JP4208661B2 - Steam turbine power plant having a steam valve device and a steam flow control system including the steam valve device - Google Patents

Steam turbine power plant having a steam valve device and a steam flow control system including the steam valve device Download PDF

Info

Publication number
JP4208661B2
JP4208661B2 JP2003205023A JP2003205023A JP4208661B2 JP 4208661 B2 JP4208661 B2 JP 4208661B2 JP 2003205023 A JP2003205023 A JP 2003205023A JP 2003205023 A JP2003205023 A JP 2003205023A JP 4208661 B2 JP4208661 B2 JP 4208661B2
Authority
JP
Japan
Prior art keywords
steam
valve
valve device
valve casing
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003205023A
Other languages
Japanese (ja)
Other versions
JP2005048639A (en
Inventor
朋男 大藤
孝樹 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003205023A priority Critical patent/JP4208661B2/en
Publication of JP2005048639A publication Critical patent/JP2005048639A/en
Application granted granted Critical
Publication of JP4208661B2 publication Critical patent/JP4208661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、蒸気タービン発電プラントの高温蒸気流路に設けられる蒸気弁装置および該蒸気弁装置を含む蒸気流制御システムを備えた蒸気タービン発電プラントに関する。
【0002】
【従来の技術】
蒸気タービン発電プラントにおいて、タービン駆動蒸気の流量制御および緊急時の蒸気遮断等のために、各種蒸気弁が設けられており、蒸気タービンの安全な運用のために重要な要素をなしている。
【0003】
例えば図5は一つの典型的な蒸気タービン発電装置の系統図である。図5を参照して、ボイラー100からの蒸気は、主蒸気止め弁101、蒸気加減弁102を通過し高圧タービン110で仕事をしたあと、逆止弁107を経由して再びボイラー100の再熱器にて加熱され、再熱蒸気止め弁103、インターセプト弁104を経て中圧タービン111、低圧タービン112へ流入し仕事をする。低圧タービン112を経た蒸気は復水器113にて水に戻され、給水ポンプ114にて昇圧して再びボイラー100に供給されるように循環する。
【0004】
また、プラントの運用効率を高めるために、プラントによっては主蒸気止め弁101の前からボイラー100の再熱器の前に接続された高圧タービンバイパス弁105や、ボイラー100の再熱器の後から復水器113に接続された低圧タービンバイパス弁106が設置され、タービンの運転に係わらずボイラー系統単独の循環運転が出来るようになっている。
【0005】
これら蒸気弁、特に主蒸気止め弁101、蒸気加減弁102、再熱蒸気止め弁103、インターセプト弁104、高圧タービンバイパス弁105および低圧タービンバイパス弁106等の高圧蒸気弁は、ボイラーにて発生した蒸気が直接作用するために非常に厳しい環境下での使用となる。
【0006】
図6は、このような蒸気弁の従来例の典型的な構造を示すものであり、この蒸気弁は、弁ケーシング1に上蓋2をボルト3にて固定して構成される圧力容器部4と、弁棒5にねじ込まれた弁体6、弁棒5を保持する案内片7、蒸気中の異物を捕捉するストレーナ8、および弁座9より構成されている。なお、弁棒5を上下方向に作動させるアクチュエータ(図示せず)が設置されている。
【0007】
入口蒸気管部12から流入する蒸気は、矢印Aに示すように蒸気室IR内に流入し、弁体6と弁座9の間に形成される流路を通過して出口蒸気管部13から矢印Bへと流出する。また、弁ケーシング1には蒸気室IRと導通する弁座前ドレン10、弁座後ドレン11が形成されており、タービン起動時に蒸気室IR内部に蓄積されたドレンを排出する機能を有している。
【0008】
図5に示したような蒸気タービン発電装置系統を用いる火力発電プラントにおいては、わが国において、従来主蒸気圧力24.1MPa、主蒸気温度538℃、再熱蒸気温度566℃が典型的に採用されてきた。しかし、オイルショック以来、省エネルギー化が強力に推進され、またその後の地球温暖化問題に対する急速な関心の高まりから、火力発電プラントの高効率化を達成すべく、主蒸気や再熱蒸気温度は593℃、600℃、610℃というように段階的に上昇してきている。この傾向は近年一層増大する傾向にあり、更に630℃、650℃、700℃および725℃あるいはそれ以上の蒸気温度の採用が検討されている。
【0009】
このように概ね600℃を超えるような主蒸気や再熱蒸気温度条件では、従来から、これら蒸気弁の弁ケーシング材料として使用されているクロム(Cr)−モリブデン(Mo)−バナジウム(V)鋼に代表されるフェライト系合金などの低合金耐熱鋼の使用は困難となり、オーステナイト系耐熱鋼ないしNi基合金耐熱鋼の使用が必要となる。しかしながら、オーステナイト系耐熱鋼は高価であるのみでなく、高温下での耐力は必ずしも高くなく、また熱膨張係数も比較的大であるため高温・高圧の肉厚な弁ケーシング材料として用いることは好ましくない。
【0010】
ところで、このような肉厚の蒸気弁を使用した場合には、蒸気弁のケーシング内面、外面の温度差により熱応力が発生し、ケーシングの寿命等の観点から好ましくないことは良く知られている。そこで、この熱応力の発生を出来るだけ抑えるべく、ケーシングを2重構造として、2重のケーシングの間に暖気用の流体等を流通させてケーシング内外の温度差を抑えたものが知られている(例えば特許文献1)。
【0011】
しかしながら、上記蒸気弁ではケーシング内外の温度差を監視しながらケーシング間に流通させる流体等を抑制するため、構造が複雑であり必ずしも実用に向いた構造とは言えない。
【0012】
【特許文献1】
特開昭62−237009号公報
【0013】
【発明が解決しようとする課題】
従って、本発明の主要な目的は、材料の最適配置により、比較的経済的にも拘らず高温・高圧蒸気の安定制御の可能な蒸気弁装置ならびにこれを含む蒸気タービン発電プラントを提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明によれば、内側に主蒸気流路となる内側蒸気室を設けるとともに弁座および弁座に対し進退自在に設けられた弁体を収容する内側弁ケーシングと、該内側弁ケーシングの主要部を包囲する外側蒸気室を区画する外側弁ケーシングとを有し、該内側弁ケーシングと外側弁ケーシングとを相対的に高温耐熱鋼および低温耐熱鋼によりそれぞれ形成するとともに、外側蒸気室には加圧冷却流体を導入するように構成したことを特徴とする蒸気弁装置が提供される。
【0015】
また、本発明によれば、また蒸気タービンと、上記した本発明の蒸気弁装置を少なくとも一つ含む該蒸気タービンへの駆動蒸気流制御システムを備えた蒸気タービン発電プラントが提供される。
【0016】
なお、上記した特開昭62−237009号公報に記載の蒸気弁では、蒸気タービンのスタート・アップ時の蒸気弁に生ずる内外壁の温度差を緩和するべく外側蒸気室に暖機用の蒸気を導入する構成としたもので、本発明のように定常運転において、高温耐熱鋼からなる内側弁ケーシングへの高温・高圧隔壁としての負担を、外側蒸気室に加圧冷却流体を導入し、低温耐熱鋼による外側弁ケーシングに分担させて高温・高圧蒸気を安定制御することに関しては一切考慮されていない。
【0017】
【実施例】
以下、本発明を実施例に基づいて、更に具体的に説明する。
【0018】
図1は、本発明の蒸気弁装置の一実施例として図5の系統図における主蒸気止め弁として用いられる蒸気弁の断面図であり、図2はその外観斜視図であり、図6と対応する部材については同様な符号を付す。図1および2を参照して、該蒸気弁は、概ね逆L字状の主蒸気流路を形成する内側蒸気室IRを区画する内側弁ケーシングICと、該内側弁ケーシングICの主要部を包囲する外側蒸気室ORを区画する外側弁ケーシングOCと、を主要な構成要素とする。内側弁ケーシングICは、図面上(好ましくは実際にも)水平に位置する主蒸気入口管(部)12、中央ケーシング部21および図面上(好ましくは実際にも)垂直に位置する出口管(部)13とからなり、中央ケーシング部21には上蓋22がボルト23により固定されて、内側蒸気室IRの上部を区画しており、これら部材はいずれも高温耐熱鋼、例えば700℃以上で実用的な強度を有するオーステナイト系合金鋼またはNi基合金鋼、からなる。出口管(部)13の上部から中央ケーシング21へ移行するあご部には弁座9が設けられて、その上部には、弁棒5に固定された弁体6が、弁棒5の上端部に配置されたアクチュエータ(図示せず)により、垂直方向に上下して、すなわち弁座9に対し進退自在に配置されている。また入口管(部)12および出口管(部)13は、それぞれフランジ24および25により、主蒸気流入配管および出口配管(いずれも図示せず)と結合される。
【0019】
蒸気内側弁ケーシングICの主要部(すなわち、弁体6を収容し、弁座9を含む中央ケーシング部21)を包囲する外側蒸気室ORを区画する外側弁ケーシングOCは、フランジ部26を有する主隔壁部材(代表的に「外側弁ケーシング」と称する)27を、内側弁ケーシングICの主蒸気入口管(部)12の図中一点鎖線で示す中心線X上で分割して二つの半体、すなわち上半体27aおよび下半体27bとし、それらをフランジ部26において、複数組のボルト/ナット機構により互いに係止した構造を有する。後述するように、外側弁ケーシングOCにより区画された外側蒸気室ORには加圧冷却流体が導入されて外側弁ケーシング27は、その内壁から冷却されるため、外側弁ケーシング27は、低温耐熱鋼、例えば耐熱温度が約570℃のCr−Mo−V鋼に代表されるフェライト系合金などの低合金耐熱鋼で充分構成可能である。
【0020】
また、該外側弁ケーシング27の、弁棒5の案内片7、内側弁ケーシングICの入口管(部)12および出口管(部)13との接合部には、例えば2〜3分割したシールリングを多層に積み重ねたシール機構28a,28bおよび28cがそれぞれ設けられており、弁棒5の端部に配置されるアクチュエータ(図示せず)や、入口および出口蒸気配管(図示せず)とのフランジ24および25による継合部を取外すことなく、外側弁ケーシング27の分解および組立が可能になっている。また、分解後外側弁ケーシング27の上半体27aを取り除いた後には、内側弁ケーシングICの内蓋22が露出し、ボルト23を外して、内蓋22を除くことにより内側蒸気室IR内の保守点検も容易に行うことができる。
