EP2630224B1 - Externally structured aqueous detergent liquid - Google Patents
Externally structured aqueous detergent liquid Download PDFInfo
- Publication number
- EP2630224B1 EP2630224B1 EP11767995.1A EP11767995A EP2630224B1 EP 2630224 B1 EP2630224 B1 EP 2630224B1 EP 11767995 A EP11767995 A EP 11767995A EP 2630224 B1 EP2630224 B1 EP 2630224B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- citrus
- pulped
- composition according
- surfactant
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
- C11D3/38627—Preparations containing enzymes, e.g. protease or amylase containing lipase
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0008—Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
- C11D17/0026—Structured liquid compositions, e.g. liquid crystalline phases or network containing non-Newtonian phase
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3703—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3715—Polyesters or polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3703—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3723—Polyamines or polyalkyleneimines
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/382—Vegetable products, e.g. soya meal, wood flour, sawdust
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
- C11D3/38645—Preparations containing enzymes, e.g. protease or amylase containing cellulase
Definitions
- This invention relates to a structured aqueous detergent liquid composition
- a structured aqueous detergent liquid composition comprising water, surfactant, external structurant and enzymes, the external structurant provides rheological modification to the composition and may also be used to suspend solid materials in the liquid.
- the structurant can convey the idea of concentration by increasing low shear viscosity whilst allowing the composition to flow freely when poured.
- Solid materials can be suspended in such liquids to further reinforce the concentration message, for example the liquid can be pearlised by inclusion if mica particles or titanium dioxide particles.
- the external structurant should be capable of suspending these particles, working either alone, or in combination with another rheology modifying system.
- External structurants are also useful for less concentrated aqueous cleaning liquids.
- surfactant in excess of that required for detergency is often used for thickening and rheology modification. This is undesirable from an environmental standpoint, not only is more chemical sent to waste but frequently the excess surfactant causes the utilisation of more rinse water, which is a big issue when water is a scarce resource.
- HCO hydrogenated castor oil
- Thixcin® is sold under the trade name Thixcin® by Elementis.
- HCO is derived from chemical modification of a plant extract. Then the HCO is converted into an external structurant by crystallising it in the liquid, or in part of the liquid. This crystallisation process may impose formulation constraints, especially when using high surfactant levels. HCO structured liquids are slightly cloudy, which is undesirable when visual cues are suspended in the liquid. We have found that HCO is liable to rapid decomposition in the presence of lipase enzyme. Thus, the desirable use of this enzyme, particularly for the use disclosed in WO09153184 has been found to be incompatible with this typical external structurant.
- MFC microfibrous cellulose
- MFC suffers from other disadvantages.
- the first is that due to its very low incorporation levels it can fail to remain evenly dispersed through the liquid if air micro bubbles form and get trapped by the structuring network to buoy the MFC up.
- a process designed to try to overcome this problem is disclosed in WO09135765A (Unilever). No enzymes are used.
- the detergent formulator would prefer to avoid use of MFC due to these known processing constraints.
- US patent application US2007/0197779 discloses a structurant consisting of bacterially produced MFC combined with significant levels of carboxy methylcellulose and xanthan gum as dispersion aids.
- the MFC forms a 3-D network structure, which can suspend inert materials such as sand and nylon beads.
- the xanthan gum part of the dispersant is not a desirable ingredient for many detergent liquids. It poses constraints for inclusion of enzymes that can decompose xanthan gum. Furthermore it can have an undesirable effect in combination with cleaning and soil release polymers.
- Such polymers are proposed to be used at high concentrations in the detergent liquids described in WO09/153184 . Thus MFC is not a good choice for the external structuring of such detergent liquids with high levels of polymers.
- MFC forms nanofibres in concentrated aqueous detergent liquids. Uncertainties exist in scientific understanding of the impacts of such fibres, and associated public perception. For this reason, and because of the other disadvantages of MFC outlined previously, the skilled worker desires to find a better substitute for the lipase vulnerable HCO than MFC appears to be.
- a structured aqueous liquid detergent composition comprising:
- the composition comprises 0.16 to 0.35 wt% pulped citrus fibre.
- the external structurant is a pulped citrus fibre which has undergone a mechanical treatment comprising a step of high intensity mixing in water and which material has consequently absorbed at least 15 times its own dry weight of water, preferably at least 20 times its own weight, in order to swell it. It may be derived by an environmentally friendly process from a fruit processing waste stream. This makes it more sustainable than prior art external structurants. Furthermore, it requires no additional chemicals to aid its dispersal and it can be made as a structured premix to allow process flexibility.
- Pulped citrus fibre is much less expensive to produce than bacterial cellulose because its processing is simpler and it may be made from a waste stream, e.g. from fruit juice production.
- Citrus fruits are preferred as the source of the fibre because they have a large amount of peel that can provide material with the desired water absorbing capacity.
- the most preferred fruits are lemons and limes lemon because the natural pH of the resulting mechanical pulp is about 3.5, which allows use of potassium sorbate at low levels as an effective preservative for the premix before it is dispersed into the detergent liquid.
- the citrus fibre is mechanically pulped by processing it to make a premix preferably in combination with preservative. This is done by adding dried powdered citrus fibre to at least 15 times its own weight of water and dispersing it under very high shear to further break up the citrus fibres and to begin the process of hydration, or swelling.
- the mechanically treated citrus fibre is left in contact with the water for sufficient time for it to swell due it being fully hydrated. This can be several hours.
- pulped citrus fibre is kept separate from surfactant until it is fully swollen. This avoids the possibility for the surfactant to compete with the citrus pulp fibre for the water. Something that becomes more of a problem as the total surfactant concentration increases.
- the amount of pulped citrus fibre in the premix is preferably from 1 to 5 wt%. More preferably from 2 to 4 wt%. Depending on the processing equipment used there may be a practical upper limit of from 3.3 to 3.5 wt% as it is advantageous that there is excess water in order to fully hydrate the pulped citrus fibre.
