flows to the base side, enters the next air passage 43B from the base side, flows to the tip end, enters the next air passage 43C, and so forth.
3D and 43E flow sequentially to cool the wings and air passage 43E
Then, air is blown out from the air ejection hole 44 at the trailing edge, and the remaining air flows out from below the inner shroud 42.

【0004】上記の図5に示す冷却方式では、空気通路
43A〜43Eでサーペンタイン冷却経路を構成し、こ
の経路に空気を流して翼を冷却しているが、シュラウド
の冷却については全く考慮されていない。
In the cooling method shown in FIG. 5, a serpentine cooling path is formed by the air passages 43A to 43E, and air is flowed in this path to cool the blades. However, cooling of the shroud is completely considered. Absent.

【0005】図4は翼の冷却には蒸気を用いて冷却し、
シュラウドの冷却には空気を用いた静翼の例であり、静
翼の蒸気冷却方式は未だ実用化されていないが、本出願
人により研究されている一例を先行技術として示したも
のである。図において、30は静翼であり、上部の外側
シュラウドは省略し、翼の1部を示している。31はそ
の内側シュラウドである。33A,33B,33C,3
3D,33E,33Fは静翼内部の蒸気通路である。
FIG. 4 shows that the blades are cooled using steam.
This is an example of a stationary blade using air for cooling the shroud, and a steam cooling method for the stationary blade has not been put to practical use yet, but an example studied by the present applicant is shown as prior art. In the figure, reference numeral 30 denotes a stationary blade, an upper outer shroud is omitted, and a part of the blade is shown. 31 is the inner shroud. 33A, 33B, 33C, 3
3D, 33E and 33F are steam passages inside the stationary blade.

【0006】上記構成の静翼において、冷却蒸気39は
図示省略の外側シュラウドの前縁部より流入し、その基
部側より蒸気通路33Bへ流入し、上部より次の通路3
3Cへ、同様に順次蒸気通路33D,33Eへ流れて3
3Eの基部側より後縁側の蒸気通路33Fへ流入し、翼
内部を冷却した後、図示省略の外側シュラウドの蒸気回
収口より回収される。
In the stationary blade having the above-described structure, the cooling steam 39 flows in from the front edge of the outer shroud (not shown), flows into the steam passage 33B from the base side, and flows from the upper portion to the next passage 3B.
3C, and similarly to the steam passages 33D and 33E,
After flowing into the steam passage 33F on the trailing edge side from the base side of 3E and cooling the inside of the blade, it is recovered from the steam recovery port of the outer shroud (not shown).

【0007】一方、シュラウド31の冷却は空気により
行なわれ、シュラウド31の下部から導かれた冷却空気
37は一端より内側シュラウド31の内部の空気冷却通
路に流入し、同空気冷却通路内を一端から他端へ流れて
シュラウド全体を冷却し、空気噴出孔38より流出し、
全体を空気冷却している。
On the other hand, the cooling of the shroud 31 is performed by air, and the cooling air 37 guided from the lower part of the shroud 31 flows into the air cooling passage inside the inner shroud 31 from one end, and flows through the air cooling passage from one end. It flows to the other end, cools the entire shroud, flows out of the air outlet 38,
The whole is air cooled.

【0008】[0008]

【発明が解決しようとする課題】前述のように、従来の
ガスタービンの静翼においては、翼を空気冷却する方式
が主であり、そのシュラウドの冷却は、全くなされてい
ないか、あるいは図4に示すように空気をシュラウド3
1内の空気冷却通路内に流入して一端より他端へ流して
シュラウドの面を冷却し、他端の空気噴出孔38より流
出させて行っている。又、この場合に図示していない
が、内側シュラウド31内面に凹部を設け同内面と平行
にインピンジ板を配して下部より供給する冷却用空気3
7をインピンジ板に当てて多数の穴より噴出させ、シュ
ラウド内を均一に空気で冷却することも行なわれてい
る。
As described above, the conventional vanes of a gas turbine mainly use a method of cooling the blades with air, and the shroud is not cooled at all or as shown in FIG. Shroud 3 as shown in
1, the air flows into the air cooling passage, flows from one end to the other end, cools the surface of the shroud, and flows out from the air ejection hole 38 at the other end. In this case, although not shown, a concave portion is provided on the inner surface of the inner shroud 31, and an impingement plate is arranged in parallel with the inner surface to supply cooling air 3 from the lower portion.
7 is applied to an impingement plate and ejected from a number of holes to uniformly cool the inside of the shroud with air.