【0021】
外側弁ケーシングOCは、図示されていない支持機構により台座などに支持される。そして、内側弁ケーシングICは、例えば、内外ケーシングを継合すべく埋め込まれた埋込ボルト等の剛継手からなる保持機構30を介して外側弁ケーシングOCに支持される。保持機構30は、主蒸気出口管(部)13の中心線Yに直角で、且つ主蒸気入口管(部)12の中心線Xを含む平面上に均等に複数、例えば3個所、設けることが好ましい。これにより、内外ケーシングの熱膨張の際にもシールリング28a,28bおよび28cのそれぞれの軸と直角な方向への荷重の作用が防止可能となる。
【0022】
本例の蒸気弁装置においては、更に、外側蒸気室ORに加圧冷却流体としての低温・低圧蒸気を内側蒸気室IRから導入するためのオリフィス29が内側弁ケーシングICの弁座9と近接する上流位置に設けられ、且つ外側弁ケーシングOCの底部には圧力調整弁31と配管により結合された弁座前ドレン10が設けられている。更に弁棒5と案内片7の間隙に漏洩した蒸気を系外に排出するために、案内片の内部にあけられた穴状の弁棒リークオフ32が設けられ、外側弁ケーシングOC外面まで導かれ配管結合される。
【0023】
以下、上記で説明した図1(および図2)に示す蒸気弁の動作について説明する。
【0024】
例えば圧力25MPa、温度700℃の主蒸気流Aは、内側蒸気室IRに導入され、弁棒5を介してアクチュエータ(図示せず)により駆動される弁体6の弁座9への進退運動により、開閉されつつ出口流Bとなって内側蒸気室IRを出るが、その一部はオリフィス29を通過する際に膨張により冷却されて、例えば圧力11〜13MPa、温度540〜570℃の低温・低圧化蒸気(加圧冷却流体)となって外側蒸気室に導入される。これにより、外側弁ケーシング27は内壁も含めて570℃以下に保持され、低温耐熱鋼による構成が可能になる。このオリフィス29は、弁座9に近接する上流位置に設けられているため内側蒸気室に対してはドレン排出孔としての機能も有し、外側弁ケーシング10の底部に設けられた弁座前ドレン10を介して、弁座9および弁体6のエロージョンの原因となる凝縮水の弁座前除去が可能になる。弁座前ドレン10は配管により圧力調節弁31に結合され、該調節弁31の作動により、外側蒸気室OR内の圧力(および温度)の調節が可能になる。すなわち、外側蒸気室ORの設定圧力を上げれば、ドレン10からの蒸気流出量が低下して、外側蒸気室内の圧力(および温度)が上昇する。他方、外側蒸気室ORの設定圧力を下げれば、ドレン10からの蒸気流出量が増大して、外側蒸気室ORの圧力(および温度)が低下する。
【0025】
一般に本発明の目的とする内側弁ケーシングの耐圧負担の低下および外側弁ケーシングの耐熱負担の低下を効果的に達成するためには、外側蒸気室内の圧力および温度を、内側蒸気室内に比べて、圧力は45〜52%に低下させ、温度は130〜160℃低下させることが望ましく、そのためにはオリフィス29としては径が8〜12mmのものを4〜8本程度設けることが好ましい。
【0026】
(変形例)
上記においては、本発明の蒸気弁装置の好ましい一態様として、内側蒸気室内を流れる主蒸気の一部をオリフィス29を通して断熱膨張させることにより、低圧、低温化した蒸気流を外側蒸気室内に導入する構成とした。しかしながら、本発明の目的とする内側弁ケーシングの耐圧負担の低下と外側弁ケーシングの耐熱負担の低下による両ケーシング材の最適化の目的のためには、主蒸気圧力および温度との関係で定まる上記した圧力および温度を有する任意の流体を加圧冷却流体として用いることができる。例えば、高圧タービン出口蒸気流等、蒸気タービンプラントの任意の位置から適当な圧力および温度を有する蒸気流の一部を分岐して、外側蒸気室に導入することにより、オリフィス29の形成を省略することもできる。
【0027】
しかし、図1を参照して上述した実施例は、オリフィス29の使用により付加的な配管を設けることなく、全体としてコンパクトに高温・高圧蒸気弁を構成可能であり、該オリフィスを弁座前ドレンとして併用することにより弁主要部のエロージョンを防止できるという重要な利点も得られるので、極めて好ましい。
【0028】
(他の変形例)
次に、本発明の蒸気弁装置の他の変形例を、図3および図4(これらにおいて図1および図6と同様の部材は、同様の符号を付している)を参照して説明する。
【0029】
図3に示す変形例では、オーステナイト耐熱合金鋼などの熱膨張量の大きな材料を内側弁ケーシングICに採用した場合の一例として自重支持点の熱膨張吸収を円滑にするため、内側弁ケーシングの保持機構30として、内側弁ケーシングの重量支持点と外側ケーシングの非対向位置との間に角度可変継手保持機構を用いる、すなわち内側ケーシングの重量支持点を内側ジョイント34とし、内側弁ケーシングの重量を連結棒33を介して外側弁ケーシングOCの支持点外側ジョイント35において支持する構造としたことである。内側ジョイント34及び外側ジョイント35はユニバーサルジョイント構造になっており、内側ケーシングの熱膨張を吸収する。また、連結棒33は外側弁ケーシングと同等に熱膨張するため内側ジョイント34と連結棒33の相対位置はほとんど変化しない。
【0030】
また図4に示す変形例では、内側弁ケーシングICとシールリング28bおよび28cの間に内側ケーシングと同等の材質からなる遮熱帯36を設けている。遮熱帯36と内側弁ケーシングの間には間隙を設け、シールリング28との接触面の温度を低下させ、シールリング28および28cの温度劣化を低減する。
【0031】
上記においては、本発明の蒸気弁装置を、主蒸気止め弁の例を持って説明したが、本質的に同様の構造のものは、加減弁、インターセプト弁としても用いられる。したがって、図1〜図4をもって説明したような構造を有する本発明の蒸気弁を、図5の系統図で説明した蒸気タービン発電プラントの蒸気弁101〜106等のいずれかに用いることにより、本発明の蒸気タービン発電プラントが得られる。
【0032】
【発明の効果】
上述したように、本発明によれば、高温・高圧蒸気弁を内外二重弁ケーシング構造とし、外側弁ケーシングで区画される外側蒸気室に加圧・冷却流体を導入することにより、内側弁ケーシングの耐圧負担および外側弁ケーシングの耐熱負担をそれぞれ著しく緩和して、ケーシング材料の最適化を可能にする。その結果、本発明によれば、比較的経済的にも拘らず、高温・高圧蒸気の安定制御の可能な蒸気弁装置ならびにこれを含む蒸気タービン発電プラントが得られる。また、弁座に近接して、内側弁ケーシングにオリフィスを設け、該オリフィスを通じて主蒸気を断熱膨張させて、低温・低圧化した蒸気流を加圧冷却流体として用いることにより、蒸気弁装置をコンパクトに構成し、弁主要部のエロージョンを効果的に防止できる。
【図面の簡単な説明】
【図1】本発明の蒸気弁の一実施例の断面図。
【図2】図1の蒸気弁の外観斜視図。
【図3】本発明の蒸気弁の他の実施例の断面図。
【図4】本発明の蒸気弁の他の実施例の断面図。
【図5】本発明の蒸気弁を含む蒸気流制御システムを備えた蒸気タービン発電プラントの系統図。
【図6】従来の蒸気弁の断面図。
【符号の説明】
1 蒸気弁ケーシング
2 上蓋
3 ボルト
4 圧力容器
5 弁棒
6 弁体
7 案内片
8 ストーナ
9 弁座
10 弁座前ドレン
11 弁座後ドレン
12 入口管(部)
13 出口管(部)
21 中央ケーシング
22 内部上蓋
24,25 フランジ
27 外側弁ケーシング部材
28a〜28c シール機構
29 オリフィス
30 保持機構
31 圧力調整弁
32 弁棒リークオフ
IC 内側弁ケーシング
OC 外側弁ケーシング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steam valve device provided in a high-temperature steam flow path of a steam turbine power plant and a steam turbine power plant provided with a steam flow control system including the steam valve device.
[0002]
[Prior art]
In a steam turbine power plant, various steam valves are provided for controlling the flow rate of turbine-driven steam, shutting off steam in an emergency, and the like, which are important elements for the safe operation of the steam turbine.
[0003]
For example, FIG. 5 is a system diagram of one typical steam turbine power generator. Referring to FIG. 5, the steam from the boiler 100 passes through the main steam stop valve 101 and the steam control valve 102 and works in the high-pressure turbine 110, and then reheats the boiler 100 again via the check valve 107. It is heated by the vessel and flows into the intermediate-pressure turbine 111 and the low-pressure turbine 112 through the reheat steam stop valve 103 and the intercept valve 104 to work. The steam that has passed through the low-pressure turbine 112 is returned to water by the condenser 113, and is circulated so as to be boosted by the feed water pump 114 and supplied to the boiler 100 again.
[0004]
In order to increase the operational efficiency of the plant, depending on the plant, the high-pressure turbine bypass valve 105 connected before the main steam stop valve 101 and before the reheater of the boiler 100 or after the reheater of the boiler 100 may be used. A low-pressure turbine bypass valve 106 connected to the condenser 113 is installed so that the boiler system alone can be circulated regardless of the operation of the turbine.