- Pulped Citrus fibre has different in use pouring properties from other external structurants used in detergent compositions. It exhibits pronounced drainage on walls of a pack, a translucent appearance, and a slightly grainy texture on pouring. This gives a detergent liquid structured with pulped citrus fibre a different look and feel for the consumer. Such a difference is ideal to signal a major shift in liquid detergent composition; especially to a composition that requires lower usage and a change in consumer behaviour.
- pulped citrus fibre does not significantly affect the foam generated by the presence of the surfactant system. This is an advantage for formulation flexibility.
- At least one enzyme selected from lipase and cellulase is an essential feature of the detergent compositions of the invention.
- Lipase is a preferred enzyme as is known to boost performance on certain types of stains and soil when used in compositions designed to provide low in solution surfactant levels.
- suitable Lipases are Lipomax®, Lipex®, and Lipolase®.
- Preferred lipase enzymes include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola, including ones which comprise a polypeptide having an amino acid sequence which has at least 90% sequence identity with the wild-type lipase derived from Humicola lanuginosa, most preferably strain DSM 4109.
- Cellulases may be included and if they are the formulation should preferably be formulated at a pH where their activity is low. Typically this is an alkaline pH, although mildly acidic conditions of down to pH 6.5 or even as low as pH 6.2 can be tolerated.
- An advantage of pulped citrus fibre over bacterially derived microfibrous cellulose as an external structurant is that due to its lower cost and lower efficacy as a structurant the pulped citrus fibre is incorporated at much higher levels than MFC. This appears to confer the advantage of greater resistance to destabilisation of the structuring system due to attack from cellulase.
- Pulped citrus fibre provides a stable external structuring network in the presence of endoglucanase, which enables addition of this cellulase to a structured aqueous liquid either on its own, or more preferably in combination with lipase.
- Such a mix of enzymes is desirable for compositions that further comprise a soil release polymer to provide a multi wash benefit on a range of stain and fabric types.
- Concentrated laundry detergent liquids may advantageously contain such a combination.
- Cellulase improves the cleaning of cotton
- lipase improves the cleaning of oily soils from cotton and polyester and soil release polymers further boost the multi-wash cleaning benefits of the detergent composition on these fabrics.
- lipase helps remove greasy stains, especially if low surfactant levels are used.
- Cellulases help to break down many other food residues.
- the surfactant type is not limited. Synthetic detergents are preferred. Mixtures of synthetic anionic and nonionic surfactants, or wholly anionic surfactant system or admixtures of anionic surfactants with nonionic surfactants or with amphoteric or zwitterionic surfactants may be used. It is preferred for the composition to comprise anionic (non-soap) surfactant. Particularly preferred surfactant systems are mixtures of the anionic surfactants linear alkyl benzene sulphonate and sodium lauryl ether sulphate with the nonionic surfactant ethoxylated nonionic fatty alcohol. Betaines, such as sulphobetaine are advantageously used as a cosurfactant.
- the amount of surfactant may range from 0.5 to 65 wt%, preferably 2.5 to 60 wt%, more preferably from 25 to 50 wt%.
- the skilled worker will appreciate that the optimum surfactant concentration will largely depend on the product type and the intended mode of use.
- the amount of external structurant is important. Because it is added to the remainder of the ingredients in admixture with around 20 times its weight of water, it is important to keep the amount of structurant to a minimum. Below 0.15 wt%, pulped citrus fibre fails to provide adequate structuring. The precise lower limit depends to some extent on the remainder of the composition; the skilled worker will know that the aim is to obtain a system in which the rheology exhibits a critical yield stress. To ensure adequate suspending duty it is preferred that the amount of pulped citrus fibre is at least 0.2 wt%.
- the structured liquid is shear thinning. The preferred pouring viscosity being from 20 - 100 mPa.s and the yield stress or critical stress being about 0.3 Pa.
- the composition may optionally comprise suspended solid material.
- the solid material may be microcapsules such as perfume encapsulates, or care additives in encapsulated form. It may alternatively, or additionally, take the form of insoluble ingredients such as silicones, quaternary ammonium materials, insoluble polymers, insoluble optical brighteners and other known benefit agents found, for example, in EP1328616 .
- the amount of suspended solid material may be from 0.001 to up to 10 or even 20 wt%.
- a particular solid material to be suspended is a visual cue, for example the type of flat film cue described in EP13119706 . The cue may itself contain a segregated component of the composition.
- the cue must be water-soluble, yet insoluble in the composition, it is conveniently made from a modified polyvinyl alcohol that is insoluble in the presence of anionic surfactant.
- the detergent composition should comprise some anionic surfactant, preferably at least 5 wt% anionic surfactant.
- a pulped citrus fibre structured detergent liquid comprising at least 0.15 wt% pulped citrus fibre structurant and at least 0.5 wt% surfactant, the process comprising the steps of:
- the dispersal requires no addition of further dispersal aids to the premix formed in step (c).
- a preservative is added to the premix during or after step (c), particularly if the premix will be stored for some time before addition to the detergent liquid.
- compositions that are used neat, including laundry liquids used for pre-treatment and hard surface cleaning compositions of the type that are applied from a spray or pump are beneficially structured with this external structurant as it does not cause over foaming as they are applied and very low levels of surfactant can be structured.
- the structurant is compatible with the inclusion of lipase for grease removal, especially in compositions that may be left on hard surfaces for grease removal purposes and other hard surface cleaning compositions.
- the externally structured enzyme containing compositions are suitable for hand contact after dilution uses, such as hand dishwashing and hand laundry.
- Laundry detergents are generally classified as low foam, used in automatic washing machines, and high foam, used in hand wash and top loading washing machines.