【0009】上記の空気冷却方式では冷却のために多量
の空気を消費し、冷却後の空気は燃焼ガス通路へ放出し
ており、このために圧縮機やクーラーにかなりの動力を
消費しており、冷却後の空気は燃焼ガス通路へ放出し、
燃焼ガスに混入してガス温度を低下させ、タービン効率
の低下をまねいていた。
In the above-described air cooling system, a large amount of air is consumed for cooling, and the air after cooling is discharged to the combustion gas passage, so that considerable power is consumed for the compressor and the cooler. , The cooled air is discharged into the combustion gas passage,
It mixed with the combustion gas to lower the gas temperature, leading to a decrease in turbine efficiency.

【0010】又、図4に示す翼の蒸気冷却方式では、翼
の冷却に蒸気を用い、冷却後の蒸気はこれを回収し、蒸
気供給源に戻して有効活用に供されているが、シュラウ
ドは空気冷却であり、シュラウド冷却後の空気は主流ガ
スに放出しており、上記の翼を空気冷却するものよりは
空気量は少く、空気量を節減しているが、いずれにして
も空気を必要とし、かつ燃焼ガスへの混入によりガス温
度を低下させ、タービン効率の低下につながっていた。
In the steam cooling method of the blade shown in FIG. 4, steam is used for cooling the blade, and the cooled steam is recovered and returned to a steam supply source for effective use. Is air cooling, the air after shroud cooling is released to the mainstream gas, and the air amount is smaller than that for air cooling the above-mentioned wing, and the air amount is saved, but in any case the air is In addition, the gas temperature is lowered by mixing with the combustion gas, which leads to a decrease in turbine efficiency.

【0011】そこで、本発明の第1の課題は翼内部の冷
却のみならず、シュラウドの冷却もすべて蒸気冷却と
し、かつ、冷却後の蒸気はすべて回収して蒸気供給源に
戻して有効活用できるようにして空気の使用をなくし、
これによりタービンの効率を向上することのできるガス
タービン冷却静翼を提供することにある。
Therefore, the first object of the present invention is not only to cool the inside of the blade, but also to cool the shroud entirely with steam, and to collect and return all the cooled steam to the steam supply source for effective use. To eliminate the use of air,
Accordingly, it is an object of the present invention to provide a gas turbine cooling vane capable of improving turbine efficiency.

【0012】又、第2の課題としては、シュラウドを冷
却する場合の蒸気通路の構造を簡素化し、組立、加工の
面においても有利となるガスタービン冷却静翼を提供す
ることにある。
Another object of the present invention is to provide a gas turbine cooling vane which simplifies the structure of a steam passage for cooling a shroud and is advantageous in terms of assembly and processing.

【0013】[0013]

【課題を解決するための手段】本発明は、前述の課題を
解決するために次の(1),(2)の手段を提供する。
The present invention provides the following means (1) and (2) to solve the above-mentioned problems.

【0014】(1) ガスタービン静翼内部に蒸気通路
を設け、同蒸気通路の一端より冷却用蒸気を流入し、他
端より回収して翼内部を冷却すると共に、その蒸気の一
部を翼から内側シュラウドの蒸気通路へ導き、同内側シ
ュラウドを冷却した蒸気を翼に戻すガスタービンの冷却
静翼であって、前記内側シュラウドの蒸気通路は端部周
囲に配設すると共に、静翼前縁側の蒸気通路から前記冷
却用蒸気の一部を抽出して同内側シュラウド蒸気通路へ
流入させ、静翼後縁側の蒸気通路へ戻すことを特徴とす
るガスタービンの冷却静翼。
(1) A steam passage is provided inside the gas turbine vane, cooling steam flows in from one end of the steam passage, is collected from the other end to cool the inside of the blade, and a part of the steam is transferred to the blade. A steam turbine of a gas turbine that guides the steam from the inner shroud to the steam passage of the inner shroud and returns the steam cooled to the inner shroud to the blades. A part of the cooling steam is extracted from the steam passage, flows into the inner shroud steam passage, and returns to the steam passage on the trailing edge side of the stationary blade.

