WO2014199643A1 - Engine system, and ship - Google Patents

Engine system, and ship Download PDF

Info

Publication number
WO2014199643A1
WO2014199643A1 PCT/JP2014/003146 JP2014003146W WO2014199643A1 WO 2014199643 A1 WO2014199643 A1 WO 2014199643A1 JP 2014003146 W JP2014003146 W JP 2014003146W WO 2014199643 A1 WO2014199643 A1 WO 2014199643A1
Authority
WO
WIPO (PCT)
Prior art keywords
power turbine
exhaust gas
engine body
valve
supercharger
Prior art date
Application number
PCT/JP2014/003146
Other languages
French (fr)
Japanese (ja)
Inventor
貴士 久保
誠司 西
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN201480033300.8A priority Critical patent/CN105264198B/en
Priority to KR1020157036966A priority patent/KR101861754B1/en
Priority to JP2015522551A priority patent/JP6270838B2/en
Publication of WO2014199643A1 publication Critical patent/WO2014199643A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/10Engines with prolonged expansion in exhaust turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an engine system that efficiently recovers waste heat energy.
  • an on-off valve is provided in the flow path of the exhaust gas supplied to the power turbine side, and the on-off valve is closed according to the operating conditions, and the exhaust gas is sent to the power turbine side. May be controlled so as not to flow.
  • the power turbine In an engine system in which control is performed so that exhaust gas is preferentially supplied to the turbocharger, the power turbine is most affected by fluctuations in the amount of exhaust gas discharged from the engine body. Turbine settings are a problem. For example, it is reasonable to set the power turbine so that the engine body is highly efficient during normal operation. In this case, if more exhaust gas is supplied than during normal operation, the power turbine Part of the exhaust gas is discarded so that the turbine speed does not exceed the allowable value. Such an operation cannot be said to sufficiently recover waste heat energy. Of course, the engine system is required to be simplified.
  • the power turbine is connected to the engine body.
  • the power turbine is driven by the engine body.
  • the power turbine works like a blower and tries to convey gas, but the gas does not flow because the on-off valve is closed. For this reason, a large force is required to drive the power turbine, resulting in a heavy load on the engine body.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an engine system that can efficiently recover waste heat energy and can simplify the system. .
  • the present invention also aims to suppress an excessive load on the engine body when the power turbine is not driven by exhaust gas.
  • An engine system includes an engine body, a supercharger driven by exhaust gas discharged from the engine body, and a power turbine driven by exhaust gas discharged from the engine body.
  • the turbine has a variable nozzle provided on the inlet side, and when the amount of exhaust gas discharged from the engine body decreases, the exhaust gas discharged from the engine body is reduced by reducing the opening area of the variable nozzle.
  • the ratio of the amount of exhaust gas supplied to the supercharger with respect to the amount of gas is increased and exhausted from the engine body. When the amount of exhaust gas to be increased increases, the ratio of the amount of exhaust gas supplied to the supercharger to the amount of exhaust gas discharged from the engine body is reduced by increasing the opening area of the variable nozzle.
  • the exhaust gas flow rate control is performed.
  • variable nozzle is used to improve the efficiency of the turbine (power turbine in the above configuration) according to the amount of exhaust gas by changing the opening area.
  • the quantity of the exhaust gas supplied to a supercharger is also adjusted simultaneously with the change of the opening area of this variable nozzle. That is, according to the above configuration, the variable nozzle can perform both control for efficiently recovering waste heat energy according to the amount of exhaust gas and control for supplying an appropriate amount of exhaust gas to the supercharger. it can. Therefore, according to the engine system described above, waste heat energy can be efficiently recovered, and the system can be simplified.
  • the power turbine inlet pipe branches from the supercharger inlet pipe, and is configured to guide part of the exhaust gas in the supercharger inlet pipe to the power turbine. Also good.
  • the engine body has a scavenging pipe that accommodates fresh air boosted by the supercharger, and the exhaust gas flow rate control is such that the pressure in the scavenging pipe is less than a predetermined lower limit value.
  • the opening of the variable nozzle may be reduced, and when the pressure in the scavenging pipe is larger than a predetermined upper limit value, the opening of the variable nozzle may be increased.
  • the predetermined lower limit value and the predetermined upper limit value may be set to increase as the load on the engine body increases. According to such a configuration, the upper limit value and the lower limit value of the pressure in the scavenging pipe can be appropriately set according to the engine load.
  • an engine system is driven by an engine body, a supercharger driven by exhaust gas discharged from the engine body, and exhaust gas discharged from the engine body, A power turbine connected to a crankshaft of the engine body, a supercharger inlet pipe for guiding exhaust gas discharged from the engine body to the supercharger, and exhaust gas discharged from the engine body to the power turbine Connected to a portion of the power turbine inlet pipe downstream of the opening / closing valve, and a power turbine inlet pipe leading to the opening / closing valve provided in the power turbine inlet pipe and opening / closing in accordance with operating conditions of the engine body A bleed pipe for extracting gas from the power turbine inlet pipe, and a bleed valve provided in the bleed pipe;
  • the power turbine inlet pipe branches from the supercharger inlet pipe, and is configured to guide a part of the exhaust gas in the supercharger inlet pipe to the power turbine. It may be.
  • the rising switching load that is the switching load when the load on the engine body is rising is the down switching load that is the switching load when the load on the engine body is falling. It may be set larger than. According to such a configuration, the engine system can be operated in consideration of different characteristics when the load of the engine body rises and when it falls. Therefore, a more appropriate engine system can be operated.
  • the on-off valve may be opened after the extraction valve is closed.
  • the opening / closing valve instead of opening the opening / closing valve at the same time as closing the extraction valve, the opening / closing valve is opened after closing the extraction valve, so that a low-resistance flow path is not formed even temporarily.
  • the exhaust gas can be stably supplied to the supercharger.
  • the bleed valve may be opened after the on-off valve is closed. Also in this case, a flow path having a small resistance is not formed even temporarily, and the exhaust gas can be stably supplied to the supercharger.
  • the engine system may further include a power turbine outlet pipe that discharges exhaust gas that has passed through the power turbine, and the extraction pipe is connected to the power turbine outlet pipe and is extracted from the power turbine inlet pipe.
  • the exhausted gas may be discharged to the power turbine outlet pipe.
  • an air intake that is connected between the power turbine outlet pipe and a portion to which the extraction pipe is connected and the power turbine, and can take outside air into the power turbine outlet pipe.
  • the engine system further includes a supercharger outlet pipe that discharges exhaust gas that has passed through the supercharger, wherein the extraction pipe is connected to the supercharger outlet pipe, and the power turbine inlet
  • the gas extracted from the pipe may be discharged to the supercharger outlet pipe.
  • a ship according to an embodiment of the present invention includes any one of the above engine systems.
  • waste heat energy can be efficiently recovered, and the system can be simplified.
  • FIG. 1 is an overall view of an engine system according to the first embodiment.
  • FIG. 2 is a block diagram of a control system of the engine system.
  • FIG. 3 is a flowchart showing the control contents of the engine system.
  • FIG. 4 is a graph showing a range of proper scavenging pressure.
  • FIG. 5 is an overall view of an engine system according to the second embodiment.
  • FIG. 6 is an overall view of an engine system according to the third embodiment.
  • FIG. 1 is an overall view of an engine system 100 according to the present embodiment.
  • an engine system 100 according to this embodiment is a so-called main engine for navigating a ship 101, and includes an engine body 10, a supercharger 20, a power turbine 30, and various pipes 41 to 41. 45 and various valves 51 and 52.
  • an engine system 100 according to this embodiment is a so-called main engine for navigating a ship 101, and includes an engine body 10, a supercharger 20, a power turbine 30, and various pipes 41 to 41. 45 and various valves 51 and 52.
  • these will be described in order.
  • the engine body 10 is a central device of the engine system 100.
  • the engine body 10 of the present embodiment is a so-called low speed diesel engine.
  • the engine body 10 is for rotating a propeller shaft 103 having a propeller 102 attached to the tip thereof.
  • the engine body 10 rotates in a forward direction that generates a propulsive force in a direction in which the ship 101 moves forward, and a propulsive force in a direction in which the ship 101 moves backward.
  • the reverse rotation can be performed.
  • the propeller shaft 103 is connected to the crankshaft 11, and the crankshaft 11 is connected to a plurality of pistons 12.
  • Each piston 12 reciprocates as the fuel explodes in the cylinder 13, and the crankshaft 11 rotates by the reciprocating motion of each piston 12.
  • the engine body 10 is provided with an engine tachometer 14 that measures the rotation speed of the crankshaft 11, that is, the rotation speed of the engine body 10.
  • the engine body 10 includes a common scavenging pipe 15 on the upstream side of each cylinder 13 and a common exhaust pipe 16 on the downstream side of each cylinder 13.
  • the scavenging pipe 15 temporarily stores the air compressed by the supercharger 20 and supplies the air to each cylinder 13.
  • the scavenging tube 15 is provided with a scavenging pressure gauge 17 that measures the pressure in the scavenging tube 15 (hereinafter referred to as “scavenging pressure”).
  • the exhaust pipe 16 once collects the exhaust gas discharged from the cylinder 13 and supplies it to the supercharger 20 and the power turbine 30.
  • the supercharger 20 is a device that compresses air taken in from the outside and supplies the compressed air to the engine body 10.
  • the supercharger 20 has a turbine part 21 and a compressor part 22. Exhaust gas discharged from the engine body 10 (exhaust pipe 16) is supplied to the turbine unit 21.
  • the turbine unit 21 rotates using the energy of the exhaust gas supplied from the exhaust pipe 16.
  • the exhaust gas that has passed through the turbine section 21 is guided to the flue through the supercharger outlet pipe 46.
  • the compressor unit 22 is connected to the turbine unit 21 via a connecting shaft 23. Therefore, as the turbine unit 21 rotates, the compressor unit 22 also rotates.
  • the compressor unit 22 compresses the air taken from outside and supplies the compressed air to the scavenging pipe 15.
  • the amount of exhaust gas discharged from the engine body 10 is smaller than the amount required by the supercharger 20, but the exhaust gas discharged from the engine body 10 increases as the engine load increases. The amount gradually increases beyond the amount required by the supercharger 20.
  • the power turbine 30 is a device that assists the engine body 10 using the energy of the exhaust gas.
  • the power turbine 30 includes a turbine part 31 and a variable nozzle 32.
  • the turbine unit 31 is rotated by the energy of the supplied exhaust gas.
  • the turbine part 31 is connected to the crankshaft 11 of the engine body 10 via a speed reducer 33, and the rotational power of the turbine part 21 is transmitted to the crankshaft 11 via the speed reducer 33. Note that the rotation direction of the power turbine 30 when rotating by the exhaust gas is constant, and the engine body 10 can be assisted only when the engine body 10 rotates forward.
  • the variable nozzle 32 is provided on the inlet side of the power turbine 30 and is mainly configured by a plurality of movable vanes arranged in an annular shape.
  • the opening area (opening degree) of the variable nozzle 32 can be adjusted by changing the angle of the movable vane.
  • the variable nozzle 32 can efficiently operate the power turbine 30 by adjusting the opening degree to change the inflow speed to the turbine unit 21. That is, when the flow rate of the exhaust gas supplied to the power turbine 30 is large, the opening degree of the variable nozzle 32 is increased, and when the flow rate of the exhaust gas supplied to the power turbine 30 is small, the opening degree of the variable nozzle 32. Make it smaller.
  • the variable nozzle 32 also functions as an “aperture” because the opening area changes.
  • the function of the variable nozzle 32 as an aperture is very important. That is, in this embodiment, by adjusting the opening degree of the variable nozzle 32, the power turbine 30 (the turbine unit 31) is not only efficiently rotated, but also the amount of exhaust gas supplied to the supercharger 20 (The ratio of the amount of exhaust gas supplied to the supercharger 20 with respect to the amount of exhaust gas discharged from the engine body 10 is controlled (exhaust gas flow rate control).
  • the engine system 100 includes a supercharger inlet pipe 41, a power turbine inlet pipe 42, a power turbine outlet pipe 43, an extraction pipe 44, and an engine inlet pipe 45.
  • the supercharger inlet pipe 41 is a pipe that connects the exhaust pipe 16 and the turbine portion 21 of the supercharger 20 and guides the exhaust gas discharged from the engine body 10 to the supercharger 20.
  • the power turbine inlet pipe 42 is a pipe that branches from the supercharger inlet pipe 41 and extends to the power turbine 30 and guides a part of the exhaust gas in the supercharger inlet pipe 41 to the power turbine 30. .
  • the power turbine outlet pipe 43 is arranged on the downstream side of the power turbine 30 and is a pipe for guiding the exhaust gas that has passed through the power turbine 30 to the flue.
  • the bleed pipe 44 is a pipe that connects a portion of the power turbine inlet pipe 42 downstream of an on-off valve 51 described later and the power turbine outlet pipe 43.
  • the engine inlet pipe 45 is a pipe that connects the compressor section 22 of the supercharger 20 and the scavenging pipe 15 and guides the air compressed by the supercharger 20 to the scavenging pipe 15.
  • the on-off valve 51 is a valve provided in the power turbine inlet pipe 42.
  • the on-off valve 51 is closed when the engine body 10 rotates in reverse (when the ship 101 moves backward) and when the engine load is small.
  • the power turbine 30 and the engine main body 10 rotate in directions that cause resistance to each other, and therefore the on-off valve 51 is closed and the flow of exhaust gas to the power turbine 30 The power turbine 30 is not driven.
  • the engine load is small, the amount of exhaust gas exhausted from the engine body 10 is small. Therefore, unless all the exhaust gas is supplied to the supercharger 20, the temperature of the combustion chamber member of the engine body 10 rises. .
  • the on-off valve 51 of the present embodiment is sufficient as long as it can maintain two states of “open” and “closed”, but may be a valve capable of adjusting the opening degree.
  • the extraction valve 52 is a valve provided in the extraction pipe 44.
  • the on-off valve 51 When the on-off valve 51 is closed, the power turbine 30 is not driven by the exhaust gas. However, since the power turbine 30 and the crankshaft 11 are connected, the power turbine 30 is operated while the engine body 10 is rotating. The turbine 30 is driven by the crankshaft 11 (engine body 10). At this time, the power turbine 30 functions like a blower.
  • the extraction valve 52 is opened to form a circulation channel through which the gas that has passed through the power turbine 30 circulates (circulation channel formation control).
  • the power turbine 30 tries to send the gas in the power turbine outlet pipe 43 to the power turbine inlet pipe 42 regardless of whether the engine body 10 rotates forward or reversely.
  • the on-off valve 51 is closed, the pressure in the power turbine inlet pipe 42 gradually increases and the differential pressure across the power turbine 30 increases, so that driving the power turbine 30 is significant for the engine body 10. It becomes a load. Therefore, in this embodiment, a circulation flow path is formed when the on-off valve 51 is closed to avoid the above problem.
  • the bleed valve 52 may be a valve that can maintain two states of “open” and “closed”, but may be a valve that can adjust the opening degree.
  • the setting of the engine system 100 will be described.
  • the on-off valve 51 when the on-off valve 51 is open, the supply amount of the exhaust gas to the supercharger 20 is adjusted by the opening degree of the variable nozzle 32.
  • the opening of the variable nozzle 32 for supplying an appropriate amount of exhaust gas to the supercharger 20 is referred to as an “appropriate amount supply opening”.
  • a predetermined amount of exhaust gas is supplied to the power turbine 30, and when the amount of the exhaust gas flows to the power turbine 30, the opening degree of the variable nozzle 32 that can rotate the power turbine 30 most efficiently is “ It will be called the “maximum efficiency opening”.
  • the engine system 100 ensures that the “appropriate amount supply opening” and the “maximum efficiency opening” are substantially the same at any engine load (for example, the error is within 5%). Is set). That is, in any engine load, if the opening amount of the variable nozzle 32 is adjusted and an appropriate amount of exhaust gas is supplied to the supercharger 20, the engine system inevitably rotates the power turbine 30 efficiently. 100 is set. In this setting, the combination of the turbine blades of the turbine section 31 of the power turbine 30 and the variable nozzle 32 is changed, or the main items such as the turbine nozzles, turbine blades, compressor wheels, and compressor diffusers of the supercharger 20 are changed. Can be done.
  • the engine system 100 includes a control device 60 that controls the entire engine system 100.
  • the control device 60 is constituted by a CPU, a ROM, a RAM, and the like.
  • FIG. 2 is a block diagram of a control system of engine system 100.
  • the control device 60 includes a driving operation panel 104 that operates the ship 101, an engine tachometer 14 that measures the rotational speed of the engine body 10, and a fuel input that measures the amount of fuel injected into the cylinder 13. It is electrically connected to a quantity indicator 18 and a scavenging meter 17 for measuring scavenging pressure.
  • the control device 60 acquires various information such as the rotation direction of the engine body 10, the engine speed, the fuel input amount, and the scavenging pressure based on input signals from these devices.
  • control device 60 controls various parts of the engine system 100 by performing various calculations and the like based on input signals from the respective devices.
  • the control device 60 is electrically connected to the on-off valve 51, the bleed valve 52, and the variable nozzle 32, and based on the results of calculations performed based on the respective input signals, the on-off valve 51.
  • the control signal is transmitted to the bleed valve 52 and the variable nozzle 32.
  • control device 60 has a valve control unit 61 and a variable nozzle control unit 62 as functional configurations.
  • the valve control part 61 is a part which controls opening and closing of the on-off valve 51 and the extraction valve 52, and performs circulation flow path formation control mentioned later.
  • the variable nozzle control unit 62 is a part that determines the opening degree of the variable nozzle 32 and performs exhaust gas flow rate control described later.
  • the circulation flow path formation control and the exhaust gas flow rate control performed by the control device 60 will be described in order.
  • FIG. 3 is a flowchart showing the control contents of the engine system 100. While engine system 100 is in operation, control device 60 repeats the cycle of steps S1 to S16 in FIG. Steps S1 to S10 in FIG. 3 are related to the circulation flow path formation control.
  • the circulation flow path formation control is control for forming a circulation flow path for the gas that has passed through the power turbine 30 by opening the extraction valve 52 when the on-off valve 51 is closed, as already described in outline.
  • control device 60 acquires various information (step S1). Specifically, the control device 60 acquires the rotation direction of the engine body, the engine speed, the fuel input amount, and the scavenging pressure based on the input signals from each device.
  • step S2 determines whether or not the engine body 10 is rotating forward (step S2). If the engine body 10 is rotating forward (YES in step S2), the process proceeds to step S3. If the engine body 10 is rotating backward (NO in step S2), the process proceeds to step S4. Among these, in step S4, the opening / closing valve 51 is closed and the bleed valve 52 is opened simultaneously, and then the process returns to step S1.
  • step S4 the opening / closing valve 51 is closed when the engine body 10 is rotating in reverse is to prevent the power turbine 30 and the crankshaft 11 from canceling out the power. Further, the reason why the extraction valve 52 is opened when the on-off valve 51 is closed is to reduce the engine load by forming a circulation passage through which the gas that has passed through the power turbine 30 circulates as described above.
  • step S3 it is determined whether the on-off valve 51 is closed and the bleed valve 52 is open at present. That is, in step S3, it is determined (confirmed) how the opening / closing of the opening / closing valve 51 and the extraction valve 52 is determined in the previous cycle. Note that at least at the time of determination in step S3, the bleed valve 52 is always closed when the on-off valve 51 is open, and the bleed valve 52 is always open when the on-off valve 51 is closed. If the controller 60 determines that the on-off valve 51 is closed and the bleed valve 52 is open (YES in step S3), the control device 60 proceeds to step S5. If it is determined that the on-off valve 51 is open and the bleed valve 52 is closed (NO in step S3), the process proceeds to step S6.
  • step S5 an engine load is calculated based on the number of revolutions of the engine body 10 and the amount of fuel input, and it is determined whether or not the engine load is equal to or higher than the upward switching load. Since it is determined in step S3 that the on-off valve 51 is closed, the process proceeds to step S5. Therefore, it can be said that the on-off valve 51 is controlled to be closed in at least one previous cycle. The on-off valve 51 was closed because the engine load was small and exhaust gas could not be supplied to the power turbine 30. Therefore, in step S5, it is determined whether the engine load remains so small that exhaust gas cannot be supplied to the power turbine 30, or whether the engine load has increased to such an extent that exhaust gas can be supplied to the power turbine 30. That is, the “rising switching load” in step S5 is an engine load when the engine load increases and the exhaust gas can be supplied to the power turbine 30, and in this embodiment, for example, a 50% load (of the engine body 10). 50% load when the maximum load is 100%).
  • step S5 when the engine load is equal to or higher than the increase switching load (YES in step S5), it is a time when exhaust gas can be supplied to the power turbine 30, so the on-off valve 51 is opened and the extraction valve 52 is opened. Close (step S7).
  • the on-off valve 51 is not closed and the bleed valve 52 is not opened at the same time, but after the bleed valve 52 is closed, the on-off valve 51 is opened after a certain time. If the bleed valve 52 is closed at the same time as the on / off valve 51 is opened, a state in which both the on / off valve 51 and the bleed valve 52 are opened temporarily occurs, and the gas in the power turbine inlet pipe 42 passes through the power turbine 30.
  • step S7 the process proceeds to step S11.
  • step S5 when the engine load is smaller than the increase switching load (NO in step S5), the exhaust gas cannot be continuously supplied to the power turbine 30, so the on-off valve 51 is closed and the extraction valve 52 is opened. Is maintained (step S8). After step S8, the process returns to step S1.
  • step S6 the engine load is calculated based on the engine speed and the fuel input amount acquired in step S1, and it is determined whether or not the engine load is equal to or higher than the descent switching load. Since it is determined in step S3 that the on-off valve 51 is open, the process proceeds to step S6. Therefore, it can be said that the on-off valve 51 is controlled to be opened in at least one previous cycle. The reason for opening the on-off valve 51 is that the engine load is large and the exhaust gas can be supplied to the power turbine 30. Based on this, in step S6, it is determined whether the engine load is maintained so high that exhaust gas can be supplied to the power turbine 30, or whether the engine load has been reduced to a level at which exhaust gas cannot be supplied to the power turbine 30. ing.
  • the “decreasing switching load” in step S6 is an engine load when the engine load decreases and exhaust gas cannot be supplied to the power turbine 30, and in this embodiment, for example, 45% load (maximum load of the engine body)
  • the load is set to 45% with respect to 100%.
  • the reason why the values of the downward switching load and the upward switching load are different is due to so-called hysteresis.
  • step S6 when the engine load is equal to or higher than the lowering switching load (YES in step S6), the exhaust gas can be continuously supplied to the engine body 10, so that the on-off valve 51 is opened and the extraction valve is opened. The state where 52 is closed is maintained (step S9). After step S9, the process proceeds to step S11.
  • step S6 when the engine load is smaller than the descent switching load (YES in step S6), it is a time when exhaust gas cannot be supplied to the power turbine 30, so the on-off valve 51 is closed and the extraction valve 52 is opened ( Step S10).
  • the opening / closing valve 51 is not closed and the extraction valve 52 is not opened at the same time, but after the opening / closing valve 51 is closed, the extraction valve 52 is opened after a certain time.
  • the reason why the bleed valve 52 is opened after the on-off valve 51 is closed is the same as the reason described in step S7, in order to prevent the amount of exhaust gas flowing into the supercharger 20 from being reduced at once. is there.
  • step S10 the process returns to step S1.
  • Steps S11 to S16 in FIG. 3 are parts related to the exhaust gas flow rate control.
  • the exhaust gas flow rate control is performed after step S7 or step S9. That is, the exhaust gas flow rate control is performed only when the on-off valve 51 is open. Note that whether or not appropriate exhaust gas can be supplied to the supercharger 20 can be determined by scavenging pressure.
  • the scavenging pressure when the scavenging pressure is higher than a predetermined value, the amount of exhaust gas supplied to the supercharger 20 is excessive, and when the scavenging pressure is lower than the predetermined value, the amount of exhaust gas supplied to the supercharger 20 is small. It can be judged that it is insufficient.
  • FIG. 4 is a graph showing an appropriate scavenging air pressure range.
  • the horizontal axis in FIG. 4 is the engine load, and the vertical axis is the scavenging pressure.
  • the upper line indicates the upper limit scavenging pressure
  • the lower line indicates the lower limit scavenging pressure.
  • the portion sandwiched between these two straight lines is the appropriate scavenging pressure range. For example, as shown in FIG. 4, when the engine load is an L 1, the lower limit scavenging air pressure becomes P L, and the upper limit scavenging air pressure P H.
  • the lower limit scavenging air pressure and the upper limit scavenging air pressure vary depending on the engine load, and are set larger as the engine load increases.
  • an appropriate scavenging pressure range is calculated using the mathematical expression representing the straight line in FIG.
  • the control device 60 determines whether or not the actual scavenging air pressure acquired in step S1 is within an appropriate range (step S12). That is, it is determined whether or not the actual scavenging pressure is larger than the lower limit scavenging pressure set in step S11 and smaller than the upper scavenging pressure. If the scavenging pressure is within the appropriate range (YES in step S12), the opening of the variable nozzle 32 is maintained (step S13), and the process returns to step S1. This is because an appropriate amount of exhaust gas is supplied to the supercharger 20 without changing the opening of the variable nozzle 32. As described above, when the opening amount of the variable nozzle 32 is adjusted and an appropriate amount of exhaust gas is supplied to the supercharger 20, the power turbine 30 is necessarily driven efficiently.
  • step S12 determines whether or not the scavenging air pressure is within the appropriate range. That is, it is determined whether or not the actual scavenging pressure is greater than the upper limit scavenging pressure. If the scavenging pressure is greater than the appropriate range (YES in step S14), the opening of the variable nozzle 32 is increased (step S15), and the process returns to step S1. In this case, since the exhaust gas more than necessary flows through the supercharger 20, control is performed to increase the opening of the variable nozzle 32 to reduce the amount of exhaust gas flowing to the supercharger 20 side.
  • the ratio of the amount of exhaust gas supplied to the supercharger 20 to the amount of exhaust gas discharged from the engine body 10 is reduced.
  • an appropriate amount of exhaust gas is supplied to the supercharger 20, so that the power turbine 30 is inevitably driven efficiently.
  • step S14 If it is determined in step S14 that the actual scavenging air pressure is not greater than the appropriate range (NO in step S14), the opening of the variable nozzle 32 is decreased (step S16), and the process returns to step S1.
  • the actual scavenging air pressure is not larger than the appropriate range, the actual scavenging air pressure is smaller than the appropriate range (smaller than the lower limit scavenging air pressure).
  • control is performed to increase the amount of exhaust gas flowing to the supercharger 20 side by reducing the opening of the variable nozzle 32. That is, the ratio of the amount of exhaust gas supplied to the supercharger 20 to the amount of exhaust gas discharged from the engine body 10 is increased.
  • the control is performed in this manner, an appropriate amount of exhaust gas is supplied to the supercharger 20, so that the power turbine 30 is inevitably driven efficiently.
  • the engine system 100 includes the bleed pipe 44 and the bleed valve 52, and the gas circulation flow that opens the bleed valve 52 and passes through the power turbine 30 when the on-off valve 51 is closed. It is comprised so that a path may be formed. Therefore, even when the power turbine 30 is driven by the crankshaft 11 when the on-off valve 51 is closed, the differential pressure across the power turbine 30 does not become too large, and an excessive load on the engine body 10 is suppressed. be able to.
  • the engine system 100 can not only improve the efficiency of the power turbine 30 but also adjust the amount of exhaust gas supplied to the supercharger 20 by the variable nozzle 32 of the power turbine 30. it can. Therefore, the control and configuration of the entire engine system 100 can be simplified.
  • the “small opening” is an opening smaller than the opening of the on-off valve 51 in the first condition, and includes the first small opening and the second small opening.
  • the first small opening is the opening of the opening / closing valve 51 when the exhaust gas that has passed through the opening / closing valve 51 is at the boundary between the state where the exhaust gas is conveyed by the power turbine 30 and the state where the power turbine 30 is driven.
  • the second small opening is smaller than the first small opening and is the opening of the on-off valve 51 when exhaust gas slightly flows into the circulation channel.
  • the opening / closing valve 51 when the opening / closing valve 51 is closed and the extraction valve 52 is opened, the gas that has passed through the power turbine 30 passes through the power turbine 30 again through the circulation flow path. There is a risk that the temperature of the engine will rise due to the energy received from the power turbine 30.
  • the on-off valve 51 when the on-off valve 51 is set to the first small opening or an opening close to this in the second condition, the energy received by the gas in the circulation flow path from the power turbine 30 decreases, and the gas in the ring flow path decreases. An excessive increase in temperature can be suppressed. Further, when the on-off valve 51 is set to the second small opening degree under the second condition, the exhaust gas slightly flows into the circulation flow path and the gas in the circulation flow path is replaced. Can be prevented from rising excessively.
  • FIG. 5 is an overall view of an engine system 200 according to the second embodiment.
  • the engine system 200 according to the present embodiment relates to the first embodiment in that it includes an air intake pipe 47, an air intake valve 53, and a power turbine outlet valve 54.
  • the configuration is different from the engine system 100.
  • Other points are basically the same as those of the engine system 100 according to the first embodiment.
  • the air intake pipe 47 is connected between a portion of the power turbine outlet pipe 43 to which the extraction pipe 44 is connected and the power turbine 30, and is configured to take outside air into the power turbine outlet pipe 43. Yes.
  • the air intake valve 53 is provided in the air intake pipe 47, and its opening / closing is controlled by the control device 60.
  • the power turbine outlet valve 54 is provided between a portion of the power turbine outlet pipe 43 to which the extraction pipe 44 is connected and a portion to which the air intake pipe 47 is connected, and its opening and closing is controlled. Controlled by device 60.
  • the air intake valve 53 is closed and the opening / closing valve 51 is closed.
  • the air intake valve 53 is configured to open when 52 is opened (when the second condition is satisfied).
  • the engine system 200 since the engine system 200 according to the present embodiment is configured as described above, when the on-off valve 51 is closed and the bleed valve 52 is opened, the gas is also circulated through the circulation passage passing through the power turbine 30. Since the outside air is taken into the power turbine outlet pipe 43 via the air intake pipe 47, the gas (air and exhaust gas) in the circulation flow path is switched, and the temperature of the gas in the circulation flow path is prevented from excessively rising. Can do.
  • the power turbine outlet valve 54 is opened when the opening / closing valve 51 is opened and the extraction valve 52 is closed (when the first condition is satisfied), and when the opening / closing valve 51 is closed and the extraction valve 52 is opened (second). Closed).
  • FIG. 6 is an overall view of an engine system 300 according to the third embodiment.
  • the engine system 300 according to the present embodiment differs from the engine system 100 according to the first embodiment in the connection position of the extraction pipe 44 and the power turbine outlet pipe 43.
  • Other points are basically the same as those of the engine system 100 according to the first embodiment.
  • the power turbine outlet pipe 43 is connected to the supercharger outlet pipe 46. Therefore, the exhaust gas that has passed through the power turbine 30 is guided to the flue through the power turbine outlet pipe 43 and the supercharger outlet pipe 46.
  • the extraction pipe 44 includes a portion of the power turbine inlet pipe 42 on the downstream side of the on-off valve 51 and a portion of the supercharger outlet pipe 46 on the downstream side of the portion to which the power turbine outlet pipe is connected. Are connected.
  • the engine system 300 is configured as described above, when the on-off valve 51 is closed and the bleed valve 52 is opened, the circulation channel as in the first embodiment is not formed, and the power The gas extracted from the turbine inlet pipe 42 is discharged to the supercharger outlet pipe 46. Therefore, the gas that has passed through the power turbine 30 does not pass through the power turbine 30 again, and the temperature of the gas does not gradually rise due to the energy of the power turbine 30 and excessively rise.
  • the turbocharger or power turbine reaches a dangerous speed due to damage to some parts of the engine system, or if the scavenging air pressure reaches a dangerous scavenging air pressure, it will be explained above.
  • the engine system is not operated. However, it is needless to say that the engine system is included in the present invention as long as the control according to the present invention is performed at the normal time.
  • the power turbine is always connected to the crankshaft via the speed reducer.
  • a clutch is provided between the speed reducer and the crankshaft so that the connection between the power turbine and the crankshaft can be released.
  • the power turbine inlet pipe branches from the supercharger inlet pipe has been described.
  • the power turbine inlet pipe and the supercharger inlet pipe are formed independently, and each of them is an exhaust pipe.
  • the exhaust gas may be transported from the engine to the supercharger or from the exhaust pipe to the power turbine.
  • the engine system according to one embodiment of the present invention can efficiently recover waste heat energy and can simplify the system.
  • the engine system according to another aspect of the present invention can suppress an excessive load on the engine body when the power turbine is not driven by the exhaust gas. Therefore, the engine system of the present invention is useful in the technical field of engine systems.

Abstract

An engine system (100), wherein: when the amount of the exhaust gas discharged from the engine body (10) has reduced, the ratio of the amount of an exhaust gas supplied to a supercharger (20) relative to the amount of the exhaust gas discharged from an engine body (10) is increased by decreasing the area of an opening in a variable nozzle (32); and when the amount of the exhaust gas discharged from the engine body (10) has become greater, the ratio of the amount of the exhaust gas supplied to the supercharger (20) relative to the amount of the exhaust gas discharged from the engine body (10) is decreased by increasing the area of the opening in the variable nozzle (32).

Description

エンジンシステム及び船舶Engine system and ship
 本発明は、廃熱エネルギを効率的に回収するエンジンシステムに関する。 The present invention relates to an engine system that efficiently recovers waste heat energy.
 排気ガスのエネルギによって駆動される過給機とパワータービンの両方を備えるエンジンシステム(例えば、特許文献1参照)では、過給機側へ必要な量の排気ガスを優先的に供給し、残りの排気ガスをパワータービン側へ供給するという制御が行われる。 In an engine system including both a supercharger driven by the energy of exhaust gas and a power turbine (see, for example, Patent Document 1), a required amount of exhaust gas is preferentially supplied to the supercharger side, and the rest Control is performed to supply exhaust gas to the power turbine side.
 また、過給機とパワータービンの両方を備えるエンジンシステムでは、パワータービン側へ供給する排気ガスの流路に開閉弁を設け、運転条件に応じてその開閉弁を閉じてパワータービン側へ排気ガスが流れないように制御する場合がある。 In an engine system equipped with both a supercharger and a power turbine, an on-off valve is provided in the flow path of the exhaust gas supplied to the power turbine side, and the on-off valve is closed according to the operating conditions, and the exhaust gas is sent to the power turbine side. May be controlled so as not to flow.
特開平10-169455号公報JP-A-10-169455
 上記の過給機側へ排気ガスを優先的に供給するような制御が行われるエンジンシステムでは、エンジン本体から排出される排気ガスの量の変動によって最も影響を受けるのはパワータービンであり、パワータービンの設定が問題となる。例えば、パワータービンは、エンジン本体が通常運転のときに高効率となるように設定されるのが合理的であるが、この場合、通常運転時よりも多くの排気ガスが供給されると、パワータービン回転数が許容値を超えないように排気ガスの一部を捨てることになる。このような運用は、廃熱エネルギを十分回収できているとは言えない。また、当然ながら、エンジンシステムにはシステムの簡素化が求められている。 In an engine system in which control is performed so that exhaust gas is preferentially supplied to the turbocharger, the power turbine is most affected by fluctuations in the amount of exhaust gas discharged from the engine body. Turbine settings are a problem. For example, it is reasonable to set the power turbine so that the engine body is highly efficient during normal operation. In this case, if more exhaust gas is supplied than during normal operation, the power turbine Part of the exhaust gas is discarded so that the turbine speed does not exceed the allowable value. Such an operation cannot be said to sufficiently recover waste heat energy. Of course, the engine system is required to be simplified.
 また、パワータービン側へ排気ガスが流れないようにする制御については、上記の開閉弁を閉じて排気ガスがパワータービンに流れないようにしても、パワータービンがエンジン本体に連結されている場合は、パワータービンはエンジン本体によって駆動される。このとき、パワータービンは送風機のように働いて、気体を搬送しようとするが、上記の開閉弁が閉じていることで気体が流れなくなってしまう。そのため、パワータービンを駆動するのに大きな力が必要となり、エンジン本体に大きな負荷となってしまう。 Also, regarding the control to prevent the exhaust gas from flowing to the power turbine side, even if the exhaust gas does not flow to the power turbine by closing the on-off valve, the power turbine is connected to the engine body. The power turbine is driven by the engine body. At this time, the power turbine works like a blower and tries to convey gas, but the gas does not flow because the on-off valve is closed. For this reason, a large force is required to drive the power turbine, resulting in a heavy load on the engine body.
 本発明は、このような事情に鑑みてなされたものであり、廃熱エネルギを効率よく回収することができ、かつ、システムの簡素化を図ることができるエンジンシステムを提供することを目的としている。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an engine system that can efficiently recover waste heat energy and can simplify the system. .
 また、本発明は、パワータービンが排気ガスによって駆動されないときに、エンジン本体に過度の負荷が生じるのを抑えることを目的としている。 The present invention also aims to suppress an excessive load on the engine body when the power turbine is not driven by exhaust gas.
 本発明の一の形態に係るエンジンシステムは、エンジン本体と、前記エンジン本体から排出された排気ガスによって駆動される過給機と、前記エンジン本体から排出された排気ガスによって駆動されるパワータービンと、前記エンジン本体から排出された排気ガスを前記過給機へ導く過給機入口配管と、排気エンジン本体から排出された排気ガスを前記パワータービンへ導くパワータービン入口配管と、を備え、前記パワータービンは入口側に設けられた可変ノズルを有し、前記エンジン本体から排出される排気ガスの量が減少したとき、前記可変ノズルの開口面積を小さくすることで、前記エンジン本体から排出される排気ガスの量に対する前記過給機に供給される排気ガスの量の割合を大きくするとともに、前記エンジン本体から排出される排気ガスの量が増加したとき、前記可変ノズルの開口面積を大きくすることで、前記エンジン本体から排出される排気ガスの量に対する前記過給機に供給される排気ガスの量の割合を小さくする排気ガス流量制御を行うように構成されている。 An engine system according to an embodiment of the present invention includes an engine body, a supercharger driven by exhaust gas discharged from the engine body, and a power turbine driven by exhaust gas discharged from the engine body. A turbocharger inlet pipe for guiding exhaust gas discharged from the engine body to the supercharger; and a power turbine inlet pipe for guiding exhaust gas discharged from the exhaust engine body to the power turbine. The turbine has a variable nozzle provided on the inlet side, and when the amount of exhaust gas discharged from the engine body decreases, the exhaust gas discharged from the engine body is reduced by reducing the opening area of the variable nozzle. The ratio of the amount of exhaust gas supplied to the supercharger with respect to the amount of gas is increased and exhausted from the engine body. When the amount of exhaust gas to be increased increases, the ratio of the amount of exhaust gas supplied to the supercharger to the amount of exhaust gas discharged from the engine body is reduced by increasing the opening area of the variable nozzle. The exhaust gas flow rate control is performed.
 通常、可変ノズルはその開口面積を変化させることで排ガス量に応じてタービン(上記の構成ではパワータービン)の効率を向上させるために用いられる。上記の構成によれば、この可変ノズルの開口面積の変化によって過給機に供給する排気ガスの量も同時に調整している。つまり、上記の構成によれば、排ガス量に応じて廃熱エネルギを効率よく回収する制御と、過給機に適切な量の排気ガスを供給する制御の両方の制御を可変ノズルによって行うことができる。よって、上記のエンジンシステムによれば、廃熱エネルギを効率よく回収することができ、かつ、システムの簡素化を図ることができる。 Usually, the variable nozzle is used to improve the efficiency of the turbine (power turbine in the above configuration) according to the amount of exhaust gas by changing the opening area. According to said structure, the quantity of the exhaust gas supplied to a supercharger is also adjusted simultaneously with the change of the opening area of this variable nozzle. That is, according to the above configuration, the variable nozzle can perform both control for efficiently recovering waste heat energy according to the amount of exhaust gas and control for supplying an appropriate amount of exhaust gas to the supercharger. it can. Therefore, according to the engine system described above, waste heat energy can be efficiently recovered, and the system can be simplified.
 上記のエンジンシステムにおいて、前記パワータービン入口配管は、前記過給機入口配管から分岐しており、前記過給機入口配管内の排気ガスの一部を前記パワータービンへ導くように構成されていてもよい。 In the engine system, the power turbine inlet pipe branches from the supercharger inlet pipe, and is configured to guide part of the exhaust gas in the supercharger inlet pipe to the power turbine. Also good.
 また、上記のエンジンシステムにおいて、前記エンジン本体は前記過給機で昇圧した新気を収容する掃気管を有しており、前記排気ガス流量制御は、前記掃気管内の圧力が所定の下限値よりも小さいときには前記可変ノズルの開度を小さくするとともに、前記掃気管内の圧力が所定の上限値よりも大きいときには前記可変ノズルの開度を大きくすることで行われてもよい。かかる構成によれば、掃気管内の圧力に基づいて可変ノズルが開閉されるため、より確実かつ容易に過給機へ適正な量の排気ガスを供給することができる。 Further, in the above engine system, the engine body has a scavenging pipe that accommodates fresh air boosted by the supercharger, and the exhaust gas flow rate control is such that the pressure in the scavenging pipe is less than a predetermined lower limit value. When the pressure is smaller, the opening of the variable nozzle may be reduced, and when the pressure in the scavenging pipe is larger than a predetermined upper limit value, the opening of the variable nozzle may be increased. According to this configuration, since the variable nozzle is opened and closed based on the pressure in the scavenging pipe, an appropriate amount of exhaust gas can be supplied to the supercharger more reliably and easily.
 また、上記のエンジンシステムにおいて、前記所定の下限値及び前記所定の上限値は、前記エンジン本体の負荷が大きくなるに従って大きくなるように設定されていてもよい。かかる構成によれば、エンジン負荷に応じて、掃気管内の圧力の上限値及び下限値を適切に設定することができる。 In the engine system described above, the predetermined lower limit value and the predetermined upper limit value may be set to increase as the load on the engine body increases. According to such a configuration, the upper limit value and the lower limit value of the pressure in the scavenging pipe can be appropriately set according to the engine load.
 さらに、本発明の他の形態に係るエンジンシステムは、エンジン本体と、前記エンジン本体から排出された排気ガスによって駆動される過給機と、前記エンジン本体から排出された排気ガスによって駆動され、前記エンジン本体のクランク軸に連結されているパワータービンと、前記エンジン本体から排出された排気ガスを前記過給機へ導く過給機入口配管と、前記エンジン本体から排出された排気ガスを前記パワータービンへ導くパワータービン入口配管と、前記パワータービン入口配管に設けられ、前記エンジン本体の運転条件に応じて開閉する開閉弁と、前記パワータービン入口配管のうち前記開閉弁よりも下流側の部分に連結され、前記パワータービン入口配管から気体を抽出する抽気配管と、前記抽気配管に設けられた抽気弁と、を備え、前記エンジン本体が正回転であってかつ前記エンジン本体の負荷が所定の切換負荷よりも大きい第1条件のとき、前記開閉弁を開くとともに前記抽気弁を閉じ、前記エンジン本体が逆回転のとき又は前記エンジン本体の負荷が前記所定の切換負荷よりも小さい第2条件のとき、前記開閉弁を閉じるか又は前記第1条件における前記開閉弁の開度よりも小さい小開度とするとともに前記抽気弁を開くように構成されている。 Furthermore, an engine system according to another aspect of the present invention is driven by an engine body, a supercharger driven by exhaust gas discharged from the engine body, and exhaust gas discharged from the engine body, A power turbine connected to a crankshaft of the engine body, a supercharger inlet pipe for guiding exhaust gas discharged from the engine body to the supercharger, and exhaust gas discharged from the engine body to the power turbine Connected to a portion of the power turbine inlet pipe downstream of the opening / closing valve, and a power turbine inlet pipe leading to the opening / closing valve provided in the power turbine inlet pipe and opening / closing in accordance with operating conditions of the engine body A bleed pipe for extracting gas from the power turbine inlet pipe, and a bleed valve provided in the bleed pipe; When the engine body is rotating forward and the load on the engine body is in a first condition that is greater than a predetermined switching load, the on-off valve is opened and the bleed valve is closed, and the engine body rotates in reverse. Or when the load on the engine body is a second condition smaller than the predetermined switching load, the on-off valve is closed or the opening degree is smaller than the opening degree of the on-off valve in the first condition. The bleed valve is configured to open.
 かかる構成によれば、パワータービンが排気ガスによって駆動されないときに、パワータービンがエンジン本体のクランク軸によって駆動されたとしても、パワータービンを通過した気体は、抽気配管から抽気されるため、パワータービンを駆動するエンジン本体にとって過度の負荷が生じるのを抑えることができる。 According to this configuration, when the power turbine is not driven by the exhaust gas, even if the power turbine is driven by the crankshaft of the engine body, the gas that has passed through the power turbine is extracted from the extraction pipe. It is possible to suppress an excessive load from being generated on the engine body that drives the engine.
 また、上記のエンジンシステムにおいて、前記パワータービン入口配管は、前記過給機入口配管から分岐しており、前記過給機入口配管内の排気ガスの一部を前記パワータービンへ導くように構成されていてもよい。 Further, in the engine system, the power turbine inlet pipe branches from the supercharger inlet pipe, and is configured to guide a part of the exhaust gas in the supercharger inlet pipe to the power turbine. It may be.
 また、上記のエンジンシステムにおいて、前記エンジン本体の負荷が上昇しているときの前記切換負荷である上昇切換負荷は、前記エンジン本体の負荷が下降しているときの前記切換負荷である下降切換負荷よりも大きく設定されていてもよい。かかる構成によれば、エンジン本体の負荷が上昇するときと下降するときの異なる特性を考慮した上で、エンジンシステムを運用することができる。よって、より適切なエンジンシステムの運用が可能となる。 In the engine system described above, the rising switching load that is the switching load when the load on the engine body is rising is the down switching load that is the switching load when the load on the engine body is falling. It may be set larger than. According to such a configuration, the engine system can be operated in consideration of different characteristics when the load of the engine body rises and when it falls. Therefore, a more appropriate engine system can be operated.
 また、上記のエンジンシステムにおいて、前記エンジン本体の負荷が上昇して前記上昇切換負荷よりも大きくなったとき、前記抽気弁を閉じた後に前記開閉弁を開くように構成されていてもよい。かかる構成によれば、抽気弁を閉じるのと同時に開閉弁を開くのではなく、抽気弁を閉じた後に開閉弁を開くため、一時的にでも抵抗の小さい流路が形成されることはなく、過給機への排気ガスの供給を安定的に行うことができる。 Further, in the engine system described above, when the load of the engine main body increases and becomes larger than the increase switching load, the on-off valve may be opened after the extraction valve is closed. According to such a configuration, instead of opening the opening / closing valve at the same time as closing the extraction valve, the opening / closing valve is opened after closing the extraction valve, so that a low-resistance flow path is not formed even temporarily. The exhaust gas can be stably supplied to the supercharger.
 また、上記のエンジンシステムにおいて、前記エンジン本体の負荷が下降して前記下降切換負荷よりも小さくなったとき、前記開閉弁を閉じた後に前記抽気弁を開くように構成されていてもよい。この場合も、一時的にでも抵抗の小さい流路が形成されることはなく、過給機への排気ガスの供給を安定的に行うことができる。 In the engine system described above, when the load on the engine body is lowered and becomes smaller than the lowering switching load, the bleed valve may be opened after the on-off valve is closed. Also in this case, a flow path having a small resistance is not formed even temporarily, and the exhaust gas can be stably supplied to the supercharger.
 また、上記のエンジンシステムにおいて、前記パワータービンを通過した排気ガスを排出するパワータービン出口配管をさらに備え、前記抽気配管は、前記パワータービン出口配管に連結されており、前記パワータービン入口配管から抽出した気体を前記パワータービン出口配管に排出してもよい。かかる構成によれば、パワータービンが排気ガスによって駆動されないときに、パワータービンがエンジン本体のクランク軸によって駆動されたとしても、パワータービンを通過した気体は抽気配管を含む循環流路を循環することになるため、エンジン本体に過度の負荷が生じるのを抑えることができる。 The engine system may further include a power turbine outlet pipe that discharges exhaust gas that has passed through the power turbine, and the extraction pipe is connected to the power turbine outlet pipe and is extracted from the power turbine inlet pipe. The exhausted gas may be discharged to the power turbine outlet pipe. According to such a configuration, when the power turbine is not driven by the exhaust gas, even if the power turbine is driven by the crankshaft of the engine body, the gas that has passed through the power turbine circulates in the circulation flow path including the extraction pipe. Therefore, it is possible to suppress an excessive load on the engine body.
 また、上記のエンジンシステムにおいて、前記パワータービン出口配管のうち、前記抽気配管が連結する部分と前記パワータービンの間に連結されており、外気を前記パワータービン出口配管に取り込むことができる空気取込配管と、該空気取込配管に設けられた空気取込弁と、をさらに備え、前記第1条件のとき前記空気取込弁を閉じ、前記第2条件のとき前記空気取込弁を開くように構成されていてもよい。かかる構成によれば、上記循環流路内の気体が入れ替わるため、当該循環流路内の気体の温度が過上昇するのを抑えることができる。 Further, in the above engine system, an air intake that is connected between the power turbine outlet pipe and a portion to which the extraction pipe is connected and the power turbine, and can take outside air into the power turbine outlet pipe. A pipe and an air intake valve provided in the air intake pipe, wherein the air intake valve is closed when the first condition is satisfied, and the air intake valve is opened when the second condition is satisfied. It may be configured. According to such a configuration, since the gas in the circulation channel is switched, it is possible to suppress the temperature of the gas in the circulation channel from excessively rising.
 また、上記のエンジンシステムにおいて、前記過給機を通過した排気ガスを排出する過給機出口配管をさらに備え、前記抽気配管は、前記過給機出口配管に連結されており、前記パワータービン入口配管から抽出した気体を前記過給機出口配管に排出してもよい。かかる構成によれば、そもそも上記のような循環流路が形成されないため、循環流路内の気体の温度が過上昇することはない。 The engine system further includes a supercharger outlet pipe that discharges exhaust gas that has passed through the supercharger, wherein the extraction pipe is connected to the supercharger outlet pipe, and the power turbine inlet The gas extracted from the pipe may be discharged to the supercharger outlet pipe. According to such a configuration, since the circulation channel as described above is not formed in the first place, the temperature of the gas in the circulation channel does not excessively increase.
 さらに、本発明のある形態に係る船舶は、上記のうちいずれかのエンジンシステムを備えている。 Furthermore, a ship according to an embodiment of the present invention includes any one of the above engine systems.
 以上のとおり、上記の一の形態に係るエンジンシステムによれば、廃熱エネルギを効率よく回収することができ、かつ、システムの簡素化を図ることができる。 As described above, according to the engine system according to the above aspect, waste heat energy can be efficiently recovered, and the system can be simplified.
 また、他の形態に係るエンジンシステムによれば、パワータービンが排気ガスによって駆動されないときに、エンジン本体に過度の負荷が生じるのを抑えることができる。 Further, according to the engine system according to another embodiment, it is possible to suppress an excessive load from being generated in the engine body when the power turbine is not driven by the exhaust gas.
図1は、第1実施形態に係るエンジンシステムの全体図である。FIG. 1 is an overall view of an engine system according to the first embodiment. 図2は、上記エンジンシステムの制御系のブロック図である。FIG. 2 is a block diagram of a control system of the engine system. 図3は、上記エンジンシステムの制御内容を示すフローチャートである。FIG. 3 is a flowchart showing the control contents of the engine system. 図4は、適正な掃気圧の範囲を示すグラフである。FIG. 4 is a graph showing a range of proper scavenging pressure. 図5は、第2実施形態に係るエンジンシステムの全体図である。FIG. 5 is an overall view of an engine system according to the second embodiment. 図6は、第3実施形態に係るエンジンシステムの全体図である。FIG. 6 is an overall view of an engine system according to the third embodiment.
 以下、実施形態に係るエンジンシステムについて図を参照しながら説明する。以下では、全ての図面を通じて同一又は相当する要素には同じ符号を付して、重複する説明は省略する。 Hereinafter, the engine system according to the embodiment will be described with reference to the drawings. Below, the same code | symbol is attached | subjected to the element which is the same or it corresponds through all the drawings, and the overlapping description is abbreviate | omitted.
 (第1実施形態)
 <エンジンシステムの全体構成>
 まず、第1実施形態に係るエンジンシステム100の全体構成について説明する。図1は、本実施形態に係るエンジンシステム100の全体図である。図1に示すように、本実施形態に係るエンジンシステム100は、船舶101を航行させるためのいわゆる主機であって、エンジン本体10と、過給機20と、パワータービン30と、各種配管41~45と、各種弁51、52と、を備えている。以下、これらについて順に説明する。
(First embodiment)
<Overall configuration of engine system>
First, the overall configuration of the engine system 100 according to the first embodiment will be described. FIG. 1 is an overall view of an engine system 100 according to the present embodiment. As shown in FIG. 1, an engine system 100 according to this embodiment is a so-called main engine for navigating a ship 101, and includes an engine body 10, a supercharger 20, a power turbine 30, and various pipes 41 to 41. 45 and various valves 51 and 52. Hereinafter, these will be described in order.
 エンジン本体10は、エンジンシステム100の中心となる装置である。本実施形態のエンジン本体10は、いわゆる低速ディーゼルエンジンである。エンジン本体10は、先端にプロペラ102が取り付けられたプロペラ軸103を回転させるためのものであり、船舶101が前進する方向に推進力を発生する正回転と、船舶101が後進する方向に推進力を発生する逆回転を行うことができる。プロペラ軸103はクランク軸11に連結されており、クランク軸11は複数のピストン12に連結されている。各ピストン12はシリンダ13内での燃料の爆発に伴って往復運動し、各ピストン12の往復運動によってクランク軸11は回転する。なお、エンジン本体10には、クランク軸11の回転数、すなわちエンジン本体10の回転数を計測するエンジン回転計14が設けられている。 The engine body 10 is a central device of the engine system 100. The engine body 10 of the present embodiment is a so-called low speed diesel engine. The engine body 10 is for rotating a propeller shaft 103 having a propeller 102 attached to the tip thereof. The engine body 10 rotates in a forward direction that generates a propulsive force in a direction in which the ship 101 moves forward, and a propulsive force in a direction in which the ship 101 moves backward. The reverse rotation can be performed. The propeller shaft 103 is connected to the crankshaft 11, and the crankshaft 11 is connected to a plurality of pistons 12. Each piston 12 reciprocates as the fuel explodes in the cylinder 13, and the crankshaft 11 rotates by the reciprocating motion of each piston 12. The engine body 10 is provided with an engine tachometer 14 that measures the rotation speed of the crankshaft 11, that is, the rotation speed of the engine body 10.
 また、エンジン本体10は、各シリンダ13の上流側に共通の掃気管15と、各シリンダ13の下流側に共通の排気管16を備えている。掃気管15は、過給機20で圧縮された空気を一旦溜めて各シリンダ13へ供給する。掃気管15には、掃気管15内の圧力(以下、「掃気圧」と称す)を計測する掃気圧計17が設けられている。排気管16は、シリンダ13から排出された排気ガスを一端溜めて過給機20及びパワータービン30へ供給する。エンジン本体10は、掃気管15及び排気管16を備えることで、各シリンダ13の燃焼サイクルによって生じる脈動を抑えることができる。なお、エンジン本体10の負荷(以下、「エンジン負荷」と称す)が大きくなると、それに伴ってエンジン本体10から排出される排気ガスの量も増えることになる。 The engine body 10 includes a common scavenging pipe 15 on the upstream side of each cylinder 13 and a common exhaust pipe 16 on the downstream side of each cylinder 13. The scavenging pipe 15 temporarily stores the air compressed by the supercharger 20 and supplies the air to each cylinder 13. The scavenging tube 15 is provided with a scavenging pressure gauge 17 that measures the pressure in the scavenging tube 15 (hereinafter referred to as “scavenging pressure”). The exhaust pipe 16 once collects the exhaust gas discharged from the cylinder 13 and supplies it to the supercharger 20 and the power turbine 30. By providing the scavenging pipe 15 and the exhaust pipe 16, the engine body 10 can suppress pulsation caused by the combustion cycle of each cylinder 13. As the load on the engine body 10 (hereinafter referred to as “engine load”) increases, the amount of exhaust gas discharged from the engine body 10 increases accordingly.
 過給機20は、外部から取り込んだ空気を圧縮してエンジン本体10に供給する装置である。過給機20は、タービン部21と、コンプレッサ部22とを有している。エンジン本体10(排気管16)から排出された排気ガスは、タービン部21に供給される。タービン部21は、排気管16から供給された排気ガスのエネルギを利用して回転する。タービン部21を通過した排気ガスは過給機出口配管46を介して煙道へ導かれる。コンプレッサ部22は、連結軸23を介してタービン部21と連結されている。そのため、タービン部21が回転するのに伴って、コンプレッサ部22も回転する。コンプレッサ部22は、外部から取り込んだ空気を圧縮し、掃気管15に供給する。なお、エンジン負荷が小さいときには、エンジン本体10から排出される排気ガスの量は過給機20が必要とする量よりも少ないが、エンジン負荷が大きくなるに従ってエンジン本体10から排出される排気ガスの量は過給機20が必要とする量を超えて次第に増加していく。 The supercharger 20 is a device that compresses air taken in from the outside and supplies the compressed air to the engine body 10. The supercharger 20 has a turbine part 21 and a compressor part 22. Exhaust gas discharged from the engine body 10 (exhaust pipe 16) is supplied to the turbine unit 21. The turbine unit 21 rotates using the energy of the exhaust gas supplied from the exhaust pipe 16. The exhaust gas that has passed through the turbine section 21 is guided to the flue through the supercharger outlet pipe 46. The compressor unit 22 is connected to the turbine unit 21 via a connecting shaft 23. Therefore, as the turbine unit 21 rotates, the compressor unit 22 also rotates. The compressor unit 22 compresses the air taken from outside and supplies the compressed air to the scavenging pipe 15. When the engine load is small, the amount of exhaust gas discharged from the engine body 10 is smaller than the amount required by the supercharger 20, but the exhaust gas discharged from the engine body 10 increases as the engine load increases. The amount gradually increases beyond the amount required by the supercharger 20.
 パワータービン30は、排気ガスのエネルギを利用してエンジン本体10を助勢する装置である。パワータービン30は、タービン部31と、可変ノズル32とを有している。パワータービン30に排気ガスが供給されると、タービン部31は供給された排気ガスのエネルギによって回転する。タービン部31はエンジン本体10のクランク軸11に減速機33を介して連結さており、タービン部21の回転動力が減速機33を介してクランク軸11に伝達される。なお、排気ガスによって回転するときのパワータービン30の回転方向は一定であり、エンジン本体10が正回転する場合にのみエンジン本体10を助勢することができる。 The power turbine 30 is a device that assists the engine body 10 using the energy of the exhaust gas. The power turbine 30 includes a turbine part 31 and a variable nozzle 32. When the exhaust gas is supplied to the power turbine 30, the turbine unit 31 is rotated by the energy of the supplied exhaust gas. The turbine part 31 is connected to the crankshaft 11 of the engine body 10 via a speed reducer 33, and the rotational power of the turbine part 21 is transmitted to the crankshaft 11 via the speed reducer 33. Note that the rotation direction of the power turbine 30 when rotating by the exhaust gas is constant, and the engine body 10 can be assisted only when the engine body 10 rotates forward.
 可変ノズル32は、パワータービン30の入口側に設けられており、環状に配置された複数の可動ベーンによって主に構成されている。この可動ベーンの角度を変えることで、可変ノズル32の開口面積(開度)を調整することができる。可変ノズル32は、開度を調整することで、タービン部21への流入速度を変えてパワータービン30を効率よく運用することができる。つまり、パワータービン30に供給される排気ガスの流量が大きい場合には可変ノズル32の開度を大きくし、パワータービン30に供給される排気ガスの流量が小さい場合には可変ノズル32の開度を小さくする。一方、可変ノズル32は、開口面積が変わるのであるから「絞り」としても機能する。本実施形態において、可変ノズル32の絞りとしての機能は非常に重要である。すなわち、本実施形態では、可変ノズル32の開度を調整することで、単にパワータービン30(タービン部31)を効率よく回転させるだけでなく、過給機20に供給される排気ガスの量(エンジン本体10から排出される排気ガスの量に対する過給機20に供給される排気ガスの量の割合)を制御している(排気ガス流量制御)。 The variable nozzle 32 is provided on the inlet side of the power turbine 30 and is mainly configured by a plurality of movable vanes arranged in an annular shape. The opening area (opening degree) of the variable nozzle 32 can be adjusted by changing the angle of the movable vane. The variable nozzle 32 can efficiently operate the power turbine 30 by adjusting the opening degree to change the inflow speed to the turbine unit 21. That is, when the flow rate of the exhaust gas supplied to the power turbine 30 is large, the opening degree of the variable nozzle 32 is increased, and when the flow rate of the exhaust gas supplied to the power turbine 30 is small, the opening degree of the variable nozzle 32. Make it smaller. On the other hand, the variable nozzle 32 also functions as an “aperture” because the opening area changes. In the present embodiment, the function of the variable nozzle 32 as an aperture is very important. That is, in this embodiment, by adjusting the opening degree of the variable nozzle 32, the power turbine 30 (the turbine unit 31) is not only efficiently rotated, but also the amount of exhaust gas supplied to the supercharger 20 ( The ratio of the amount of exhaust gas supplied to the supercharger 20 with respect to the amount of exhaust gas discharged from the engine body 10 is controlled (exhaust gas flow rate control).
 本実施形態に係るエンジンシステム100は、過給機入口配管41、パワータービン入口配管42、パワータービン出口配管43、抽気配管44、及びエンジン入口配管45を備えている。このうち、過給機入口配管41は、排気管16と過給機20のタービン部21とをつないでおり、エンジン本体10から排出された排気ガスを過給機20へ導く配管である。また、パワータービン入口配管42は、過給機入口配管41から分岐してパワータービン30へと延びており、過給機入口配管41内の排気ガスの一部をパワータービン30へ導く配管である。また、パワータービン出口配管43は、パワータービン30の下流側に配置されており、パワータービン30を通過した排気ガスを煙道へ導く配管である。また、抽気配管44は、パワータービン入口配管42のうち後述する開閉弁51よりも下流側の部分とパワータービン出口配管43とを連結する配管である。また、エンジン入口配管45は、過給機20のコンプレッサ部22と掃気管15をつないでおり、過給機20で圧縮した空気を掃気管15へ導く配管である。 The engine system 100 according to the present embodiment includes a supercharger inlet pipe 41, a power turbine inlet pipe 42, a power turbine outlet pipe 43, an extraction pipe 44, and an engine inlet pipe 45. Among these, the supercharger inlet pipe 41 is a pipe that connects the exhaust pipe 16 and the turbine portion 21 of the supercharger 20 and guides the exhaust gas discharged from the engine body 10 to the supercharger 20. The power turbine inlet pipe 42 is a pipe that branches from the supercharger inlet pipe 41 and extends to the power turbine 30 and guides a part of the exhaust gas in the supercharger inlet pipe 41 to the power turbine 30. . Further, the power turbine outlet pipe 43 is arranged on the downstream side of the power turbine 30 and is a pipe for guiding the exhaust gas that has passed through the power turbine 30 to the flue. The bleed pipe 44 is a pipe that connects a portion of the power turbine inlet pipe 42 downstream of an on-off valve 51 described later and the power turbine outlet pipe 43. The engine inlet pipe 45 is a pipe that connects the compressor section 22 of the supercharger 20 and the scavenging pipe 15 and guides the air compressed by the supercharger 20 to the scavenging pipe 15.
 開閉弁51は、パワータービン入口配管42に設けられた弁である。開閉弁51は、エンジン本体10が逆回転のとき(船舶101が後進するとき)、及び、エンジン負荷が小さいときに閉じられる。エンジン本体10が逆回転しているときには、パワータービン30とエンジン本体10(クランク軸11)とは互いに抵抗となる方向に回転するため、開閉弁51を閉じてパワータービン30への排気ガスの流れを止め、パワータービン30が駆動しないようにしている。また、エンジン負荷が小さいときには、エンジン本体10から排出される排気ガスの量が少ないため、全ての排気ガスを過給機20に供給しなければ、エンジン本体10の燃焼室部材の温度が上昇する。そのため、エンジン負荷が小さいときには、開閉弁51を閉じることでエンジン本体10から排出された排気ガスを全て過給機20に供給している。なお、本実施形態の開閉弁51は「開」と「閉」の2つの状態を維持できる弁であれば十分であるが、開度を調整できる弁であってもよい。 The on-off valve 51 is a valve provided in the power turbine inlet pipe 42. The on-off valve 51 is closed when the engine body 10 rotates in reverse (when the ship 101 moves backward) and when the engine load is small. When the engine main body 10 is rotating in the reverse direction, the power turbine 30 and the engine main body 10 (crankshaft 11) rotate in directions that cause resistance to each other, and therefore the on-off valve 51 is closed and the flow of exhaust gas to the power turbine 30 The power turbine 30 is not driven. Further, when the engine load is small, the amount of exhaust gas exhausted from the engine body 10 is small. Therefore, unless all the exhaust gas is supplied to the supercharger 20, the temperature of the combustion chamber member of the engine body 10 rises. . Therefore, when the engine load is small, all the exhaust gas discharged from the engine body 10 is supplied to the supercharger 20 by closing the on-off valve 51. The on-off valve 51 of the present embodiment is sufficient as long as it can maintain two states of “open” and “closed”, but may be a valve capable of adjusting the opening degree.
 抽気弁52は、抽気配管44に設けられた弁である。前述した開閉弁51を閉じたときパワータービン30は排気ガスによって駆動されることはないが、パワータービン30とクランク軸11は連結されているため、エンジン本体10が回転している間は、パワータービン30はクランク軸11(エンジン本体10)によって駆動される。このとき、パワータービン30は送風機のような働きをする。本実施形態では、開閉弁51を閉じたときには抽気弁52を開くことで、パワータービン30を通過した気体が循環する循環流路を形成している(循環流路形成制御)。つまり、開閉弁51が閉じたときに抽気弁52を開くことにより、エンジン本体10が正回転する場合及び逆回転する場合のいずれも、気体はパワータービン出口配管43、パワータービン30、パワータービン入口配管42、抽気配管44、パワータービン出口配管43の順に流れ、図1でいえば反時計回りの循環流路が形成される。 The extraction valve 52 is a valve provided in the extraction pipe 44. When the on-off valve 51 is closed, the power turbine 30 is not driven by the exhaust gas. However, since the power turbine 30 and the crankshaft 11 are connected, the power turbine 30 is operated while the engine body 10 is rotating. The turbine 30 is driven by the crankshaft 11 (engine body 10). At this time, the power turbine 30 functions like a blower. In this embodiment, when the on-off valve 51 is closed, the extraction valve 52 is opened to form a circulation channel through which the gas that has passed through the power turbine 30 circulates (circulation channel formation control). That is, by opening the bleed valve 52 when the on-off valve 51 is closed, the gas is supplied to the power turbine outlet pipe 43, the power turbine 30, and the power turbine inlet in both cases where the engine body 10 rotates in the forward direction and in the reverse direction. The piping 42, the extraction piping 44, and the power turbine outlet piping 43 flow in this order, and a counterclockwise circulation passage is formed in FIG.
 仮に、抽気配管44及び抽気弁52がなく、開閉弁51を閉じたときに循環流路が形成されない場合には、次のような問題が生じる。エンジン本体10が正回転する場合及び逆方回転する場合のいずれであっても、パワータービン30はパワータービン出口配管43内の気体をパワータービン入口配管42へ送ろうとする。しかしながら、開閉弁51が閉まっている場合には、パワータービン入口配管42内の圧力が次第に上がり、パワータービン30の前後差圧が大きくなる結果、パワータービン30を駆動することがエンジン本体10にとって大きな負荷となる。そこで、本実施形態では開閉弁51を閉じたときに循環流路を形成し、上記の問題を回避している。なお、本実施形態の場合、抽気弁52は「開」と「閉」の2つの状態を維持できる弁であれば十分であるが、開度を調整できる弁であってもよい。 If there is no bleed pipe 44 and bleed valve 52 and the circulation channel is not formed when the on-off valve 51 is closed, the following problems occur. The power turbine 30 tries to send the gas in the power turbine outlet pipe 43 to the power turbine inlet pipe 42 regardless of whether the engine body 10 rotates forward or reversely. However, when the on-off valve 51 is closed, the pressure in the power turbine inlet pipe 42 gradually increases and the differential pressure across the power turbine 30 increases, so that driving the power turbine 30 is significant for the engine body 10. It becomes a load. Therefore, in this embodiment, a circulation flow path is formed when the on-off valve 51 is closed to avoid the above problem. In the present embodiment, the bleed valve 52 may be a valve that can maintain two states of “open” and “closed”, but may be a valve that can adjust the opening degree.
 続いて、エンジンシステム100の設定について説明する。上述したように、開閉弁51が開いているときにおいては、過給機20への排気ガスの供給量は、可変ノズル32の開度によって調整される。ここで、過給機20に適正な量の排気ガスを供給するための可変ノズル32の開度を「適正量供給開度」と呼ぶこととする。また、このとき所定量の排気ガスがパワータービン30に供給されるが、その排気ガスの量がパワータービン30に流れたときに最も効率よくパワータービン30が回転できる可変ノズル32の開度を「最高効率開度」と呼ぶこととする。そうすると、本実施形態に係るエンジンシステム100は、この「適正量供給開度」と「最高効率開度」とが、いずれのエンジン負荷においてもほぼ一致するように(例えば、誤差が5%以内となるように)設定されている。つまり、いずれのエンジン負荷においても、可変ノズル32の開度を調整して過給機20に適切な量の排気ガスを供給すれば、必然的にパワータービン30が効率よく回転するようにエンジンシステム100が設定されている。なお、この設定は、パワータービン30のタービン部31のタービン翼と可変ノズル32の組合せを変えたり、過給機20のタービンノズル、タービン翼、コンプレッサホイール、コンプレッサディフューザなどの要目を変更することで行うことができる。 Subsequently, the setting of the engine system 100 will be described. As described above, when the on-off valve 51 is open, the supply amount of the exhaust gas to the supercharger 20 is adjusted by the opening degree of the variable nozzle 32. Here, the opening of the variable nozzle 32 for supplying an appropriate amount of exhaust gas to the supercharger 20 is referred to as an “appropriate amount supply opening”. At this time, a predetermined amount of exhaust gas is supplied to the power turbine 30, and when the amount of the exhaust gas flows to the power turbine 30, the opening degree of the variable nozzle 32 that can rotate the power turbine 30 most efficiently is “ It will be called the “maximum efficiency opening”. Then, the engine system 100 according to the present embodiment ensures that the “appropriate amount supply opening” and the “maximum efficiency opening” are substantially the same at any engine load (for example, the error is within 5%). Is set). That is, in any engine load, if the opening amount of the variable nozzle 32 is adjusted and an appropriate amount of exhaust gas is supplied to the supercharger 20, the engine system inevitably rotates the power turbine 30 efficiently. 100 is set. In this setting, the combination of the turbine blades of the turbine section 31 of the power turbine 30 and the variable nozzle 32 is changed, or the main items such as the turbine nozzles, turbine blades, compressor wheels, and compressor diffusers of the supercharger 20 are changed. Can be done.
 <制御系の構成>
 次に、エンジンシステム100のうち制御系の構成について説明する。エンジンシステム100は、エンジンシステム100全体を制御する制御装置60を備えている。制御装置60は、CPU、ROM、RAM等によって構成されている。図2は、エンジンシステム100の制御系のブロック図である。図2に示すように、制御装置60は、船舶101を操作する運転操作盤104、エンジン本体10の回転数を測定するエンジン回転計14、シリンダ13内への燃料の投入量を測定する燃料投入量指示計18、及び掃気圧を測定する掃気圧計17と電気的に接続されている。制御装置60は、これら各機器からの入力信号に基づいて、エンジン本体10の回転方向、エンジン回転数、燃料投入量、掃気圧といった種々の情報を取得する。
<Control system configuration>
Next, the configuration of the control system in the engine system 100 will be described. The engine system 100 includes a control device 60 that controls the entire engine system 100. The control device 60 is constituted by a CPU, a ROM, a RAM, and the like. FIG. 2 is a block diagram of a control system of engine system 100. As shown in FIG. 2, the control device 60 includes a driving operation panel 104 that operates the ship 101, an engine tachometer 14 that measures the rotational speed of the engine body 10, and a fuel input that measures the amount of fuel injected into the cylinder 13. It is electrically connected to a quantity indicator 18 and a scavenging meter 17 for measuring scavenging pressure. The control device 60 acquires various information such as the rotation direction of the engine body 10, the engine speed, the fuel input amount, and the scavenging pressure based on input signals from these devices.
 また、制御装置60は、上記の各機器から入力信号に基づいて種々の演算等を行い、エンジンシステム100の各部を制御する。本実施形態では、制御装置60は、開閉弁51、抽気弁52、及び可変ノズル32と電気的に接続されており、各入力信号に基づいて行った演算等の結果に基づいて、開閉弁51、抽気弁52、及び可変ノズル32へ制御信号を送信する。 Further, the control device 60 controls various parts of the engine system 100 by performing various calculations and the like based on input signals from the respective devices. In the present embodiment, the control device 60 is electrically connected to the on-off valve 51, the bleed valve 52, and the variable nozzle 32, and based on the results of calculations performed based on the respective input signals, the on-off valve 51. The control signal is transmitted to the bleed valve 52 and the variable nozzle 32.
 さらに、制御装置60は、機能的な構成として、弁制御部61と、可変ノズル制御部62とを有している。このうち、弁制御部61は、開閉弁51及び抽気弁52の開閉を制御する部分であり、後述する循環流路形成制御を行う。一方、可変ノズル制御部62は、可変ノズル32の開度を決定する部分であり、後述する排気ガス流量制御を行う。以下、制御装置60によって行われる循環流路形成制御、及び排気ガス流量制御について順に説明する。 Furthermore, the control device 60 has a valve control unit 61 and a variable nozzle control unit 62 as functional configurations. Among these, the valve control part 61 is a part which controls opening and closing of the on-off valve 51 and the extraction valve 52, and performs circulation flow path formation control mentioned later. On the other hand, the variable nozzle control unit 62 is a part that determines the opening degree of the variable nozzle 32 and performs exhaust gas flow rate control described later. Hereinafter, the circulation flow path formation control and the exhaust gas flow rate control performed by the control device 60 will be described in order.
 <循環流路形成制御>
 まず、図3を参照して循環流路形成制御について説明する。図3は、エンジンシステム100の制御内容を示すフローチャートである。エンジンシステム100が運転される間、制御装置60は図3のステップS1~S16のサイクルを繰り返す。図3のうちステップS1~S10が、循環流路形成制御に関する部分である。循環流路形成制御は、既に概要を説明したとおり、開閉弁51を閉じたときに抽気弁52を開くことでパワータービン30を通過した気体の循環流路を形成する制御である。
<Circular flow path formation control>
First, the circulation flow path formation control will be described with reference to FIG. FIG. 3 is a flowchart showing the control contents of the engine system 100. While engine system 100 is in operation, control device 60 repeats the cycle of steps S1 to S16 in FIG. Steps S1 to S10 in FIG. 3 are related to the circulation flow path formation control. The circulation flow path formation control is control for forming a circulation flow path for the gas that has passed through the power turbine 30 by opening the extraction valve 52 when the on-off valve 51 is closed, as already described in outline.
 まず、制御装置60は、各種情報を取得する(ステップS1)。具体的には、制御装置60は、各機器からの入力信号に基づいて、エンジン本体の回転方向、エンジン回転数、燃料投入量、掃気圧を取得する。 First, the control device 60 acquires various information (step S1). Specifically, the control device 60 acquires the rotation direction of the engine body, the engine speed, the fuel input amount, and the scavenging pressure based on the input signals from each device.
 続いて、制御装置60は、エンジン本体10が正回転であるか否かを判定する(ステップS2)。エンジン本体10が正回転の場合(ステップS2でYES)、ステップS3へ進み、エンジン本体10が逆回転の場合(ステップS2でNO)、ステップS4へ進む。このうちステップS4では、開閉弁51を閉じると同時に抽気弁52を開き、その後ステップS1へ戻る。このように、エンジン本体10が逆回転のときに開閉弁51を閉じるのは、パワータービン30とクランク軸11が互いに動力を打ち消し合うのを避けるためである。また、開閉弁51を閉じたときに抽気弁52を開くのは、上述したように、パワータービン30を通過した気体が循環する循環流路を形成してエンジン負荷を軽減するためである。 Subsequently, the control device 60 determines whether or not the engine body 10 is rotating forward (step S2). If the engine body 10 is rotating forward (YES in step S2), the process proceeds to step S3. If the engine body 10 is rotating backward (NO in step S2), the process proceeds to step S4. Among these, in step S4, the opening / closing valve 51 is closed and the bleed valve 52 is opened simultaneously, and then the process returns to step S1. The reason why the on-off valve 51 is closed when the engine body 10 is rotating in reverse is to prevent the power turbine 30 and the crankshaft 11 from canceling out the power. Further, the reason why the extraction valve 52 is opened when the on-off valve 51 is closed is to reduce the engine load by forming a circulation passage through which the gas that has passed through the power turbine 30 circulates as described above.
 ステップS3では、現状において、開閉弁51が閉じており、かつ、抽気弁52が開いているか否かを判定する。つまり、ステップS3では、1つ前のサイクルで開閉弁51及び抽気弁52の開閉がどう決定されたかを判定(確認)している。なお、少なくともステップS3の判定時においては、開閉弁51が開いているときは必ず抽気弁52は閉じており、開閉弁51が閉じているときは必ず抽気弁52は開いている。制御装置60は、開閉弁51が閉じており、かつ、抽気弁52が開いていると判定した場合(ステップS3でYES)、ステップS5へ進む。また、開閉弁51が開いており、かつ、抽気弁52が閉じていると判定した場合は(ステップS3でNO)、ステップS6へ進む。 In step S3, it is determined whether the on-off valve 51 is closed and the bleed valve 52 is open at present. That is, in step S3, it is determined (confirmed) how the opening / closing of the opening / closing valve 51 and the extraction valve 52 is determined in the previous cycle. Note that at least at the time of determination in step S3, the bleed valve 52 is always closed when the on-off valve 51 is open, and the bleed valve 52 is always open when the on-off valve 51 is closed. If the controller 60 determines that the on-off valve 51 is closed and the bleed valve 52 is open (YES in step S3), the control device 60 proceeds to step S5. If it is determined that the on-off valve 51 is open and the bleed valve 52 is closed (NO in step S3), the process proceeds to step S6.
 ステップS5では、エンジン本体10の回転数と燃料投入量に基づいてエンジン負荷を算出し、そのエンジン負荷が上昇切換負荷以上か否かを判定する。ステップS3において開閉弁51が閉じていると判断した結果ステップS5に進んだのであるから、少なくとも1つ前のサイクルでは開閉弁51を閉じる制御がなされたといえる。開閉弁51を閉じたのは、エンジン負荷が小さく、パワータービン30に排気ガスを供給できなかったためである。そこで、ステップS5では、エンジン負荷がパワータービン30に排気ガスを供給できないほど小さい状態のままなのか、あるいはパワータービン30に排気ガスを供給できる程度にまで上昇しているかを判定している。すなわち、ステップS5における「上昇切換負荷」は、エンジン負荷が上昇して排気ガスをパワータービン30に供給できるようになるときのエンジン負荷であり、本実施形態では例えば50%負荷(エンジン本体10の最大負荷を100%としたときの50%の負荷)に設定されている。 In step S5, an engine load is calculated based on the number of revolutions of the engine body 10 and the amount of fuel input, and it is determined whether or not the engine load is equal to or higher than the upward switching load. Since it is determined in step S3 that the on-off valve 51 is closed, the process proceeds to step S5. Therefore, it can be said that the on-off valve 51 is controlled to be closed in at least one previous cycle. The on-off valve 51 was closed because the engine load was small and exhaust gas could not be supplied to the power turbine 30. Therefore, in step S5, it is determined whether the engine load remains so small that exhaust gas cannot be supplied to the power turbine 30, or whether the engine load has increased to such an extent that exhaust gas can be supplied to the power turbine 30. That is, the “rising switching load” in step S5 is an engine load when the engine load increases and the exhaust gas can be supplied to the power turbine 30, and in this embodiment, for example, a 50% load (of the engine body 10). 50% load when the maximum load is 100%).
 ステップS5において、エンジン負荷が上昇切換負荷以上であるときは(ステップS5でYES)、排気ガスをパワータービン30に供給できるようになったときであるから、開閉弁51を開き、抽気弁52を閉じる(ステップS7)。ただし、本実施形態では、開閉弁51を閉じるのと抽気弁52を開くのを同時に行うのではなく、抽気弁52を閉じた後、一定の時間をおいてから開閉弁51を開く。仮に開閉弁51を開くのと同時に抽気弁52を閉じると、開閉弁51と抽気弁52の両方が開いた状態が一時的に発生し、パワータービン入口配管42内の気体がパワータービン30を経由せずに抽気配管44を通ってパワータービン出口配管43へ抜けるバイパス流路が形成される。この流路は抵抗が少ないため、多くの排気ガスがこの流路に流れ込む結果、過給機入口配管41を通過する排気ガスの量が低下する。これにより、過給機20から供給される空気の圧力が変動し、エンジン本体10が不安定になるおそれがある。これに対し、本実施形態では、抽気弁52を閉じた後に開閉弁51を開くことで、過給機20に流れる排気ガスの量が一気に減るのを抑えている。ステップS7を経た後は、ステップS11へ進む。 In step S5, when the engine load is equal to or higher than the increase switching load (YES in step S5), it is a time when exhaust gas can be supplied to the power turbine 30, so the on-off valve 51 is opened and the extraction valve 52 is opened. Close (step S7). However, in this embodiment, the on-off valve 51 is not closed and the bleed valve 52 is not opened at the same time, but after the bleed valve 52 is closed, the on-off valve 51 is opened after a certain time. If the bleed valve 52 is closed at the same time as the on / off valve 51 is opened, a state in which both the on / off valve 51 and the bleed valve 52 are opened temporarily occurs, and the gas in the power turbine inlet pipe 42 passes through the power turbine 30. Without this, a bypass flow path is formed through the extraction pipe 44 to the power turbine outlet pipe 43. Since this channel has a low resistance, a large amount of exhaust gas flows into this channel, resulting in a decrease in the amount of exhaust gas passing through the supercharger inlet pipe 41. Thereby, the pressure of the air supplied from the supercharger 20 varies, and the engine body 10 may become unstable. On the other hand, in this embodiment, by opening the on-off valve 51 after closing the bleed valve 52, the amount of exhaust gas flowing to the supercharger 20 is suppressed from being reduced at once. After step S7, the process proceeds to step S11.
 ステップS5において、エンジン負荷が上昇切換負荷よりも小さいときは(ステップS5でNO)、引き続き排気ガスをパワータービン30へ供給できない状態のままであるから、開閉弁51が閉じて抽気弁52が開いている状態を維持する(ステップS8)。ステップS8を経た後は、ステップS1へ戻る。 In step S5, when the engine load is smaller than the increase switching load (NO in step S5), the exhaust gas cannot be continuously supplied to the power turbine 30, so the on-off valve 51 is closed and the extraction valve 52 is opened. Is maintained (step S8). After step S8, the process returns to step S1.
 ステップS6では、ステップS1で取得したエンジン回転数と燃料投入量に基づいてエンジン負荷を算出し、そのエンジン負荷が下降切換負荷以上か否かを判定する。ステップS3において開閉弁51が開いていると判断した結果ステップS6に進んだのであるから、少なくとも1つ前のサイクルでは開閉弁51を開く制御がなされたといえる。開閉弁51を開いたのは、エンジン負荷が大きく、パワータービン30に排気ガスを供給することができたからである。これを踏まえ、ステップS6では、エンジン負荷がパワータービン30に排気ガスを供給できるほど大きい状態を維持しているのか、あるいはパワータービン30に排気ガスを供給できなくなる程度にまで低下したのかを判定している。すなわち、ステップS6における「下降切換負荷」は、エンジン負荷が下降して排気ガスをパワータービン30に供給できなくなったときのエンジン負荷であり、本実施形態では例えば45%負荷(エンジン本体の最大負荷を100%としたときの45%の負荷)に設定されている。なお、下降切換負荷と上昇切換負荷の値が異なるのは、いわゆるヒステリシスによるためである。 In step S6, the engine load is calculated based on the engine speed and the fuel input amount acquired in step S1, and it is determined whether or not the engine load is equal to or higher than the descent switching load. Since it is determined in step S3 that the on-off valve 51 is open, the process proceeds to step S6. Therefore, it can be said that the on-off valve 51 is controlled to be opened in at least one previous cycle. The reason for opening the on-off valve 51 is that the engine load is large and the exhaust gas can be supplied to the power turbine 30. Based on this, in step S6, it is determined whether the engine load is maintained so high that exhaust gas can be supplied to the power turbine 30, or whether the engine load has been reduced to a level at which exhaust gas cannot be supplied to the power turbine 30. ing. That is, the “decreasing switching load” in step S6 is an engine load when the engine load decreases and exhaust gas cannot be supplied to the power turbine 30, and in this embodiment, for example, 45% load (maximum load of the engine body) The load is set to 45% with respect to 100%. The reason why the values of the downward switching load and the upward switching load are different is due to so-called hysteresis.
 ステップS6において、エンジン負荷が下降切換負荷以上であるときは(ステップS6でYES)、引き続き排気ガスをエンジン本体10へ供給できる状態を維持しているのであるから、開閉弁51が開いて抽気弁52が閉じている状態を維持する(ステップS9)。ステップS9を経た後は、ステップS11へ進む。 In step S6, when the engine load is equal to or higher than the lowering switching load (YES in step S6), the exhaust gas can be continuously supplied to the engine body 10, so that the on-off valve 51 is opened and the extraction valve is opened. The state where 52 is closed is maintained (step S9). After step S9, the process proceeds to step S11.
 ステップS6において、エンジン負荷が下降切換負荷よりも小さいときは(ステップS6でYES)、排気ガスをパワータービン30に供給できなくなったときであるから、開閉弁51を閉じ、抽気弁52を開く(ステップS10)。ただし、本実施形態では、開閉弁51を閉じるのと抽気弁52を開くのを同時に行うのではなく、開閉弁51を閉じた後、一定の時間をおいてから抽気弁52を開く。このように、開閉弁51を閉じた後に抽気弁52を開くのは、ステップS7のところで説明した理由と同じであって、過給機20に流れる排気ガスの量が一気に減るのを抑えるためである。ステップS10を経た後は、ステップS1へ戻る。 In step S6, when the engine load is smaller than the descent switching load (YES in step S6), it is a time when exhaust gas cannot be supplied to the power turbine 30, so the on-off valve 51 is closed and the extraction valve 52 is opened ( Step S10). However, in this embodiment, the opening / closing valve 51 is not closed and the extraction valve 52 is not opened at the same time, but after the opening / closing valve 51 is closed, the extraction valve 52 is opened after a certain time. Thus, the reason why the bleed valve 52 is opened after the on-off valve 51 is closed is the same as the reason described in step S7, in order to prevent the amount of exhaust gas flowing into the supercharger 20 from being reduced at once. is there. After step S10, the process returns to step S1.
 <排気ガス流量制御>
 続いて、排気ガス流量制御について説明する。図3のステップS11~S16が、排ガス流量制御に関する部分である。排ガス流量調整制御は、パワータービン30に設けられた可変ノズル32の開度を調整することで、過給機20に適切な量の排気ガスを供給するとともに、パワータービン30を効率的に運用する制御である。排気ガス流量制御は、ステップS7又はステップS9を経た後に行われる。すなわち、排気ガス流量制御は、開閉弁51が開いている状態のときにのみ行われる。なお、過給機20に適切な排気ガスを供給できているか否かは、掃気圧によって判断することができる。すなわち、掃気圧が所定の値よりも高いときには過給機20に供給する排気ガスの量が過剰であり、掃気圧が所定の値よりも低いときには過給機20に供給する排気ガスの量が不足していると判断することができる。
<Exhaust gas flow control>
Subsequently, the exhaust gas flow rate control will be described. Steps S11 to S16 in FIG. 3 are parts related to the exhaust gas flow rate control. In the exhaust gas flow rate adjustment control, an appropriate amount of exhaust gas is supplied to the supercharger 20 and the power turbine 30 is efficiently operated by adjusting the opening of the variable nozzle 32 provided in the power turbine 30. Control. The exhaust gas flow rate control is performed after step S7 or step S9. That is, the exhaust gas flow rate control is performed only when the on-off valve 51 is open. Note that whether or not appropriate exhaust gas can be supplied to the supercharger 20 can be determined by scavenging pressure. That is, when the scavenging pressure is higher than a predetermined value, the amount of exhaust gas supplied to the supercharger 20 is excessive, and when the scavenging pressure is lower than the predetermined value, the amount of exhaust gas supplied to the supercharger 20 is small. It can be judged that it is insufficient.
 まず、制御装置60は、適正な掃気圧の範囲を設定する(ステップS11)。ここで、図4は、適正な掃気圧の範囲を示すグラフである。図4の横軸はエンジン負荷であり、縦軸は掃気圧である。図中の2本の直線のうち、上の直線が上限掃気圧を示しており、下の線が下限掃気圧を示している。この2本の直線に挟まれた部分が適正な掃気圧の範囲である。例えば、図4に示すように、エンジン負荷がLであったときには、下限掃気圧はPとなり、上限掃気圧はPとなる。下限掃気圧及び上限掃気圧は、エンジン負荷によって異なり、エンジン負荷が大きくなるに従って大きく設定される。実際のステップS11では、図4の直線を表す数式を用いて、適正な掃気圧の範囲を算出する。 First, the control device 60 sets an appropriate scavenging air pressure range (step S11). Here, FIG. 4 is a graph showing an appropriate scavenging air pressure range. The horizontal axis in FIG. 4 is the engine load, and the vertical axis is the scavenging pressure. Of the two lines in the figure, the upper line indicates the upper limit scavenging pressure, and the lower line indicates the lower limit scavenging pressure. The portion sandwiched between these two straight lines is the appropriate scavenging pressure range. For example, as shown in FIG. 4, when the engine load is an L 1, the lower limit scavenging air pressure becomes P L, and the upper limit scavenging air pressure P H. The lower limit scavenging air pressure and the upper limit scavenging air pressure vary depending on the engine load, and are set larger as the engine load increases. In actual step S11, an appropriate scavenging pressure range is calculated using the mathematical expression representing the straight line in FIG.
 続いて、制御装置60は、ステップS1で取得した実際の掃気圧が適正範囲内にあるか否かを判定する(ステップS12)。すなわち、実際の掃気圧がステップS11で設定した下限掃気圧よりも大きく、かつ、上限掃気圧よりも小さいか否かを判定する。掃気圧が適正範囲内にあれば(ステップS12でYES)、可変ノズル32の開度を維持し(ステップS13)、ステップS1へ戻る。可変ノズル32の開度を変更しなくとも、過給機20には適正な量の排気ガスが供給されているからである。また、上述したように、可変ノズル32の開度を調整して過給機20に適切な量の排気ガスが供給されているときには、必然的にパワータービン30が効率よく駆動される。 Subsequently, the control device 60 determines whether or not the actual scavenging air pressure acquired in step S1 is within an appropriate range (step S12). That is, it is determined whether or not the actual scavenging pressure is larger than the lower limit scavenging pressure set in step S11 and smaller than the upper scavenging pressure. If the scavenging pressure is within the appropriate range (YES in step S12), the opening of the variable nozzle 32 is maintained (step S13), and the process returns to step S1. This is because an appropriate amount of exhaust gas is supplied to the supercharger 20 without changing the opening of the variable nozzle 32. As described above, when the opening amount of the variable nozzle 32 is adjusted and an appropriate amount of exhaust gas is supplied to the supercharger 20, the power turbine 30 is necessarily driven efficiently.
 一方、掃気圧が適正範囲内になければ(ステップS12でNO)、実際の掃気圧が適正範囲よりも大きいか否かを判定する(ステップS14)。すなわち、実際の掃気圧が上限掃気圧よりも大きいか否かを判定する。掃気圧が適正範囲よりも大きい場合(ステップS14でYES)、可変ノズル32の開度を大きくし(ステップS15)、ステップS1へ戻る。この場合、過給機20には必要以上の排気ガスが流れているのであるから、可変ノズル32の開度を大きくして過給機20側に流れる排気ガスの量を減らす制御を行う。つまり、エンジン本体10から排出される排気ガスの量に対する過給機20に供給される排気ガスの量の割合を小さくする。また、このように制御すると、過給機20に適切な量の排気ガスを供給することになるから、必然的にパワータービン30も効率よく駆動される。 On the other hand, if the scavenging air pressure is not within the appropriate range (NO in step S12), it is determined whether or not the actual scavenging air pressure is larger than the appropriate range (step S14). That is, it is determined whether or not the actual scavenging pressure is greater than the upper limit scavenging pressure. If the scavenging pressure is greater than the appropriate range (YES in step S14), the opening of the variable nozzle 32 is increased (step S15), and the process returns to step S1. In this case, since the exhaust gas more than necessary flows through the supercharger 20, control is performed to increase the opening of the variable nozzle 32 to reduce the amount of exhaust gas flowing to the supercharger 20 side. That is, the ratio of the amount of exhaust gas supplied to the supercharger 20 to the amount of exhaust gas discharged from the engine body 10 is reduced. In addition, when the control is performed in this manner, an appropriate amount of exhaust gas is supplied to the supercharger 20, so that the power turbine 30 is inevitably driven efficiently.
 ステップS14において、実際の掃気圧が適正範囲よりも大きくないと判定した場合(ステップS14でNO)、可変ノズル32の開度を小さくし(ステップS16)、ステップS1へ戻る。この場合、実際の掃気圧が適正範囲よりも大きくないのであるから、実際の掃気圧は適正範囲よりも小さい(下限掃気圧よりも小さい)ことになる。そうすると、過給機20には排気ガスの量が不足しているのであるから、可変ノズル32の開度を小さくして過給機20側に流れる排気ガスの量を増やす制御を行う。つまり、エンジン本体10から排出される排気ガスの量に対する過給機20に供給される排気ガスの量の割合を大きくする。また、このように制御すると、過給機20に適切な量の排気ガスを供給することになるから、必然的にパワータービン30も効率よく駆動される。 If it is determined in step S14 that the actual scavenging air pressure is not greater than the appropriate range (NO in step S14), the opening of the variable nozzle 32 is decreased (step S16), and the process returns to step S1. In this case, since the actual scavenging air pressure is not larger than the appropriate range, the actual scavenging air pressure is smaller than the appropriate range (smaller than the lower limit scavenging air pressure). Then, since the amount of exhaust gas is insufficient in the supercharger 20, control is performed to increase the amount of exhaust gas flowing to the supercharger 20 side by reducing the opening of the variable nozzle 32. That is, the ratio of the amount of exhaust gas supplied to the supercharger 20 to the amount of exhaust gas discharged from the engine body 10 is increased. In addition, when the control is performed in this manner, an appropriate amount of exhaust gas is supplied to the supercharger 20, so that the power turbine 30 is inevitably driven efficiently.
 以上のとおり、本実施形態に係るエンジンシステム100は、抽気配管44と抽気弁52を備えており、開閉弁51が閉じたときに抽気弁52を開いてパワータービン30を通過する気体の循環流路を形成するように構成されている。そのため、開閉弁51が閉じたときに、パワータービン30がクランク軸11によって駆動されたとしても、パワータービン30の前後差圧が大きくなりすぎず、エンジン本体10に過度の負荷が生じるのを抑えることができる。 As described above, the engine system 100 according to this embodiment includes the bleed pipe 44 and the bleed valve 52, and the gas circulation flow that opens the bleed valve 52 and passes through the power turbine 30 when the on-off valve 51 is closed. It is comprised so that a path may be formed. Therefore, even when the power turbine 30 is driven by the crankshaft 11 when the on-off valve 51 is closed, the differential pressure across the power turbine 30 does not become too large, and an excessive load on the engine body 10 is suppressed. be able to.
 また、本実施形態に係るエンジンシステム100は、パワータービン30が有する可変ノズル32によって、パワータービン30の効率を向上させるだけでなく、過給機20へ供給する排気ガスの量を調整することができる。そのため、エンジンシステム100全体の制御及び構成の簡略化を図ることができる。 Further, the engine system 100 according to the present embodiment can not only improve the efficiency of the power turbine 30 but also adjust the amount of exhaust gas supplied to the supercharger 20 by the variable nozzle 32 of the power turbine 30. it can. Therefore, the control and configuration of the entire engine system 100 can be simplified.
 (第1実施形態の変形例)
 以上では、エンジン本体10が正回転であってかつエンジン本体10の負荷が所定の切換負荷よりも大きい(以下、「第1条件」と称す)とき開閉弁51を開き、エンジン本体10が逆回転のとき又はエンジン本体10の負荷が切換負荷よりも小さい(以下、「第2条件」と称す)とき開閉弁51を閉じる(全閉する)場合について説明した。ただし、第2条件のときには、開閉弁51を閉じるのではなく小開度としてもよい。すなわち、図3のフローチャートのステップS3、S8の「開閉弁が閉」を「開閉弁が小開度」と読み替え、ステップS4、S8、S10の「開閉弁を閉じ」を「開閉弁を小開度とし」と読み替えた制御を行ってもよい。
(Modification of the first embodiment)
In the above, when the engine body 10 is rotating forward and the load of the engine body 10 is larger than a predetermined switching load (hereinafter referred to as “first condition”), the on-off valve 51 is opened and the engine body 10 rotates backward. The case where the on-off valve 51 is closed (fully closed) when the load on the engine body 10 is smaller than the switching load (hereinafter referred to as “second condition”) has been described. However, in the case of the second condition, the opening / closing valve 51 may not be closed but may be a small opening. That is, “the on-off valve is closed” in steps S3 and S8 in the flowchart of FIG. 3 is read as “the on-off valve is a small opening”, and “the on-off valve is closed” in steps S4, S8, and S10 is “smallly opened”. The control may be read as “degree”.
 ここでいう「小開度」は、第1条件時における開閉弁51の開度よりも小さい開度であって、第1小開度と第2小開度が含まれる。第1小開度は、開閉弁51を通過した排気ガスが、パワータービン30によって搬送される状態とパワータービン30を駆動する状態の境界にあるときの開閉弁51の開度である。また、第2小開度は、第1小開度よりも小さく、循環流路にわずかに排気ガスが流入する状態のときの開閉弁51の開度である。 Here, the “small opening” is an opening smaller than the opening of the on-off valve 51 in the first condition, and includes the first small opening and the second small opening. The first small opening is the opening of the opening / closing valve 51 when the exhaust gas that has passed through the opening / closing valve 51 is at the boundary between the state where the exhaust gas is conveyed by the power turbine 30 and the state where the power turbine 30 is driven. The second small opening is smaller than the first small opening and is the opening of the on-off valve 51 when exhaust gas slightly flows into the circulation channel.
 前述したように、開閉弁51を閉じて抽気弁52を開けると、パワータービン30を通過した気体は循環流路を通って再度パワータービン30を通過するが、場合によっては循環流路内の気体の温度がパワータービン30からエネルギを受けて過上昇するおそれがある。一方、第2条件のときに、開閉弁51を第1小開度又はこれに近い開度にすると、循環流路内の気体がパワータービン30から受けるエネルギは減少し、環流路内の気体の温度が過上昇するのを抑えることができる。また、第2条件のときに、開閉弁51を第2小開度としたときには、排気ガスがわずかに循環流路に流れ込んで、循環流路の気体が入れ替わるため、環流路内の気体の温度が過上昇するのを抑えることができる。 As described above, when the opening / closing valve 51 is closed and the extraction valve 52 is opened, the gas that has passed through the power turbine 30 passes through the power turbine 30 again through the circulation flow path. There is a risk that the temperature of the engine will rise due to the energy received from the power turbine 30. On the other hand, when the on-off valve 51 is set to the first small opening or an opening close to this in the second condition, the energy received by the gas in the circulation flow path from the power turbine 30 decreases, and the gas in the ring flow path decreases. An excessive increase in temperature can be suppressed. Further, when the on-off valve 51 is set to the second small opening degree under the second condition, the exhaust gas slightly flows into the circulation flow path and the gas in the circulation flow path is replaced. Can be prevented from rising excessively.
 (第2実施形態)
 次に、図5を参照して、第2実施形態について説明する。図5は、第2実施形態に係るエンジンシステム200の全体図である。図5に示すように、本実施形態に係るエンジンシステム200は、空気取込配管47と、空気取込弁53と、パワータービン出口弁54とを備えている点で、第1実施形態に係るエンジンシステム100と構成が異なる。それ以外の点は、第1実施形態に係るエンジンシステム100と基本的に同じ構成である。
(Second Embodiment)
Next, a second embodiment will be described with reference to FIG. FIG. 5 is an overall view of an engine system 200 according to the second embodiment. As shown in FIG. 5, the engine system 200 according to the present embodiment relates to the first embodiment in that it includes an air intake pipe 47, an air intake valve 53, and a power turbine outlet valve 54. The configuration is different from the engine system 100. Other points are basically the same as those of the engine system 100 according to the first embodiment.
 空気取込配管47は、パワータービン出口配管43のうち、抽気配管44が連結している部分とパワータービン30の間に連結されており、外気をパワータービン出口配管43に取り込めるように構成されている。また、空気取込弁53は、空気取込配管47に設けられており、その開閉は制御装置60によって制御される。さらに、パワータービン出口弁54は、パワータービン出口配管43のうち、抽気配管44が連結している部分と空気取込配管47が連結されている部分の間に設けられており、その開閉は制御装置60によって制御される。 The air intake pipe 47 is connected between a portion of the power turbine outlet pipe 43 to which the extraction pipe 44 is connected and the power turbine 30, and is configured to take outside air into the power turbine outlet pipe 43. Yes. The air intake valve 53 is provided in the air intake pipe 47, and its opening / closing is controlled by the control device 60. Further, the power turbine outlet valve 54 is provided between a portion of the power turbine outlet pipe 43 to which the extraction pipe 44 is connected and a portion to which the air intake pipe 47 is connected, and its opening and closing is controlled. Controlled by device 60.
 そして、本実施形態の循環流路形成制御では、開閉弁51を開けて抽気弁52を閉じたとき(第1条件のとき)空気取込弁53を閉じるとともに、開閉弁51を閉じて抽気弁52を開けたとき(第2条件のとき)空気取込弁53を開くように構成されている。 In the circulation flow path formation control of the present embodiment, when the opening / closing valve 51 is opened and the extraction valve 52 is closed (when the first condition is satisfied), the air intake valve 53 is closed and the opening / closing valve 51 is closed. The air intake valve 53 is configured to open when 52 is opened (when the second condition is satisfied).
 本実施形態に係るエンジンシステム200は上記のように構成されているため、開閉弁51が閉じて抽気弁52が開くことで、気体がパワータービン30を通過する循環流路を循環する場合にも、外気が空気取込配管47を介してパワータービン出口配管43に取り込まれるため、循環流路の気体(空気及び排気ガス)が入れ替わり、環流路内の気体の温度が過上昇するのを抑えることができる。 Since the engine system 200 according to the present embodiment is configured as described above, when the on-off valve 51 is closed and the bleed valve 52 is opened, the gas is also circulated through the circulation passage passing through the power turbine 30. Since the outside air is taken into the power turbine outlet pipe 43 via the air intake pipe 47, the gas (air and exhaust gas) in the circulation flow path is switched, and the temperature of the gas in the circulation flow path is prevented from excessively rising. Can do.
 なお、パワータービン出口弁54は、開閉弁51を開けて抽気弁52を閉じたとき(第1条件のとき)には開けられ、開閉弁51を閉じて抽気弁52を開けたとき(第2条件のとき)には閉じられる。このように制御することで、空気取込配管47を介してパワータービン出口配管43に外気を取り込む際、これに伴って煙道から排気ガスが取り込まれてしまうのを防ぐことができる。これにより、環流路内の気体の温度が過上昇するのをより一層抑えることができる。 The power turbine outlet valve 54 is opened when the opening / closing valve 51 is opened and the extraction valve 52 is closed (when the first condition is satisfied), and when the opening / closing valve 51 is closed and the extraction valve 52 is opened (second). Closed). By controlling in this way, when taking outside air into the power turbine outlet piping 43 through the air intake piping 47, it can prevent that exhaust gas is taken in from a flue with this. Thereby, it can suppress further that the temperature of the gas in an annular flow path rises too much.
 (第3実施形態)
 次に、図6を参照して、第3実施形態について説明する。図6は、第3実施形態に係るエンジンシステム300の全体図である。図6に示すように、本実施形態に係るエンジンシステム300は、抽気配管44及びパワータービン出口配管43の連結位置が、第1実施形態に係るエンジンシステム100の場合と異なる。それ以外の点は、第1実施形態に係るエンジンシステム100と基本的に同じ構成である。
(Third embodiment)
Next, a third embodiment will be described with reference to FIG. FIG. 6 is an overall view of an engine system 300 according to the third embodiment. As shown in FIG. 6, the engine system 300 according to the present embodiment differs from the engine system 100 according to the first embodiment in the connection position of the extraction pipe 44 and the power turbine outlet pipe 43. Other points are basically the same as those of the engine system 100 according to the first embodiment.
 本実施形態では、パワータービン出口配管43は、過給機出口配管46に連結されている。そのため、パワータービン30を通過した排気ガスは、パワータービン出口配管43及び過給機出口配管46を介して、煙道に導かれる。また、抽気配管44は、パワータービン入口配管42のうち開閉弁51よりも下流側の部分と、過給器出口配管46のうちパワータービン出口配管が連結されている部分よりも下流側の部分とを連結している。 In this embodiment, the power turbine outlet pipe 43 is connected to the supercharger outlet pipe 46. Therefore, the exhaust gas that has passed through the power turbine 30 is guided to the flue through the power turbine outlet pipe 43 and the supercharger outlet pipe 46. Further, the extraction pipe 44 includes a portion of the power turbine inlet pipe 42 on the downstream side of the on-off valve 51 and a portion of the supercharger outlet pipe 46 on the downstream side of the portion to which the power turbine outlet pipe is connected. Are connected.
 本実施形態に係るエンジンシステム300は、以上のように構成されているため、開閉弁51が閉じて抽気弁52を開いたとき、第1実施形態のような循環流路は形成されず、パワータービン入口配管42から抽出した気体は過給機出口配管46に排出される。そのため、パワータービン30を通過した気体が再度パワータービン30を通過することはなく、パワータービン30のエネルギによって気体の温度が徐々に上昇して過上昇となるようなことはない。 Since the engine system 300 according to the present embodiment is configured as described above, when the on-off valve 51 is closed and the bleed valve 52 is opened, the circulation channel as in the first embodiment is not formed, and the power The gas extracted from the turbine inlet pipe 42 is discharged to the supercharger outlet pipe 46. Therefore, the gas that has passed through the power turbine 30 does not pass through the power turbine 30 again, and the temperature of the gas does not gradually rise due to the energy of the power turbine 30 and excessively rise.
 以上、実施形態について図を参照して説明したが、具体的な構成はこれらの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。 The embodiments have been described above with reference to the drawings. However, the specific configuration is not limited to these embodiments, and the present invention can be applied even if there is a design change or the like without departing from the scope of the invention. included.
 なお、エンジンシステムの一部の部品が破損するなどして過給機やパワータービンが危険回転数に達したり、掃気圧が危険掃気圧に達したりするような異常な場合には、以上で説明したエンジンシステムの動作が行われない場合もある。しかしながら、正常時において本発明に係る制御が行われるのであれば、そのエンジンシステムは本発明に含まれることは言うまでもない。 In addition, if the turbocharger or power turbine reaches a dangerous speed due to damage to some parts of the engine system, or if the scavenging air pressure reaches a dangerous scavenging air pressure, it will be explained above. In some cases, the engine system is not operated. However, it is needless to say that the engine system is included in the present invention as long as the control according to the present invention is performed at the normal time.
 実施形態に係るエンジンシステムは、パワータービンが減速機を介してクランク軸に常に連結されているが、例えば、減速機とクランク軸の間にクラッチを設け、パワータービンとクランク軸の連結を解除できるように構成されていたとしても、パワータービンとクランク軸が連結されたままであれば、開閉弁が閉じられたときには同じようにエンジン本体に過剰な負荷がかかるという問題が発生する。 In the engine system according to the embodiment, the power turbine is always connected to the crankshaft via the speed reducer. For example, a clutch is provided between the speed reducer and the crankshaft so that the connection between the power turbine and the crankshaft can be released. Even if configured as described above, if the power turbine and the crankshaft remain connected, there is a problem that an excessive load is similarly applied to the engine body when the on-off valve is closed.
 また、以上では、パワータービン入口配管が、過給機入口配管から分岐している場合について説明したが、パワータービン入口配管と過給機入口配管は独立して形成されており、それぞれが排気管から過給機へ又は排気管からパワータービンへ排気ガスを搬送するように構成されていてもよい。 In the above description, the case where the power turbine inlet pipe branches from the supercharger inlet pipe has been described. However, the power turbine inlet pipe and the supercharger inlet pipe are formed independently, and each of them is an exhaust pipe. The exhaust gas may be transported from the engine to the supercharger or from the exhaust pipe to the power turbine.
 さらに、上記の実施形態では、エンジンシステムが船舶に搭載されている場合について説明したが、発電設備に用いるエンジンシステムであっても、本発明の構成を備えるのであれば当然ながら本発明に含まれる。 Furthermore, in the above-described embodiment, the case where the engine system is mounted on a ship has been described. However, even an engine system used for power generation equipment is naturally included in the present invention as long as it has the configuration of the present invention. .
 本発明の一形態に係るエンジンシステムは、廃熱エネルギを効率よく回収することができ、かつ、システムの簡素化を図ることができる。また、本発明の他の形態に係るエンジンシステムは、パワータービンが排気ガスによって駆動されないときに、エンジン本体に過度の負荷が生じるのを抑えることができる。そのため、本発明のエンジンシステムは、エンジンシステムの技術分野において有益である。 The engine system according to one embodiment of the present invention can efficiently recover waste heat energy and can simplify the system. In addition, the engine system according to another aspect of the present invention can suppress an excessive load on the engine body when the power turbine is not driven by the exhaust gas. Therefore, the engine system of the present invention is useful in the technical field of engine systems.
10 エンジン本体
11 クランク軸
15 掃気管
20 過給機
30 パワータービン
32 可変ノズル
41 過給機入口配管
42 パワータービン入口配管
43 パワータービン出口配管
44 抽気配管
47 空気取込配管
51 開閉弁
52 抽気弁
53 空気取込弁
100、200、300 エンジンシステム
101 船舶
DESCRIPTION OF SYMBOLS 10 Engine main body 11 Crankshaft 15 Scavenging pipe 20 Supercharger 30 Power turbine 32 Variable nozzle 41 Supercharger inlet piping 42 Power turbine inlet piping 43 Power turbine outlet piping 44 Extraction piping 47 Air intake piping 51 On-off valve 52 Extraction valve 53 Air intake valve 100, 200, 300 Engine system 101 Ship

Claims (13)

  1.  エンジン本体と、
     前記エンジン本体から排出された排気ガスによって駆動される過給機と、
     前記エンジン本体から排出された排気ガスによって駆動されるパワータービンと、
     前記エンジン本体から排出された排気ガスを前記過給機へ導く過給機入口配管と、
     排気エンジン本体から排出された排気ガスを前記パワータービンへ導くパワータービン入口配管と、を備え、
     前記パワータービンは入口側に設けられた可変ノズルを有し、
     前記エンジン本体から排出される排気ガスの量が減少したとき、前記可変ノズルの開口面積を小さくすることで、前記エンジン本体から排出される排気ガスの量に対する前記過給機に供給される排気ガスの量の割合を大きくするとともに、前記エンジン本体から排出される排気ガスの量が増加したとき、前記可変ノズルの開口面積を大きくすることで、前記エンジン本体から排出される排気ガスの量に対する前記過給機に供給される排気ガスの量の割合を小さくする排気ガス流量制御を行うように構成されている、エンジンシステム。
    The engine body,
    A supercharger driven by exhaust gas discharged from the engine body;
    A power turbine driven by exhaust gas discharged from the engine body;
    A supercharger inlet pipe for guiding exhaust gas discharged from the engine body to the supercharger;
    A power turbine inlet pipe for guiding the exhaust gas discharged from the exhaust engine body to the power turbine,
    The power turbine has a variable nozzle provided on the inlet side,
    When the amount of exhaust gas discharged from the engine body decreases, the exhaust gas supplied to the supercharger with respect to the amount of exhaust gas discharged from the engine body is reduced by reducing the opening area of the variable nozzle. When the amount of exhaust gas exhausted from the engine body increases, the opening area of the variable nozzle is increased to increase the ratio of the amount of exhaust gas exhausted from the engine body. An engine system configured to perform exhaust gas flow rate control for reducing a ratio of an amount of exhaust gas supplied to a supercharger.
  2.  前記パワータービン入口配管は、前記過給機入口配管から分岐しており、前記過給機入口配管内の排気ガスの一部を前記パワータービンへ導くように構成されている、請求項1に記載のエンジンシステム。 The said power turbine inlet piping is branched from the said supercharger inlet piping, It is comprised so that a part of exhaust gas in the said supercharger inlet piping may be guide | induced to the said power turbine. Engine system.
  3.  前記エンジン本体は前記過給機で昇圧した新気を収容する掃気管を有しており、
     前記排気ガス流量制御は、前記掃気管内の圧力が所定の下限値よりも小さいときには前記可変ノズルの開度を小さくするとともに、前記掃気管内の圧力が所定の上限値よりも大きいときには前記可変ノズルの開度を大きくすることで行われる、請求項1又は2に記載のエンジンシステム。
    The engine body has a scavenging pipe for accommodating fresh air boosted by the supercharger,
    When the pressure in the scavenging pipe is smaller than a predetermined lower limit value, the exhaust gas flow rate control reduces the opening of the variable nozzle, and when the pressure in the scavenging pipe is larger than a predetermined upper limit value, The engine system according to claim 1, wherein the engine system is performed by increasing an opening degree.
  4.  前記所定の下限値及び前記所定の上限値は、前記エンジン本体の負荷が大きくなるに従って大きくなるように設定される、請求項3に記載のエンジンシステム。 The engine system according to claim 3, wherein the predetermined lower limit value and the predetermined upper limit value are set so as to increase as a load on the engine body increases.
  5.  エンジン本体と、
     前記エンジン本体から排出された排気ガスによって駆動される過給機と、
     前記エンジン本体から排出された排気ガスによって駆動され、前記エンジン本体のクランク軸に連結されているパワータービンと、
     前記エンジン本体から排出された排気ガスを前記過給機へ導く過給機入口配管と、
     前記エンジン本体から排出された排気ガスを前記パワータービンへ導くパワータービン入口配管と、
     前記パワータービン入口配管に設けられ、前記エンジン本体の運転条件に応じて開閉する開閉弁と、
     前記パワータービン入口配管のうち前記開閉弁よりも下流側の部分に連結され、前記パワータービン入口配管内の気体を抽出する抽気配管と、
     前記抽気配管に設けられた抽気弁と、を備え、
     前記エンジン本体が正回転であってかつ前記エンジン本体の負荷が所定の切換負荷よりも大きい第1条件のとき、前記開閉弁を開くとともに前記抽気弁を閉じ、
     前記エンジン本体が逆回転のとき又は前記エンジン本体の負荷が前記所定の切換負荷よりも小さい第2条件のとき、前記開閉弁を閉じるか又は前記第1条件における前記開閉弁の開度よりも小さい小開度とするとともに前記抽気弁を開くように構成されている、エンジンシステム。
    The engine body,
    A supercharger driven by exhaust gas discharged from the engine body;
    A power turbine driven by exhaust gas discharged from the engine body and connected to a crankshaft of the engine body;
    A supercharger inlet pipe for guiding exhaust gas discharged from the engine body to the supercharger;
    A power turbine inlet pipe for guiding exhaust gas discharged from the engine body to the power turbine;
    An on-off valve provided in the power turbine inlet pipe, and opened and closed according to operating conditions of the engine body;
    An extraction pipe connected to a portion on the downstream side of the on-off valve in the power turbine inlet pipe to extract gas in the power turbine inlet pipe;
    An extraction valve provided in the extraction pipe,
    When the engine body is in a normal rotation and the load on the engine body is a first condition greater than a predetermined switching load, the on-off valve is opened and the bleed valve is closed,
    When the engine body rotates in the reverse direction or when the load on the engine body is a second condition smaller than the predetermined switching load, the on-off valve is closed or smaller than the opening degree of the on-off valve in the first condition An engine system configured to have a small opening and to open the extraction valve.
  6.  前記パワータービン入口配管は、前記過給機入口配管から分岐しており、前記過給機入口配管内の排気ガスの一部を前記パワータービンへ導くように構成されている、請求項5に記載のエンジンシステム。 The said power turbine inlet piping is branched from the said supercharger inlet piping, It is comprised so that a part of exhaust gas in the said supercharger inlet piping may be guide | induced to the said power turbine. Engine system.
  7.  前記エンジン本体の負荷が上昇しているときの前記切換負荷である上昇切換負荷は、前記エンジン本体の負荷が下降しているときの前記切換負荷である下降切換負荷よりも大きく設定されている、請求項5又は6に記載のエンジンシステム。 The upward switching load that is the switching load when the load of the engine body is rising is set larger than the downward switching load that is the switching load when the load of the engine body is falling, The engine system according to claim 5 or 6.
  8.  前記エンジン本体の負荷が上昇して前記上昇切換負荷よりも大きくなったとき、前記抽気弁を閉じた後に前記開閉弁を開くように構成されている、請求項7に記載のエンジンシステム。 The engine system according to claim 7, wherein when the load of the engine body increases and becomes larger than the increase switching load, the on-off valve is opened after the extraction valve is closed.
  9.  前記エンジン本体の負荷が下降して前記下降切換負荷よりも小さくなったとき、前記開閉弁を閉じた後に前記抽気弁を開くように構成されている、請求項7又は8に記載のエンジンシステム。 The engine system according to claim 7 or 8, wherein when the load of the engine body is lowered and becomes smaller than the lowering switching load, the bleed valve is opened after the on-off valve is closed.
  10.  前記パワータービンを通過した排気ガスを排出するパワータービン出口配管をさらに備え、
     前記抽気配管は、前記パワータービン出口配管に連結されており、前記パワータービン入口配管から抽出した気体を前記パワータービン出口配管に排出する、請求項5乃至9のうちいずれか一の項に記載のエンジンシステム。
    A power turbine outlet pipe for discharging exhaust gas that has passed through the power turbine;
    The said extraction piping is connected with the said power turbine exit piping, The gas extracted from the said power turbine entrance piping is discharged | emitted to the said power turbine exit piping, The description in any one of Claims 5 thru | or 9 Engine system.
  11.  前記パワータービン出口配管のうち、前記抽気配管が連結する部分と前記パワータービンの間に連結されており、外気を前記パワータービン出口配管に取り込むことができる空気取込配管と、該空気取込配管に設けられた空気取込弁と、をさらに備え、
     前記第1条件のとき前記空気取込弁を閉じ、前記第2条件のとき前記空気取込弁を開くように構成されている、請求項10に記載のエンジンシステム。
    Of the power turbine outlet pipe, an air intake pipe that is connected between a portion to which the extraction pipe is connected and the power turbine and can take outside air into the power turbine outlet pipe, and the air intake pipe An air intake valve provided in the
    The engine system according to claim 10, wherein the engine is configured to close the air intake valve when the first condition is satisfied and to open the air intake valve when the second condition is satisfied.
  12.  前記過給機を通過した排気ガスを排出する過給機出口配管をさらに備え、
     前記抽気配管は、前記過給機出口配管に連結されており、前記パワータービン入口配管から抽出した気体を前記過給機出口配管に排出する、請求項5乃至9のうちいずれか一の項に記載のエンジンシステム。
    Further comprising a supercharger outlet pipe for discharging exhaust gas that has passed through the supercharger;
    The said extraction piping is connected with the said supercharger exit piping, The gas extracted from the said power turbine inlet piping is discharged | emitted to the said supercharger exit piping in any one of Claims 5 thru | or 9. The engine system described.
  13.  請求項1乃至12のうちいずれか一の項に記載のエンジンシステムを備えた船舶。 A ship provided with the engine system according to any one of claims 1 to 12.
PCT/JP2014/003146 2013-06-14 2014-06-12 Engine system, and ship WO2014199643A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480033300.8A CN105264198B (en) 2013-06-14 2014-06-12 engine system and ship
KR1020157036966A KR101861754B1 (en) 2013-06-14 2014-06-12 Engine system and ship
JP2015522551A JP6270838B2 (en) 2013-06-14 2014-06-12 Engine system and ship

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-125277 2013-06-14
JP2013-125278 2013-06-14
JP2013125278 2013-06-14
JP2013125277 2013-06-14

Publications (1)

Publication Number Publication Date
WO2014199643A1 true WO2014199643A1 (en) 2014-12-18

Family

ID=52021954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003146 WO2014199643A1 (en) 2013-06-14 2014-06-12 Engine system, and ship

Country Status (4)

Country Link
JP (1) JP6270838B2 (en)
KR (1) KR101861754B1 (en)
CN (1) CN105264198B (en)
WO (1) WO2014199643A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170102309A (en) * 2015-01-27 2017-09-08 카와사키 주코교 카부시키 카이샤 Exhaust turbines and vessels
CN107387217A (en) * 2017-07-31 2017-11-24 中国船舶重工集团公司第七研究所 Power turbine TRT

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149036U (en) * 1980-04-08 1981-11-09
JPS6436624U (en) * 1987-08-31 1989-03-06
JPH02207139A (en) * 1989-02-07 1990-08-16 Komatsu Ltd Power transmitting device for turbo-compound engine
JPH0392538A (en) * 1989-09-01 1991-04-17 Mazda Motor Corp Exhaust control device for supercharged engine
JPH04100033U (en) * 1991-02-08 1992-08-28
WO2013042181A1 (en) * 2011-09-20 2013-03-28 トヨタ自動車株式会社 Device for controlling internal combustion engine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61132722A (en) * 1984-11-30 1986-06-20 Isuzu Motors Ltd Turbo-compound engine
JPS6357824A (en) * 1986-08-29 1988-03-12 Isuzu Motors Ltd Turbo-compound engine
JPH0639901B2 (en) * 1987-10-28 1994-05-25 いすゞ自動車株式会社 Turbo compound engine
JPH01116245A (en) * 1987-10-28 1989-05-09 Isuzu Motors Ltd Turbo compound internal combustion engine control device
JPH01117938A (en) * 1987-10-30 1989-05-10 Isuzu Motors Ltd Turbocompound engine
DE3807372C2 (en) * 1988-03-07 1996-12-12 Asea Brown Boveri Internal combustion engine with two-stage exhaust gas turbocharger and utility turbine
JP3510438B2 (en) * 1996-12-10 2004-03-29 日野自動車株式会社 Turbocharged engine
FR2853011B1 (en) * 2003-03-26 2006-08-04 Melchior Jean F ALTERNATIVE ENGINE FOR RECIRCULATING BURNED GASES FOR PROPULSION OF MOTOR VEHICLES AND METHOD OF TURBOCOMPRESSING THE SAME
DE102004062492A1 (en) * 2004-12-24 2006-07-13 Daimlerchrysler Ag Method for operating an internal combustion engine with an exhaust gas turbocharger and a power turbine
ES2389222T3 (en) * 2007-09-28 2012-10-24 Iveco Motorenforschung Ag Turbocharged supercharged propeller engine
CN101182805B (en) * 2007-12-25 2011-08-17 河北师范大学 Internal-combustion engines exhaust turbine dynamoelectric compressor system
DE102008064521B4 (en) * 2008-12-18 2021-05-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Internal combustion engine with exhaust gas turbocharger
DE102011011637A1 (en) * 2011-02-17 2012-09-13 Voith Patent Gmbh Powertrain with supercharged combustion engine and turbocompound system
CN103562517B (en) * 2011-05-30 2016-09-14 Fpt发动机研究公司 Charging turbine is combined hybrid engine device
JP5255144B2 (en) * 2012-09-06 2013-08-07 三菱重工業株式会社 Ship control method and ship

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149036U (en) * 1980-04-08 1981-11-09
JPS6436624U (en) * 1987-08-31 1989-03-06
JPH02207139A (en) * 1989-02-07 1990-08-16 Komatsu Ltd Power transmitting device for turbo-compound engine
JPH0392538A (en) * 1989-09-01 1991-04-17 Mazda Motor Corp Exhaust control device for supercharged engine
JPH04100033U (en) * 1991-02-08 1992-08-28
WO2013042181A1 (en) * 2011-09-20 2013-03-28 トヨタ自動車株式会社 Device for controlling internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170102309A (en) * 2015-01-27 2017-09-08 카와사키 주코교 카부시키 카이샤 Exhaust turbines and vessels
CN107208549A (en) * 2015-01-27 2017-09-26 川崎重工业株式会社 Exhaust steam turbine and ship
KR101934916B1 (en) * 2015-01-27 2019-01-04 카와사키 주코교 카부시키 카이샤 Exhaust turbines and vessels
CN107387217A (en) * 2017-07-31 2017-11-24 中国船舶重工集团公司第七研究所 Power turbine TRT

Also Published As

Publication number Publication date
KR20160010623A (en) 2016-01-27
CN105264198A (en) 2016-01-20
JP6270838B2 (en) 2018-01-31
CN105264198B (en) 2017-10-13
JPWO2014199643A1 (en) 2017-02-23
KR101861754B1 (en) 2018-05-28

Similar Documents

Publication Publication Date Title
EP3020941B1 (en) Aircraft fuel system
US8567184B2 (en) Energy recovery system in a gas compression plant
US9964046B2 (en) Fuel System
US8162591B2 (en) Multistage compressor for a gas turbine, comprising discharge ports and injection ports to stabilize the compressor flow
US20160238013A1 (en) Compressor with Variable Compressor Inlet
US9790664B2 (en) Shovel having an engine equipped with a supercharger
JP5412311B2 (en) Fuel gas supply system for LNG carrier
JP6270838B2 (en) Engine system and ship
JP5486489B2 (en) Control method of turbo compressor
EP2840238A1 (en) Operation of a gas turbine power plant with carbon dioxide separation
KR101350803B1 (en) Compressor load controlling module of lng carrier and the control method using this
JP5964260B2 (en) Engine exhaust gas energy recovery system
JP2006316759A (en) Compression device
JP2000509457A (en) Overload steam introduction control apparatus and method for steam turbine
KR101697218B1 (en) Engine system
CN110998082B (en) Engine system
EP2423515A1 (en) Industrial compressor system
JP5449509B2 (en) Exhaust energy recovery method and exhaust energy recovery device
CN102953837A (en) Gas turbine apparatus, the controlling means thereof, and control method thereof
US20170058906A1 (en) Turbomachine Anti-Surge System
US11168619B2 (en) Systems and methods for controlling surge margin in the compressor section of a gas turbine engine
JP5786107B1 (en) Engine system
JP2005113825A (en) Control device and control method of engine
SHAHSAVARI Technologies for electrical driven gas compressors

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480033300.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14810956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522551

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157036966

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14810956

Country of ref document: EP

Kind code of ref document: A1