- the pulped citrus fibre advantageously provides the necessary structuring without boosting foam in the low foaming compositions and yet retains adequate foam in high foaming compositions.
- the level of pulped citrus fibre in the premix preferably lies in the range 1 to 2.5 wt%.
- the amount of pulped citrus fibre preferably lies in the range of 0.15 wt% to 0.35 wt%.
- the dispersed pulped citrus fibre is biodegradable, it is advantageous to include a preservative into the premix. In any case, a preservative is normally needed in the liquid detergent composition.
- the process used leaves much of the natural cell wall intact while the sugars are removed.
- the resulting highly swelling citrus fibre materials are typically used as food additives and have been used in low fat mayonnaise.
- the pH of the dispersed powder is acidic which is ideal for use with a preservative such as potassium sorbate.
- Microscopy shows that the powdered citrus fibre material as supplied it is a heterogeneous mixture of particles with various sizes and shapes.
- the majority of the material consists of aggregated lumps of cell walls and cell wall debris.
- a number of tube-like structures with an open diameter of about 10 micron that are often arranged in clusters, can be identified.
- xylem vessels are water transport channels that are mainly located in the peel of citrus fruits.
- the xylem vessels consists of stacks of dead cells, joined together to form long tubes, 200 to 300 micron long.
- the outside of the tubes is reinforced by lignin, which is often laid down in rings or helices preventing the tubes from collapse due to the capillary forces acting on the tube walls during water transport.
- the powdered citrus fibre material Before it can be used as an external structurant it is necessary to process the powdered citrus fibre material as supplied further to break down the tubes to be more space filling. This is done by dispersing it at a low concentration into water. As mentioned previously a preservative is usefully added at this stage. This high shear dispersal opens out the sponge structure to increase the phase volume. The shear should not be high enough to lead to defibrillation. If a high-pressure homogeniser is used it should be operated between 200 and 600 bar. The more shear that is applied the less dense the resulting particles. Whilst the morphology is changed by the high shear, process aggregate size appears not to be changed. At high pressure, the fibres break down and then fill the water phase. The very high shear also forms fibrils by rubbing loose the outer parts of the cell walls and these are able to form a matrix that structures the water outside of the volume of the original fibre.
- a pulped citrus fibre structuring premix may alternatively be made using a high shear mixer, such as a Silverson.
- a high shear mixer such as a Silverson.
- One possible process passes the premix through several sequential high-shear mixing stages in order to ensure full hydration and dispersal of the citrus fibre to form the pulped citrus fibre dispersion.
- the premix can then simply be added to a partially, or formed detergent liquid premix with the surfactant and other components of the liquid detergent composition already admixed.
- Ingredients that would be held back at this stage are perfume, enzymes and any solid material that will be suspended by the external structurant. Such post-dosed materials are added later to the structured liquid, under low shear mixing conditions.
- the structurant is typically dispersed at very high shear to break up the insoluble fibres and to increase phase volume of the structuring system by maximising break up and contact with anhydrous structuring material.
- the premix may be left to hydrate further (age) after the high shear mixing.
- the concentration of pulped citrus fibre in the pre-mix depends on the ability of the equipment to deal with the higher viscosity due to higher concentrations.
- the minimum will preferably be at least 1 wt% for practical reasons.
- Linear alkyl benzene sulphonate (LAS) used on its own is generally calcium intolerant.
- surfactant systems should generally avoid having levels of LAS above 90 wt%.
- Nonionic-free systems with 95 wt% LAS can be made if some zwitterionic surfactant, such as sulphobetaine, is present.
- an advantage of the use of pulped citrus fibre over HCO is that it is not necessary to have high levels of nonionic surfactant in the composition.
- Preferred alkyl ether sulphates are C8-C15 alkyl and have 1-10 moles of ethoxylation.
- Preferred alkyl sulphates are alkylbenzene sulphonates, particularly linear alkylbenzene sulphonates having an alkyl chain length of C8-C15.
- the counter ion for anionic surfactants is generally an alkali metal, typically sodium, although other counter-ions such as MEA, TEA or ammonium can be used. Suitable anionic surfactant materials are available as the 'Genapol'TM range from Clariant.
- the composition contains from 0.2 wt% to 40 wt%, preferably 1 wt% to 20 wt%, more preferably 5 to 15 wt% of a non-ionic surfactant, such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl N-alkyl derivatives of glucosamine (“glucamides").
- a non-ionic surfactant such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl N-alkyl derivatives of glucosamine (“glucamides”).
- Preferred nonionic surfactants that may be used include the primary and secondary alcohol ethoxylates, especially the C8-C20 aliphatic alcohols ethoxylated with an average of from 1 to 35 moles of ethylene oxide per mole of alcohol, and more especially the C10-C15 primary and secondary aliphatic alcohols ethoxylated with an average of from 1 to 10 moles of ethylene oxide per mole of alcohol.
- Polymeric thickening systems may be added to the liquid to increase the viscosity and further modify the rheology.
- Pulped citrus fibre is especially compatible with such thickening systems and it is compatible with other external structurants.
- one or more further enzymes may be present in a composition of the invention and when practicing a method of the invention.
- Essential enzymes are lipase and/or cellulase, most preferably lipase.
- Further enzymes may be selected from the enzymes known to be compatible with surfactant containing compositions, in particular proteases, mannanases and amylases.
- Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces ), e.g. from H. lanuginosa ( T. lanuginosus ) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580 , a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes ( EP 218 272 ), P. cepacia ( EP 331 376 ), P. stutzeri ( GB 1,372,034 ), P.
- lipase variants such as those described in WO 92/05249 , WO 94/01541 , EP 407 225 , EP 260 105 , WO 95/35381 , WO 96/00292 , WO 95/30744 , WO 94/25578 , WO 95/14783 , WO 95/22615 , WO 97/04079 and WO 97/07202 .
- LipolaseTM and Lipolase UltraTM LipexTM and LipocleanTM (Novozymes A/S).
- LipomaxTM a lyophilized lipase-preparation from pseudomonas alcaligenes (originally from Gist-brocades, more recently from the Genencor division of Danisco).
- the presence of relatively high levels of calcium in poorly built or unbuilt wash liquors has a beneficial effect on the turnover of certain enzymes, particularly lipase enzymes and preferably lipases from Humicola.
- Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307 , US 5,648,263 , US 5,691,178 , US 5,776,757 , WO 89/09259 , WO 96/029397 , and WO 98/012307 .
- Phospholipase may be classified as EC 3.1.1.4 and/or EC 3.1.1.32.
- the term phospholipase is an enzyme that has activity towards phospholipids.
- Phospholipids such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol.
- Phospholipases are enzymes that participate in the hydrolysis of phospholipids.
- phospholipases A 1 and A 2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid
- lysophospholipase or phospholipase B
- Phospholipase C and phospholipase D release diacyl glycerol or phosphatidic acid respectively.
- Cutinase is classified in EC 3.1.1.74.
- the cutinase may be of any origin.
- Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
- alkaline pectate lyases examples include BIOPREPTM and SCOURZYMETM L from Novozymes A/S, Denmark.
- JP-A-03047076 discloses a beta-mannanase derived from Bacillus sp.
- JP-A-63056289 describes the production of an alkaline, thermostable beta-mannanase.
- JP-A-63036775 relates to the Bacillus microorganism FERM P-8856 which produces beta-mannanase and beta-mannosidase.
- JP-A-08051975 discloses alkaline beta-mannanases from alkalophilic Bacillus sp. AM-001.
- a purified mannanase from Bacillus amyloliquefaciens is disclosed in WO 97/11164 .
- WO 91/18974 describes a hemicellulase such as a glucanase, xylanase or mannanase active.
- mannanases derived from Bacillus agaradhaerens, Bacillus licheniformis, Bacillus halodurans, Bacillus clausii, Bacillus sp., and Humicola insolens disclosed in WO 99/64619 .
- Bacillus sp. mannanases used in the Examples of WO 99/64619 .
- mannanases examples include MannawayTM available from Novozymes A/S Denmark.
- Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708 .
- a polyol such as propylene glycol or glycerol
- a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid
- a preferred polymer is modified polyethylene imine PEI 600(20EO).
- Soil release polymers, especially polyester soil release polymers may also be used.
- the amount of polymers, when used, is preferably greater than 2 wt%, more preferably greater than 5 wt%, even greater than 10 wt%.
- Anti-redeposition polymers such as sodium carboxymethyl cellulose may additionally be used.
- Water-soluble builders may be included in the compositions of the invention.
- compositions are aqueous but the need to keep high levels of surfactants and other water-soluble ingredients in solution may necessitate the presence of additional solvents or hydrotropes.
- Preferred hydrotropes are propylene glycol, glycerol, glycerine and mixtures thereof. Hydrotropes, when used, are preferably present at levels of from 1 to 20 wt%.
- the composition may further comprise MEA and / or TEA and/ or sodium hydroxide for alkalinity.
- MEA and / or TEA and/ or sodium hydroxide for alkalinity may comprise citric acid.
- Levels of citric acid preferably range from 0.5 to 5 wt%
- Soluble fabric whitening agents may be included.
- the use of the external structurant also makes it possible to use insoluble OBA but this is not preferred if it is desired that the liquid is clear (i.e. that it is possible to see through it).
- Proxel is a preferred preservative for the liquid compositions. Potassium Sorbate is also preferred.
- CPF pulped citrus fibre
- the powdered Citrus fibre powder was added directly to the prepared detergent liquid and an attempt was made to disperse it using a Silverson high shear mixer. No structuring was formed. The particles of powdered material added did not swell and simply sank to the bottom of the liquid when shear was removed.
- Premixes of 1 to 2.5 wt% pulped citrus fibre in water were prepared using high intensity mixing. We used a Silverson mixer located in a recycle loop around a batch vessel. The premixes formed were all homogeneous.
- example 1 As an alternative to example 1 we used a high pressure homogeniser was used to supply the shear. Like example 1, a homogeneous well dispersed structured premix was obtained. The maximum premix concentration is limited by the maximum viscosity that the equipment is capable of handling.
- the pulped citrus fibre premix made in Example 1 or Example 2 (1 or 2 wt% used) was added to a detergent liquid comprising 40 wt% Active detergent (LAS, SLES, NI 1:1:2) and 15 wt% propylene glycol hydrotrope, the balance being water. Two orders of addition were successfully used:
- Part A Structurant pre-mix
- a structurant pre-mix was prepared using 2% Herbacel plus AQ (type N) citrus fibre powder, 97.9% tap water and 0.1 % Potassium Sorbate preservative.
- the pre-mix was prepared using a pilot plant scale Gaulin high pressure Homogeniser operating at 350 bar.
- the resulting pulped citrus fibre (PCF) pre-mix was readily handleable and pumpable.
- Part B Concentrated base detergent liquid
- a concentrated base detergent liquid B having the composition shown in Table 1 (except for the 2 wt% PCF premix and the perfume) was prepared using a 50 litre capacity pilot plant vessel equipped with a mixing element of the 'Flexible Agitator System (FAS)' geometry. 12.5% of the water had been removed from the formulation to allow for post dosing of the 2% PCF pre-mix: Part A. The concentrated mixture was allowed to de-aerate for > 1 hr.
- FAS 'Flexible Agitator System
- Table 1 Composition of Structured liquid of Example 4 Material Activity Weight % Water 100 9.67 Glycerol 100 5.12 PPG 100 9.21 NaOH 47 5.87 TEA 100 3.32 NI 7EO 100 20.59 Citric acid 50 2.01 LAS acid 97.1 13.71 Prifac 5908 100 4.89 SLES 70 9.79 Dequest 2066 32 1.60 PCF 2 12.80 Perfume 100 1.42 TOTAL 100.00
- the concentrated base detergent mixture B was circulated via a 150/250 Silverson high shear mill by means of a recycle loop to ensure all lines were fully primed and purged of air. Flow rate 1450 l/hr (single pass residence time in mill 0.1 seconds). The Silverson mill was turned on at 6250 rpm (9063 w/kg) to simulate large scale operating conditions. Then the structurant Pre-mix A was dosed into the main recirculation loop close to the high shear mixer inlet to minimise interaction between the streams prior to intimate dispersion. The perfume was then added using low shear mixing.
- the pulped citrus fibre structured liquid was then sampled and its rheology measured. Again, after 1 week storage at ambient temperature, the rheology was remeasured and the samples were visually assessed to see if there was either top clear layer separation or bottom clear layer separation.
- Lipase could be added to Example 4 and Example 5 liquids structured with PCF without loss of structuring.
- Rheology was measured at 25°C using an Anton Paar ASC rheometer.
- Figure 2 shows the rheology data after 24 hours. Comparative example B shows that when using Lipex in an HCO structured liquid there is complete loss of structuring within 24 hours at ambient temperature. In contrast, Lipex has no effect on the otherwise identical liquid structured with PCF, as in example 6.
- Table 3 shows a range of heavy duty laundry detergent liquids that may be structured with pulped citrus fibre.
- Examples 8, 9, 10 and 11 are so called 3 times concentrated laundry liquid suitable for use at approx 35 ml dose to a standard European front loading automatic washing machine.
- Examples 12, 13, and 14 are compositions suitable for use at a 20 ml dose to the same type of machine.
- Example 9 Example 10
- Example 12 Example 13
- Example 14 Material % as 100% % as 100% % as 100% % as 100% % as 100% % as 100% % as 100% % as 100% % as 100% LAS Acid 16.00 4.85 13.40 8.75 8.49 8.49 8.49 SLES 6.00 2.42 6.70 6.82 4.24 4.24 4.24 NI 7EO 2.00 7.28 20.12 4.58 12.74 12.74 12.74 Prifac 5908 0.85 4.78 3.00 1.50 1.50 3.03
- Empigen BB 0.86 1.50 1.50 1.50
- SRP 2.10 3.75 3.75 NaOH 1.61 0.07 2.70 0.07 0.07 MEA 7.00 TEA 2.75 2.00 3.23 2.50 3.50 3.50 11.00
- Glycerol 5.00 Heptasodium DTPMP 0.50 0.88
- Dequest 2010 1.50 2.62 Opacifier 0.10 Flu
- Table 4 shows the rheology obtained by variants of Examples 12 and 14.
- the composition examples 15 to 18 were tested as described above to obtain the rheology profiles shown in Figure 5 ; without yet adding in the enzyme. Based on the findings for the lack of effect of Lipase on similar compositions the addition of the Lipase would not affect the Rheology. Lipase and cellulase can be added without affecting the stability of the rheological profile over time.
- These examples show that the rheology is usefully obtained with the inclusion of various levels of cleaning and soil release polymers, also the addition of high levels of polymer and the addition of relatively high levels of sequestrant. All of these ingredients might have had a detrimental effect on the rheology.
- liquids in examples 19 to 26 can simply be reformulated to contain Lipase and/ or cellulase at levels of from 0.0001 to 5 wt%, preferably from 0.001 to 0.3 wt%.
- the structuring rheology is not affected by such enzyme inclusion.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Detergent Compositions (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11767995.1A EP2630224B1 (en) | 2010-10-22 | 2011-10-07 | Externally structured aqueous detergent liquid |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10188472 | 2010-10-22 | ||
PCT/EP2011/067549 WO2012052306A1 (en) | 2010-10-22 | 2011-10-07 | Externally structured aqueous detergent liquid |
EP11767995.1A EP2630224B1 (en) | 2010-10-22 | 2011-10-07 | Externally structured aqueous detergent liquid |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2630224A1 EP2630224A1 (en) | 2013-08-28 |
EP2630224B1 true EP2630224B1 (en) | 2016-06-29 |
Family
ID=43608662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11767995.1A Active EP2630224B1 (en) | 2010-10-22 | 2011-10-07 | Externally structured aqueous detergent liquid |
Country Status (9)
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10287366B2 (en) | 2017-02-15 | 2019-05-14 | Cp Kelco Aps | Methods of producing activated pectin-containing biomass compositions |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2841550B1 (en) * | 2012-04-23 | 2016-01-20 | Unilever Plc. | Externally structured aqueous isotropic liquid detergent compositions |
CN104271724B (zh) * | 2012-04-23 | 2017-02-15 | 荷兰联合利华有限公司 | 外部结构化的水性各向同性液体洗涤剂组合物 |
PT2877497T (pt) | 2012-07-27 | 2017-02-14 | Koninklijke Coöperatie Cosun U A | Agente estruturante para detergentes líquidos e produtos de higiene pessoal |
UA118176C2 (uk) | 2012-07-27 | 2018-12-10 | Целлукомп Лтд. | Композиції рослинної целюлози для застосування як бурових розчинів |
EP2925280B1 (en) * | 2012-11-27 | 2018-08-01 | Unilever Plc. | Oral care compositions |
WO2014082835A1 (en) * | 2012-11-27 | 2014-06-05 | Unilever N.V. | Liquid hard surface cleaning composition |
GB2505977A (en) * | 2013-02-12 | 2014-03-19 | Reckitt Benckiser Brands Ltd | Use of sorbic acid or water soluble sorbate as a radical scavenger |
WO2014142651A1 (en) | 2013-03-15 | 2014-09-18 | Koninklijke Coöperatie Cosun U.A. | Stabilization of suspended solid particles and/or gas bubbles in aqueous fluids |
EP2824169A1 (en) | 2013-07-12 | 2015-01-14 | The Procter & Gamble Company | Structured fabric care compositions |
EP3447113B1 (en) | 2013-07-12 | 2021-06-02 | The Procter & Gamble Company | Structured liquid compositions |
BR112016008826B1 (pt) * | 2013-10-22 | 2022-05-10 | Unilever Ip Holdings B.V | Processo para fabricar uma formulação líquida detergente aquosa externamente estruturada, pré-mistura homogeneizada estruturante de pó de argila dilatável em água e polpa de fibra cítrica e formulação líquida detergente aquosa externamente estruturada |
US9677030B2 (en) | 2014-01-29 | 2017-06-13 | Henkel IP & Holding GmbH | Aqueous detergent compositions |
ES2694624T3 (es) * | 2014-05-22 | 2018-12-26 | Unilever Nv | Formulación detergente líquida que comprende partículas enzimáticas |
CN106488974B (zh) * | 2014-06-20 | 2019-07-05 | 荷兰联合利华有限公司 | 外部结构化的各向同性水性液体洗涤剂组合物 |
DE102014226293A1 (de) * | 2014-12-17 | 2016-06-23 | Henkel Ag & Co. Kgaa | Waschmittel mit verbesserter Fleckentfernung |
BR112017014243B1 (pt) * | 2014-12-31 | 2022-08-30 | Unilever Ip Holdings B.V. | Composição de limpeza e método de preparo da mesma |
CA3002668A1 (en) * | 2015-11-26 | 2017-06-01 | Neil Joseph Lant | Liquid detergent compositions comprising protease and encapsulated lipase |
WO2017202923A1 (en) * | 2016-05-27 | 2017-11-30 | Unilever Plc | Laundry composition |
US10266793B2 (en) | 2016-09-30 | 2019-04-23 | Novaflux, Inc. | Compositions for cleaning and decontamination |
CN110494542B (zh) * | 2017-04-07 | 2021-05-07 | 荷兰联合利华有限公司 | 具有第二分散相的清洁组合物 |
WO2019007916A1 (en) | 2017-07-04 | 2019-01-10 | Unilever Plc | COMPOSITION COMPRISING ANTI-TRANSPIRANT ACTIVE INGREDIENT AND MICROFIBRILLES |
US11345878B2 (en) | 2018-04-03 | 2022-05-31 | Novaflux Inc. | Cleaning composition with superabsorbent polymer |
CN109880700B (zh) * | 2019-04-01 | 2021-06-08 | 广州立白企业集团有限公司 | 用于液体洗涤剂的外部结构化体系组合物及液体洗涤剂 |
US11918677B2 (en) | 2019-10-03 | 2024-03-05 | Protegera, Inc. | Oral cavity cleaning composition method and apparatus |
US12064495B2 (en) | 2019-10-03 | 2024-08-20 | Protegera, Inc. | Oral cavity cleaning composition, method, and apparatus |
US11905494B2 (en) | 2020-02-10 | 2024-02-20 | Celanese International Corporation | Fabric detergent formulation |
EP4324900A1 (en) * | 2022-08-17 | 2024-02-21 | Henkel AG & Co. KGaA | Detergent composition comprising enzymes |
Family Cites Families (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1296839A (enrdf_load_stackoverflow) | 1969-05-29 | 1972-11-22 | ||
GB1372034A (en) | 1970-12-31 | 1974-10-30 | Unilever Ltd | Detergent compositions |
DK187280A (da) | 1980-04-30 | 1981-10-31 | Novo Industri As | Ruhedsreducerende middel til et fuldvaskemiddel fuldvaskemiddel og fuldvaskemetode |
US4933287A (en) | 1985-08-09 | 1990-06-12 | Gist-Brocades N.V. | Novel lipolytic enzymes and their use in detergent compositions |
JPS6356289A (ja) | 1986-07-30 | 1988-03-10 | Res Dev Corp Of Japan | β−マンナナ−ゼおよびその製法 |
JPS6336775A (ja) | 1986-07-31 | 1988-02-17 | Res Dev Corp Of Japan | β―マンナナーゼおよびβ―マンノシダーゼ生産能を有するアルカリ性バチルス属新菌株 |
DE3750450T2 (de) | 1986-08-29 | 1995-01-05 | Novo Industri As | Enzymhaltiger Reinigungsmittelzusatz. |
NZ221627A (en) | 1986-09-09 | 1993-04-28 | Genencor Inc | Preparation of enzymes, modifications, catalytic triads to alter ratios or transesterification/hydrolysis ratios |
DE3854249T2 (de) | 1987-08-28 | 1996-02-29 | Novonordisk As | Rekombinante Humicola-Lipase und Verfahren zur Herstellung von rekombinanten Humicola-Lipasen. |
JP3079276B2 (ja) | 1988-02-28 | 2000-08-21 | 天野製薬株式会社 | 組換え体dna、それを含むシュードモナス属菌及びそれを用いたリパーゼの製造法 |
US5776757A (en) | 1988-03-24 | 1998-07-07 | Novo Nordisk A/S | Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase and method of making thereof |
JP2728531B2 (ja) | 1988-03-24 | 1998-03-18 | ノボ ノルディスク アクティーゼルスカブ | セルラーゼ調製品 |
GB8915658D0 (en) | 1989-07-07 | 1989-08-23 | Unilever Plc | Enzymes,their production and use |
JPH0347076A (ja) | 1989-08-25 | 1991-02-28 | Res Dev Corp Of Japan | β―マンナナーゼおよびその製法 |
DE59101948D1 (de) | 1990-04-14 | 1994-07-21 | Kali Chemie Ag | Alkalische bacillus-lipasen, hierfür codierende dna-sequenzen sowie bacilli, die diese lipasen produzieren. |
AU8060091A (en) | 1990-05-29 | 1991-12-31 | Chemgen Corporation | Hemicellulase active at extremes of ph and temperature and the means for the production thereof |
BR9106839A (pt) | 1990-09-13 | 1993-07-20 | Novo Nordisk As | Variante de lipase,construcao de dna,vetor de expressao de recombinante,celula,planta,processo para produzir uma variante de lipase,aditivo e composicao de detergente |
EP0511456A1 (en) | 1991-04-30 | 1992-11-04 | The Procter & Gamble Company | Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme |
WO1992019709A1 (en) | 1991-04-30 | 1992-11-12 | The Procter & Gamble Company | Built liquid detergents with boric-polyol complex to inhibit proteolytic enzyme |
JP2626662B2 (ja) | 1991-10-09 | 1997-07-02 | 科学技術振興事業団 | 新規なβ−マンナナーゼとその製造方法 |
FI931193A0 (fi) | 1992-05-22 | 1993-03-17 | Valtion Teknillinen | Mannanasenzymer, gener som kodar foer dem och foerfaranden foer isoleringav generna samt foerfarande foer blekning av lignocellulosahaltig massa |
DK72992D0 (da) | 1992-06-01 | 1992-06-01 | Novo Nordisk As | Enzym |
DK88892D0 (da) | 1992-07-06 | 1992-07-06 | Novo Nordisk As | Forbindelse |
KR950702240A (ko) | 1993-04-27 | 1995-06-19 | 한스 발터 라벤 | 세제로의 이용을 위한 새로운 리파제 변형체 |
DK48693D0 (da) | 1993-04-30 | 1993-04-30 | Novo Nordisk As | Enzym |
JP2859520B2 (ja) | 1993-08-30 | 1999-02-17 | ノボ ノルディスク アクティーゼルスカブ | リパーゼ及びそれを生産する微生物及びリパーゼ製造方法及びリパーゼ含有洗剤組成物 |
WO1995010602A1 (en) | 1993-10-13 | 1995-04-20 | Novo Nordisk A/S | H2o2-stable peroxidase variants |
JPH07143883A (ja) | 1993-11-24 | 1995-06-06 | Showa Denko Kk | リパーゼ遺伝子及び変異体リパーゼ |
DE69527835T2 (de) | 1994-02-22 | 2003-04-10 | Novozymes A/S, Bagsvaerd | Methode zur herstellung einer variante eines lipolytischen enzymes |
US5824531A (en) | 1994-03-29 | 1998-10-20 | Novid Nordisk | Alkaline bacilus amylase |
DK0755442T3 (da) | 1994-05-04 | 2003-04-14 | Genencor Int | Lipaser med forbedret resistens over for overfladeaktive midler |
WO1995035381A1 (en) | 1994-06-20 | 1995-12-28 | Unilever N.V. | Modified pseudomonas lipases and their use |
AU2884695A (en) | 1994-06-23 | 1996-01-19 | Unilever Plc | Modified pseudomonas lipases and their use |
BE1008998A3 (fr) | 1994-10-14 | 1996-10-01 | Solvay | Lipase, microorganisme la produisant, procede de preparation de cette lipase et utilisations de celle-ci. |
EP0785994A1 (en) | 1994-10-26 | 1997-07-30 | Novo Nordisk A/S | An enzyme with lipolytic activity |
JPH08228778A (ja) | 1995-02-27 | 1996-09-10 | Showa Denko Kk | 新規なリパーゼ遺伝子及びそれを用いたリパーゼの製造方法 |
EP1683860B1 (en) | 1995-03-17 | 2013-10-23 | Novozymes A/S | Novel endoglucanases |
JP4307549B2 (ja) | 1995-07-14 | 2009-08-05 | ノボザイムス アクティーゼルスカブ | 脂肪分解活性を有する修飾された酵素 |
JP4068142B2 (ja) | 1995-08-11 | 2008-03-26 | ノボザイムス アクティーゼルスカブ | 新規の脂肪分解酵素 |
EP0851914B1 (en) | 1995-09-20 | 2003-06-11 | Genencor International, Inc. | Purified mannanase from bacillus amyloliquefaciens and method of preparation |
CN100362100C (zh) | 1996-09-17 | 2008-01-16 | 诺沃奇梅兹有限公司 | 纤维素酶变体 |
AU730286B2 (en) | 1996-10-08 | 2001-03-01 | Novo Nordisk A/S | Diaminobenzoic acid derivatives as dye precursors |
WO1999027083A1 (en) | 1997-11-24 | 1999-06-03 | Novo Nordisk A/S | PECTIN DEGRADING ENZYMES FROM $i(BACILLUS LICHENIFORMIS) |
US6124127A (en) | 1997-11-24 | 2000-09-26 | Novo Nordisk A/S | Pectate lyase |
WO1999027084A1 (en) | 1997-11-24 | 1999-06-03 | Novo Nordisk A/S | Novel pectate lyases |
EP2261359B1 (en) | 1998-06-10 | 2014-08-20 | Novozymes A/S | Mannanases |
ES2532606T3 (es) | 1999-03-31 | 2015-03-30 | Novozymes A/S | Polipéptidos con actividad de alfa-amilasa alcalina y ácidos nucleicos que los codifican |
WO2002006442A2 (en) | 2000-07-19 | 2002-01-24 | Novozymes A/S | Cell-wall degrading enzyme variants |
ES2309106T3 (es) | 2000-10-27 | 2008-12-16 | THE PROCTER & GAMBLE COMPANY | Composiciones liquidas estabilizadas. |
GB0129983D0 (en) | 2001-12-14 | 2002-02-06 | Unilever Plc | Unit dose products |
US7094317B2 (en) | 2002-11-06 | 2006-08-22 | Fiberstar, Inc. | Process of manufacturing and using highly refined fiber mass |
US9629790B2 (en) * | 2002-11-06 | 2017-04-25 | Fiberstar, Inc | Stabilization of cosmetic compositions |
JP2004181452A (ja) * | 2002-11-30 | 2004-07-02 | Matsushita Electric Ind Co Ltd | 洗浄装置、洗浄方法および洗浄剤 |
EP1502944B1 (en) * | 2003-08-01 | 2007-02-28 | The Procter & Gamble Company | Aqueous liquid laundry detergent compositions with visible beads |
GB0415128D0 (en) | 2004-07-06 | 2004-08-11 | Unilever Plc | Improvements relating to fabric laundering |
US8053216B2 (en) | 2005-05-23 | 2011-11-08 | Cp Kelco U.S., Inc. | Bacterial cellulose-containing formulations |
ES2672110T3 (es) | 2008-02-15 | 2018-06-12 | The Procter & Gamble Company | Composición de detergente líquida que comprende un sistema estructurante externo que comprende una red de celulosa bacteriana |
US20090217463A1 (en) | 2008-02-29 | 2009-09-03 | Philip Frank Souter | Detergent composition comprising lipase |
GB0808293D0 (en) | 2008-05-08 | 2008-06-11 | Unilever Plc | Laundry detergent composition |
WO2009153184A1 (en) | 2008-06-16 | 2009-12-23 | Unilever Plc | Improvements relating to fabric cleaning |
US20100150975A1 (en) | 2008-10-20 | 2010-06-17 | Jiten Odhavji Dihora | Structured Composition Comprising an Encapsulated Active |
-
2011
- 2011-10-07 BR BR112013009456-7A patent/BR112013009456B1/pt not_active IP Right Cessation
- 2011-10-07 PH PH1/2013/500699A patent/PH12013500699A1/en unknown
- 2011-10-07 WO PCT/EP2011/067549 patent/WO2012052306A1/en active Application Filing
- 2011-10-07 IN IN618MUN2013 patent/IN2013MN00618A/en unknown
- 2011-10-07 ES ES11767995.1T patent/ES2593728T3/es active Active
- 2011-10-07 EP EP11767995.1A patent/EP2630224B1/en active Active
- 2011-10-07 CN CN201180050793.2A patent/CN103180423B/zh active Active
-
2013
- 2013-03-19 ZA ZA2013/02069A patent/ZA201302069B/en unknown
- 2013-04-19 CL CL2013001087A patent/CL2013001087A1/es unknown
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10287366B2 (en) | 2017-02-15 | 2019-05-14 | Cp Kelco Aps | Methods of producing activated pectin-containing biomass compositions |
US11008407B2 (en) | 2017-02-15 | 2021-05-18 | Cp Kelco Aps | Activated pectin-containing biomass compositions and products |
US11987650B2 (en) | 2017-02-15 | 2024-05-21 | Cp Kelco Aps | Activated pectin-containing biomass compositions and products |
Also Published As
Publication number | Publication date |
---|---|
PH12013500699A1 (en) | 2013-05-20 |
CN103180423A (zh) | 2013-06-26 |
EP2630224A1 (en) | 2013-08-28 |
ES2593728T3 (es) | 2016-12-12 |
BR112013009456B1 (pt) | 2021-11-30 |
BR112013009456A2 (pt) | 2021-03-09 |
WO2012052306A1 (en) | 2012-04-26 |
ZA201302069B (en) | 2014-05-28 |
CN103180423B (zh) | 2015-08-12 |
IN2013MN00618A (enrdf_load_stackoverflow) | 2015-06-12 |
CL2013001087A1 (es) | 2014-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2630224B1 (en) | Externally structured aqueous detergent liquid | |
EP3146033B1 (en) | Aqueous liquid detergent formulation comprising enzyme particles | |
EP2694635B1 (en) | Method of laundering fabric | |
EP2300586B1 (en) | Improvements relating to fabric cleaning | |
EP2707472B1 (en) | Aqueous concentrated laundry detergent compositions | |
EP2794832B1 (en) | Isotropic liquid detergents comprising soil release polymer | |
EP2522714A1 (en) | Aqueous concentrated laundry detergent compositions | |
EP2522715A1 (en) | Aqueous concentrated laundry detergent compositions | |
EP2841547B1 (en) | Structured aqueous liquid detergent | |
EP3469048A1 (en) | Laundry products | |
WO2016155993A1 (en) | Composition | |
WO2017133879A1 (en) | Detergent liquid | |
CN112839630A (zh) | 包含泡沫促进硅酮的清洁组合物 | |
EP3330351A1 (en) | Cleaning compositions including enzyme and plant fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130222 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20140910 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160222 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 809133 Country of ref document: AT Kind code of ref document: T Effective date: 20160715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011027772 Country of ref document: DE |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: UNILEVER PLC Owner name: UNILEVER N.V. |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160929 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160930 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2593728 Country of ref document: ES Kind code of ref document: T3 Effective date: 20161212 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 809133 Country of ref document: AT Kind code of ref document: T Effective date: 20160629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161029 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160629 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161031 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011027772 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20170330 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161007 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160929 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20111007 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161031 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160629 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602011027772 Country of ref document: DE Owner name: UNILEVER GLOBAL IP LIMITED, WIRRAL, GB Free format text: FORMER OWNER: UNILEVER N.V., ROTTERDAM, NL |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: UNILEVER IP HOLDINGS B.V. Effective date: 20211228 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20220127 AND 20220202 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20221006 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241021 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241022 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241021 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20241022 Year of fee payment: 14 Ref country code: ES Payment date: 20241127 Year of fee payment: 14 |