【0015】(2) 上記の(1)において、前記内側
シュラウドの蒸気通路は同内側シュラウド周囲側面に沿
って溝を加工し、同溝を側板でふさいで形成したことを
特徴とするガスタービンの冷却静翼。
(2) In the gas turbine according to the above (1), the steam passage of the inner shroud is formed by forming a groove along a peripheral side surface of the inner shroud and closing the groove with a side plate. Cooling vane.

【0016】上記の本発明の(1)においては、冷却用
蒸気は静翼内の蒸気通路の一端より冷却用蒸気を流入
し、翼内部を通る過程において翼を冷却し、蒸気通路の
他端より流出し、回収される。一方、内側シュラウドに
は翼の前縁側より翼の冷却用蒸気の一部が流入し、シュ
ラウド端部周辺の両側に設けた蒸気通路を流れて後縁側
の翼の蒸気通路へ流入し、翼の回収冷却空気と混入して
回収される。
In the above (1) of the present invention, the cooling steam flows from one end of the steam passage in the stationary blade, cools the blade in the process of passing through the inside of the blade, and the other end of the steam passage. More outflow and recovery. On the other hand, a part of the cooling steam of the blade flows into the inner shroud from the leading edge side of the blade, flows through the steam passages provided on both sides around the shroud end portion, flows into the steam passage of the blade at the trailing edge side, and Collected by mixing with the collected cooling air.

【0017】上記のように、本発明の(1)では静翼内
と共に、内側シュラウドも蒸気冷却されるので従来のよ
うに冷却用空気が不要となり、又、冷却用蒸気は翼と内
側シュラウドを冷却することにより温度が上昇し、回収
されて蒸気供給源へ戻し、有効活用されるので、タービ
ンの効率が向上する。
As described above, in (1) of the present invention, the inside shroud is steam-cooled as well as the inside of the stationary blade, so that cooling air is not required as in the prior art, and the cooling steam uses the blade and the inner shroud. Cooling increases the temperature, which is recovered and returned to the steam supply source for effective utilization, thereby improving the efficiency of the turbine.

【0018】本発明の(2)においては、上記(1)の
発明の内側シュラウド蒸気通路がシュラウド周囲側面の
溝とその溝に当接して固定される側板により形成される
ので蒸気通路の端部への形成が容易となる。
In (2) of the present invention, since the inner shroud steam passage of the above-mentioned (1) is formed by the groove on the peripheral side surface of the shroud and the side plate fixed in contact with the groove, the end of the steam passage is formed. It becomes easy to form into.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面に基づいて具体的に説明する。図1は本発明の実
施一形態に係るガスタービンの冷却静翼の斜視図であ
る。図において符号31乃至33A〜33Fは図5に示
す先行技術に係る冷却静翼と同一機能を有するものであ
り、詳しい説明は省略し、そのまま引用しているが、本
発明の特徴部分は、本出願人が開発中の図5に示す先行
技術を更に改良し、翼内部のみならず、内側シュラウド
31の端部も蒸気冷却するような構成としたものであ
る。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a perspective view of a cooling vane of a gas turbine according to one embodiment of the present invention. In the figure, reference numerals 31 to 33A to 33F have the same functions as those of the cooling vane according to the prior art shown in FIG. 5, and the detailed description is omitted. The prior art shown in FIG. 5 which is being developed by the applicant is further improved so that not only the inside of the blade but also the end of the inner shroud 31 is steam-cooled.

【0020】図1において、冷却蒸気39は図5の例と
同様に静翼30の前縁側の図示省略の外側シュラウドよ
り蒸気通路33Aへ流入し、同蒸気通路33Aより蒸気
通路33Bへ入り、上方へ流れて蒸気通路33Cへ流入
する。以下同様に蒸気通路33C,33Dと流れて通路
33Eの下部より後縁の蒸気通路33Fに流入し、これ
らの過程において翼内部を冷却し、図示省略の上部の外
側シュラウドの蒸気回収口より回収される。
In FIG. 1, the cooling steam 39 flows into the steam passage 33A from the outer shroud (not shown) on the leading edge side of the stationary blade 30 as in the example of FIG. And flows into the steam passage 33C. Similarly, the gas flows through the steam passages 33C and 33D and flows from the lower portion of the passage 33E into the steam passage 33F on the trailing edge. In these processes, the inside of the blade is cooled, and is recovered from the steam recovery port of the upper outer shroud (not shown). You.

【0021】一方、前縁の蒸気通路33Aから流入した
冷却蒸気39の一部は内側シュラウド31内に入り、蒸
気流入通路22から端部に設けられた蒸気通路20へ流
れる。蒸気通路20は内側シュラウド31の端部周囲に
設けられており、蒸気流入通路22より左右に分れて流
れ、両側を通って後縁側の蒸気流出通路21へ両側から
流入し、この蒸気流出通路21に連通する後縁の蒸気通
路33Fへ入り、翼内部から流入する蒸気と合流し、上
昇して図示省略の外側シュラウドの蒸気回収口から回収
される。このようにして翼内部を蒸気冷却すると共に、
その一部の蒸気により内側シュラウド31の端部も蒸気
により冷却し、静翼全体を蒸気冷却することができる。
On the other hand, part of the cooling steam 39 flowing from the steam passage 33A at the leading edge enters the inside shroud 31, and flows from the steam inflow passage 22 to the steam passage 20 provided at the end. The steam passage 20 is provided around the end of the inner shroud 31, flows right and left from the steam inflow passage 22, passes through both sides into the steam outflow passage 21 on the trailing edge side, and flows into the steam outflow passage 21 from both sides. The steam enters the steam passage 33 </ b> F at the trailing edge communicating with the steam turbine 21, merges with steam flowing from the inside of the blade, rises, and is collected from a steam recovery port of an outer shroud (not shown). While steam cooling the inside of the wing in this way,
Part of the steam also cools the end of the inner shroud 31 with the steam, so that the entire stationary blade can be steam-cooled.

【0022】図2は上記に説明した実施の形態における
冷却翼の内側シュラウドの内部の断面図である。図にお
いて内側シュラウド31には前述のように端部周囲のリ
ブには蒸気通路20が設けられており、前縁側にはこの
蒸気通路20と蒸気通路33Aとを連通する蒸気流入通
路22が設けられ、更に後縁側には蒸気通路33Fと蒸
気通路20とを連通する蒸気流出通路21が設けられて
いる。
FIG. 2 is a sectional view showing the inside of the inner shroud of the cooling blade in the embodiment described above. In the figure, the inner shroud 31 is provided with the steam passage 20 in the rib around the end portion as described above, and the steam inflow passage 22 communicating the steam passage 20 and the steam passage 33A is provided on the front edge side. Further, a steam outlet passage 21 that connects the steam passage 33F and the steam passage 20 is provided on the trailing edge side.

【0023】冷却蒸気は図示のように静翼30の前縁側
の蒸気通路33Aより蒸気流入通路22を通り、蒸気通
路20に流入し、左右に分かれて内側シュラウド31の
両端部を通り、後縁側に流れ、蒸気流出通路21より静
翼後縁の蒸気通路33Fへ流出し、内側シュラウド31
の周囲を蒸気により冷却する。
As shown, the cooling steam passes through the steam inflow passage 22 from the steam passage 33A on the leading edge side of the stationary blade 30 and flows into the steam passage 20. The cooling steam is divided into right and left, passes through both ends of the inner shroud 31, and passes through the trailing edge side. And flows out of the steam outflow passage 21 to the steam passage 33F at the trailing edge of the stationary blade, and the inner shroud 31
Is cooled by steam.

【0024】図3は図2におけるA−A断面図であり、
蒸気通路の構造を示している。(a),(b),(c)
はそれぞれ蒸気通路の異なった構造例を示しており、こ
れらのいずれの構造を適用しても良いものである。な
お、蒸気通路の構造はこれら(a),(b),(c)に
限定されるものではなく、内部をくり抜いて一体成形し
ても良く、又、その形状も角状のみでなく丸形でも良い
ものである。
FIG. 3 is a sectional view taken along line AA in FIG.
3 shows a structure of a steam passage. (A), (b), (c)
Shows examples of different structures of the steam passage, and any of these structures may be applied. The structure of the steam passage is not limited to these (a), (b) and (c), and the inside may be hollowed out and integrally formed. The shape of the steam passage is not only square but also round. But it's good.

【0025】図3(a)の例では内側シュラウド端部に
溝を形成しておき、その溝の端部に側板23を挿入し、
固定した構造である。(b)は側板24が突起状の形状
を使用したもの、(c)はシュラウド端部と同一厚さの
側板25を適用した構造例であり、それぞれ蒸気通路2
0を形成している。
In the example of FIG. 3A, a groove is formed at the end of the inner shroud, and the side plate 23 is inserted into the end of the groove.
It has a fixed structure. (B) is a structural example in which the side plate 24 has a projecting shape, and (c) is a structural example in which the side plate 25 having the same thickness as the end of the shroud is applied.
0 is formed.

【0026】なお、内側シュラウド31の蒸気通路とな
る溝を側板でふさいだ後、溝と側板との当接部(図3の
丸印個所)を線溶接或いはロー付等を施し、蒸気洩れを
無くすることが望ましい。
After the groove serving as the steam passage of the inner shroud 31 is covered with the side plate, the contact portion between the groove and the side plate (indicated by circles in FIG. 3) is subjected to wire welding or brazing to prevent steam leakage. It is desirable to eliminate it.

【0027】以上説明の実施の形態によれば、内側シュ
ラウド31の端部周囲に蒸気通路20を形成し、前縁側
の蒸気通路33Aより蒸気流入通路22を通って蒸気通
路20に流入し、シュラウド両端部を通って後縁側の蒸
気流出通路21を通って後縁の蒸気通路33Fより流出
する構成としたので、静翼30の内部のみならず、内側
シュラウド31も蒸気により冷却することができ、冷却
に用いていた空気を削減し、そのための圧縮機やクーラ
の動力をその分低減することができる。
According to the embodiment described above, the steam passage 20 is formed around the end of the inner shroud 31, and the steam flows into the steam passage 20 through the steam inflow passage 22 from the steam passage 33A on the leading edge side. Since it is configured to pass through both ends and pass through the trailing edge steam outflow passage 21 and out of the trailing edge steam passage 33F, not only the inside of the stationary blade 30 but also the inner shroud 31 can be cooled by steam, The air used for cooling can be reduced, and the power of the compressor and cooler for that can be reduced correspondingly.

【0028】更に、冷却に用いた蒸気は回収され、冷却
により吸収した熱は蒸気供給源において再利用すること
ができ、空気を使用しない効果も伴ってタービンの効率
が大幅に向上するものである。
Further, the steam used for cooling is recovered, and the heat absorbed by the cooling can be reused in the steam supply source, thereby greatly improving the efficiency of the turbine with the effect of not using air. .

【0029】[0029]