[0005]
These steam valves, in particular, the main steam stop valve 101, the steam control valve 102, the reheat steam stop valve 103, the intercept valve 104, the high pressure turbine bypass valve 105, the low pressure turbine bypass valve 106, and the like are generated in a boiler. It is used in a very harsh environment because of the direct action of steam.
[0006]
FIG. 6 shows a typical structure of a conventional example of such a steam valve. This steam valve includes a pressure vessel portion 4 configured by fixing an upper lid 2 to a valve casing 1 with bolts 3. The valve body 6 is screwed into the valve stem 5, the guide piece 7 that holds the valve stem 5, the strainer 8 that captures foreign matter in the steam, and the valve seat 9. An actuator (not shown) for operating the valve stem 5 in the vertical direction is provided.
[0007]
The steam flowing in from the inlet steam pipe part 12 flows into the steam chamber IR as shown by an arrow A, passes through a flow path formed between the valve body 6 and the valve seat 9 and exits from the outlet steam pipe part 13. It flows out to the arrow B. Further, the valve casing 1 is formed with a pre-valve drain 10 and a post-valve drain 11 which are connected to the steam chamber IR, and has a function of discharging drain accumulated in the steam chamber IR when the turbine is started. Yes.
[0008]
In a thermal power plant using a steam turbine power generation system as shown in FIG. 5, a conventional main steam pressure of 24.1 MPa, a main steam temperature of 538 ° C., and a reheat steam temperature of 566 ° C. have been typically employed in Japan. It was. However, since the oil shock, energy conservation has been strongly promoted, and since the subsequent rapid interest in global warming, the main steam and reheat steam temperatures have been increased to 593 to achieve high efficiency of thermal power plants. It rises in steps such as ℃, 600 ℃, and 610 ℃. This tendency tends to increase further in recent years, and the use of steam temperatures of 630 ° C., 650 ° C., 700 ° C. and 725 ° C. or higher is being studied.
[0009]
Under such main steam and reheat steam temperature conditions generally exceeding 600 ° C., chromium (Cr) -molybdenum (Mo) -vanadium (V) steel that has been conventionally used as a valve casing material for these steam valves. Therefore, it is difficult to use a low alloy heat resistant steel such as a ferritic alloy represented by the above, and it is necessary to use an austenitic heat resistant steel or a Ni-based alloy heat resistant steel. However, austenitic heat-resisting steel is not only expensive, but its proof strength at high temperatures is not necessarily high, and its thermal expansion coefficient is relatively large, so it is preferable to use it as a thick valve casing material at high temperature and high pressure. Absent.
[0010]
By the way, it is well known that when such a thick steam valve is used, thermal stress is generated due to a temperature difference between the casing inner surface and outer surface of the steam valve, which is not preferable from the viewpoint of the life of the casing. . Therefore, in order to suppress the generation of the thermal stress as much as possible, a casing having a double structure is known in which a warming fluid or the like is circulated between the double casings to suppress a temperature difference between the inside and outside of the casing. (For example, patent document 1).
[0011]
However, since the above-described steam valve suppresses the fluid or the like that flows between the casings while monitoring the temperature difference between the inside and outside of the casing, the structure is complicated and not necessarily suitable for practical use.
[0012]
[Patent Document 1]
Japanese Patent Laid-Open No. Sho 62-237909
[Problems to be solved by the invention]
Accordingly, a main object of the present invention is to provide a steam valve device capable of stable control of high-temperature and high-pressure steam, and a steam turbine power plant including the steam valve device, despite relatively economically, by optimal arrangement of materials. Objective.
[0014]
[Means for Solving the Problems]
According to the present invention, an inner steam chamber serving as a main steam channel is provided on the inner side, and an inner valve casing that houses a valve seat and a valve body that is provided so as to be movable back and forth with respect to the valve seat, and a main portion of the inner valve casing An outer valve casing defining an outer steam chamber surrounding the outer valve chamber, the inner valve casing and the outer valve casing are formed of relatively high temperature heat resistant steel and low temperature heat resistant steel, respectively, and the outer steam chamber is pressurized A steam valve device is provided that is configured to introduce a cooling fluid.
[0015]
According to the present invention, there is also provided a steam turbine power plant including a steam turbine and a drive steam flow control system for the steam turbine including at least one steam valve device of the present invention.
[0016]
In the steam valve described in JP-A-62-237009, the steam for warming up is placed in the outer steam chamber so as to alleviate the temperature difference between the inner and outer walls generated in the steam valve at the start-up of the steam turbine. In the steady operation as in the present invention, the burden as a high temperature / high pressure partition to the inner valve casing made of high temperature heat resistant steel is introduced into the outer steam chamber, and the low temperature heat resistance No consideration is given to stable control of high-temperature and high-pressure steam by sharing the outer valve casing with steel.
[0017]
【Example】
Hereinafter, the present invention will be described more specifically based on examples.
[0018]
1 is a cross-sectional view of a steam valve used as a main steam stop valve in the system diagram of FIG. 5 as an embodiment of the steam valve device of the present invention, and FIG. 2 is an external perspective view thereof, corresponding to FIG. The same reference numerals are given to members to be performed. 1 and 2, the steam valve surrounds an inner valve casing IC that defines an inner steam chamber IR that forms a substantially inverted L-shaped main steam flow path, and a main portion of the inner valve casing IC. The outer valve casing OC that defines the outer steam chamber OR to be used is a main component. The inner valve casing IC includes a main steam inlet pipe (part) 12 positioned horizontally (preferably also in practice), a central casing part 21 and an outlet pipe (part preferably) also in the figure (preferably also actually). ) 13 and an upper lid 22 is fixed to the central casing portion 21 with bolts 23 to define the upper part of the inner steam chamber IR. All of these members are practical in high temperature heat resistant steel, for example, 700 ° C. or higher. Made of austenitic alloy steel or Ni-base alloy steel having high strength. A valve seat 9 is provided at the jaw portion that moves from the upper portion of the outlet pipe (portion) 13 to the central casing 21, and a valve body 6 fixed to the valve rod 5 is disposed at the upper portion of the upper portion of the valve rod 5. By an actuator (not shown) arranged in the vertical direction, it is arranged so as to move up and down in the vertical direction, that is, to move forward and backward with respect to the valve seat 9. Further, the inlet pipe (part) 12 and the outlet pipe (part) 13 are connected to the main steam inlet pipe and the outlet pipe (both not shown) by flanges 24 and 25, respectively.
[0019]
The outer valve casing OC that defines the outer steam chamber OR that surrounds the main portion of the steam inner valve casing IC (that is, the central casing portion 21 that houses the valve body 6 and includes the valve seat 9) has a flange portion 26. A partition member (typically referred to as “outer valve casing”) 27 is divided into two halves by dividing it on a center line X indicated by a one-dot chain line in the drawing of the main steam inlet pipe (portion) 12 of the inner valve casing IC. That is, the upper half body 27a and the lower half body 27b are structured such that they are locked to each other by a plurality of bolt / nut mechanisms in the flange portion 26. As will be described later, since the pressurized cooling fluid is introduced into the outer steam chamber OR partitioned by the outer valve casing OC and the outer valve casing 27 is cooled from the inner wall thereof, the outer valve casing 27 is made of low temperature heat resistant steel. For example, a low alloy heat resistant steel such as a ferritic alloy typified by Cr—Mo—V steel having a heat resistant temperature of about 570 ° C. can be sufficiently constituted.
[0020]
Further, the outer valve casing 27 is joined to the guide piece 7 of the valve stem 5, the inlet pipe (part) 12 and the outlet pipe (part) 13 of the inner valve casing IC at, for example, a seal ring divided into two or three parts. Are stacked in multiple layers, respectively, and are provided with flanges for an actuator (not shown) arranged at the end of the valve stem 5 and inlet and outlet steam pipes (not shown). The outer valve casing 27 can be disassembled and assembled without removing the joints 24 and 25. In addition, after removing the upper half 27a of the outer valve casing 27 after disassembly, the inner lid 22 of the inner valve casing IC is exposed, the bolt 23 is removed, and the inner lid 22 is removed to remove the inner lid 22 from the inner steam chamber IR. Maintenance inspection can also be performed easily.
[0021]
The outer valve casing OC is supported on a pedestal or the like by a support mechanism (not shown). The inner valve casing IC is supported by the outer valve casing OC via a holding mechanism 30 formed of a rigid joint such as an embedded bolt embedded to join the inner and outer casings. A plurality of, for example, three holding mechanisms 30 may be provided on a plane perpendicular to the center line Y of the main steam outlet pipe (part) 13 and including the center line X of the main steam inlet pipe (part) 12. preferable. As a result, even when the inner and outer casings are thermally expanded, it is possible to prevent a load from acting in a direction perpendicular to the respective axes of the seal rings 28a, 28b and 28c.
[0022]
In the steam valve device of this example, an orifice 29 for introducing low-temperature / low-pressure steam as pressurized cooling fluid from the inner steam chamber IR into the outer steam chamber OR is close to the valve seat 9 of the inner valve casing IC. A pre-valve drain 10 provided at the upstream position and connected to the pressure regulating valve 31 by piping is provided at the bottom of the outer valve casing OC. Further, in order to discharge the steam leaked into the gap between the valve stem 5 and the guide piece 7 to the outside of the system, a hole-like valve stem leak-off 32 opened in the guide piece is provided and led to the outer surface of the outer valve casing OC. Piping is combined.
[0023]
Hereinafter, the operation of the steam valve shown in FIG. 1 (and FIG. 2) described above will be described.
[0024]
For example, the main steam flow A having a pressure of 25 MPa and a temperature of 700 ° C. is introduced into the inner steam chamber IR, and is moved forward and backward by the valve body 6 driven by an actuator (not shown) through the valve rod 5 to the valve seat 9. While exiting the inner steam chamber IR while being opened and closed, a part thereof is cooled by expansion when passing through the orifice 29, for example, a low temperature / low pressure at a pressure of 11-13 MPa and a temperature of 540-570 ° C. Steam (pressurized cooling fluid) is introduced into the outer steam chamber. As a result, the outer valve casing 27 is maintained at 570 ° C. or lower including the inner wall, and a configuration using low temperature heat resistant steel becomes possible. Since the orifice 29 is provided at an upstream position close to the valve seat 9, it also has a function as a drain discharge hole for the inner steam chamber, and the drain before the valve seat provided at the bottom of the outer valve casing 10. 10, condensate water that causes erosion of the valve seat 9 and the valve body 6 can be removed before the valve seat. The drain 10 in front of the valve seat is connected to the pressure control valve 31 by piping, and the operation of the control valve 31 enables the pressure (and temperature) in the outer steam chamber OR to be adjusted. That is, if the set pressure of the outer steam chamber OR is increased, the amount of steam flowing out from the drain 10 is reduced, and the pressure (and temperature) in the outer steam chamber is increased. On the other hand, if the set pressure of the outer steam chamber OR is lowered, the amount of steam flowing out from the drain 10 increases, and the pressure (and temperature) of the outer steam chamber OR decreases.
[0025]
In general, in order to effectively achieve the reduction of the pressure-resistant burden of the inner valve casing and the reduction of the heat-resistant burden of the outer valve casing, which are the objects of the present invention, the pressure and temperature in the outer steam chamber are compared with those in the inner steam chamber, It is desirable to reduce the pressure to 45 to 52% and the temperature to 130 to 160 ° C. For this purpose, it is preferable to provide about 4 to 8 orifices 29 having a diameter of 8 to 12 mm.
[0026]
(Modification)
In the above, as a preferable aspect of the steam valve device of the present invention, a part of the main steam flowing in the inner steam chamber is adiabatically expanded through the orifice 29 to introduce a low-pressure, low-temperature steam flow into the outer steam chamber. The configuration. However, for the purpose of optimizing both casing materials by reducing the pressure-resistant burden of the inner valve casing and the heat-resistant burden of the outer valve casing, which are the objects of the present invention, the above is determined in relation to the main steam pressure and temperature. Any fluid having a reduced pressure and temperature can be used as the pressurized cooling fluid. For example, a part of the steam flow having an appropriate pressure and temperature is branched from an arbitrary position of the steam turbine plant, such as a high-pressure turbine outlet steam flow, and introduced into the outer steam chamber, so that the formation of the orifice 29 is omitted. You can also.
[0027]
However, in the embodiment described above with reference to FIG. 1, it is possible to construct a high-temperature / high-pressure steam valve compactly as a whole without providing additional piping by using the orifice 29. In combination, it is very preferable because it provides an important advantage of preventing erosion of the main part of the valve.
[0028]
(Other variations)
Next, another modified example of the steam valve device of the present invention will be described with reference to FIGS. 3 and 4 (the same members as those in FIGS. 1 and 6 are denoted by the same reference numerals). .
[0029]
In the modification shown in FIG. 3, as an example of the case where a material having a large thermal expansion such as austenitic heat-resistant alloy steel is adopted for the inner valve casing IC, the inner valve casing is held in order to smoothly absorb the thermal expansion at its own weight support point. As the mechanism 30, a variable angle joint holding mechanism is used between the weight support point of the inner valve casing and the non-opposing position of the outer casing. That is, the weight support point of the inner casing is used as the inner joint 34, and the weight of the inner valve casing is connected. This is a structure in which the support is performed at the support point outer joint 35 of the outer valve casing OC via the rod 33. The inner joint 34 and the outer joint 35 have a universal joint structure and absorb the thermal expansion of the inner casing. Further, since the connecting rod 33 is thermally expanded in the same manner as the outer valve casing, the relative position between the inner joint 34 and the connecting rod 33 hardly changes.
[0030]
Further, in the modification shown in FIG. 4, a tropical zone 36 made of the same material as the inner casing is provided between the inner valve casing IC and the seal rings 28b and 28c. A gap is provided between the tropical zone 36 and the inner valve casing to reduce the temperature of the contact surface with the seal ring 28 and reduce the temperature deterioration of the seal rings 28 and 28c.
[0031]
In the above description, the steam valve device of the present invention has been described with an example of the main steam stop valve. However, an essentially similar structure can also be used as an adjusting valve and an intercept valve. Therefore, the steam valve of the present invention having the structure described with reference to FIGS. 1 to 4 is used for any of the steam valves 101 to 106 of the steam turbine power plant described with reference to the system diagram of FIG. The inventive steam turbine power plant is obtained.
[0032]
【The invention's effect】
As described above, according to the present invention, the high-temperature / high-pressure steam valve has an inner / outer double valve casing structure, and the pressurized / cooling fluid is introduced into the outer steam chamber defined by the outer valve casing. The pressure resistance burden and the heat resistance burden of the outer valve casing are alleviated significantly, and the casing material can be optimized. As a result, according to the present invention, it is possible to obtain a steam valve device capable of stably controlling high-temperature and high-pressure steam, and a steam turbine power plant including the same, although it is relatively economical. In addition, the steam valve device is made compact by providing an orifice in the inner valve casing near the valve seat, adiabatic expansion of the main steam through the orifice, and using a low-temperature and low-pressure steam flow as the pressurized cooling fluid. The erosion of the valve main part can be effectively prevented.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an embodiment of a steam valve of the present invention.
FIG. 2 is an external perspective view of the steam valve of FIG.
FIG. 3 is a cross-sectional view of another embodiment of the steam valve of the present invention.
FIG. 4 is a cross-sectional view of another embodiment of the steam valve of the present invention.
FIG. 5 is a system diagram of a steam turbine power plant equipped with a steam flow control system including a steam valve of the present invention.
FIG. 6 is a cross-sectional view of a conventional steam valve.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steam valve casing 2 Upper cover 3 Bolt 4 Pressure vessel 5 Valve rod 6 Valve body 7 Guide piece 8 Stoner 9 Valve seat 10 Drain 11 before valve seat Drain 12 after valve seat Inlet pipe (part)
13 Outlet pipe (part)
21 Central casing 22 Inner top lids 24, 25 Flange 27 Outer valve casing members 28a to 28c Seal mechanism 29 Orifice 30 Holding mechanism 31 Pressure adjustment valve 32 Valve stem leak-off IC Inner valve casing OC Outer valve casing

Claims (13)

内側に主蒸気流路となる内側蒸気室を設けるとともに弁座および弁座に対し進退自在に設けられた弁体を収容する内側弁ケーシングと、該内側弁ケーシングの主要部を包囲する外側蒸気室を区画する外側弁ケーシングとを有し、該内側弁ケーシングと外側弁ケーシングとを相対的に高温耐熱鋼および低温耐熱鋼によりそれぞれ形成するとともに、外側蒸気室には加圧冷却流体を導入するように構成したことを特徴とする蒸気弁装置。  An inner steam chamber that is provided with an inner steam chamber serving as a main steam flow path and accommodates a valve seat and a valve body that can be moved forward and backward with respect to the valve seat, and an outer steam chamber that surrounds a main portion of the inner valve casing An outer valve casing that divides the inner valve casing and the outer valve casing from a relatively high temperature heat resistant steel and a low temperature heat resistant steel, respectively, and a pressurized cooling fluid is introduced into the outer steam chamber. A steam valve device characterized by comprising 内側弁ケーシングには、内外蒸気室を連通させるオリフィスを設け、該オリフィスを通じて内側蒸気室内の蒸気の一部を膨張させて加圧冷却流体としての相対的に低温・低圧な蒸気を外側蒸気室に導入するようにした請求項1に記載の蒸気弁装置。  The inner valve casing is provided with an orifice for communicating the inner and outer steam chambers, and a part of the steam in the inner steam chamber is expanded through the orifice so that relatively low-temperature and low-pressure steam as a pressurized cooling fluid is supplied to the outer steam chamber. The steam valve device according to claim 1, wherein the steam valve device is introduced. 内側弁ケーシングの弁座に近接する上流側部位に前記オリフィスを開口させ該オリフィスを弁座前ドレンとしても作用させる請求項2に記載の蒸気弁装置。  The steam valve device according to claim 2, wherein the orifice is opened at an upstream side portion adjacent to the valve seat of the inner valve casing, and the orifice also acts as a drain before the valve seat. 高温耐熱鋼がオーステナイト系合金鋼またはNi基耐熱合金鋼であり、低温耐熱鋼が低合金鋼である請求項1〜3のいずれかに記載の蒸気弁装置。  The steam valve device according to any one of claims 1 to 3, wherein the high-temperature heat-resistant steel is austenitic alloy steel or Ni-base heat-resistant alloy steel, and the low-temperature heat-resistant steel is low-alloy steel. 外側弁ケーシングを主蒸気入口管の中心線上で分割する構造とした請求項1〜4のいずれかに記載の蒸気弁装置。  The steam valve device according to any one of claims 1 to 4, wherein the outer valve casing is divided on the center line of the main steam inlet pipe. 分割された外側弁ケーシングが互いにフランジ部を有し、フランジ継手により継合された構造を有する請求項5に記載の蒸気弁装置。  The steam valve device according to claim 5, wherein the divided outer valve casings have a flange portion and are joined by a flange joint. 内側弁ケーシングを構成する主蒸気入口管と主蒸気出口管とを結ぶ主蒸気流路を概ねL字状に直交させ、主蒸気入口管と主蒸気出口管における外側弁ケーシングとの接合部にシール機構を設けた請求項1〜5のいずれかに記載の蒸気弁装置。  The main steam flow path connecting the main steam inlet pipe and the main steam outlet pipe constituting the inner valve casing is substantially orthogonal to the L shape, and a seal is provided at the joint between the main steam inlet pipe and the outer valve casing in the main steam outlet pipe. The steam valve device according to any one of claims 1 to 5, wherein a mechanism is provided. シール機構を分割構造とした請求項7に記載の蒸気弁装置。  The steam valve device according to claim 7, wherein the seal mechanism has a divided structure. 内側弁ケーシング外壁とシール機構との間に遮熱帯を配置してなる請求項7または8に記載の蒸気弁装置。  The steam valve device according to claim 7 or 8, wherein a tropical zone is arranged between the outer wall of the inner valve casing and the seal mechanism. 主蒸気入口管の中心線を含む平面上の外側弁ケーシングとの対向位置に内側弁ケーシングの重量支持点を設ける請求項1〜9のいずれかに記載の蒸気弁装置。  The steam valve device according to any one of claims 1 to 9, wherein a weight support point of the inner valve casing is provided at a position facing the outer valve casing on a plane including the center line of the main steam inlet pipe. 内側弁ケーシングの重量支持点と外側弁ケーシングの対向位置との間に剛継手保持機構を有する請求項10に記載の蒸気弁装置。  The steam valve device according to claim 10, further comprising a rigid joint holding mechanism between a weight support point of the inner valve casing and an opposed position of the outer valve casing. 内側弁ケーシングの重量支持点と外側弁ケーシングの非対向位置との間に角度可変継手保持機構を有する請求項10に記載の蒸気弁装置。  The steam valve device according to claim 10, further comprising a variable angle joint holding mechanism between a weight support point of the inner valve casing and a non-opposing position of the outer valve casing. 蒸気タービンと、請求項1〜12のいずれかに記載の蒸気弁装置を少なくとも一つ含む該蒸気タービンへの駆動蒸気流制御システムを備えた蒸気タービン発電プラント。  A steam turbine power plant including a steam turbine and a drive steam flow control system for the steam turbine including at least one steam valve device according to any one of claims 1 to 12.
JP2003205023A 2003-07-31 2003-07-31 Steam turbine power plant having a steam valve device and a steam flow control system including the steam valve device Expired - Fee Related JP4208661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003205023A JP4208661B2 (en) 2003-07-31 2003-07-31 Steam turbine power plant having a steam valve device and a steam flow control system including the steam valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003205023A JP4208661B2 (en) 2003-07-31 2003-07-31 Steam turbine power plant having a steam valve device and a steam flow control system including the steam valve device

Publications (2)

Publication Number Publication Date
JP2005048639A JP2005048639A (en) 2005-02-24
JP4208661B2 true JP4208661B2 (en) 2009-01-14

Family

ID=34263824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003205023A Expired - Fee Related JP4208661B2 (en) 2003-07-31 2003-07-31 Steam turbine power plant having a steam valve device and a steam flow control system including the steam valve device

Country Status (1)

Country Link
JP (1) JP4208661B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132560A (en) * 2010-12-20 2012-07-12 Alstom Technology Ltd High temperature steam valve

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1327158C (en) * 2005-08-03 2007-07-18 南京汉唐机电设计研究有限公司 Desuperheating and decompressing device for steam
JP4619958B2 (en) * 2006-01-20 2011-01-26 株式会社東芝 Steam turbine control valve and steam turbine power plant
JP5022887B2 (en) * 2007-12-25 2012-09-12 株式会社東芝 Steam valve device and steam turbine plant
JP5047096B2 (en) * 2008-08-11 2012-10-10 三菱重工業株式会社 Steam valve device
JP5072767B2 (en) * 2008-08-11 2012-11-14 三菱重工業株式会社 Steam valve for steam turbine
JP5175806B2 (en) * 2009-07-03 2013-04-03 株式会社東芝 Steam valve
JP5984464B2 (en) * 2012-04-05 2016-09-06 三菱日立パワーシステムズ株式会社 Steam valve and steam turbine
CN103016813B (en) * 2012-12-07 2015-07-08 上海电气电站设备有限公司 High temperature and high pressure valve structure of steam turbine
CN104677688A (en) * 2015-03-19 2015-06-03 山东钢铁股份有限公司 Low-temperature crystalline material online-sampling device
CN104864155A (en) * 2015-03-26 2015-08-26 苏州固基电子科技有限公司 High temperature resistant electromagnetic valve
CN106337941B (en) * 2016-10-10 2018-08-03 中国矿业大学 A kind of heat dissipation pressure reducing valve certainly
CN109339965B (en) * 2018-12-19 2021-07-23 重庆红江机械有限责任公司 Pressure control valve for common rail system
WO2021049507A1 (en) * 2019-09-11 2021-03-18 愛三工業株式会社 Valve device
KR102256165B1 (en) * 2019-10-07 2021-05-26 한국수력원자력 주식회사 Pilot operated safety relief valve for nuclear power plant equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132560A (en) * 2010-12-20 2012-07-12 Alstom Technology Ltd High temperature steam valve

Also Published As

Publication number Publication date
JP2005048639A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
JP4208661B2 (en) Steam turbine power plant having a steam valve device and a steam flow control system including the steam valve device
US6263662B1 (en) Combined cycle power generation plant and cooling steam supply method thereof
US7195443B2 (en) Variable pressure-controlled cooling scheme and thrust control arrangements for a steam turbine
RU2467250C2 (en) Operating method of combined-cycle turbine plant, and combined-cycle turbine plant designed for that purpose
JP4619958B2 (en) Steam turbine control valve and steam turbine power plant
JP4681598B2 (en) Power plant with coal combustion chamber
JP6457819B2 (en) Steam turbomachinery valve having a valve member and a seal assembly
KR101984438B1 (en) A water supply method, a water supply system that executes this method, and a steam generation facility having a water supply system
JPH06229209A (en) Gas-steam turbine composite equipment and operating method thereof
JP5047096B2 (en) Steam valve device
WO2014026995A2 (en) System and method for temperature control of reheated steam
JP2009162177A (en) Steam valve and power generation unit
US6851265B2 (en) Steam cooling control for a combined cycle power plant
JP2005315122A (en) Steam turbine
JP5822964B2 (en) Steam valve and steam turbine
JP2008248808A (en) Power generation system
JP5984464B2 (en) Steam valve and steam turbine
Campbell et al. The Eddystone superpressure unit
JP2003503635A (en) Structural component and method for guiding media under high temperature and high pressure
JP4363955B2 (en) Butterfly valve type steam valve and steam turbine plant using the same
RU2490479C2 (en) Single-cylinder extraction turbine for combined-cycle plant
Valamin et al. Cogeneration turbine unit with a new T-295/335-23.5 steam turbine
JP2004346932A (en) Steam turbine, its cooling method and steam turbine plant
JP2006242522A (en) Steam supply device and method
Rosenkranz et al. Balancing economics and environmental friendliness-the challenge for supercritical coal-fired power plants with highest steam parameters in the future

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081021

R151 Written notification of patent or utility model registration

Ref document number: 4208661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees