JP5968260B2 - Marine steam turbine and cooling method for turbine casing - Google Patents

Marine steam turbine and cooling method for turbine casing Download PDF

Info

Publication number
JP5968260B2
JP5968260B2 JP2013094274A JP2013094274A JP5968260B2 JP 5968260 B2 JP5968260 B2 JP 5968260B2 JP 2013094274 A JP2013094274 A JP 2013094274A JP 2013094274 A JP2013094274 A JP 2013094274A JP 5968260 B2 JP5968260 B2 JP 5968260B2
Authority
JP
Japan
Prior art keywords
turbine
steam
casing
temperature
turbine casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013094274A
Other languages
Japanese (ja)
Other versions
JP2014214707A (en
Inventor
英司 齋藤
英司 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2013094274A priority Critical patent/JP5968260B2/en
Publication of JP2014214707A publication Critical patent/JP2014214707A/en
Application granted granted Critical
Publication of JP5968260B2 publication Critical patent/JP5968260B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、舶用蒸気タービンに関し、特に、船舶の推進用タービン(舶用主機タービン)として用いられる舶用蒸気タービンおよびそのタービン車室の冷却方法に関するものである。   The present invention relates to a marine steam turbine, and more particularly to a marine steam turbine used as a marine vessel propulsion turbine (marine main engine turbine) and a cooling method for the turbine casing.

船舶の推進用タービンとして用いられる舶用蒸気タービンとしては、例えば、特許文献1に記載されたものが知られている。   As a marine steam turbine used as a marine propulsion turbine, for example, the one described in Patent Document 1 is known.

特開2009−30486号公報JP 2009-30486 A

さて、特許文献1に記載された舶用蒸気タービン等では、上部車室の上面中央部に設けられた主蒸気入口部から、高圧タービンの入口に向かって流れ込む高温(例えば、550℃〜560℃)の蒸気によって、ノズル室およびダミー環が熱せられ、これらノズル室およびダミー環からの放熱により上部車室の主蒸気導入部(より詳しくは、図示しない蒸気発生器から供給された高圧の蒸気が上部車室に流入する部位、さらに詳しくは、ノズルボックス)が熱せられて、上部車室と下部車室との温度差が付きやすい構造になっている。上部車室の温度が下部車室の温度よりも高くなると、車室全体が上に凸状に湾曲する現象、いわゆる車室の猫反り(キャッツバック)が起こる。そして、車室の猫反りは、下部車室の静止部とロータとの間のクリアランスを小さくし、過大な車室の猫反りは、下部車室の静止部とロータとを接触させることになる。   Now, in the marine steam turbine described in Patent Document 1, a high temperature (for example, 550 ° C. to 560 ° C.) flows from the main steam inlet portion provided at the center of the upper surface of the upper casing toward the inlet of the high pressure turbine. The nozzle chamber and the dummy ring are heated by the steam, and the main steam introduction part of the upper compartment (more specifically, high-pressure steam supplied from a steam generator (not shown) is The part that flows into the passenger compartment, more specifically, the nozzle box, is heated, and the temperature difference between the upper compartment and the lower compartment is likely to occur. When the temperature of the upper compartment becomes higher than the temperature of the lower compartment, a phenomenon that the entire compartment is curved upwardly, that is, a so-called cat warp (catsback) of the compartment occurs. The cat warp in the passenger compartment reduces the clearance between the stationary part of the lower compartment and the rotor, and the cat warp of the excessive passenger compartment causes the stationary part of the lower compartment and the rotor to contact each other. .

そのため、近年では、高圧調速段(高圧第1,2段)のタービンブレードを通過した直後の蒸気(温度の低下した蒸気)の一部を抜き出し、この蒸気で上部車室を冷却し、上部車室と下部車室との温度差を低減させて、車室の猫反りを低減させる車室冷却装置が提案されている。   Therefore, in recent years, a part of the steam (steam whose temperature has decreased) immediately after passing through the turbine blades of the high-pressure governing stage (high-pressure first and second stages) is extracted, and the upper casing is cooled with this steam. A vehicle compartment cooling device has been proposed in which the temperature difference between the vehicle compartment and the lower compartment is reduced to reduce cat warpage in the vehicle compartment.

この車室冷却装置では、例えば、舶用蒸気タービンが定格運転されているとき(舶用蒸気タービンおよび車室冷却装置を搭載した船舶が、外洋を巡航速度で航行するとき)に、上部車室と下部車室との温度差が最も小さくなり、かつ、舶用蒸気タービンの効率が最も良くなるように、上部車室が冷却されることが好ましい。   In this passenger compartment cooling device, for example, when the marine steam turbine is in rated operation (when a vessel equipped with the marine steam turbine and the passenger compartment cooling device navigates the ocean at a cruising speed), the upper compartment and the lower compartment It is preferable that the upper casing is cooled so that the temperature difference from the casing is the smallest and the efficiency of the marine steam turbine is the highest.

しかしながら、舶用蒸気タービンおよび車室冷却装置を実際に船舶に搭載して、舶用蒸気タービンを定格運転してみると、上部車室と下部車室との温度差が想定以上についてしまう恐れがある。   However, when the marine steam turbine and the cabin cooling device are actually mounted on a marine vessel and the marine steam turbine is rated, the temperature difference between the upper cabin and the lower cabin may be more than expected.

また、近年では、燃料費を節減するため、舶用蒸気タービンおよび車室冷却装置を搭載した船舶が、巡航速度よりも遅い速度で外洋を航行している。つまり、舶用蒸気タービンおよび車室冷却装置を搭載した船舶が、巡航速度で外洋を航行すること、すなわち、舶用蒸気タービンが定格運転されることを前提に上部車室の冷却を行う場合、舶用蒸気タービンおよび車室冷却装置を搭載した船舶が、巡航速度よりも遅い速度で外洋を航行すると、上部車室と下部車室との温度差が許容値(例えば、50℃)を超えてしまう恐れがある。   In recent years, in order to reduce fuel costs, a ship equipped with a marine steam turbine and a cabin cooling device is navigating the open ocean at a speed slower than the cruise speed. That is, when a ship equipped with a marine steam turbine and a passenger compartment cooling system navigates the open ocean at a cruise speed, that is, when the upper passenger compartment is cooled on the assumption that the marine steam turbine is rated. When a ship equipped with a turbine and a cabin cooling device navigates the open ocean at a speed slower than the cruise speed, the temperature difference between the upper and lower cabins may exceed an allowable value (for example, 50 ° C.). is there.

さらに、舶用蒸気タービンは、発電所等で使用される陸用蒸気タービンとは異なり、舶用蒸気タービンおよび車室冷却装置を搭載した船舶が港湾を航行する際には、定格運転よりも負荷の低い状態で長時間運転されることがある。そのため、舶用蒸気タービンおよび車室冷却装置を搭載した船舶が港湾を航行した場合に、上部車室と下部車室との温度差が許容値(例えば、50℃)を超えてしまう恐れがある。また、陸用蒸気タービンとは異なり、船舶の運航状況により負荷変動が生じうるため、上部車室と下部車室との温度差が許容値(例えば、50℃)を超えてしまう恐れがある。   In addition, marine steam turbines, unlike land steam turbines used in power plants, have a lower load than rated operations when ships equipped with marine steam turbines and cabin cooling devices navigate the port. May be operated for a long time in the state. Therefore, when a ship equipped with a marine steam turbine and a passenger compartment cooling device navigates a harbor, the temperature difference between the upper compartment and the lower compartment may exceed an allowable value (for example, 50 ° C.). In addition, unlike land steam turbines, load fluctuations may occur depending on the operational status of the ship, so the temperature difference between the upper compartment and the lower compartment may exceed an allowable value (for example, 50 ° C.).

本発明は、上記課題を解決するためになされたものであり、上部車室の温度と下部車室の温度との差、または上部車室内の蒸気温度と下部車室内の蒸気温度との差に応じて、ノズルボックスの内表面とダミー環の外表面との間を通り、ノズルボックスおよびダミー環を冷却する蒸気の流量を能動的に変化させることができる舶用蒸気タービンおよびそのタービン車室の冷却方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and is based on the difference between the temperature of the upper compartment and the temperature of the lower compartment, or the difference between the steam temperature in the upper compartment and the steam temperature in the lower compartment. Accordingly, the marine steam turbine capable of actively changing the flow rate of the steam passing through the inner surface of the nozzle box and the outer surface of the dummy ring and cooling the nozzle box and the dummy ring, and cooling of the turbine casing It aims to provide a method.

本発明は、上記課題を解決するため、以下の手段を採用した。
本発明に係る舶用蒸気タービンは、圧力の異なる複数の蒸気により駆動される舶用蒸気タービンであって、タービン車室と、複数枚のタービンブレードと、を有し、前記複数枚のタービンブレードはタービン車室を流通する前記圧力の異なる複数の蒸気のうち圧力の高い蒸気により動力を得る高圧側タービンブレードと、上記高圧側タービンブレードを流通する蒸気よりも圧力の低い蒸気により動力を得る低圧側タービンブレードと、を備え、
前記圧力の高い蒸気を前記タービン車室の上部から前記複数枚のタービンブレードに供給する第一の蒸気供給通路と、前記複数枚のタービンブレードのうち、前記高圧側タービンブレードを通過することで圧力が低くなった蒸気によって前記タービン車室の上部を冷却しつつ、前記低圧側タービンブレードに前記圧力が低くなった蒸気を供給する第二の蒸気供給通路と、前記第二の蒸気供給通路の途中に設けられ、第二の蒸気供給通路を流れる前記圧力が低くなった蒸気の流量を制御する冷却蒸気流量制御弁と、をさらに備えている。
The present invention employs the following means in order to solve the above problems.
A marine steam turbine according to the present invention is a marine steam turbine driven by a plurality of steams having different pressures, and includes a turbine casing and a plurality of turbine blades, and the plurality of turbine blades are turbines. A high-pressure turbine blade that obtains power by high-pressure steam among the plurality of steams having different pressures flowing through the passenger compartment, and a low-pressure turbine that obtains power by steam having a lower pressure than the steam flowing through the high-pressure turbine blades A blade, and
The first steam supply passage for supplying the high-pressure steam from the upper part of the turbine casing to the plurality of turbine blades, and the pressure by passing through the high-pressure side turbine blade among the plurality of turbine blades. A second steam supply passage for supplying the low pressure side turbine blade with the steam having a reduced pressure while cooling the upper portion of the turbine casing by the steam having a reduced pressure, and a middle of the second steam supply passage. And a cooling steam flow rate control valve that controls the flow rate of the steam whose pressure is low and that flows through the second steam supply passage.

本発明に係る舶用蒸気タービンによれば、上部車室の温度と下部車室の温度との差、または上部車室内の蒸気温度と下部車室内の蒸気温度との差が許容値以下(例えば、50℃以下(より好ましくは、40℃以下))となるように冷却蒸気流量制御弁の開度が調整されることになる。
これにより、上部車室の温度と下部車室の温度との差、または上部車室内の蒸気温度と下部車室内の蒸気温度との差に応じて、ノズルボックスの内表面とダミー環の外表面との間を通り、ノズルボックスおよびダミー環を冷却する蒸気の流量を能動的に変化させることができる。
According to the marine steam turbine of the present invention, the difference between the temperature of the upper casing and the temperature of the lower casing, or the difference between the steam temperature in the upper casing and the steam temperature in the lower casing is less than an allowable value (for example, The opening degree of the cooling steam flow control valve is adjusted so as to be 50 ° C. or lower (more preferably 40 ° C. or lower).
Thus, depending on the difference between the temperature of the upper compartment and the temperature of the lower compartment, or the difference between the steam temperature in the upper compartment and the steam temperature in the lower compartment, the inner surface of the nozzle box and the outer surface of the dummy ring The flow rate of the steam for cooling the nozzle box and the dummy ring can be actively changed.

上記舶用蒸気タービンにおいて、前記タービン車室の上部の温度を測定する第一の温度センサと、前記タービン車室の下部の温度を測定する第二の温度センサと、前記第一の温度センサおよび前記第二の温度センサから送られてきた測定値に基づいて、前記タービン車室の上部の温度とタービン車室の下部の温度との差を算出し、算出された結果に基づいて前記冷却蒸気流量制御弁の開度を制御する制御器と、を備えているとさらに好適である。   In the marine steam turbine, the first temperature sensor that measures the temperature of the upper portion of the turbine casing, the second temperature sensor that measures the temperature of the lower portion of the turbine casing, the first temperature sensor, and the Based on the measured value sent from the second temperature sensor, the difference between the temperature of the upper part of the turbine casing and the temperature of the lower part of the turbine casing is calculated, and the cooling steam flow rate is calculated based on the calculated result. It is more preferable to include a controller that controls the opening degree of the control valve.

このような舶用蒸気タービンによれば、第一の温度センサおよび第二の温度センサから送られてきた測定値に基づいて、上部車室の温度と下部車室の温度との差、または上部車室内の蒸気温度と下部車室内の蒸気温度との差が許容値以下(例えば、50℃以下(より好ましくは、40℃以下))となるように冷却蒸気流量制御弁の開度が制御器により自動的に調整されることになる。
これにより、上部車室の温度と下部車室の温度との差、または上部車室内の蒸気温度と下部車室内の蒸気温度との差が許容値以下(例えば、50℃以下(より好ましくは、40℃以下))となるように上部車室を冷却するシステムの自動化を図ることができる。
According to such a marine steam turbine, based on the measurement values sent from the first temperature sensor and the second temperature sensor, the difference between the temperature of the upper compartment and the temperature of the lower compartment, or the upper car The opening degree of the cooling steam flow control valve is controlled by the controller so that the difference between the steam temperature in the room and the steam temperature in the lower passenger compartment is less than an allowable value (for example, 50 ° C. or less (more preferably 40 ° C. or less)). It will be adjusted automatically.
Thereby, the difference between the temperature of the upper compartment and the temperature of the lower compartment, or the difference between the steam temperature in the upper compartment and the steam temperature in the lower compartment is less than an allowable value (for example, 50 ° C. or less (more preferably, It is possible to automate the system for cooling the upper compartment so that it becomes 40 ° C. or lower)

上記舶用蒸気タービンにおいて、前記第二の蒸気供給通路の途中に設けられ、第二の蒸気供給通路を流れる前記圧力が低下した蒸気を復水器に直接導くドレン管と、前記ドレン管の途中に設けられて、前記タービン車室の上部の温度と前記タービン車室の下部の温度との差が許容値を超えてしまう場合に開放されるドレン弁と、を備えているとさらに好適である。   In the marine steam turbine, a drain pipe that is provided in the middle of the second steam supply passage, and that directly guides the steam having a reduced pressure flowing through the second steam supply passage to a condenser, and in the middle of the drain pipe It is further preferable that a drain valve that is provided and opened when a difference between an upper temperature of the turbine casing and a lower temperature of the turbine casing exceeds an allowable value is provided.

このような舶用蒸気タービンによれば、上部車室の温度と下部車室の温度との差、または上部車室内の蒸気温度と下部車室内の蒸気温度との差が許容値(例えば、50℃(より好ましくは、40℃))を超え、かつ、冷却蒸気流量制御弁が全開となっているときに、ドレン弁が強制的に全閉から全開とされることになる。
すなわち、ノズルボックスの内表面とダミー環の外表面との間に存する(滞留する)蒸気が復水器に導かれるようになり、上部車室の温度または上部車室内の蒸気温度が低下して、上部車室の温度と下部車室の温度との差、または上部車室内の蒸気温度と下部車室内の蒸気温度との差が小さくなる。
これにより、上部車室の温度と下部車室の温度との差、または上部車室内の蒸気温度と下部車室内の蒸気温度との差を許容値以下(例えば、50℃以下(より好ましくは、40℃以下))に収めることができる。
According to such a marine steam turbine, the difference between the temperature of the upper casing and the temperature of the lower casing, or the difference between the steam temperature in the upper casing and the steam temperature in the lower casing is an allowable value (for example, 50 ° C. When the cooling steam flow rate control valve is fully open, the drain valve is forcibly opened from the fully closed state.
That is, the steam existing (stagnation) between the inner surface of the nozzle box and the outer surface of the dummy ring is led to the condenser, and the temperature of the upper compartment or the upper compartment is lowered. The difference between the temperature of the upper compartment and the temperature of the lower compartment, or the difference between the steam temperature in the upper compartment and the steam temperature in the lower compartment becomes small.
Thereby, the difference between the temperature of the upper compartment and the temperature of the lower compartment, or the difference between the steam temperature in the upper compartment and the steam temperature in the lower compartment is less than an allowable value (for example, 50 ° C. or less (more preferably, 40 ° C. or less)).

本発明に係る舶用蒸気タービンのタービン車室の冷却方法は、複数枚のタービンブレードに圧力の異なる複数の蒸気のうち圧力の高い蒸気を導く工程と、前記複数枚のタービンブレードのうち、高圧側タービンブレードを通過することで圧力が低くなった蒸気によってタービン車室上部の冷却を行う工程と、を備えた舶用蒸気タービンのタービン車室の冷却方法において、さらに前記タービン車室の上部の冷却を行った後の蒸気を前記複数枚のタービンブレードのうち低圧側タービンブレードに導く工程と、タービン車室の上部の温度、およびタービン車室の下部の温度を測定する工程と、前記タービン車室の上部の温度と前記タービン車室の下部との差に基づいて、前記複数枚のタービンブレードのうち低圧側タービンブレードに導かれる前記タービン車室上部の冷却を行った後の蒸気の量を制御する工程と、を備えている。   A method for cooling a turbine casing of a marine steam turbine according to the present invention includes a step of introducing high-pressure steam among a plurality of steams having different pressures to a plurality of turbine blades, and a high-pressure side of the plurality of turbine blades. Cooling the turbine casing upper part with steam whose pressure has been reduced by passing through the turbine blades, and further cooling the upper part of the turbine casing. A step of guiding the steam after being performed to a low-pressure side turbine blade among the plurality of turbine blades, a step of measuring a temperature of an upper portion of the turbine casing, and a temperature of a lower portion of the turbine casing; Based on the difference between the temperature of the upper part and the lower part of the turbine casing, the turbine blade is guided to the low-pressure side turbine blade among the plurality of turbine blades. And controlling the amount of steam after the serial turbine casing upper part of the cooling, and a.

本発明に係る舶用蒸気タービンのタービン車室の冷却方法によれば、上部車室の温度と下部車室の温度との差、または上部車室内の蒸気温度と下部車室内の蒸気温度との差が許容値以下(例えば、50℃以下(より好ましくは、40℃以下))となるように冷却蒸気流量制御弁の開度が調整されることになる。
これにより、上部車室の温度と下部車室の温度との差、または上部車室内の蒸気温度と下部車室内の蒸気温度との差に応じて、ノズルボックスの内表面とダミー環の外表面との間を通り、ノズルボックスおよびダミー環を冷却する蒸気の流量を能動的に変化させることができる。
According to the method for cooling a turbine casing of a marine steam turbine according to the present invention, the difference between the temperature of the upper casing and the temperature of the lower casing, or the difference between the steam temperature in the upper casing and the steam temperature in the lower casing. Of the cooling steam flow rate control valve is adjusted so that is below an allowable value (for example, 50 ° C. or less (more preferably 40 ° C. or less)).
Thus, depending on the difference between the temperature of the upper compartment and the temperature of the lower compartment, or the difference between the steam temperature in the upper compartment and the steam temperature in the lower compartment, the inner surface of the nozzle box and the outer surface of the dummy ring The flow rate of the steam for cooling the nozzle box and the dummy ring can be actively changed.

上記舶用蒸気タービンのタービン車室の冷却方法において、タービン車室の上部の温度とタービン車室の下部との差に基づいて、さらに前記タービン車室上部の冷却を行った後の蒸気を復水器に導く工程を備えているとさらに好適である。   In the method for cooling a turbine casing of a marine steam turbine, the steam after further cooling the upper part of the turbine casing is condensed based on the difference between the temperature of the upper part of the turbine casing and the lower part of the turbine casing. It is more preferable that the method includes a step of leading to a vessel.

このような舶用蒸気タービンのタービン車室の冷却方法によれば、高温蒸気の滞留する車室上部から車室下部への流れができ、車室上下の温度の均一化を促進できる。   According to such a cooling method for the turbine casing of the marine steam turbine, a flow from the upper part of the passenger compartment where high-temperature steam stays to the lower part of the passenger compartment can be achieved, and the equalization of the upper and lower temperatures of the passenger compartment can be promoted.

上記舶用蒸気タービンのタービン車室の冷却方法において、タービン車室の上部の温度とタービン車室の下部との差に基づいて、前記複数枚のタービンブレードのうち低圧側タービンブレードに導かれる前記タービン車室上部の冷却を行った後の蒸気の全量を低圧側タービンブレードに導いても、タービン車室の上部の温度とタービン車室の下部との差が許容値を超えてしまう場合に、前記タービン車室上部の冷却を行った後の蒸気を復水器に導く工程を備えているとさらに好適である。   In the method for cooling a turbine casing of a marine steam turbine, the turbine guided to a low-pressure turbine blade among the plurality of turbine blades based on a difference between an upper temperature of the turbine casing and a lower portion of the turbine casing. If the difference between the temperature of the upper part of the turbine casing and the lower part of the turbine casing exceeds the allowable value even if the entire amount of steam after cooling the upper part of the casing is guided to the low-pressure side turbine blade, It is more preferable to provide a step of guiding the steam after cooling the upper portion of the turbine casing to the condenser.

このような舶用蒸気タービンのタービン車室の冷却方法によれば、上部車室の温度と下部車室の温度との差、または上部車室内の蒸気温度と下部車室内の蒸気温度との差が許容値(例えば、50℃(より好ましくは、40℃))を超え、かつ、冷却蒸気流量制御弁が全開となっているときに、ドレン弁が強制的に全閉から全開とされることになる。
すなわち、ノズルボックスの内表面とダミー環の外表面との間に存する(滞留する)蒸気が復水器に導かれるようになり、上部車室の温度または上部車室内の蒸気温度が低下して、上部車室の温度と下部車室の温度との差、または上部車室内の蒸気温度と下部車室内の蒸気温度との差が小さくなる。
これにより、上部車室の温度と下部車室の温度との差、または上部車室内の蒸気温度と下部車室内の蒸気温度との差を許容値以下(例えば、50℃以下(より好ましくは、40℃以下))に収めることができる。
According to such a cooling method for the turbine casing of a marine steam turbine, the difference between the temperature of the upper casing and the temperature of the lower casing, or the difference between the steam temperature in the upper casing and the steam temperature in the lower casing is reduced. When the allowable value (for example, 50 ° C. (more preferably 40 ° C.)) is exceeded and the cooling steam flow control valve is fully open, the drain valve is forced to be fully closed to fully open. Become.
That is, the steam existing (stagnation) between the inner surface of the nozzle box and the outer surface of the dummy ring is led to the condenser, and the temperature of the upper compartment or the upper compartment is lowered. The difference between the temperature of the upper compartment and the temperature of the lower compartment, or the difference between the steam temperature in the upper compartment and the steam temperature in the lower compartment becomes small.
Thereby, the difference between the temperature of the upper compartment and the temperature of the lower compartment, or the difference between the steam temperature in the upper compartment and the steam temperature in the lower compartment is less than an allowable value (for example, 50 ° C. or less (more preferably, 40 ° C. or less)).

上記舶用蒸気タービンのタービン車室の冷却方法において、タービン車室の上部の温度とタービン車室の下部との差が許容範囲内となった場合に、前記低圧側タービンブレードに導く蒸気の量を減少させたのちに、復水器に導く蒸気の量を減少させる工程を備えているとさらに好適である。   In the cooling method for the turbine casing of the marine steam turbine, when the difference between the temperature of the upper part of the turbine casing and the lower part of the turbine casing falls within an allowable range, It is more preferable to provide a step of reducing the amount of steam guided to the condenser after the reduction.

このような舶用蒸気タービンのタービン車室の冷却方法によれば、海水に捨てられる熱量を最小限に抑えることができる。   According to such a cooling method for the turbine casing of the marine steam turbine, the amount of heat thrown away into the seawater can be minimized.

本発明に係る舶用蒸気タービンおよびそのタービン車室の冷却方法によれば、任意の運転状態において適切にタービン車室の上部を冷却することができる。また、タービン車室の上部の温度とタービン車室の下部の温度との差に応じて、タービン車室の上部を冷却する蒸気の流量を能動的に変化させることができるため、効率的にタービン車室の上部を冷却できる。これにより、車室の猫反りを防止でき、車室内に配置された静止部とタービンロータとの接触を回避できる。   According to the marine steam turbine and the method for cooling the turbine casing according to the present invention, the upper portion of the turbine casing can be appropriately cooled in any operation state. Further, since the flow rate of the steam for cooling the upper part of the turbine casing can be actively changed according to the difference between the temperature of the upper part of the turbine casing and the temperature of the lower part of the turbine casing, the turbine can be efficiently The upper part of the passenger compartment can be cooled. As a result, cat warpage in the passenger compartment can be prevented, and contact between the stationary part arranged in the passenger compartment and the turbine rotor can be avoided.

本発明に係る舶用蒸気タービンの一実施形態を示す縦断面図である。It is a longitudinal section showing one embodiment of a marine steam turbine concerning the present invention. 図1の要部を拡大して示す図である。It is a figure which expands and shows the principal part of FIG.

以下、本発明の一実施形態に係る舶用蒸気タービンについて、図1および図2を参照しながら説明する。
図1に示すように、本実施形態に係る舶用蒸気タービン41は、タービンロータ2と、このタービンロータ2を収容する車室3と、を主たる要素として構成されている。
タービンロータ2は、各端部が軸受4を介して支持部(軸受台)5に対して回転可能に支持された回転軸6と、この回転軸6の軸方向に沿って配列(配置)された複数枚のタービンディスク7a,7bとを備えている。タービンディスク7aは、回転軸6の一側(図1において右側に位置する高圧側)に配列された複数枚の(高圧側)タービンディスクであり、タービンディスク7bは、回転軸6の他側(図1において左側に位置する中圧側(または低圧側)に配列された複数枚の(中圧側または低圧側)タービンディスク7bである。そして、各タービンディスク7a,7bの外周部には、複数枚のタービンブレード(動翼)8a,8bが、周方向に沿うとともに所定の隙間をあけて取り付けられている。
Hereinafter, a marine steam turbine according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
As shown in FIG. 1, a marine steam turbine 41 according to the present embodiment is configured with a turbine rotor 2 and a casing 3 that accommodates the turbine rotor 2 as main elements.
The turbine rotor 2 is arranged (arranged) along the axial direction of the rotary shaft 6, and each end portion is rotatably supported by a support portion (bearing base) 5 via a bearing 4. And a plurality of turbine disks 7a and 7b. The turbine disk 7a is a plurality of (high pressure side) turbine disks arranged on one side of the rotary shaft 6 (the high pressure side located on the right side in FIG. 1), and the turbine disk 7b is the other side of the rotary shaft 6 ( 1, there are a plurality of (intermediate pressure side or low pressure side) turbine disks 7b arranged on the intermediate pressure side (or low pressure side) located on the left side of the turbine disk 7b. Turbine blades (moving blades) 8a and 8b are attached along the circumferential direction with a predetermined gap.

車室3は、例えば、高クローム鋼(9Cr鋳鋼や12Cr鋳鋼等)で作られるとともに、上下方向に二分割された(半割り構造とされた)水平分割型の車室であり、図1において上側に位置する上部車室3aと、図1において下側に位置する下部車室3bとで構成されており、これら上部車室3aおよび下部車室3bの内周面にはそれぞれ、回転軸6の軸方向に沿って円環状の仕切板9a,9bが複数列配置されている。仕切板9aは、タービンディスク7aおよびタービンブレード8aに対応して配置された複数段の(高圧側)仕切板であり、動翼8aに向けて蒸気を噴出させるためのノズルが環上に配置され、中心を含む水平面で分割可能な構造となっている。仕切板9bは、タービンディスク7bおよびタービンブレード8bに対応して配置された複数段の(中圧側または低圧側)仕切板であり、動翼8bに向けて蒸気を噴出させるためのノズルが環上に配置され、中心を含む水平面で分割可能な構造となっている。そして、上部車室3aを下部車室3bの開口部を覆うように載置するとともに、図示しない複数本のボルトを介して下部車室3bに固定することにより、舶用蒸気タービン41の一側(図1において右側に位置する高圧側)に、タービンディスク7aおよびタービンブレード8aと仕切板9aとが回転軸6の軸方向に交互に配列された第1のタービン車室空間(高圧側タービン車室空間)10が形成され、舶用蒸気タービン41の他側(図1において左側に位置する中圧側(または低圧側)に、タービンディスク7bおよびタービンブレード8bと仕切板9bとが回転軸6の軸方向に交互に配列された第2のタービン車室空間(中圧側(または低圧側)タービン車室空間)11が形成されるようになっている。   The vehicle interior 3 is a horizontally divided vehicle compartment made of, for example, high chrome steel (9Cr cast steel, 12Cr cast steel, etc.) and divided in the vertical direction (having a half structure). The upper casing 3a is located on the upper side, and the lower casing 3b is located on the lower side in FIG. 1, and the inner peripheral surfaces of the upper casing 3a and the lower casing 3b are respectively connected to the rotating shaft 6. A plurality of annular partition plates 9a and 9b are arranged along the axial direction. The partition plate 9a is a multi-stage (high-pressure side) partition plate disposed corresponding to the turbine disk 7a and the turbine blade 8a, and a nozzle for ejecting steam toward the moving blade 8a is disposed on the ring. The structure can be divided by a horizontal plane including the center. The partition plate 9b is a multi-stage (intermediate pressure side or low pressure side) partition plate arranged corresponding to the turbine disk 7b and the turbine blade 8b, and a nozzle for ejecting steam toward the moving blade 8b is provided on the ring. It has a structure that can be divided by a horizontal plane including the center. The upper casing 3a is placed so as to cover the opening of the lower casing 3b, and is fixed to the lower casing 3b via a plurality of bolts (not shown), whereby one side of the marine steam turbine 41 ( A first turbine casing space (high pressure side turbine casing) in which turbine disks 7a, turbine blades 8a, and partition plates 9a are alternately arranged in the axial direction of the rotary shaft 6 on the high pressure side located on the right side in FIG. A space 10 is formed, and on the other side of the marine steam turbine 41 (the intermediate pressure side (or low pressure side) located on the left side in FIG. 1), the turbine disk 7 b, the turbine blade 8 b, and the partition plate 9 b are in the axial direction of the rotary shaft 6. The second turbine casing space (intermediate pressure side (or low pressure side) turbine casing space) 11 arranged alternately is formed.

第1のタービン車室空間10と第2のタービン車室空間11との間、すなわち、回転軸6の軸方向における略中央部に位置する車室3内には、第1のタービン車室空間10と第2のタービン車室空間11とを区画する(仕切る)ダミー環(仕切部材)12が周方向にわたって配置されている。ダミー環12は、例えば、低クローム鋼(2Cr鋳鋼等)または高クローム鋼(9Cr鋳鋼や12Cr鋳鋼等)で作られた環状の部材であり、例えば、上下方向に二分割された(半割り構造とされた)2つの半円状の部材からなっている。また、ダミー環12には、調速段ノズル18および静翼19等が組み込まれ、ノズル室20を一体に構成している。   The first turbine casing space is located between the first turbine casing space 10 and the second turbine casing space 11, that is, in the casing 3 positioned substantially at the center in the axial direction of the rotary shaft 6. A dummy ring (partition member) 12 that partitions (partitions) 10 and the second turbine casing space 11 is disposed in the circumferential direction. The dummy ring 12 is an annular member made of, for example, low chrome steel (such as 2Cr cast steel) or high chrome steel (such as 9Cr cast steel or 12Cr cast steel), and is divided into, for example, two parts in the vertical direction (half structure) It is composed of two semicircular members. Further, the speed control stage nozzle 18 and the stationary blade 19 are incorporated in the dummy ring 12 to integrally form the nozzle chamber 20.

図示しない蒸気発生器から供給された高圧の蒸気はタービン車室の上部から流入し、第一の蒸気供給通路22を通って複数枚のタービンブレード8aへ供給される。より具体的には、上部車室3aの上面中央部には、主蒸気入口部13が設けられており、この主蒸気入口部13内には、前進ノズル弁14が配置されている。そして、この前進ノズル弁14を通過した主蒸気は、ダミー環12に嵌め込まれた調速段ノズル18および静翼19等を通過した後、第1のタービン車室空間10内(さらには複数枚のタービンブレード8a)に供給されるようになっている。また、下部車室3bの下面一端部(図1において右側に位置する端部)には、高圧タービン排気部15が設けられている。
一方、下部車室3bの下面中央部には、再熱蒸気入口部16が設けられており、下部車室3bの下面他端部(図1において左側に位置する端部)には、中圧タービン排気部17が設けられている。
High-pressure steam supplied from a steam generator (not shown) flows from the upper part of the turbine casing, and is supplied to the plurality of turbine blades 8 a through the first steam supply passage 22. More specifically, a main steam inlet portion 13 is provided at the center of the upper surface of the upper casing 3 a, and a forward nozzle valve 14 is disposed in the main steam inlet portion 13. The main steam that has passed through the forward nozzle valve 14 passes through the speed-regulating stage nozzle 18 and the stationary blade 19 that are fitted in the dummy ring 12, and then in the first turbine casing space 10 (and more Turbine blades 8a). Further, a high-pressure turbine exhaust 15 is provided at one end of the lower surface of the lower casing 3b (the end located on the right side in FIG. 1).
On the other hand, a reheat steam inlet 16 is provided at the center of the lower surface of the lower casing 3b, and an intermediate pressure is provided at the other end of the lower surface of the lower casing 3b (the end located on the left side in FIG. 1). A turbine exhaust part 17 is provided.

さて、図1または図2に示すように、本実施形態に係る車室冷却装置51は、第二の蒸気供給通路(バイパス蒸気管)52と、冷却蒸気流量制御弁(調整弁)53と、(第一の)温度センサT1と、(第二の)温度センサT2と、タービンリモコン54と、ドレン管55と、オリフィス56と、ドレン弁57と、を備えている。
第二の蒸気供給通路52は、高圧側タービンブレード(より具体的には、高圧調速段(高圧第1,2段)のタービンブレード8a)を通過した直後に抜き出されて、ノズルボックス21の内表面とダミー環12の外表面との間に導かれた後、ノズルボックス21の内表面とダミー環12の外表面との間を通って、ノズルボックス21およびダミー環12を冷却した蒸気(すなわち、高圧側タービンブレードを通過することで圧力の低くなった蒸気)を、低圧側タービンブレード(より具体的には、高圧途中段(本実施形態では高圧第4段)のタービンブレード8a)に導く配管である。
As shown in FIG. 1 or FIG. 2, the passenger compartment cooling device 51 according to the present embodiment includes a second steam supply passage (bypass steam pipe) 52, a cooling steam flow control valve (regulation valve) 53, A (first) temperature sensor T1, a (second) temperature sensor T2, a turbine remote controller 54, a drain pipe 55, an orifice 56, and a drain valve 57 are provided.
The second steam supply passage 52 is extracted immediately after passing through the high-pressure turbine blade (more specifically, the turbine blade 8a of the high-pressure governing stage (high-pressure first and second stages)), and the nozzle box 21 After being led between the inner surface of the nozzle ring 21 and the outer surface of the dummy ring 12, the steam that has cooled the nozzle box 21 and the dummy ring 12 passes between the inner surface of the nozzle box 21 and the outer surface of the dummy ring 12. (That is, the steam whose pressure has been lowered by passing through the high-pressure turbine blade) is converted into the low-pressure turbine blade (more specifically, the turbine blade 8a in the high-pressure intermediate stage (high-pressure fourth stage in this embodiment)). It is a pipe that leads to

冷却蒸気流量制御弁53は、第二の蒸気供給通路52の途中に設けられ、第二の蒸気供給通路52を流れる蒸気の流量、すなわち、高圧調速段と最上流に位置する仕切板9aとの間から抜き出されて、ノズルボックス21の内表面とダミー環12の外表面との間を通り、ノズルボックス21およびダミー環12を冷却し、高圧途中段(本実施形態では高圧第4段)のタービンブレード8aに導かれる蒸気の流量を制御(調整)する弁であり、タービンリモコン54から送られてくる制御信号により開閉される(その開度が制御(調整)される)ようになっている。   The cooling steam flow rate control valve 53 is provided in the middle of the second steam supply passage 52, and the flow rate of the steam flowing through the second steam supply passage 52, that is, the partition plate 9a positioned at the highest pressure control stage and the most upstream. The nozzle box 21 and the dummy ring 12 are cooled by passing through between the inner surface of the nozzle box 21 and the outer surface of the dummy ring 12, and in the middle of the high pressure (in this embodiment, the high pressure fourth stage). ) Is a valve that controls (adjusts) the flow rate of the steam guided to the turbine blade 8a, and is opened and closed (the opening degree is controlled (adjusted)) by a control signal sent from the turbine remote controller 54. ing.

温度センサT1は、上部車室3aの上面中央部、より詳しくは、ノズルボックス21の近傍に位置する上部車室3aに取り付けられて、当該上部車室3aの温度を測定するセンサであり、温度センサT1で測定された測定値αは、タービンリモコン54に送られる。なお、温度センサT1は、タービン車室の上部の温度を計測するために設けられるものであり、タービン車室の上部の温度とはタービン車室の上部の壁面もしくは壁面近傍の温度、あるいはタービン車室の上部を流通する蒸気温度を指す。すなわち、温度センサT1はタービン車室の上部の温度を計測できればよく、設置位置は上部車室3aの上面中央部に限られない。
温度センサT2は、下部車室3bの下面中央部、より詳しくは、ノズルボックス21と反対の側に位置する下部車室3bの底部に取り付けられて、当該下部車室3bの温度を測定するセンサであり、温度センサT2で測定された測定値βは、タービンリモコン54に送られる。
なお、温度センサT2は、タービン車室の下部の温度を計測するために設けられ、タービン車室の下部の温度とはタービン車室の下部の壁面もしくは壁面近傍の温度、あるいはタービン車室の下部を流通する蒸気温度を指す。すなわち、温度センサT2はタービン車室の上部の温度を計測できればよく、設置位置は下部車室3bの底部に限られない。
The temperature sensor T1 is a sensor that is attached to the central portion of the upper surface of the upper casing 3a, more specifically, the upper casing 3a located in the vicinity of the nozzle box 21, and measures the temperature of the upper casing 3a. The measured value α measured by the sensor T1 is sent to the turbine remote controller 54. The temperature sensor T1 is provided to measure the temperature of the upper part of the turbine casing. The temperature of the upper part of the turbine casing is the temperature of the upper wall surface of the turbine casing or the vicinity of the wall surface, or the turbine wheel. Refers to the temperature of steam flowing through the upper part of the chamber. That is, the temperature sensor T1 only needs to be able to measure the temperature of the upper portion of the turbine casing, and the installation position is not limited to the center of the upper surface of the upper casing 3a.
The temperature sensor T2 is attached to the center of the lower surface of the lower casing 3b, more specifically, the bottom of the lower casing 3b located on the side opposite to the nozzle box 21, and measures the temperature of the lower casing 3b. The measured value β measured by the temperature sensor T2 is sent to the turbine remote controller 54.
The temperature sensor T2 is provided to measure the temperature of the lower portion of the turbine casing, and the temperature of the lower portion of the turbine casing is the temperature of the lower wall surface of the turbine casing or the vicinity of the wall surface or the lower portion of the turbine casing. Refers to the temperature of the steam flowing through. That is, the temperature sensor T2 only needs to be able to measure the temperature of the upper part of the turbine casing, and the installation position is not limited to the bottom of the lower casing 3b.

タービンリモコン54は、温度センサT1,T2から送られてきた測定値α,βに基づいて、上部車室3aと下部車室3bとの温度差(α−β)を算出し、算出された結果に基づいた制御信号を冷却蒸気流量制御弁53に送り、冷却蒸気流量制御弁53の開度を制御する制御器である。
なお、冷却蒸気流量制御弁53は、タービンリモコン54から送られてくる制御信号により、上部車室3aと下部車室3bとの温度差が50℃以下(より好ましくは、40℃以下)となるようにその開度が制御される。
ここで、上部車室3aと下部車室3bとの温度差が50℃以下(より好ましくは、40℃以下)となるようにその開度を制御している理由は、特段不適合の発生のない従来型非再熱舶用タービンでの類似計測結果が約30℃〜40℃であり、再熱タービンでもおおよそこのレベルをターゲットとすべく50℃を初期値として設定している。
The turbine remote controller 54 calculates the temperature difference (α−β) between the upper casing 3a and the lower casing 3b based on the measured values α, β sent from the temperature sensors T1, T2, and the calculated result. Is a controller that controls the opening degree of the cooling steam flow rate control valve 53 by sending a control signal based on the above to the cooling steam flow rate control valve 53.
In the cooling steam flow control valve 53, the temperature difference between the upper casing 3a and the lower casing 3b becomes 50 ° C. or less (more preferably 40 ° C. or less) by a control signal sent from the turbine remote controller 54. Thus, the opening degree is controlled.
Here, the reason why the opening degree is controlled so that the temperature difference between the upper casing 3a and the lower casing 3b is 50 ° C. or less (more preferably 40 ° C. or less) is that there is no particular nonconformity. Similar measurement results in the conventional non-reheated marine turbine are about 30 ° C. to 40 ° C., and even in the reheat turbine, about 50 ° C. is set as an initial value to target this level.

ドレン管55は、一端(上流端)が下部車室3bの下面中央部に接続され、他端(下流端)が復水器に接続されて、ノズルボックス21の内表面とダミー環12の外表面との間に存する(滞留する)蒸気を、復水器に直接導く配管であり、その途中には、オリフィス56およびドレン弁57が、上流側から下流側に向かって順に接続されている。
オリフィス56はドレン弁57が開となった場合に、蒸気が復水器に過剰に流入するのを防ぐために設けられている。
ここで、「蒸気が復水器に過剰に流入する」とは、約1200kg/h相当の蒸気が復水器に流入することをいい、φ5mmのオリフィス56が装備された場合、約150kg/hの蒸気が復水器に流入することになる。
ドレン弁57は、上部車室3aと下部車室3bとの温度差が50℃を超え、かつ、冷却蒸気流量制御弁53が開となっているときに強制的に閉から開とされ、その後、上部車室3aと下部車室3bとの温度差が50℃以下になったら開から閉とされる開閉弁である。
なお、ドレン弁57は、通常、閉とされている。
One end (upstream end) of the drain pipe 55 is connected to the center of the lower surface of the lower casing 3b, and the other end (downstream end) is connected to the condenser. This is a pipe that directly guides (stagnates) steam between the surface and the condenser, and an orifice 56 and a drain valve 57 are connected in order from the upstream side to the downstream side.
The orifice 56 is provided to prevent excessive flow of steam into the condenser when the drain valve 57 is opened.
Here, “the steam flows excessively into the condenser” means that steam equivalent to about 1200 kg / h flows into the condenser, and when the φ56 mm orifice 56 is equipped, about 150 kg / h. Of steam will flow into the condenser.
The drain valve 57 is forcibly opened from the closed state when the temperature difference between the upper casing 3a and the lower casing 3b exceeds 50 ° C. and the cooling steam flow control valve 53 is open. This is an on-off valve that is closed from being opened when the temperature difference between the upper casing 3a and the lower casing 3b becomes 50 ° C. or less.
The drain valve 57 is normally closed.

本実施形態に係る舶用蒸気タービン41によれば、上部車室3aの温度と下部車室3bの温度との差が許容値以下(例えば、50℃以下(より好ましくは、40℃以下))となるように冷却蒸気流量制御弁53の開度が調整されることになる。
これにより、上部車室3aの温度と下部車室3bの温度との差に応じて、ノズルボックス21の内表面とダミー環12の外表面との間を通り、ノズルボックス21およびダミー環12を冷却する蒸気の流量を能動的に変化させることができる。
According to the marine steam turbine 41 according to the present embodiment, the difference between the temperature of the upper casing 3a and the temperature of the lower casing 3b is less than an allowable value (for example, 50 ° C. or less (more preferably 40 ° C. or less)). Thus, the opening degree of the cooling steam flow rate control valve 53 is adjusted.
Thus, according to the difference between the temperature of the upper casing 3a and the temperature of the lower casing 3b, the nozzle box 21 and the dummy ring 12 pass through between the inner surface of the nozzle box 21 and the outer surface of the dummy ring 12. The flow rate of the cooling steam can be actively changed.

また、本実施形態に係る舶用蒸気タービン41によれば、温度センサT1および温度センサT2から送られてきた測定値に基づいて、上部車室3aの温度と下部車室3bの温度との差が許容値以下(例えば、50℃以下(より好ましくは、40℃以下))となるように冷却蒸気流量制御弁53の開度がタービンリモコン54により自動的に調整されることになる。
これにより、上部車室3aの温度と下部車室3bの温度との差が許容値以下(例えば、50℃以下(より好ましくは、40℃以下))となるように上部車室3aを冷却するシステムの自動化を図ることができる。
Further, according to the marine steam turbine 41 according to the present embodiment, the difference between the temperature of the upper casing 3a and the temperature of the lower casing 3b is based on the measured values sent from the temperature sensor T1 and the temperature sensor T2. The opening degree of the cooling steam flow control valve 53 is automatically adjusted by the turbine remote controller 54 so as to be equal to or less than an allowable value (for example, 50 ° C. or less (more preferably 40 ° C. or less)).
Thereby, the upper casing 3a is cooled so that the difference between the temperature of the upper casing 3a and the temperature of the lower casing 3b is not more than an allowable value (for example, 50 ° C. or less (more preferably 40 ° C. or less)). The system can be automated.

さらに、本実施形態に係る舶用蒸気タービン41によれば、上部車室3aの温度と下部車室3bの温度との差が許容値(例えば、50℃(より好ましくは、40℃))を超え、かつ、冷却蒸気流量制御弁53が全開となっているときに、ドレン弁57が強制的に閉から開とされることになる。
すなわち、ノズルボックス21の内表面とダミー環12の外表面との間に存する(滞留する)蒸気が復水器に導かれるようになり、上部車室3aの温度が低下して、上部車室3aの温度と下部車室の温度との差が小さくなる。
これにより、上部車室3aの温度と下部車室3bの温度との差を許容値以下(例えば、50℃以下(より好ましくは、40℃以下))に収めることができる。
Furthermore, according to the marine steam turbine 41 according to the present embodiment, the difference between the temperature of the upper casing 3a and the temperature of the lower casing 3b exceeds an allowable value (for example, 50 ° C. (more preferably 40 ° C.)). In addition, when the cooling steam flow control valve 53 is fully open, the drain valve 57 is forcibly opened from the closed state.
That is, the steam existing (stagnation) between the inner surface of the nozzle box 21 and the outer surface of the dummy ring 12 is led to the condenser, and the temperature of the upper casing 3a is lowered, so that the upper casing is reduced. The difference between the temperature of 3a and the temperature of the lower compartment is reduced.
Thereby, the difference between the temperature of the upper casing 3a and the temperature of the lower casing 3b can be kept below an allowable value (for example, 50 ° C. or lower (more preferably 40 ° C. or lower)).

ここで、本実施形態に係る舶用蒸気タービンのタービン車室の冷却方法は、複数枚のタービンブレード8aに圧力の異なる複数の蒸気のうち圧力の高い蒸気を導く工程と、前記複数枚のタービンブレード8aのうち、高圧側タービンブレード8aを通過することで圧力が低くなった蒸気によってタービン車室上部の冷却を行う工程と、を備えた舶用蒸気タービンのタービン車室の冷却方法において、さらに前記タービン車室の上部の冷却を行った後の蒸気を前記複数枚のタービンブレード8aのうち低圧側タービンブレード8に導く工程と、タービン車室の上部の温度、およびタービン車室の下部の温度を測定する工程と、前記タービン車室の上部の温度と前記タービン車室の下部との差に基づいて、前記複数枚のタービンブレード8aのうち低圧側タービンブレード8に導かれる前記タービン車室上部の冷却を行った後の蒸気の量を制御する工程と、を備えている。 Here, the cooling method of the turbine casing of the marine steam turbine according to the present embodiment includes a step of introducing high-pressure steam among a plurality of steams having different pressures to the plurality of turbine blades 8a, and the plurality of turbines. among the blades 8 a, a step for cooling the turbine casing upper by steam pressure becomes lower by passing through the high pressure side turbine blades 8a, in the cooling method of the turbine casing of marine steam turbines with further a step of directing the steam after cooling of the upper part of the turbine casing to the low pressure side turbine blade 8 a of the plurality of turbine blades 8 a, the upper portion of the turbine casing temperature, and the lower portion of the turbine casing measuring a temperature of, based on the difference between the lower temperature and the turbine casing of the upper part of the turbine casing, the plurality of turbine blades 8 And a, and controlling the amount of steam after the turbine casing upper part of the cooling led to the low-pressure side turbine blade 8 a of.

本実施形態に係る舶用蒸気タービン41のタービン車室の冷却方法によれば、上部車室の温度と下部車室の温度との差、または上部車室内の蒸気温度と下部車室内の蒸気温度との差が許容値以下(例えば、50℃以下(より好ましくは、40℃以下))となるように冷却蒸気流量制御弁の開度が調整されることになる。
これにより、上部車室の温度と下部車室の温度との差、または上部車室内の蒸気温度と下部車室内の蒸気温度との差に応じて、ノズルボックスの内表面とダミー環の外表面との間を通り、ノズルボックスおよびダミー環を冷却する蒸気の流量を能動的に変化させることができる。
According to the cooling method of the turbine casing of the marine steam turbine 41 according to the present embodiment, the difference between the temperature of the upper casing and the temperature of the lower casing, or the steam temperature in the upper casing and the steam temperature in the lower casing The degree of opening of the cooling steam flow control valve is adjusted so that the difference between the two is less than the allowable value (for example, 50 ° C. or less (more preferably 40 ° C. or less)).
Thus, depending on the difference between the temperature of the upper compartment and the temperature of the lower compartment, or the difference between the steam temperature in the upper compartment and the steam temperature in the lower compartment, the inner surface of the nozzle box and the outer surface of the dummy ring The flow rate of the steam for cooling the nozzle box and the dummy ring can be actively changed.

上記舶用蒸気タービン41のタービン車室の冷却方法において、タービン車室の上部の温度とタービン車室の下部との差に基づいて、さらに前記タービン車室上部の冷却を行った後の蒸気を復水器に導く工程を備えているとさらに好適である。   In the cooling method of the turbine casing of the marine steam turbine 41, the steam after the cooling of the turbine casing upper part is further recovered based on the difference between the temperature of the upper part of the turbine casing and the lower part of the turbine casing. It is more preferable to provide a step of leading to a water vessel.

このような舶用蒸気タービン41のタービン車室の冷却方法によれば、高温蒸気の滞留する車室上部から車室下部への流れができ、車室上下の温度の均一化を促進できる。   According to such a cooling method of the turbine casing of the marine steam turbine 41, the flow from the upper part of the passenger compartment where high-temperature steam stays to the lower part of the passenger compartment can be performed, and the equalization of the temperature above and below the passenger compartment can be promoted.

上記舶用蒸気タービン41のタービン車室の冷却方法において、タービン車室の上部の温度とタービン車室の下部との差に基づいて、前記複数枚のタービンブレードのうち低圧側タービンブレードに導かれる前記タービン車室上部の冷却を行った後の蒸気の全量を低圧側タービンブレードに導いても、タービン車室の上部の温度とタービン車室の下部との差が許容値を超えてしまう場合に、前記タービン車室上部の冷却を行った後の蒸気を復水器に導く工程を備えているとさらに好適である。   In the cooling method of the turbine casing of the marine steam turbine 41, the temperature guided to the low-pressure turbine blade among the plurality of turbine blades based on the difference between the temperature of the upper portion of the turbine casing and the lower portion of the turbine casing. Even if the entire amount of steam after cooling the turbine casing upper part is guided to the low-pressure turbine blade, the difference between the temperature of the upper part of the turbine casing and the lower part of the turbine casing exceeds the allowable value, More preferably, the method further comprises a step of guiding the steam after cooling the upper portion of the turbine casing to a condenser.

このような舶用蒸気タービン41のタービン車室の冷却方法によれば、上部車室の温度と下部車室の温度との差、または上部車室内の蒸気温度と下部車室内の蒸気温度との差が許容値(例えば、50℃(より好ましくは、40℃))を超え、かつ、冷却蒸気流量制御弁が全開となっているときに、ドレン弁が強制的に全閉から全開とされることになる。
すなわち、ノズルボックスの内表面とダミー環の外表面との間に存する(滞留する)蒸気が復水器に導かれるようになり、上部車室の温度または上部車室内の蒸気温度が低下して、上部車室の温度と下部車室の温度との差、または上部車室内の蒸気温度と下部車室内の蒸気温度との差が小さくなる。
これにより、上部車室の温度と下部車室の温度との差、または上部車室内の蒸気温度と下部車室内の蒸気温度との差を許容値以下(例えば、50℃以下(より好ましくは、40℃以下))に収めることができる。
According to such a cooling method of the turbine casing of the marine steam turbine 41, the difference between the temperature of the upper casing and the temperature of the lower casing, or the difference between the steam temperature in the upper casing and the steam temperature in the lower casing. When the pressure exceeds the allowable value (for example, 50 ° C. (more preferably 40 ° C.)) and the cooling steam flow control valve is fully open, the drain valve is forced to be fully closed to fully open. become.
That is, the steam existing (stagnation) between the inner surface of the nozzle box and the outer surface of the dummy ring is led to the condenser, and the temperature of the upper compartment or the upper compartment is lowered. The difference between the temperature of the upper compartment and the temperature of the lower compartment, or the difference between the steam temperature in the upper compartment and the steam temperature in the lower compartment becomes small.
Thereby, the difference between the temperature of the upper compartment and the temperature of the lower compartment, or the difference between the steam temperature in the upper compartment and the steam temperature in the lower compartment is less than an allowable value (for example, 50 ° C. or less (more preferably, 40 ° C. or less)).

上記舶用蒸気タービン41のタービン車室の冷却方法において、タービン車室の上部の温度とタービン車室の下部との差が許容範囲内となった場合に、前記低圧側タービンブレードに導く蒸気の量を減少させたのちに、復水器に導く蒸気の量を減少させる工程を備えているとさらに好適である。   In the cooling method of the turbine casing of the marine steam turbine 41, when the difference between the temperature of the upper part of the turbine casing and the lower part of the turbine casing falls within an allowable range, the amount of steam guided to the low-pressure turbine blade It is more preferable to provide a step of reducing the amount of steam guided to the condenser after reducing the amount of water.

このような舶用蒸気タービンのタービン車室の冷却方法によれば、海水に捨てられる熱量を最小限に抑えることができる。   According to such a cooling method for the turbine casing of the marine steam turbine, the amount of heat thrown away into the seawater can be minimized.

なお、本発明は上述した実施形態に限定されるものではなく、適宜必要に応じて変形・変更して実施することもできる。
例えば、上述した実施形態では、上部車室3aの温度と下部車室3bの温度との差、上部車室3a自体の温度と下部車室3b自体の温度との差を温度差として求めたが、本発明はこれに限定されるものではなく、上部車室3a内の蒸気温度と下部車室3b内の蒸気温度との差を温度差として求めるようにしてもよい。
In addition, this invention is not limited to embodiment mentioned above, It can also implement by changing and changing suitably as needed.
For example, in the above-described embodiment, the difference between the temperature of the upper casing 3a and the temperature of the lower casing 3b and the difference between the temperature of the upper casing 3a itself and the temperature of the lower casing 3b itself are obtained as temperature differences. The present invention is not limited to this, and the difference between the steam temperature in the upper casing 3a and the steam temperature in the lower casing 3b may be obtained as a temperature difference.

また、上述した実施形態では、第二の蒸気供給通路52の途中に冷却蒸気流量制御弁53が接続されたものを一具体例として挙げて説明したが、本発明はこれに限定されるものではなく、第二の蒸気供給通路52の代わりに、第二の蒸気供給通路52の内径よりも大きな内径を有する第二の蒸気供給通路52を用意し、この第二の蒸気供給通路52の途中に冷却蒸気流量制御弁53とオリフィス(オリフィス56とは用途が異なり、蒸気流量制御弁による流量制御性を向上させるためのオリフィス)とを接続するようにしても良い。   In the above-described embodiment, the cooling steam flow control valve 53 is connected to the middle of the second steam supply passage 52 as a specific example. However, the present invention is not limited to this. In place of the second steam supply passage 52, a second steam supply passage 52 having an inner diameter larger than the inner diameter of the second steam supply passage 52 is prepared. The cooling steam flow control valve 53 may be connected to an orifice (orifice 56 is used for a different purpose and improves the flow controllability by the steam flow control valve).

3 車室
3a 上部車室
8a タービンブレード
10 (第1の)タービン車室空間
12 ダミー環
13 主蒸気入口部
14 前進ノズル弁
18 調速段ノズル
21 ノズルボックス
41 舶用蒸気タービン
52 バイパス蒸気管
53 冷却蒸気流量制御弁
54 タービンリモコン(制御器)
55 ドレン管
57 ドレン弁
T1 (第一の)温度センサ
T2 (第二の)温度センサ
α 測定値
β 測定値
3 casing 3a upper casing 8a turbine blade 10 (first) turbine casing space 12 dummy ring 13 main steam inlet 14 forward nozzle valve 18 governing stage nozzle 21 nozzle box 41 marine steam turbine 52 bypass steam pipe 53 cooling Steam flow control valve 54 Turbine remote control (controller)
55 Drain pipe 57 Drain valve T1 (first) temperature sensor T2 (second) temperature sensor α measured value β measured value

Claims (7)

圧力の異なる複数の蒸気により駆動される舶用蒸気タービンであって、
タービン車室と、複数枚のタービンブレードと、を有し、
前記複数枚のタービンブレードはタービン車室を流通する前記圧力の異なる複数の蒸気のうち圧力の高い蒸気により動力を得る高圧側タービンブレードと、上記高圧側タービンブレードを流通する蒸気よりも圧力の低い蒸気により動力を得る低圧側タービンブレードと、を備え、
前記圧力の高い蒸気を前記タービン車室の上部から前記複数枚のタービンブレードに供給する第一の蒸気供給通路と、
前記複数枚のタービンブレードのうち、前記高圧側タービンブレードを通過することで圧力が低くなった蒸気によって前記タービン車室の上部を冷却しつつ、前記低圧側タービンブレードに前記圧力が低くなった蒸気を供給する第二の蒸気供給通路と、
前記第二の蒸気供給通路の途中に設けられ、第二の蒸気供給通路を流れる前記圧力が低くなった蒸気の流量を制御する冷却蒸気流量制御弁と、
前記タービン車室の上部の温度を測定する第一の温度センサと、
前記タービン車室の下部の温度を測定する第二の温度センサと、
前記第一の温度センサおよび前記第二の温度センサから送られてきた測定値に基づいて、前記タービン車室の上部の温度とタービン車室の下部の温度との差を算出し、算出された結果に基づいて前記冷却蒸気流量制御弁の開度を制御する制御器と、
を備えていることを特徴とする舶用蒸気タービン。
A marine steam turbine driven by a plurality of steams having different pressures,
A turbine casing and a plurality of turbine blades;
The plurality of turbine blades have a high pressure side turbine blade that obtains power by steam having a high pressure among the plurality of steams having different pressures flowing through the turbine casing, and a pressure lower than that of the steam flowing through the high pressure side turbine blades. A low-pressure turbine blade that is powered by steam,
A first steam supply passage for supplying the high-pressure steam to the plurality of turbine blades from an upper part of the turbine casing;
Among the plurality of turbine blades, the steam whose pressure has been reduced in the low-pressure turbine blade while cooling the upper portion of the turbine casing by steam whose pressure has been reduced by passing through the high-pressure turbine blade. A second steam supply passage for supplying,
A cooling steam flow control valve that is provided in the middle of the second steam supply passage and controls the flow rate of the steam having the reduced pressure flowing through the second steam supply passage;
A first temperature sensor for measuring a temperature of an upper portion of the turbine casing;
A second temperature sensor for measuring a temperature at a lower portion of the turbine casing;
Based on the measured values sent from the first temperature sensor and the second temperature sensor, the difference between the temperature of the upper part of the turbine casing and the temperature of the lower part of the turbine casing is calculated and calculated. A controller for controlling the opening degree of the cooling steam flow rate control valve based on the result;
A marine steam turbine characterized by comprising:
前記第二の蒸気供給通路の途中に設けられ、第二の蒸気供給通路を流れる前記圧力が低下した蒸気を復水器に直接導くドレン管と、
前記ドレン管の途中に設けられて、前記タービン車室の上部の温度と前記タービン車室の下部の温度との差が許容値を超えてしまう場合に開放されるドレン弁と、を備えていることを特徴とする請求項1に記載の舶用蒸気タービン。
A drain pipe that is provided in the middle of the second steam supply passage, and that directly guides the steam having the reduced pressure flowing through the second steam supply passage to a condenser;
A drain valve provided in the middle of the drain pipe and opened when a difference between an upper temperature of the turbine casing and a lower temperature of the turbine casing exceeds an allowable value; The marine steam turbine according to claim 1 .
圧力の異なる複数の蒸気により駆動される舶用蒸気タービンであって、
タービン車室と、複数枚のタービンブレードと、を有し、
前記複数枚のタービンブレードはタービン車室を流通する前記圧力の異なる複数の蒸気のうち圧力の高い蒸気により動力を得る高圧側タービンブレードと、上記高圧側タービンブレードを流通する蒸気よりも圧力の低い蒸気により動力を得る低圧側タービンブレードと、を備え、
前記圧力の高い蒸気を前記タービン車室の上部から前記複数枚のタービンブレードに供給する第一の蒸気供給通路と、
前記複数枚のタービンブレードのうち、前記高圧側タービンブレードを通過することで圧力が低くなった蒸気によって前記タービン車室の上部を冷却しつつ、前記低圧側タービンブレードに前記圧力が低くなった蒸気を供給する第二の蒸気供給通路と、
前記第二の蒸気供給通路の途中に設けられ、第二の蒸気供給通路を流れる前記圧力が低くなった蒸気の流量を制御する冷却蒸気流量制御弁と、
前記第二の蒸気供給通路の途中に設けられ、第二の蒸気供給通路を流れる前記圧力が低下した蒸気を復水器に直接導くドレン管と、
前記ドレン管の途中に設けられて、前記タービン車室の上部の温度と前記タービン車室の下部の温度との差が許容値を超えてしまう場合に開放されるドレン弁と、
を備えていることを特徴とする舶用蒸気タービン。
A marine steam turbine driven by a plurality of steams having different pressures,
A turbine casing and a plurality of turbine blades;
The plurality of turbine blades have a high pressure side turbine blade that obtains power by steam having a high pressure among the plurality of steams having different pressures flowing through the turbine casing, and a pressure lower than that of the steam flowing through the high pressure side turbine blades. A low-pressure turbine blade that is powered by steam,
A first steam supply passage for supplying the high-pressure steam to the plurality of turbine blades from an upper part of the turbine casing;
Among the plurality of turbine blades, the steam whose pressure has been reduced in the low-pressure turbine blade while cooling the upper portion of the turbine casing by steam whose pressure has been reduced by passing through the high-pressure turbine blade. A second steam supply passage for supplying,
A cooling steam flow control valve that is provided in the middle of the second steam supply passage and controls the flow rate of the steam having the reduced pressure flowing through the second steam supply passage;
A drain pipe that is provided in the middle of the second steam supply passage, and that directly guides the steam having the reduced pressure flowing through the second steam supply passage to a condenser;
A drain valve provided in the middle of the drain pipe and opened when a difference between an upper temperature of the turbine casing and a lower temperature of the turbine casing exceeds an allowable value;
A marine steam turbine characterized by comprising:
複数枚のタービンブレードに圧力の異なる複数の蒸気のうち圧力の高い蒸気を導く工程と、
前記複数枚のタービンブレードのうち、高圧側タービンブレードを通過することで圧力が低くなった蒸気によってタービン車室上部の冷却を行う工程と、を備えた舶用蒸気タービンのタービン車室の冷却方法において、
さらに前記タービン車室の上部の冷却を行った後の蒸気を前記複数枚のタービンブレードのうち低圧側タービンブレードに導く工程と、
タービン車室の上部の温度、およびタービン車室の下部の温度を測定する工程と、
前記タービン車室の上部の温度と前記タービン車室の下部との差に基づいて、前記複数枚のタービンブレードのうち低圧側タービンブレードに導かれる前記タービン車室上部の冷却を行った後の蒸気の量を制御する工程と、を備えていることを特徴とする舶用蒸気タービンのタービン車室の冷却方法。
Introducing a high-pressure steam among a plurality of steams having different pressures to a plurality of turbine blades;
A method of cooling a turbine casing of a marine steam turbine, comprising: a step of cooling the upper portion of the turbine casing with steam whose pressure is reduced by passing through the high-pressure side turbine blade among the plurality of turbine blades. ,
Further, the step of guiding the steam after cooling the upper portion of the turbine casing to the low-pressure side turbine blade among the plurality of turbine blades;
Measuring the temperature at the top of the turbine casing and the temperature at the bottom of the turbine casing;
Steam after cooling the upper part of the turbine casing led to the low-pressure turbine blade among the plurality of turbine blades based on the difference between the temperature of the upper part of the turbine casing and the lower part of the turbine casing And a method of cooling the turbine casing of the marine steam turbine.
タービン車室の上部の温度とタービン車室の下部との差に基づいて、さらに前記タービン車室上部の冷却を行った後の蒸気を復水器に導く工程を備えていることを特徴とする請求項4に記載の舶用蒸気タービンのタービン車室の冷却方法。   Based on the difference between the temperature of the upper portion of the turbine casing and the lower portion of the turbine casing, the method further comprises the step of guiding the steam after cooling the upper portion of the turbine casing to a condenser. The method for cooling a turbine casing of a marine steam turbine according to claim 4. タービン車室の上部の温度とタービン車室の下部との差に基づいて、前記複数枚のタービンブレードのうち低圧側タービンブレードに導かれる前記タービン車室上部の冷却を行った後の蒸気の全量を低圧側タービンブレードに導いても、タービン車室の上部の温度とタービン車室の下部との差が許容値を超えてしまう場合に、前記タービン車室上部の冷却を行った後の蒸気を復水器に導く工程を備えていることを特徴とする請求項5に記載の舶用蒸気タービンのタービン車室の冷却方法。   Based on the difference between the temperature at the upper part of the turbine casing and the lower part of the turbine casing, the total amount of steam after cooling the upper part of the turbine casing led to the low-pressure turbine blade among the plurality of turbine blades When the difference between the temperature of the upper part of the turbine casing and the lower part of the turbine casing exceeds the allowable value even if the turbine is guided to the low-pressure side turbine blade, the steam after cooling the upper part of the turbine casing is The method for cooling a turbine casing of a marine steam turbine according to claim 5, further comprising a step of guiding the condenser. タービン車室の上部の温度とタービン車室の下部との差が許容範囲内となった場合に、前記低圧側タービンブレードに導く蒸気の量を減少させたのちに、復水器に導く蒸気の量を減少させる工程を備えていることを特徴とする請求項6に記載の舶用蒸気タービンのタービン車室の冷却方法。   When the difference between the temperature at the upper part of the turbine casing and the lower part of the turbine casing falls within the allowable range, the amount of steam introduced to the low-pressure side turbine blade is reduced, and then the steam introduced to the condenser is reduced. The method for cooling a turbine casing of a marine steam turbine according to claim 6, further comprising a step of reducing the amount.
JP2013094274A 2013-04-26 2013-04-26 Marine steam turbine and cooling method for turbine casing Active JP5968260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013094274A JP5968260B2 (en) 2013-04-26 2013-04-26 Marine steam turbine and cooling method for turbine casing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013094274A JP5968260B2 (en) 2013-04-26 2013-04-26 Marine steam turbine and cooling method for turbine casing

Publications (2)

Publication Number Publication Date
JP2014214707A JP2014214707A (en) 2014-11-17
JP5968260B2 true JP5968260B2 (en) 2016-08-10

Family

ID=51940708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013094274A Active JP5968260B2 (en) 2013-04-26 2013-04-26 Marine steam turbine and cooling method for turbine casing

Country Status (1)

Country Link
JP (1) JP5968260B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6479468B2 (en) * 2014-12-26 2019-03-06 三菱重工業株式会社 Steam turbine equipment, ship, and control method of steam turbine equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5260311A (en) * 1975-11-12 1977-05-18 Toshiba Corp Turbine casing
JPH0621521B2 (en) * 1983-06-10 1994-03-23 株式会社日立製作所 Main structure of steam turbine main steam inlet
JPH08312306A (en) * 1995-05-15 1996-11-26 Mitsubishi Heavy Ind Ltd Cooling device of turbine cylinder
JP4909113B2 (en) * 2007-02-16 2012-04-04 三菱重工業株式会社 Steam turbine casing structure

Also Published As

Publication number Publication date
JP2014214707A (en) 2014-11-17

Similar Documents

Publication Publication Date Title
JP2017141819A (en) Controlling gas turbine engine considering airflow distortion
JP6195299B2 (en) Waste heat recovery system, ship and waste heat recovery method
US11105201B2 (en) Steam turbine
JP4619958B2 (en) Steam turbine control valve and steam turbine power plant
JP6335645B2 (en) Combustor replacement method and gas turbine plant
JP4208661B2 (en) Steam turbine power plant having a steam valve device and a steam flow control system including the steam valve device
JP5968260B2 (en) Marine steam turbine and cooling method for turbine casing
JP2009057972A (en) Ventilation and pressurization in turbomachine
JP4780328B2 (en) Supercharger with electric motor
JP5964106B2 (en) Compressor and gas turbine
JP2013029111A (en) Power generation method, turbine power generator, method of controlling turbine power generator, control device, and ship including the turbine power generator
CN108779688B (en) The control method of electricity generation system and electricity generation system
CN103282607B (en) Steam turbine system and warm-up method therefor
JP5851773B2 (en) Marine main engine steam turbine equipment, ship equipped with the same, and operation method of main marine steam turbine equipment
US2303190A (en) Turbine apparatus
JP2019094802A (en) Exhaust heat recovery system of marine engine, and control method of exhaust heat recovery system of marine engine
JP6435960B2 (en) Fluid heating device
JP2014084824A (en) Gas turbine operation control device and method, and gas turbine having the same
US9194331B2 (en) Flow conducting assembly for cooling the low-pressure turbine housing of a gas turbine jet engine
WO2014199643A1 (en) Engine system, and ship
JP2009030486A (en) Marine steam turbine
JP2015187448A (en) Ship main engine steam turbine installation and ship equipped with the same
JP2020094509A (en) Cross-flow water turbine
JP2020094546A (en) Cross-flow water turbine
JP5675932B2 (en) Power generation method, turbine generator, turbine generator control method, control apparatus, and ship equipped with the turbine generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160705

R151 Written notification of patent or utility model registration

Ref document number: 5968260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151