【発明の効果】本発明の(1)はガスタービン静翼内部
に蒸気通路を設け、同蒸気通路の一端より冷却用蒸気を
流入し、他端より回収して翼内部を冷却すると共に、そ
の蒸気の一部を翼から内側シュラウドの蒸気通路へ導
き、同内側シュラウドを冷却した蒸気を翼に戻すガスタ
ービンの冷却静翼であって、前記内側シュラウドの蒸気
通路は端部周囲に配設すると共に、静翼前縁側の蒸気通
路から前記冷却用蒸気の一部を抽出して同内側シュラウ
ド蒸気通路へ流入させ、静翼後縁側の蒸気通路へ戻すこ
とを特徴としている。このような構成により静翼内部の
みならず、内側シュラウドも蒸気により冷却することが
でき、冷却用の空気を不要とし、そのための圧縮機やク
ーラの動力を削減することができる。更に冷却用蒸気は
回収されて蒸気供給源へ戻し、冷却により吸収した熱は
有効利用される。
According to (1) of the present invention, a steam passage is provided inside a gas turbine stationary blade, cooling steam flows in from one end of the steam passage, and is recovered from the other end to cool the inside of the blade. A cooling vane of a gas turbine for guiding a portion of steam from a blade to a steam passage of an inner shroud and returning steam cooled to the inner shroud to the blade, wherein the steam passage of the inner shroud is disposed around an end. In addition, a part of the cooling steam is extracted from the steam passage on the leading edge side of the stationary blade, flows into the inside shroud steam passage, and returns to the steam passage on the trailing edge side of the stationary blade. With such a configuration, not only the inside of the stationary blade but also the inner shroud can be cooled by the steam, so that cooling air is not required, and the power of the compressor and the cooler can be reduced. Further, the cooling steam is recovered and returned to the steam supply source, and the heat absorbed by the cooling is effectively used.

【0030】本発明の(2)は、上記(1)において前
記内側シュラウドの蒸気通路は同内側シュラウド周囲側
面に沿って溝を加工し、同溝を側板でふさいで形成した
ことを特徴としている。このような構成により内側シュ
ラウドの蒸気通路が端部に容易に加工ができ、形成する
ことができる。
According to a second aspect of the present invention, in the first aspect, the steam passage of the inner shroud is formed by forming a groove along a peripheral side surface of the inner shroud, and the groove is formed by covering the groove with a side plate. . With such a configuration, the steam passage of the inner shroud can be easily formed at the end and formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態に係るガスタービンの冷
却静翼の斜視図である。
FIG. 1 is a perspective view of a cooling vane of a gas turbine according to an embodiment of the present invention.

【図2】本発明の実施の一形態に係るガスタービンの冷
却静翼の内側シュラウドの内部断面図である。
FIG. 2 is an internal cross-sectional view of an inner shroud of a cooling vane of the gas turbine according to one embodiment of the present invention.

【図3】図2におけるA−A断面図であり、(a),
(b),(c)はそれぞれ異なった構造例を示してい
る。
FIG. 3 is a sectional view taken along line AA in FIG.
(B) and (c) show different structural examples.

【図4】本発明に関連する先行技術に係るガスタービン
の冷却静翼の斜視図である。
FIG. 4 is a perspective view of a cooling vane of a gas turbine according to the prior art related to the present invention.

【図5】従来のガスタービン静翼の内部断面図である。FIG. 5 is an internal sectional view of a conventional gas turbine stationary blade.

【符号の説明】[Explanation of symbols]

20 蒸気通路 21 蒸気流出通路 22 蒸気流入通路 23,24,25 側板 30 静翼 31 内側シュラウド 33A〜33F 蒸気通路 39 冷却蒸気 Reference Signs List 20 steam passage 21 steam outflow passage 22 steam inflow passage 23, 24, 25 side plate 30 stationary vane 31 inner shroud 33A to 33F steam passage 39 cooling steam

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石黒 達男 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (56)参考文献 特開 平5−163959(JP,A) 特開 平8−177406(JP,A) 特開 平6−257405(JP,A) 特開 平8−28303(JP,A) (58)調査した分野(Int.Cl.7,DB名) F01D 9/02 F02C 7/18 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Tatsuo Ishiguro 2-1-1 Shinhama, Arai-machi, Takasago City, Hyogo Prefecture Inside the Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. (56) References JP-A-5-163959 (JP, A) JP-A-8-177406 (JP, A) JP-A-6-257405 (JP, A) JP-A-8-28303 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F01D 9 / 02 F02C 7/18

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ガスタービン静翼内部に蒸気通路を設
け、同蒸気通路の一端より冷却用蒸気を流入し、他端よ
り回収して翼内部を冷却すると共に、その蒸気の一部を
翼から内側シュラウドの蒸気通路へ導き、同内側シュラ
ウドを冷却した蒸気を翼に戻すガスタービンの冷却静翼
であって、前記内側シュラウドの蒸気通路は端部周囲に
配設すると共に、静翼前縁側の蒸気通路から前記冷却用
蒸気の一部を抽出して同内側シュラウド蒸気通路へ流入
させ、静翼後縁側の蒸気通路へ戻すことを特徴とするガ
スタービンの冷却静翼。
A steam passage is provided inside a gas turbine stationary blade, cooling steam flows in from one end of the steam passage, is recovered from the other end to cool the inside of the blade, and a part of the steam is removed from the blade. A cooling vane for a gas turbine that guides to a steam passage of an inner shroud and returns steam cooled in the inner shroud to a blade, wherein the steam passage of the inner shroud is disposed around an end portion and a leading edge of a vane leading edge side. A cooling vane for a gas turbine, wherein a part of the cooling steam is extracted from a steam passage, flows into the inside shroud steam passage, and returns to a steam passage on a trailing edge side of the vane.
【請求項2】 前記内側シュラウドの蒸気通路は同内側
シュラウド周囲側面に沿って溝を加工し、同溝を側板で
ふさいで形成したことを特徴とする請求項1記載のガス
タービンの冷却静翼。
2. The gas turbine cooling vane according to claim 1, wherein the steam passage of the inner shroud is formed with a groove along a peripheral side surface of the inner shroud, and the groove is formed by covering the groove with a side plate. .
JP11384597A 1997-05-01 1997-05-01 Gas turbine cooling vanes Expired - Fee Related JP3276305B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP11384597A JP3276305B2 (en) 1997-05-01 1997-05-01 Gas turbine cooling vanes
US09/202,594 US6092983A (en) 1997-05-01 1998-04-28 Gas turbine cooling stationary blade
EP98917726A EP0911488B1 (en) 1997-05-01 1998-04-28 Gas turbine cooled stationary blade
CA002261184A CA2261184C (en) 1997-05-01 1998-04-28 Cooled stationary blade of a gas turbine
PCT/JP1998/001958 WO1998050684A1 (en) 1997-05-01 1998-04-28 Gas turbine cooling stationary blade
DE69821312T DE69821312T2 (en) 1997-05-01 1998-04-28 Cooled stator blade for gas turbines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11384597A JP3276305B2 (en) 1997-05-01 1997-05-01 Gas turbine cooling vanes

Publications (2)

Publication Number Publication Date
JPH10306706A JPH10306706A (en) 1998-11-17
JP3276305B2 true JP3276305B2 (en) 2002-04-22

Family

ID=14622507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11384597A Expired - Fee Related JP3276305B2 (en) 1997-05-01 1997-05-01 Gas turbine cooling vanes

Country Status (5)

Country Link
EP (1) EP0911488B1 (en)
JP (1) JP3276305B2 (en)
CA (1) CA2261184C (en)
DE (1) DE69821312T2 (en)
WO (1) WO1998050684A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103089327A (en) * 2011-11-04 2013-05-08 通用电气公司 Bucket assembly for turbine system

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4508482B2 (en) * 2001-07-11 2010-07-21 三菱重工業株式会社 Gas turbine stationary blade
EP1571296A1 (en) * 2004-03-01 2005-09-07 Alstom Technology Ltd Cooled blade of a turbomachine and method of cooling
US7147439B2 (en) * 2004-09-15 2006-12-12 General Electric Company Apparatus and methods for cooling turbine bucket platforms
US7309212B2 (en) * 2005-11-21 2007-12-18 General Electric Company Gas turbine bucket with cooled platform leading edge and method of cooling platform leading edge
CA2642505C (en) * 2006-02-14 2013-06-18 Ihi Corporation Cooling structure
JP4979983B2 (en) * 2006-05-29 2012-07-18 三井造船株式会社 Dust adhesion prevention device for furnace top pressure recovery turbine blade
JP4801618B2 (en) * 2007-03-30 2011-10-26 三菱重工業株式会社 Gas turbine stationary blade and gas turbine provided with the same
US8777568B2 (en) * 2010-09-30 2014-07-15 General Electric Company Apparatus and methods for cooling platform regions of turbine rotor blades
US8814517B2 (en) * 2010-09-30 2014-08-26 General Electric Company Apparatus and methods for cooling platform regions of turbine rotor blades
US8684664B2 (en) * 2010-09-30 2014-04-01 General Electric Company Apparatus and methods for cooling platform regions of turbine rotor blades
US8840369B2 (en) * 2010-09-30 2014-09-23 General Electric Company Apparatus and methods for cooling platform regions of turbine rotor blades
US8905714B2 (en) * 2011-12-30 2014-12-09 General Electric Company Turbine rotor blade platform cooling

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04311604A (en) * 1991-04-11 1992-11-04 Toshiba Corp Turbine stationary blade
JP3015531B2 (en) * 1991-09-06 2000-03-06 株式会社東芝 gas turbine
JP2953842B2 (en) * 1991-12-16 1999-09-27 東北電力株式会社 Turbine vane
JPH0693801A (en) * 1992-09-17 1994-04-05 Hitachi Ltd Gas turbine
US5320483A (en) * 1992-12-30 1994-06-14 General Electric Company Steam and air cooling for stator stage of a turbine
JP3188105B2 (en) * 1994-07-11 2001-07-16 三菱重工業株式会社 Gas turbine blades
US5634766A (en) * 1994-08-23 1997-06-03 General Electric Co. Turbine stator vane segments having combined air and steam cooling circuits

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103089327A (en) * 2011-11-04 2013-05-08 通用电气公司 Bucket assembly for turbine system
CN103089327B (en) * 2011-11-04 2016-01-20 通用电气公司 For the blade assembly of turbine system

Also Published As

Publication number Publication date
EP0911488A4 (en) 2000-11-29
WO1998050684A1 (en) 1998-11-12
DE69821312D1 (en) 2004-03-04
JPH10306706A (en) 1998-11-17
EP0911488B1 (en) 2004-01-28
DE69821312T2 (en) 2005-08-04
CA2261184A1 (en) 1998-11-12
EP0911488A1 (en) 1999-04-28
CA2261184C (en) 2002-07-09

Similar Documents

Publication Publication Date Title
JP3316415B2 (en) Gas turbine cooling vane
JP3495554B2 (en) Gas turbine vane cooling shroud
JP3316405B2 (en) Gas turbine cooling vane
KR101378252B1 (en) Serpentine cooling circuit and method for cooling tip shroud
US7131818B2 (en) Airfoil with three-pass serpentine cooling channel and microcircuit
EP1001137B1 (en) Gas turbine airfoil with axial serpentine cooling circuits
US7568882B2 (en) Impingement cooled bucket shroud, turbine rotor incorporating the same, and cooling method
JP3416447B2 (en) Gas turbine blade cooling air supply system
JP3457831B2 (en) Gas turbine blade cooling platform
US4515526A (en) Coolable airfoil for a rotary machine
US7704047B2 (en) Cooling of turbine blade suction tip rail
US7704045B1 (en) Turbine blade with blade tip cooling notches
JP4063938B2 (en) Turbulent structure of the cooling passage of the blade of a gas turbine engine
JP4546760B2 (en) Turbine blade with integrated bridge
JP3486191B2 (en) Turbine vane with platform cavity for dual supply of cooling fluid
JP5898902B2 (en) Apparatus and method for cooling a platform area of a turbine blade
JP3844324B2 (en) Squeezer for gas turbine engine turbine blade and gas turbine engine turbine blade
JP3276305B2 (en) Gas turbine cooling vanes
JP6184035B2 (en) Turbine airfoil with cast platform cooling circuit
JP3238344B2 (en) Gas turbine vane
JPH1037704A (en) Stator blade of gas turbine
JP2818266B2 (en) Gas turbine cooling blade
JPH1181909A (en) Gas turbine cooling blade

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees