EP2651618A2 - Verfahren zur herstellung von lichtleitkörpern und deren verwendung in beleuchtungseinheit - Google Patents

Verfahren zur herstellung von lichtleitkörpern und deren verwendung in beleuchtungseinheit

Info

Publication number
EP2651618A2
EP2651618A2 EP11790897.0A EP11790897A EP2651618A2 EP 2651618 A2 EP2651618 A2 EP 2651618A2 EP 11790897 A EP11790897 A EP 11790897A EP 2651618 A2 EP2651618 A2 EP 2651618A2
Authority
EP
European Patent Office
Prior art keywords
light guide
light
nozzle
μπι
lighting unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11790897.0A
Other languages
German (de)
English (en)
French (fr)
Inventor
Markus Parusel
Günther Dickhaut
Thomas Pfaff
Helmut Häring
Michael Enders
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roehm GmbH Darmstadt
Original Assignee
Evonik Roehm GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Roehm GmbH filed Critical Evonik Roehm GmbH
Publication of EP2651618A2 publication Critical patent/EP2651618A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0011Combinations of extrusion moulding with other shaping operations combined with compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • B29C48/31Extrusion nozzles or dies having a wide opening, e.g. for forming sheets being adjustable, i.e. having adjustable exit sections
    • B29C48/313Extrusion nozzles or dies having a wide opening, e.g. for forming sheets being adjustable, i.e. having adjustable exit sections by positioning the die lips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/002Combinations of extrusion moulding with other shaping operations combined with surface shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • B29K2995/0073Roughness, e.g. anti-slip smooth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3475Displays, monitors, TV-sets, computer screens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces

Definitions

  • the present invention relates to a method for
  • the present invention relates to a
  • Light guide serve in particular for planar
  • LCD liquid crystal displays
  • Light guide bodies are the subject of EP 800 036.
  • EP 656 548 discloses light-conducting bodies which use polymer particles as scattering bodies.
  • EP 1022129 discloses light-conducting bodies comprising a particle-free, light-conducting layer
  • the equipped layer having a thickness in the range of 10 to 1500 ⁇ comprises barium sulfate particles. According to this principle, the light is transmitted through the PMMA layer
  • Plate thickness of the previously described light guide leads to a very strong decrease in the luminance relative to the direction of extension of the incident light. As a result, a very inhomogeneous lighting is obtained, the
  • Another object of the present invention was to provide a simple and inexpensive method for producing light bodies which can be easily adapted in size and shape to the requirements.
  • Light guide body according to the invention have a thickness
  • the method is characterized in that it is a
  • the plant used according to the invention may also have the following optional components: a
  • Melt pump a melt filtration, a static mixing element and / or a winder.
  • system used in the method according to the invention is characterized in that the
  • Flat film nozzle has a die lip with adjusting elements for adjusting the nozzle lip width, and the
  • Adjusting elements have a distance of 5 to 20 mm, preferably from 11 to 15 mm to each other.
  • the gap of the die lip can be finely adjusted over the entire width of the die lip by means of the adjusting elements.
  • a so-called flex lip or Flexdüsenlippe The nozzle body used in the method according to the invention has an outer geometry which is adapted to the shape of the smoothing rollers (Fig.l). This can be a
  • the flanks of the nozzle body can also be rounded so that they assume the shape of the smoothing rollers complementary. As shown by way of example in FIG. 2, this can also be asymmetrical only with respect to one of the first two
  • the distance from the melt outlet edge to the smoothing gap is set of less than 100 mm, preferably less than 80 mm, and in particular embodiments of less than 60 mm. Surprisingly, it has been found that a particularly good film quality, in particular with regard to the surface quality, can be achieved by particularly small distances between the melt outlet edge and the smoothing gap.
  • the distance from the melt outlet edge to the calendering nip is defined in the context of this invention as the distance (6 in Fig. 2) between the melt outlet edge and the point in the middle between the calender rolls, which is the smallest distance (7 in Fig. 2) to the two Has smoothing rollers.
  • the present invention relates to a
  • Calender is aligned by laser. This ensures that the parallel deviation of the nozzle to the smoothing rollers, measured at the two ends of a
  • the nozzle outsides are in this case, the two flanks of the flat foil nozzle, each parallel to the two smoothing rolls.
  • the method is characterized in that the difference between the thinnest and the thickest point of the light guide is at most 8 ⁇ , preferably at most 5 ⁇ and more preferably at most 4 ⁇ .
  • the light guide bodies according to the invention are distinguished by the fact that the thickness deviation in the light guide body is at most 4%, preferably at most 3%.
  • the thickness deviation is determined starting from the thinnest point of the light guide.
  • Deviation of 3% thus means that the thickness of the thickest point of the light guide is allowed to be at most 3% greater than the thickness of the thinnest point.
  • the light guide produced by a method according to the present invention a particularly high resistance to weathering, especially against UV irradiation. Furthermore, the light guide body over the entire
  • Light-guiding bodies is also particularly simple and inexpensive to perform.
  • a hot melt is extruded from the die of the extruder to a gap between two smoothing rolls.
  • melt for example, depends on the composition of the mixture and therefore can vary widely.
  • Preferred temperatures of the PMMA molding compound to for the nozzle inlet are in the range of 150 to 300 ° C, more preferably in the range of 180 to 270 ° C and most preferably in the range of 200 to 220 ° C.
  • the temperature of the smoothing rollers is preferably less than or equal to 150 ° C, preferably between 60 ° C and 140 ° C.
  • the temperature of the nozzle is selected to be higher than the temperature of the mixture before the nozzle inlet.
  • the nozzle temperature is preferably set higher by 10 ° C., particularly preferably by 20 ° C. and very particularly preferably by 30 ° C., than the temperature of the mixture before the nozzle inlet. Accordingly, preferred temperatures of the die are in the range of 160 ° C to 330 ° C, more preferably 190 ° C to 300 ° C.
  • the calender used in the invention consists of two or three smoothing rollers. Smoothing rollers are well known in the art, with polished rollers used to obtain a high gloss. In the process according to the invention, however, other rolls can also be used as a smoothing roll. Through the gap between the two first smoothing rollers, a film is formed, which is the simultaneous cooling to a film.
  • FIG. 1 schematically depicts an embodiment with three smoothing rollers.
  • chrome surfaces and in particular by the fact that these chrome surfaces have a roughness Ra (according to DIN 4768) less than 0.10 ⁇ , preferably less than 0.08 ⁇ .
  • the pressure with which the molten mixture is pressed into the nozzle can be controlled by the speed of the screw. The pressure is in
  • the speed with which the films can be obtained according to the invention is generally greater than 5 m / min, in particular greater than 10 m / min.
  • a melt pump can additionally be installed before the
  • a filter is optionally arranged before the melt enters the nozzle.
  • the mesh size of the filter is generally based on the
  • a static mixing element can be installed in front of the flat film nozzle.
  • components such as pigments, stabilizers or additives can be mixed into the polymer melt or up to 5% by weight of a second polymer, for example in the form of a melt from a second extruder, can be mixed with the PMMA.
  • the molding compositions used to produce the methacrylate-based light-guiding bodies produced according to the invention are molding compositions which consist of at least 80% by weight, preferably at least 90% by weight and more preferably at least 95% by weight of polymethyl methacrylate (hereinafter PMMA for short) and none
  • These polymers are generally obtained by free radical polymerization of mixtures containing methyl methacrylate. In general, these mixtures contain at least 80% by weight, preferably at least 90% by weight and more preferably at least 95% by weight, based on the weight of the monomers, of methyl methacrylate.
  • these mixtures may contain further (meth) acrylates which are copolymerizable with methyl methacrylate.
  • the term (meth) acrylates include methacrylates and acrylates as well as mixtures of both.
  • compositions to be polymerized may also be further
  • the unsaturated monomers that are copolymerizable with methyl methacrylate and the aforementioned (meth) acrylates include, inter alia, 1-alkenes, acrylonitrile, vinyl acetate, styrene, substituted styrenes, vinyl ethers or divinylbenzene. All of the stated monomers are preferably used in a high purity.
  • the weight-average molecular weight M w of the homo- and / or copolymers to be used according to the invention can vary within wide limits, the
  • Molecular weight is usually tailored to the application purpose and the processing of the molding material. In general, however, it is in the range between 20,000 and 1,000,000 g / mol, preferably 50,000 to 500,000 g / mol, and more preferably 80,000 to 300,000 g / mol, without this being intended to restrict this.
  • Weight average molecular weight becomes medium
  • Differ monomer composition Such particularly preferred molding compositions are commercially available under the trade name PLEXIGLAS ® from Evonik Röhm GmbH.
  • the molding compositions may contain conventional additives.
  • additives include, but are not limited to, antistatic agents, antioxidants, light stabilizers and organic phosphorus compounds, weathering agents and plasticizers.
  • antistatic agents antioxidants, light stabilizers and organic phosphorus compounds, weathering agents and plasticizers.
  • amount of additives is the application purpose
  • optical waveguide at most 5 wt .-% and particularly preferably at most 2 wt .-% additives, wherein optical waveguide, which comprise substantially no additives surprisingly show exceptional performance.
  • the form is
  • Light guide as a multilayer, preferably as
  • One layer represents the already executed PMMA light guide with the
  • the guide body is a coextrudate with at least one PMMA layer and at least one PVDF layer.
  • Quantities of the composition refer exclusively to the PMMA layer.
  • the light guide body In addition to the procedure carried out are also the
  • Light guide produced by the method according to the invention, and lighting units produced therefrom part of this invention.
  • a lighting unit according to the invention comprises at least one light source and at least one light guide body.
  • the light-conducting body consists of at least 80% by weight, preferably at least 90% by weight and particularly preferably at least 95% by weight, of PMMA and contains no impact modifiers.
  • the light guide body has a thickness between 100 ⁇ and 1 mm, preferably between 125 ⁇ and 500 ⁇ , more preferably in the range of 100 ⁇ to 300 ⁇ . on. The difference between the thinnest and the
  • the optical attenuation measured by a method according to a further below measuring method on a 0.5 mm thick film at a wavelength of 730 nm is less than 10000 db / km, preferably less than 9000 db / km and most preferably less than 8000 db / km. These values can be extrapolated to other thicknesses.
  • the thickness here refers to the mean value of the smallest dimension of the optical waveguide measured perpendicular to the light propagation direction.
  • the thickness can be determined by means of a stirrup micrometer or similar
  • the illumination units are preferably distinguished by the fact that the thickness deviation in the light guide body is at most 3% and the yellowness of the light guide body (calculation according to DIN 6167, measurement according to DIN 5033) measured at Ü [D65 / IO °] smaller than 1, preferably smaller than 0.75 , more preferably less than 0.5 and especially
  • the light source is preferably one or more light-emitting diodes (LED). These are particularly preferably positioned on the edge of the light guide body.
  • the light guide bodies of the present invention have at least one light introduction surface and at least one light exit surface, the light introduction surfaces preferably having one or more outer edges of the light guide surface
  • the light can also be transmitted through a prism
  • the light can be irradiated over all four edge surfaces. This may be necessary in particular for very large light-guiding bodies. In the case of smaller light-conducting bodies, one or two light sources are generally sufficient.
  • the light introduction surface is capable of light in the
  • the surface of preferred light guide bodies formed parallel to the light exit surface comprises a region with structures and an area without structures, beyond which
  • Light guide bodies can therefore have very well defined
  • Regions of the surface intentionally emit light, which was coupled via the light introduction surface.
  • the surface which is formed perpendicular to the light propagation direction, in addition to a light exit surface also have a surface over which only a small proportion of the incident light
  • a small proportion means that the luminance in this area of the surface is at most 20%, particularly preferably at most 10% of that on the surface
  • Light exit surface maximum measured luminance is. Areas with a low luminance do not count to the light exit surface.
  • the ratio of light exit surface to light introduction surface is generally at least 1,
  • the light guide body may have a tabular shape
  • the smallest extent here is the thickness of the board.
  • the largest extent is defined as length, so that the third dimension represents the width. From this it follows that the light exit surface of this embodiment is defined by the surface which corresponds to the product of length by width.
  • the edge surfaces of the panel each defined as the surface formed by the product of length times thickness or width times thickness, can generally serve as a light entrance surface. Preferably, the edge surfaces serving as the light entrance surface are polished.
  • Such a light guide body preferably has a length in the range from 20 mm to 3000 mm, preferably from 30 to 2000 mm and particularly preferably from 50 to 100 mm.
  • the width of this particular embodiment is in the
  • the invention is characterized by:
  • Has surface of the light guide structuring and a contrast between the structured surface of the light guide and the non-structured surface of the light guide is present.
  • the structuring can after the production of the
  • Structuring can be achieved in the production of the films by using rolls having a negative of structuring.
  • Light emission surface includes impurities that are able to decouple light. For example, points or notches can be applied.
  • the light exit surface can also be roughened.
  • the structurings have a depth in the range of
  • Light propagation direction trained surface also areas without structures include. Areas of the surface over which a slight, preferably no light extraction should take place, preferably have a roughness Ra less than 0.10 ⁇ , preferably less than 0.08 ⁇ on.
  • the density of the structuring can be over the entire
  • the density change can be chosen to be much lower, since the
  • BLU Back Light Unit
  • LGP Light Guide Panel
  • the measurement is performed on a Varian Cary 5000, equipped with an integration ball DRA2500.
  • the measurement is made on film strips with a thickness of 0.5 mm, a width of 15 mm and a length of up to 970 mm.
  • Spectrophotometer initiated in the face of the film sample. At the opposite end of the strip, the optically attenuated light falls into the integration sphere and is measured by the detector. In order to obtain a usable measurement signal, the light coupling into the very small area of the foil front side (for example 15 mm * 0.5 mm foil thickness) must be laid to the most intense point of the measuring beam. This necessary change in the beam path prevents the acquisition of a conventional baseline.
  • Intensities are measured, which consist of the transmission through the film and the coupling losses.
  • Auskoppelkoppellag en be compensated for the same. Measurements are made by first measuring a long strip (970 mm), which is then shortened to 530 mm and re-measured. As a result, the optical attenuation, taking into account the length difference and the detected intensities, is calculated as follows
  • the determination of the measured value is carried out by
  • Fig.2 Clarification of the distances nozzle lip to calender

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Planar Illumination Modules (AREA)
  • Light Guides In General And Applications Therefor (AREA)
EP11790897.0A 2010-12-13 2011-11-11 Verfahren zur herstellung von lichtleitkörpern und deren verwendung in beleuchtungseinheit Withdrawn EP2651618A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010062900A DE102010062900A1 (de) 2010-12-13 2010-12-13 Verfahren zur Herstellung von Lichtleitkörpern und deren Verwendung in Beleuchtungseinheit
PCT/EP2011/069893 WO2012079865A2 (de) 2010-12-13 2011-11-11 Verfahren zur herstellung von lichtleitkörpern und deren verwendung in beleuchtungseinheit

Publications (1)

Publication Number Publication Date
EP2651618A2 true EP2651618A2 (de) 2013-10-23

Family

ID=45093700

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11790897.0A Withdrawn EP2651618A2 (de) 2010-12-13 2011-11-11 Verfahren zur herstellung von lichtleitkörpern und deren verwendung in beleuchtungseinheit

Country Status (12)

Country Link
US (1) US9442237B2 (ja)
EP (1) EP2651618A2 (ja)
JP (1) JP5930326B2 (ja)
KR (2) KR20150119481A (ja)
CN (1) CN103328182B (ja)
BR (1) BR112013014768A2 (ja)
DE (1) DE102010062900A1 (ja)
HK (1) HK1187306A1 (ja)
IL (1) IL226887A (ja)
MX (1) MX336822B (ja)
TW (1) TWI623409B (ja)
WO (1) WO2012079865A2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009027288A1 (de) 2009-06-29 2010-12-30 Evonik Röhm Gmbh Lichtleitplatte mit eingebetteten lichtstreuenden Störstellen und Verfahren zu dessen Herstellung
US20120051696A2 (en) 2010-04-08 2012-03-01 Evonik Roehm Gmbh Light guide body having high luminous intensity and high transparency
DE102011088835A1 (de) 2011-12-16 2013-06-20 Evonik Industries Ag Verfahren zur Herstellung von Lichtleitkörpern und deren Verwendung in Beleuchtungseinheit
US9902644B2 (en) 2014-06-19 2018-02-27 Corning Incorporated Aluminosilicate glasses
EP3075803A1 (de) * 2015-03-31 2016-10-05 Evonik Röhm GmbH Abzugssichere sicherheitsfolie mit hoher transparenz und ohne sollbruchstellen
JP6571412B2 (ja) 2015-06-29 2019-09-04 東芝機械株式会社 光学シート成形装置、光学シート成形方法
JP6917680B2 (ja) 2016-04-27 2021-08-11 芝浦機械株式会社 光学シート成形装置、光学シート成形方法
CN109866376A (zh) * 2017-12-04 2019-06-11 六安市路安包装制品有限公司 一种充气薄膜的挤出装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002085980A1 (en) * 2001-04-20 2002-10-31 Plaskolite, Inc. High heat distortion temperature methacrylate polymer blends
WO2005107363A2 (en) * 2004-04-30 2005-11-17 Oy Modilis Ltd. Ultrathin lighting element
DE102005020424A1 (de) * 2005-04-29 2006-11-02 Röhm Gmbh Verfahren zur Herstellung einer Folie aus thermoplastischem Kunststoff, Folie und Verwendung der Folie
EP2063296A2 (en) * 2007-11-08 2009-05-27 SKC Haas Display Films Co., Ltd. Integrated backlight illumination assembly
US20100258419A1 (en) * 2009-04-10 2010-10-14 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Light guide film with cut lines

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US486361A (en) * 1892-11-15 Joseph t
US2938231A (en) * 1958-10-02 1960-05-31 Blaw Knox Co Plastic extrusion die
DE1504266A1 (de) * 1965-04-02 1969-06-04 Hoechst Ag Verfahren und Vorrichtung zur Herstellung von Kunststoff-Folien nach dem Extrudierverfahren und mit anschliessender Walzbehandlung
US3408694A (en) * 1966-08-25 1968-11-05 Stewart Bolling & Co Inc Extruder
DE2450225C3 (de) * 1974-10-23 1986-07-10 Hermann Berstorff Maschinenbau Gmbh, 3000 Hannover Extruder-Kalander zum Verarbeiten von plastischen Massen
US4226904A (en) * 1978-11-27 1980-10-07 Produits Chimiques Ugine Kuhlmann Polymethyl methacrylate-polyvinylidene fluoride laminates and method
DE2937204C2 (de) * 1979-09-14 1982-09-02 Werner & Pfleiderer, 7000 Stuttgart Extrudermaschine mit Breitspritzkopf und zugeordnetem Kalander
DE2947250C2 (de) * 1979-11-23 1983-12-01 Werner & Pfleiderer, 7000 Stuttgart Unmittelbar einem Extruder nachgeordnetes Walzwerk
NL8501127A (nl) * 1985-04-18 1986-11-17 Kunststofverwerkende Ind Katan Vliegtuigruit.
DE3805774A1 (de) * 1988-02-24 1989-09-07 Sigmund Boos Schlitzduese, insbesondere breitschlitzduese, fuer extrudieranlagen in der kunststoffindustrie
DE8813801U1 (de) 1988-11-04 1988-12-22 Röhm GmbH, 6100 Darmstadt Verstellbare Extrusionsschlitzdüse
DE4009917C1 (ja) * 1990-03-28 1991-11-21 Paul Troester Maschinenfabrik, 3000 Hannover, De
DE4110060A1 (de) 1991-03-27 1992-10-01 Hoechst Ag Verfahren und vorrichtung zum vergleichmaessigen der dicke einer folie
JPH07130208A (ja) 1993-10-29 1995-05-19 Hayashi Telempu Co Ltd 自動車用光源装置
DE9318362U1 (de) 1993-12-01 1994-02-03 Roehm Gmbh Gleichmäßig ausgeleuchtete Lichtleiterplatten
US5424018A (en) * 1994-01-13 1995-06-13 General Electric Company Variable width die and method for extruding sheet products
JP2996882B2 (ja) 1994-10-20 2000-01-11 東芝機械株式会社 熱変位式tダイ
JPH091631A (ja) * 1995-06-16 1997-01-07 Kobe Steel Ltd ローラヘッド押出機のシート幅調整装置
US5779962A (en) 1996-04-01 1998-07-14 Minnesota Mining And Manufacturing Company Extruding thin multiphase polymer films
JPH09325221A (ja) 1996-04-04 1997-12-16 Hitachi Cable Ltd 照明装置
DE19836800A1 (de) 1998-08-14 2000-02-17 Roehm Gmbh Optisch isotrope Polycarbonat-Folien sowie Verfahren zu deren Herstellung
IT1307920B1 (it) 1999-01-22 2001-11-29 Atochem Elf Sa Compositi diffondenti la luce.
US6406285B1 (en) 1999-10-21 2002-06-18 Welex Incorporated Apparatus for measuring and of controlling the gap between polymer sheet cooling rolls
DE10156068A1 (de) 2001-11-16 2003-05-28 Roehm Gmbh Lichtleitkörper sowie Verfahren zu dessen Herstellung
DE10222250A1 (de) 2002-05-16 2003-11-27 Roehm Gmbh Verbesserte Lichtleitkörper sowie Verfahren zu dessen Herstellung
JP4088135B2 (ja) * 2002-10-29 2008-05-21 積水化学工業株式会社 光学フィルムの製造方法
CN2642494Y (zh) * 2003-08-25 2004-09-22 平湖伟峰科技有限责任公司 挤出机动态调幅装置
DE10340040A1 (de) 2003-08-28 2005-03-31 Schefenacker Vision Systems Germany Gmbh & Co. Kg Beleuchtungseinheit mit Lichtleitkörper und integrierter optischer Linse
JP2005144771A (ja) * 2003-11-13 2005-06-09 Jsr Corp 表面意匠性フィルムまたはシートの製造方法、および表面意匠性フィルムまたはシート
US20060121154A1 (en) * 2004-09-30 2006-06-08 Duane Manning Laser device for alignment of a nozzle tip within injection molding and extrusion equipment
JPWO2006046638A1 (ja) 2004-10-28 2008-05-22 旭化成ケミカルズ株式会社 導光板及びその製造方法
JP5092265B2 (ja) * 2006-04-12 2012-12-05 住友化学株式会社 導光板の製造方法
US20090240047A1 (en) * 2006-04-19 2009-09-24 Fujifilm Corporatio Cellulosic resin film and process for producing the same
DE102006025481A1 (de) * 2006-05-30 2007-12-06 Röhm Gmbh Verfahren zur Herstellung einer eingefärbten Folie aus thermoplastischem Kunststoffen, Folie und Verwendung der Folie
KR100730415B1 (ko) * 2006-12-20 2007-06-19 제일모직주식회사 광학필름 제조장치 및 이를 이용한 광학필름 제조방법
TW200827852A (en) * 2006-12-28 2008-07-01 Ind Tech Res Inst Coupling device
JP4843592B2 (ja) * 2007-10-22 2011-12-21 出光興産株式会社 ポリカーボネート樹脂組成物及び導光板
JP2009107180A (ja) 2007-10-29 2009-05-21 Kaneka Corp 光学フィルムの製造方法および光学フィルム
KR20100000799A (ko) * 2008-06-25 2010-01-06 엘지디스플레이 주식회사 액정표시장치의 도광판 제조방법
JP2010091646A (ja) * 2008-10-06 2010-04-22 Toray Ind Inc 光学用フィルムおよびその製造方法
CN101380820A (zh) * 2008-10-08 2009-03-11 中国化学工业桂林工程有限公司 宽幅胶片挤出压延机组
DE102009027288A1 (de) 2009-06-29 2010-12-30 Evonik Röhm Gmbh Lichtleitplatte mit eingebetteten lichtstreuenden Störstellen und Verfahren zu dessen Herstellung
CN201494019U (zh) * 2009-08-19 2010-06-02 常州金海塑业有限公司 一种门幅可调式塑料加工模具
US20120051696A2 (en) 2010-04-08 2012-03-01 Evonik Roehm Gmbh Light guide body having high luminous intensity and high transparency

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002085980A1 (en) * 2001-04-20 2002-10-31 Plaskolite, Inc. High heat distortion temperature methacrylate polymer blends
WO2005107363A2 (en) * 2004-04-30 2005-11-17 Oy Modilis Ltd. Ultrathin lighting element
DE102005020424A1 (de) * 2005-04-29 2006-11-02 Röhm Gmbh Verfahren zur Herstellung einer Folie aus thermoplastischem Kunststoff, Folie und Verwendung der Folie
EP2063296A2 (en) * 2007-11-08 2009-05-27 SKC Haas Display Films Co., Ltd. Integrated backlight illumination assembly
US20100258419A1 (en) * 2009-04-10 2010-10-14 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Light guide film with cut lines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2012079865A2 *

Also Published As

Publication number Publication date
IL226887A (en) 2017-06-29
MX336822B (es) 2016-02-03
CN103328182A (zh) 2013-09-25
TWI623409B (zh) 2018-05-11
KR20150119481A (ko) 2015-10-23
MX2013006672A (es) 2013-07-30
US9442237B2 (en) 2016-09-13
JP2014502568A (ja) 2014-02-03
TW201238745A (en) 2012-10-01
BR112013014768A2 (pt) 2016-10-04
WO2012079865A3 (de) 2012-09-27
CN103328182B (zh) 2016-04-13
WO2012079865A4 (de) 2012-11-15
JP5930326B2 (ja) 2016-06-08
DE102010062900A1 (de) 2012-06-14
US20130343088A1 (en) 2013-12-26
HK1187306A1 (zh) 2014-04-04
KR20130101131A (ko) 2013-09-12
KR101714115B1 (ko) 2017-03-08
WO2012079865A2 (de) 2012-06-21

Similar Documents

Publication Publication Date Title
EP2651618A2 (de) Verfahren zur herstellung von lichtleitkörpern und deren verwendung in beleuchtungseinheit
EP1934283B1 (de) Licht streuende kunststoffzusammensetzung mit hoher helligkeit und deren verwendung in flachbildschirmen
DE69616916T2 (de) Flache lichtquelle und flüssigkristall-anzeigevorrichtung
DE69713747T2 (de) Lichtleiter mit optischer mehrschichtfolie
EP1940956B1 (de) Lichtstreuende folien sowie deren verwendung in flachbildschirmen
DE60021127T2 (de) Lichtstreuende Verbundwerkstoffe
DE4326521B4 (de) Lichtstreuendes Material und Verfahren zu seiner Herstellung
DE112005000835T5 (de) Lichtdiffusionsplatte mit integriertem Prisma und Verfahren zur Herstellung derselben
DE9318362U1 (de) Gleichmäßig ausgeleuchtete Lichtleiterplatten
EP2556395A1 (de) Lichtleitkörper mit hoher leuchtintensität und hoher transparenz
WO2007022905A1 (de) Licht streuende antistatische kunststoffzusammensetzung mit hoher helligkeit und deren verwendung in flachbildschirmen
EP2171532B1 (de) Lichtlenkende oberflächenstruktur
DE112004000522B4 (de) Lichtstreuplatte
WO2007039131A1 (de) Lichtstreuende kunststoffzusammensetzung mit hoher helligkeit und deren verwendung in flachbildschirmen
EP1453900B1 (de) Lichtleitkörper sowie verfahren zu dessen herstellung
DE10222250A1 (de) Verbesserte Lichtleitkörper sowie Verfahren zu dessen Herstellung
DE102009027288A1 (de) Lichtleitplatte mit eingebetteten lichtstreuenden Störstellen und Verfahren zu dessen Herstellung
EP2312383A1 (de) LED-Beleuchtungseinheit mit strukturierter Streufolie
WO2013087372A1 (de) Verfahren zur herstellung von lichtleitkörpern und ein beleuchtungseinheit
WO2008003537A1 (de) Extrudierte polymerplatten für anisotrope lichtstreuung mit hoher dimensionsstabilität
EP2985146A1 (de) Schicht-Verbund
AT503569A4 (de) Verfahren zum herstellen eines werkstücks zur flächigen, diffusen abstrahlung von quer zur abstrahlrichtung eingestrahltem licht

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130606

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20131209

DAX Request for extension of the european patent (deleted)
APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROEHM GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROEHM GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210327