EP2622153B1 - Sensorvorrichtung mit drehrichtungserfassung - Google Patents

Sensorvorrichtung mit drehrichtungserfassung Download PDF

Info

Publication number
EP2622153B1
EP2622153B1 EP11769776.3A EP11769776A EP2622153B1 EP 2622153 B1 EP2622153 B1 EP 2622153B1 EP 11769776 A EP11769776 A EP 11769776A EP 2622153 B1 EP2622153 B1 EP 2622153B1
Authority
EP
European Patent Office
Prior art keywords
sensors
knob
rotary knob
cylinder
reader
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11769776.3A
Other languages
English (en)
French (fr)
Other versions
EP2622153A1 (de
Inventor
Gunnar Hoff
Dieter Wulff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dom Sicherheitstechnik GmbH and Co KG
Dormakaba Deutschland GmbH
Original Assignee
Dom Sicherheitstechnik GmbH and Co KG
Dormakaba Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dom Sicherheitstechnik GmbH and Co KG, Dormakaba Deutschland GmbH filed Critical Dom Sicherheitstechnik GmbH and Co KG
Publication of EP2622153A1 publication Critical patent/EP2622153A1/de
Application granted granted Critical
Publication of EP2622153B1 publication Critical patent/EP2622153B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B17/00Accessories in connection with locks
    • E05B17/22Means for operating or controlling lock or fastening device accessories, i.e. other than the fastening members, e.g. switches, indicators
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B47/00Operating or controlling locks or other fastening devices by electric or magnetic means
    • E05B47/06Controlling mechanically-operated bolts by electro-magnetically-operated detents
    • E05B47/0611Cylinder locks with electromagnetic control
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B47/00Operating or controlling locks or other fastening devices by electric or magnetic means
    • E05B47/06Controlling mechanically-operated bolts by electro-magnetically-operated detents
    • E05B47/0611Cylinder locks with electromagnetic control
    • E05B47/0615Cylinder locks with electromagnetic control operated by handles, e.g. by knobs
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B47/00Operating or controlling locks or other fastening devices by electric or magnetic means
    • E05B2047/0048Circuits, feeding, monitoring
    • E05B2047/0067Monitoring

Definitions

  • the invention relates to a knob cylinder with a sensor device for rotary knobs of electronic or electromechanical knob cylinders.
  • Electronics or elements of rotary knobs of knob cylinders are known to be used to control an actuator accommodated in an associated profile cylinder of a wing lock when actuated, to connect a lock bit of the profile cylinder to the rotary knob in a rotationally effective manner.
  • the actuator is switched off.
  • the actuation typically takes place in a contactless manner, for example by means of a code card, for example in the form of a transponder card, which is placed on a reader of the rotary knob or is approached to it and contains authorization data. This data is read out by the reader and checked for authorization to open the respective leaf. If the test is successful, the actuator is activated or energized and the sash can be unlocked and opened using the rotary knob.
  • Rotary knobs offer very little space, so that incremental encoders can hardly be used to save space.
  • slotted disks have the disadvantage that they can become dirty, which can impair operational safety.
  • Last but not least, a relatively complex data evaluation is necessary in order to determine the direction of rotation of the slotted disc.
  • the object of the invention is to at least reduce the disadvantages of the prior art.
  • a knob cylinder according to the invention comprises a sensor device.
  • the sensor device according to the invention is designed to be inserted with one part into a rotary knob of a knob cylinder. It has at least a pair of sensors and a counter element.
  • This counter element and the at least one pair of sensors are arranged such that they can be moved relative to one another along a substantially circular movement path, for example via a transmission.
  • the counter element or the respective pair of sensors can be arranged in a stationary manner, while the respective pair of sensors or the counter element is accordingly moved along the circular movement path, that is to say along a respective circular line.
  • the counter element and the sensors are opposite one another in such a way that the detection areas of the sensors each enclose a partial area of the movement path and partially overlap one another in the area of the movement path. I.e. each sensor detects a specific area of the movement path, the two areas thus sharing a partial area.
  • the movement path runs partially outside the detection areas of the at least one pair of sensors. I.e. the detection areas of both sensors do not cover the entire movement path.
  • the counter-element "moves" one after the other through the detection areas of the at least one pair of sensors.
  • the counter-element first comes into the partial detection area of only one sensor, then into the overlapping area of both sensors, then into the detection partial area now the other sensor, and then into an area that is not detected by any of the sensors. This makes it possible to determine in which direction the movement is taking place. In addition, a back and forth movement can be detected, and that with simple, space-consuming means. Due to the formation of several sensor detection areas, the counter-element does not have to have any filigree structures such as a slotted disc for the sensor to function.
  • the sensors are preferably formed by means of GMR sensors.
  • the counter element is magnetized or, for example, electrically magnetized. This offers the possibility of simply being able to use the electrical resistance of the sensors as a measured variable.
  • the relative movement of the counter element to the sensors causes relatively large changes in the electrical resistance of the sensors, which enables a simple evaluation circuit.
  • the sensor device preferably also has such an evaluation circuit.
  • the evaluation circuit is set up to detect, on the basis of sensor signals that are output by the at least one pair of sensors, that the counter-element is moving past each sensor. This makes it possible to determine in which detection sub-area the counter-element is located or whether it is located outside the detection areas.
  • the evaluation circuit preferably detects the movement past by XORing the sensor signals with one another. I.e. the evaluation circuit always detects when a detection sub-area is "entered” or left by the further counter-element. This is a particularly simple and inexpensive solution.
  • the passing is preferably detected in that the evaluation circuit delays a signal formed by means of the XOR linkage of the sensor signals by a predetermined value as a delay signal and XOR links the signal formed with the delay signal.
  • the evaluation circuit delays a signal formed by means of the XOR linkage of the sensor signals by a predetermined value as a delay signal and XOR links the signal formed with the delay signal.
  • a rotary knob according to the invention is arranged to be freely rotatable with respect to a lock bit of a profile cylinder. It can also be operated to energize an actuator, which then connects the rotary knob with the lock bit in a rotationally effective manner, so that the rotary knob moves the lock bit with it when it is turned.
  • the rotary knob has a reader which is set up to read data from an access data carrier such as a code card.
  • the rotary knob also has a part of one of the sensor devices described above. I.e. apart from the sensor device, the rotary knob remains almost untouched.
  • the actuator can be, for example, a motor or a lifting magnet which is coupled to a coupling mechanism which, when the actuator is energized, is actuated in such a way that the aforementioned rotational connection is established.
  • the reader is preferably connected in an active mode so that it is able to read data from an access data carrier. In an inactive state, however, the reader is switched off so that it is no longer able to read data from an access data carrier, such as a code card, a person with biometric data or memorized access codes (mental features) as access data. In inactive mode, the reader consumes little or no energy.
  • the sensor device comprises according to the invention the aforementioned evaluation circuit. This is set up to trigger a connection of the reading device when the evaluation circuit has detected the counter-element moving past one of the sensors. I.e. the sensor device can fulfill two tasks, on the one hand the detection of the direction of movement and on the other hand simply only the detection of the rotary movement at all, and that without complex logic.
  • the evaluation circuit preferably comprises an XOR (exclusive OR) element to which the sensor signals are input and whose output signal is input to the reader or to a controller that controls the reader.
  • XOR exclusive OR
  • the evaluation circuit preferably also has a time delay element to which the output signal of the aforementioned, an XOR element is input. It also has another XOR element, to which the output signal of one XOR element and an output signal formed by the delay element are input. The output signal of this other XOR element is in turn input to the reader or the controller.
  • the aforementioned counter-element or the at least one pair of sensors is preferably arranged in a stationary manner, that is to say is preferably not moved with respect to the entire rotary knob.
  • the counter element or this pair of sensors is attached to the profile cylinder or integrated into it. Accordingly, this pair of sensors or the counter-element is arranged to be moved along the path of movement by the rotary knob when the rotary knob is turned.
  • Figure 1 shows a knob cylinder 100 as part of a lockable wing lock in two views, namely only the parts relevant to the invention.
  • the knob cylinder 100 comprises a profile cylinder 110 with a freely rotatable lock bit 111 and a faceplate hole 112.
  • a rotary knob 120 is attached to one end of the profile cylinder 110.
  • This is provided with a reader 121, which is coupled to an antenna 122 for contactless contact with an access data carrier (not shown).
  • a preferably optical display 124 is embodied, for example, in the form of an illuminated ring.
  • a self-sufficient energy supply in the form of a battery 123 or an accumulator is accommodated in the rotary knob 120.
  • the rotary knob 120 has four sensors 125, preferably in the form of GMR sensors, on its side facing the profile cylinder 110.
  • the sensors 125 are arranged in such a way that the detection areas 126 of the individual sensors 125, represented with the aid of the hatched areas, partially overlap one another in pairs, indicated by the cross-hatched areas.
  • the profile cylinder 110 has on its side facing the rotary knob 120 elements that can be detected by the sensors 125, here in the form of two magnets 113.
  • the sensors 125 follow a respective, advantageously the same, circular path, the center of which is the axis of rotation of the rotary knob. This leads to the detection areas 126 of the individual sensors 125 being alternately moved past one of the magnets 113. This makes it possible for the respective sensor 125 to detect when the respective magnet 113 enters the associated detection area 126 or leaves it. Based on this, each sensor 125 outputs a corresponding signal.
  • the signals preferably from all sensors 125, but at least from sensors 125 belonging to a pair, that is to say two sensors with partially overlapping detection areas 126, are transmitted to a data processing logic, for example a processor.
  • the sensor signals are or are preferably digitized.
  • a sensor signal S1 is assigned to the left sensor 125 for the upper pair of sensors 125, while a sensor signal S2 is assigned to the right sensor 125.
  • Figure 2c shows the case when the rotary knob 120 is not continuously rotated in one direction. Instead, the rotary knob 120 is turned back again shortly after leaving the detection area 126 of the sensor 125 associated with the signal S1, so that it enters the detection area 126 of this sensor 125 again without having previously entered the detection area 126 of the sensor 125 associated with the signal S2. And this is clearly reflected in the resulting signal curves.
  • the clear signal curves can be used to easily determine whether the rotary knob 120 is turned in the direction of unlocking or locking the wing lock, not shown, and thus the connected wing should be unlocked or locked.
  • the number of turns of the rotary knob can also be used as a basis. For example, if the check of the access data was successful, it can be provided that a user must turn the rotary knob twice in the unlocking direction before the rotary knob releases the active rotational connection again.
  • Figure 3 shows an extension of the knob cylinder 100.
  • the sensor signals S1, S2 are input to an XOR element or gate 101. Its output signal A is input to a controller 102 here.
  • the controller 102 functions, for example, in such a way that, when the signal A assumes the high level and the rotary knob 120 is not activated, it activates the reader 121 either immediately or after a predetermined number of high level phases in the output signal A have been exceeded, i.e. switches on or on. I.e. a person who wants to open a door, for example, can activate the reader 121 by simply turning the rotary knob 120.
  • the display 124 is preferably activated such that it lights up yellow, for example, in order to indicate readiness for reading.
  • Figure 3b shows the curves of the output signal A in relation to the in Figure 2 shown curves of the sensor signals S1, S2.
  • the controller 102 can recognize when the magnet 113 "enters” or leaves a respective detection (partial) area 126.
  • Figure 4 shows an extension to the in Figure 3a shown arrangement.
  • a delay element 103 formed here by means of a dead time element
  • a second XOR element 101 are connected in series between the XOR element 101 and the controller 102.
  • the second XOR element 101 receives a signal V which corresponds to the output signal A, except that its course is shifted by a predetermined time period ⁇ t by means of the delay element 103.
  • the output signal S of the second XOR element 101 resulting therefrom is now input as a signal S to the controller 102.
  • the delayed signal V connected to the second XOR element 101 serves the purpose of converting a signal A with relatively long high-level phases into a signal S with relatively short high-level phases. I.e. signals with very short high level pulses can be input to the controller 102.
  • the time duration ⁇ t is determined in such a way that the downstream controller 102 can continue to reliably detect each pulse with the minimum pulse width.
  • Figure 4b shows the course of the signals S1, S2, A, V, S for the course of the signals S1, S2 according to FIG Figure 2a .
  • the time delay ⁇ t between the signals A, V can also be clearly seen here.
  • the display 124 has, for example, a multicolored lighting device, for example in the form of an RGB LED. This does not light up when the signals S1, S2 are both low. If S1 changes its state to high, the LED lights up red. If the other signal S2 also goes high, the LED lights up blue. If the signal S1 loses the high level (again), the LED lights up green.
  • a multicolored lighting device for example in the form of an RGB LED. This does not light up when the signals S1, S2 are both low. If S1 changes its state to high, the LED lights up red. If the other signal S2 also goes high, the LED lights up blue. If the signal S1 loses the high level (again), the LED lights up green.
  • an acoustic display can also be provided, from which a special acoustic signal can be output for each state of the sensor signals S1, S2.
  • only one sensor 125 can be activated in order to activate the reader 121.
  • the sensors 125 can also be activated in the active mode in order, for example, to be able to carry out evaluations of the frequency of visits and the like when the rotary knob 120 is permanently activated.
  • the rotary knob 120 is activated, it is preferably provided that the sensors 125 are left activated. This makes it possible to correspondingly lengthen the activation time of the rotary knob 120 by turning the rotary knob 120. Furthermore, it can be provided that the sash is unlocked when it has been detected that the rotary knob 120 has completed a certain number of revolutions (for example: 2).
  • the rotary knob 120 and preferably also the sensors 125 are switched off for a predetermined time.
  • the number of pairs of sensors 125 is not limited.
  • three sensors 125 can be arranged whose detection areas 126 partially overlap one another in pairs. Overall, the three detection areas 126 can even cover the entire movement path, just not the detection areas 126 that overlap in pairs.
  • the number of magnets 113 is not limited either.
  • the respective magnet 113 can be designed as a permanent magnet or as an electromagnet.
  • the sensors 125 can also be optical, haptic, sound-based or other types.
  • the magnet 113 is realized by a counterpart belonging to the sensor 125 for sensor actuation.
  • the sensors 125 and magnets 113 can be interchanged with one another.
  • the sensors 125 can additionally or alternatively serve to wake up or activate the reader 20. I.e. the user must first turn the rotary knob 120 before an access data carrier can even be read out.
  • Special operating modes such as emergency opening can also be implemented in that the rotary knob 120 has to be turned in a certain way, for example, which can be easily recognized with the sensor device according to the invention.
  • the invention offers an extremely simply structured and space-saving solution for detecting rotary motion, preferably of the rotary knob 120 of a knob cylinder 100.

Description

  • Die Erfindung betrifft einen Knaufzylinder mit einer Sensorvorrichtung für Drehknäufe von elektronischen bzw. elektromechanischen Knaufzylindern.
  • Elektroniken bzw. Elemente von Drehknäufen von Knaufzylindern werden bekanntermaßen eingesetzt, bei Betätigung einen in einem zugeordneten Profilzylinder eines Flügelschlosses aufgenommenen Aktor anzusteuern, einen Schließbart des Profilzylinders mit dem Drehknauf rotationswirkzuverbinden. Nach Beenden der Betätigung wird der Aktor abgeschaltet. Die Betätigung erfolgt typischerweise berührungslos beispielsweise mittels einer Codekarte exemplarisch in Form einer Transponderkarte, die an einen Leser des Drehknaufs angelegt oder an ihn angenähert wird und Berechtigungsdaten beinhaltet. Diese Daten werden vom Leser ausgelesen und auf Berechtigung, den jeweiligen Flügel öffnen zu dürfen, geprüft. Ist die Prüfung erfolgreich, wird der Aktor aktiviert bzw. bestromt, und der Flügel kann mithilfe des Drehknaufs entriegelt und geöffnet werden.
  • Nun stellt sich das Problem erkennen zu können, wann die Tür ent- oder (wieder) verriegelt ist, um die Aktivierung des Drehknaufs bzw. die Betätigung des Aktors ggf. wieder aufheben zu können.
  • Drehknäufe bieten nur sehr geringen Platz, sodass Inkrementalgeber kaum platzsparend eingesetzt werden können. Zudem haben Schlitzscheiben den Nachteil, verschmutzen zu können, wodurch die Betriebssicherheit beeinträchtigt werden kann. Nicht zuletzt ist eine relativ aufwändige Datenauswertung erforderlich, um die Drehrichtung der Schlitzscheibe zu erfassen.
  • Aufgabe der Erfindung ist es, die Nachteile des Standes der Technik zumindest zu verringern.
  • Diese Aufgabe wird durch den Gegenstand des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
  • Ein erfindungsgemäßer Knaufzylinder umfasst eine Sensorvorrichtung. Die erfindungsgemäße Sensorvorrichtung ist eingerichtet, mit einem Teil in einen Drehknauf eines Knaufzylinders eingesetzt zu werden. Sie weist zumindest ein Paar von Sensoren und ein Gegenelement auf. Dieses Gegenelement und das zumindest eine Paar von Sensoren sind entlang eines im Wesentlichen kreisförmigen Bewegungswegs beispielsweise über ein Getriebe relativ zueinander bewegbar angeordnet. D. h. das Gegenelement oder das jeweilige Paar von Sensoren kann ortsfest angeordnet sein, während dementsprechend das jeweilige Paar von Sensoren bzw. das Gegenelement entlang des kreisförmigen Bewegungswegs, also entlang einer jeweiligen Kreislinie, bewegt wird. Das Gegenelement und die Sensoren liegen einander derart gegenüber, dass die Erfassungsbereiche der Sensoren jeweils einen Teilbereich des Bewegungswegs einschließen und sich im Bereich des Bewegungswegs einander teilweise überlappen. D. h. jeder Sensor erfasst einen bestimmten Bereich des Bewegungswegs, wobei die somit zwei Bereiche einen Teilbereich teilen. Der Bewegungsweg verläuft teilweise außerhalb der Erfassungsbereiche des zumindest einen Paars von Sensoren. D. h. die Erfassungsbereiche beider Sensoren erfassen nicht den gesamten Bewegungsweg. Dadurch "bewegt" sich das Gegenelement nacheinander durch die Erfassungsbereiche des zumindest einen Paars von Sensoren. Als Beispiel gelangt das Gegenelement erst in den Teil-Erfassungsbereich nur eines Sensors, daraufhin in den Überlappungsbereich beider Sensoren, dann in den Erfassungs-Teilbereich nun des anderen Sensors, und danach in einen Bereich, der von keinem der Sensoren erfasst wird. Dies ermöglicht zu ermitteln, in welche Richtung die Bewegung stattfindet. Zudem ist ein Hin- und Herbewegen detektierbar, und das mit einfachen, wenig Platz verbrauchenden Mitteln. Durch die Ausbildung mehrerer Sensor-Erfassungsbereiche muss das Gegenelement keine filigranen Strukturen wie die einer Schlitzscheibe aufweisen, damit der Sensor funktioniert.
  • Die Sensoren sind vorzugsweise mittels GMR-Sensoren gebildet. D. h. das Gegenelement ist magnetisch bzw. beispielsweise elektrisch magnetisiert. Dies bietet die Möglichkeit, einfach den elektrischen Widerstand der Sensoren als Messgröße nutzen zu können. Zudem bewirkt die Relativbewegung des Gegenelements zu den Sensoren relativ große Änderungen des elektrischen Widerstandes der Sensoren, was eine einfache Auswerteschaltung ermöglicht.
  • Die erfindungsgemäße Sensorvorrichtung weist vorzugsweise ferner solch eine Auswerteschaltung auf. Die Auswerteschaltung ist eingerichtet, auf Basis von Sensorsignalen, die von dem zumindest einen Paar von Sensoren ausgegeben werden, ein Vorbeibewegen des Gegenelements an jedem Sensor zu detektieren. Dadurch ist ermittelbar, in welchem Erfassungs-Teilbereich sich das Gegenelement befindet, oder ob es sich außerhalb der Erfassungsbereiche befindet.
  • Die Auswerteschaltung detektiert das Vorbeibewegen vorzugsweise, indem sie die Sensorsignale miteinander XOR-verknüpft. D. h. die Auswerteschaltung erfasst immer, wenn ein Erfassungs-Teilbereich vom weiteren Gegenelement "betreten" oder verlassen wird. Dies ist eine besonders einfache und kostengünstige Lösung.
  • Das Vorbeibewegen wird vorzugsweise detektiert, indem die Auswerteschaltung ein mittels der XOR-Verknüpfung der Sensorsignale gebildetes Signal um einen vorbestimmten Wert als Verzögerungssignal verzögert und das gebildete Signal mit dem Verzögerungssignal XOR-verknüpft. Damit ist ein gesamtes Ausgangssignal generierbar, das nur noch Pegelwechsel-Impulse anstelle längerer Phasen mit geändertem Pegel beinhaltet. Dies hat den Vorteil, dass eine etwaige nachgeschaltete Steuerung des Knaufzylinders für wesentlich kürzere Zeiten, nämlich nur während der kurzen Impulse, aktiviert wird, was energiesparend wirkt.
  • Ein erfindungsgemäßer Drehknauf ist zu einem Schließbart eines Profilzylinders frei rotierbar angeordnet. Er kann zudem betätigt werden, einen Aktor zu bestromen, der daraufhin den Drehknauf mit dem Schließbart rotationswirkverbindet, sodass der Drehknauf den Schließbart beim Drehen mitbewegt. Der Drehknauf weist einen Leser auf, der eingerichtet ist, Daten eines Zugangsdatenträgers wie einer Codekarte zu lesen. Schließlich weist der Drehknauf noch einen Teil einer der vorbeschriebenen Sensorvorrichtungen auf. D. h. abgesehen von der Sensorvorrichtung, bleibt der Drehknauf nahezu unberührt. Der Aktor kann beispielsweise ein Motor oder ein Hubmagnet sein, der mit einem Kupplungsmechanismus gekuppelt ist, der bei Bestromen des Aktors derart betätigt wird, dass die vorgenannte Rotationsverbindung hergestellt ist.
  • Der Leser ist vorzugsweise in einem Aktivmodus zugeschaltet, sodass er in der Lage ist, Daten eines Zugangsdatenträgers zu lesen. In einem Inaktivzustand hingegen ist der Leser weggeschaltet, sodass er nicht (mehr) in der Lage ist, Daten eines Zugangsdatenträgers, wie beispielsweise einer Codekarte, einer Person mit biometrischen Daten bzw. gemerkten Zugangscodes (geistige Merkmale) als Zugangsdaten, zu lesen. Im Inaktivmodus verbraucht der Leser also keine oder kaum Energie. Die Sensorvorrichtung umfasst erfindungsgemäß die vorgenannte Auswerteschaltung. Diese ist eingerichtet, ein Zuschalten der Leseeinrichtung auszulösen, wenn die Auswerteschaltung ein Vorbeibewegen des Gegenelements an einem der Sensoren detektiert hat. D. h. die Sensorvorrichtung kann zwei Aufgaben erfüllen, einerseits die Erkennung der Bewegungsrichtung und andererseits einfach nur die Erkennung der Drehbewegung überhaupt, und dass ohne aufwändige Logik.
  • Dazu umfasst die Auswerteschaltung vorzugsweise ein XOR (Exklusiv-ODER)-Glied, dem die Sensorsignale eingegeben werden, und dessen Ausgangssignal dem Leser oder einer den Leser ansteuernden Steuerung eingegeben wird. D. h. es sind herkömmliche, preiswerte Standardkomponenten verwendbar, was kostengünstig ist.
  • Vorzugsweise weist die Auswerteschaltung ferner ein Zeitverzögerungsglied auf, dem das Ausgangssignal des vorgenannten, einen XOR-Glieds eingegeben wird. Zudem weist sie ein anderes XOR-Glied auf, dem das Ausgangssignal des einen XOR-Glieds und ein vom Verzögerungsglied gebildetes Ausgangssignal eingegeben werden. Das Ausgangssignal dieses anderen XOR-Glieds wird wiederum dem Leser bzw. der Steuerung eingegeben.
  • Das vorgenannte Gegenelement oder das zumindest eine Paar von Sensoren ist vorzugsweise feststehend angeordnet, wird also vorzugsweise in Bezug auf den gesamten Drehknauf nicht bewegt. Im einfachsten Fall ist das Gegenelement bzw. dieses Paar von Sensoren am Profilzylinder angebracht oder in diesen integriert. Dementsprechend ist dieses Paar von Sensoren bzw. das Gegenelement angeordnet, bei einem Drehen des Drehknaufs vom Drehknauf entlang des Bewegungswegs mitbewegt zu werden. Vorteilhafterweise ist nunmehr dieses Paar von Sensoren bzw. das Gegenelement am Drehknauf angebracht oder in diesen integriert. D. h. der Sensor kann einfach und platzsparend integriert werden.
  • Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsformen. Es zeigen:
  • Figur 1
    einen Knaufzylinder gemäß einer Ausführungsform der Erfindung in zwei Ansichten,
    Figur 2
    Verläufe von Sensorsignalen,
    Figur 3
    eine Erweiterung des Knaufzylinders von Figur 1 und
    Figur 4
    eine Erweiterung zu Figur 3.
  • Figur 1 zeigt einen Knaufzylinder 100 als Teil eines verriegelbaren Flügelschlosses in zwei Ansichten, und zwar nur die für die Erfindung relevanten Teile.
  • Gemäß Figur 1a umfasst der Knaufzylinder 100 einen Profilzylinder 110 mit frei rotierbarem Schließbart 111 und Stulploch 112. Einerends ist am Profilzylinder 110 ein Drehknauf 120 angebracht. Dieser ist mit einem Leser 121 versehen, der zur berührungslosen Kontaktaufnahme mit einem nicht dargestellten Zugangsdatenträger mit einer Antenne 122 gekoppelt ist. Ferner ist eine vorzugsweise optische Anzeige 124 exemplarisch in Form eines Leuchtrings ausgebildet. Schließlich ist noch eine autarke Energieversorgung in Form einer Batterie 123 oder eines Akkumulators im Drehknauf 120 untergebracht.
  • Wie in Figur 1b dargestellt, weist der Drehknauf 120 an seiner dem Profilzylinder 110 zugewandten Seite exemplarisch vier Sensoren 125 vorzugsweise in Form von GMR-Sensoren auf. Die Sensoren 125 sind so angeordnet, dass die Erfassungsbereiche 126 der einzelnen Sensoren 125, repräsentiert mithilfe der schraffierten Bereiche, jeweils paarweise einander zum Teil überlappen, gekennzeichnet durch die kreuzschraffierten Bereiche.
  • Korrespondierend dazu weist der Profilzylinder 110 an seiner dem Drehknauf 120 zugewandten Seite von den Sensoren 125 erfassbare Elemente hier in Form zweier Magnete 113 auf.
  • Wird der Drehknauf 120 gedreht, folgen die Sensoren 125 einer jeweiligen, vorteilhafterweise derselben, Kreisbahn, deren Mittelpunkt die Rotationsachse des Drehknaufs ist. Dies führt dazu, dass die Erfassungsbereiche 126 der einzelnen Sensoren 125 abwechselnd an einem der Magneten 113 vorbeigeführt werden. Dadurch ist es dem jeweiligen Sensor 125 möglich zu erfassen, wenn der jeweilige Magnet 113 in den zugehörigen Erfassungsbereich 126 gerät oder diesen verlässt. Darauf basierend gibt jeder Sensor 125 ein entsprechendes Signal aus.
  • Die Signale vorzugsweise aller Sensoren 125, zumindest aber der zu einem Paar gehörenden Sensoren 125, also zweier Sensoren mit einander teilweise überlappenden Erfassungsbereichen 126, werden zu einer Datenverarbeitungslogik, beispielsweise einem Prozessor, übertragen.
  • Vorzugsweise werden bzw. sind die Sensorsignale digitalisiert.
  • Beispielhaft ist für das obere Paar Sensoren 125 dem linken Sensor 125 ein Sensorsignal S1 zugeordnet, während dem rechten Sensor 125 ein Sensorsignal S2 zugeordnet ist.
  • In Figur 2 sind verschiedene Verläufe für die Sensorsignale S1, S2 angegeben.
  • Befindet sich der Magnet 113 außerhalb der Erfassungsbereiche 126 beider Sensoren 125, nehmen beide Signale S1, S2, wie in Figur 2a gezeigt, einen Low-Pegel ein. Gerät der Magnet 113 in den Erfassungsbereich 126 beispielhaft des Sensors 125 links oben in Figur 1b, geht das zugehörige Signal (hier: S1) auf High. Das andere Signal bleibt auf Low. Wird der Drehknauf 120 weitergedreht, gelangt der Magnet 113 in den Überlappungsbereich beider Erfassungsbereiche 126, und auch das zweite Signal (hier: S2) nimmt den High-Pegel ein. Beim Weiterdrehen des Drehknaufs 120 verlässt der Magnet 113 irgendwann den Überlappungsbereich und verbleibt im Erfassungsbereich 126 des anderen der beiden Sensoren, also des Sensors 125 rechts oben in Figur 1b. Verlässt er auch diesen Erfassungsbereich 126, nehmen beide Signale S1, S2 wieder den Low-Pegel ein. In Figur 2a sind drei hintereinander ausgeführte Umdrehungen des Drehknaufs 120 dargestellt. Die Dauer der High- und Low-Pegel-Phasen hängt dabei von der Drehgeschwindigkeit des Drehknaufs 120 ab.
  • Wird der Drehknauf 120 in entgegengesetzte Richtung gedreht, ergibt sich ein Signalverlauf, wie in Figur 2b dargestellt. Dies wird dadurch deutlich, dass nunmehr Signal S2 früher den High-Pegel einnimmt und wieder verlässt als Signal S1.
  • Figur 2c zeigt den Fall, wenn der Drehknauf 120 nicht kontinuierlich in eine Richtung gedreht wird. Stattdessen wird der Drehknauf 120 kurz nach Verlassen des Erfassungsbereichs 126 des dem Signal S1 zugehörigen Sensors 125 wieder zurückgedreht, sodass er wieder in den Erfassungsbereich 126 dieses Sensors 125 gelangt, ohne vorher in den Erfassungsbereich 126 des dem Signal S2 zugehörigen Sensors 125 gelangt zu sein. Und dies widerspiegeln die resultierenden Signalverläufe deutlich.
  • Gemäß Figur 2d wird der Drehknauf 120 noch vor Verlassen des Erfassungsbereichs 126 des anderen Sensors 125 wieder zurückgedreht, da zwei High-Pegel-Phasen des Signals S2 mit ein und derselben High-Pegel-Phase des Sensorsignals S1 überlappen. Und dies wird durch die resultierenden Signalverläufe deutlich widergespiegelt.
  • Mit der erfindungsgemäßen Anordnung ist also nicht nur die Drehrichtung sondern auch die Drehrichtungsänderung detektierbar, ohne dass aufwändige Verarbeitungslogik notwendig ist.
  • Ist der Drehknauf 120 aktiviert, also mit dem Schließbart 111 rotationswirkverbunden, kann mithilfe der eindeutigen Signalverläufe einfach ermittelt werden, ob der Drehknauf 120 in Richtung Ent- oder Verriegelungsrichtung des nicht weiter dargestellten Flügelschlosses gedreht wird und damit der angeschlossene Flügel entriegelt oder verriegelt werden soll. Ferner kann noch die Anzahl an Drehknauf-Umdrehungen zugrunde gelegt werden. Beispielsweise kann vorgesehen sein, wenn die Prüfung der Zugangsdaten erfolgreich verlief, dass ein Benutzer den Drehknauf zweimal in Entriegelungsrichtung drehen muss, ehe der Drehknauf die Rotationswirkverbindung wieder löst.
  • Figur 3 zeigt eine Erweiterung des Knaufzylinders 100.
  • Gemäß Figur 3a werden die Sensorsignale S1, S2 einem XOR-Glied bzw. -Gatter 101 eingegeben. Dessen Ausgangssignal A wird hier einer Steuerung 102 eingegeben. Die Steuerung 102 funktioniert beispielhaft so, dass sie, wenn das Signal A den High-Pegel annimmt und der Drehknauf 120 nicht aktiviert ist, entweder sofort oder nach Überschreiten einer vorbestimmten Anzahl an High-Pegel-Phasen im Ausgangssignal A den Leser 121 aktiviert, also zu- bzw. einschaltet. D. h. eine Person, die beispielsweise eine Tür öffnen will, kann mittels einfachen Drehens des Drehknaufs 120 den Leser 121 aktivieren. Vorzugsweise wird bei Aktivieren des Lesers 121 die Anzeige 124 so aktiviert, dass sie beispielsweise gelb leuchtet, um die Lesebereitschaft anzuzeigen.
  • Figur 3b zeigt die Verläufe des Ausgangssignals A bezogen auf die in Figur 2 dargestellten Verläufe der Sensorsignale S1, S2.
  • Mit dieser Anordnung kann die Steuerung 102 erkennen, wenn der Magnet 113 einen jeweiligen Erfassungs(teil)bereich 126 "betritt" oder verlässt.
  • Figur 4 zeigt eine Erweiterung zur in Figur 3a gezeigten Anordnung. Hier sind zwischen XOR-Glied 101 und Steuerung 102 ein hier mittels eines Totzeitglieds gebildetes Verzögerungsglied 103 sowie ein zweites XOR-Glied 101 in Reihe hintereinander geschaltet. Dem zweiten XOR-Glied 101 wird dabei neben dem Ausgangssignal A des ersten XOR-Glieds 101 selbst ein Signal V eingegeben, das dem Ausgangssignal A entspricht, nur dass dessen Verlauf mittels des Verzögerungsglieds 103 um eine vorbestimmte Zeitdauer Δt verschoben ist. Es gilt für den Zeitpunkt t also: V(t) = A(t - Δt).
  • Das daraus resultierende Ausgangssignal S des zweiten XOR-Glieds 101 wird nun als Signal S der Steuerung 102 eingegeben. Das verzögerte Signal V verbunden mit dem zweiten XOR-Glied 101 dient dem Zweck, aus einem Signal A mit relativ langen High-Pegel-Phasen ein Signal S mit relativ kurzen High-Pegel-Phasen zu machen. D. h. der Steuerung 102 können Signale mit sehr kurzen High-Pegel-Impulsen eingegeben werden.
  • Die Zeitdauer Δt ist so bestimmt, dass die nachgeschaltete Steuerung 102 bei minimaler Impulsbreite jeden Impuls weiterhin sicher erkennen kann.
  • Figur 4b zeigt den Verlauf der Signale S1, S2, A, V, S für den Verlauf der Signale S1, S2 gemäß Figur 2a. Auch ist hier die Zeitverzögerung Δt zwischen den Signalen A, V deutlich erkennbar.
  • Die Erfindung ist nicht auf die vorbeschriebenen Ausführungen beschränkt.
  • Beispielsweise kann vorgesehen sein, den Zustand der Sensorsignale S1, S2 darzustellen. Dazu weist die Anzeige 124 exemplarisch eine mehrfarbige Leuchteinrichtung beispielsweise in Form einer RGB-LED auf. Diese leuchtet nicht, wenn die Signale S1, S2 beide auf Low stehen. Ändert S1 seinen Zustand zu High, leuchtet die LED rot. Geht auch das andere Signal S2 auf High, leuchtet die LED blau. Verliert das Signal S1 nun den High-Pegel (wieder), leuchtet die LED grün.
  • Alternativ oder zusätzlich zu einer optischen Anzeige kann auch eine akustische Anzeige vorgesehen sein, von der für jeden Zustand der Sensorsignale S1, S2 ein spezielles akustisches Signal ausgegeben werden kann.
  • Der Knaufzylinder 100 bzw. dessen Drehknauf 120 beinhaltet vorteilhafterweise drei Betriebszustände:
    • Schlafmodus: nur die Sensoren 125 sind aktiv
    • Berechtigungs- oder Lesemodus: der Leser 121 ist zugeschaltet; die Sensoren 125 sind möglicherweise inaktiv
    • Aktivmodus: der Drehknauf 120 ist aktiviert; der Leser 124 ist möglicherweise wieder weggeschaltet
  • Im Schlafmodus kann nur ein Sensor 125 aktiviert sein, um den Leser 121 zu aktivieren.
  • Auch im Aktivmodus können die Sensoren 125 aktiviert sein, um beispielsweise bei Daueraktivierung des Drehknaufs 120 Auswertungen über Begehungsfrequenz und dergleichen durchführen zu können.
  • Ist der Drehknauf 120 aktiviert, ist vorzugsweise vorgesehen, die Sensoren 125 aktiviert zu lassen. Dadurch ist es möglich, mittels Drehens des Drehknaufs 120 die Aktivierungszeit des Drehknaufs 120 entsprechend zu verlängern. Ferner kann vorgesehen sein, ein Entriegeln des Flügels dann zu bewirken, wenn detektiert wurde, dass der Drehknauf 120 eine bestimmte Anzahl von Umdrehungen (beispielsweise: 2) vollzogen hat.
  • Ferner kann vorgesehen sein, den Drehknauf 120 und vorzugsweise auch die Sensoren 125 für eine vorbestimmte Zeit abzuschalten.
  • Die Anzahl der Paare von Sensoren 125 ist nicht begrenzt. Es können beispielsweise drei Sensoren 125 angeordnet sein, deren Erfassungsbereiche 126 einander paarweise teilweise überlappen. Insgesamt können die drei Erfassungsbereiche 126 sogar den gesamten Bewegungsweg erfassen, nur eben nicht die paarweise einander überlappenden Erfassungsbereiche 126.
  • Auch die Anzahl an Magneten 113 ist nicht begrenzt.
  • Der jeweilige Magnet 113 kann als Permanentmagnet oder auch als Elektromagnet ausgebildet sein.
  • Die Sensoren 125 können auch optischer, haptischer, auf Schall basierender oder sonstiger Art sein. Der Magnet 113 ist durch ein zum Sensor 125 gehörendes Gegenstück zur Sensorbetätigung realisiert.
  • Die Sensoren 125 und Magnete 113 können gegeneinander ausgetauscht sein.
  • Die Sensoren 125 können zusätzlich oder alternativ zum Aufwecken bzw. Aktivieren des Lesers 20 dienen. D. h. der Benutzer muss den Drehknauf 120 erst einmal drehen, bevor ein Zugangsdatenträger überhaupt ausgelesen werden kann.
  • Es können auch spezielle Betriebsarten wie Notöffnen realisiert werden, indem der Drehknauf 120 beispielsweise in einer bestimmten Weise gedreht werden muss, was mit der erfindungsgemäßen Sensorvorrichtung einfach erkennbar ist.
  • Im Ergebnis bietet die Erfindung eine enorm einfach aufgebaute und platzsparende Lösung zur Drehbewegungserfassung vorzugsweise des Drehknaufs 120 eines Knaufzylinders 100.
  • Bezugszeichenliste
  • 100
    Knaufzylinder
    101
    XOR-Glied
    102
    Steuerung
    103
    Verzögerungsglied
    110
    Profilzylinder
    111
    Schließbart
    112
    Stulploch
    113
    magnetisches Teil
    120
    Drehknauf
    121
    Leser
    122
    Antenne
    123
    Energieversorgung
    124
    Anzeige
    125
    Sensor
    126
    Erfassungsbereich
    A
    Ausgangssignal
    S
    Steuersignal
    S1, S2
    Sensorsignal
    V
    Verzögerungssignal
    Δt
    Zeitverzögerung

Claims (9)

  1. Knaufzylinder (100) umfassend einen Drehknauf (120) und einen Profilzylinder (110), wobei der Drehknauf (120) zu einem Schließbart (111) des Profilzylinders frei rotierbar angeordnet ist und
    der Drehknauf (120) ausgebildet ist, einen Aktor zu bestromen, der daraufhin den Drehknauf (120) mit dem Schließbart (111) rotationswirkverbindet, sodass der Drehknauf (120) den Schließbart (111) beim Drehen mitbewegt,
    wobei der Drehknauf (120)
    einen Leser (121) aufweist, wobei der Leser (121) eingerichtet ist, Daten eines Zugangsdatenträgers zu lesen,
    wobei der Knaufzylinder eine Sensorvorrichtung umfasst, wobei die Sensorvorrichtung mit einem Teil in den Drehknauf (120) des Knaufzylinders (100) eingesetzt ist, dadurch gekennzeichnet, dass
    • die Sensorvorrichtung
    - zumindest ein Paar von Sensoren (125) und
    - ein Gegenelement (113) aufweist,
    • wobei das Gegenelement (113) und das zumindest eine Paar von Sensoren (125)
    - entlang eines im Wesentlichen kreisförmigen Bewegungswegs relativ zueinander bewegbar angeordnet sind und
    - einander derart gegenüberliegen, dass Erfassungsbereiche (126) der Sensoren (125)
    . jeweils einen Teilbereich des Bewegungswegs einschließen und
    . sich im Bereich des Bewegungswegs teilweise überlappen,
    • wobei der Bewegungsweg teilweise außerhalb der Erfassungsbereiche (126) des zumindest einen Paars von Sensoren (125) verläuft.
  2. Knaufzylinder (100) gemäß Anspruch 1, wobei
    • die Sensoren (125) mittels GMR-Sensoren (125) gebildet sind und
    • das Gegenelement (113) magnetisiert ist.
  3. Knaufzylinder (100) gemäß Anspruch 1 oder 2, ferner aufweisend eine Auswerteschaltung (101; 101, 103, 101), eingerichtet, auf Basis von Sensorsignalen (S1, S2), die von dem zumindest einen Paar von Sensoren (125) ausgegeben worden sind, ein Vorbeibewegen des Gegenelements (113) an jedem Sensor (S1, S2) zu detektieren.
  4. Knaufzylinder (100) gemäß Anspruch 3, wobei die Auswerteschaltung (101; 101, 103, 101) das Vorbeibewegen detektiert, indem sie die Sensorsignale (S1, S2) miteinander XOR-verknüpft.
  5. Knaufzylinder (100) gemäß Anspruch 4, wobei die Auswerteschaltung (101, 103, 101) das Vorbeibewegen detektiert, indem sie
    • ein mittels der XOR-Verknüpfung der Sensorsignale (S1, S2) gebildetes Signal (A) um einen vorbestimmten Wert (Δt) als Verzögerungssignal (V) verzögert und
    • das gebildete Signal (A) mit dem Verzögerungssignal (V) XOR-verknüpft.
  6. Knaufzylinder (100) gemäß einem der Ansprüche 3 bis 5, wobei
    • der Leser (121)
    - in einem Aktivmodus zugeschaltet ist, sodass er in der Lage ist, Daten eines Zugangsdatenträgers zu lesen, und
    - in einem Inaktivzustand weggeschaltet ist, sodass er nicht in der Lage ist, Daten eines Zugangsdatenträgers zu lesen,
    • und
    die Auswerteschaltung (101; 101, 103, 101) eingerichtet ist, ein Zuschalten des Lesers (121) auszulösen, wenn die Auswerteschaltung (101; 101, 103, 101) ein Vorbeibewegen des Gegenelements (113) an einem der Sensoren (125) detektiert hat.
  7. Knaufzylinder (100) gemäß einem der Ansprüche 3 bis 6, wobei die Auswerteschaltung (101) ein XOR-Glied (101) umfasst, dem die Sensorsignale (S1, S2) eingegeben werden, und dessen Ausgangssignal (A) dem Leser (121) oder einer den Leser (121) ansteuernden Steuerung (102) eingegeben wird.
  8. Knaufzylinder (100) gemäß Anspruch 7, wobei die Auswerteschaltung (101, 103, 101) ferner
    • ein Zeitverzögerungsglied (103) aufweist, dem das Ausgangssignal (A) des einen XOR-Glieds (101) eingegeben wird, und
    • ein anderes XOR-Glied (101) aufweist,
    - dem das Ausgangssignal (A) des einen XOR-Glieds (101) und ein vom Verzögerungsglied (103) gebildetes Ausgangssignal (V) eingegeben werden, und
    - dessen Ausgangssignal (S) dem Leser (121) bzw. der Steuerung (102) eingegeben wird.
  9. Knaufzylinder (100) gemäß einem der Ansprüche 1 bis 8, wobei
    • das Gegenelement (113) oder das zumindest eine Paar von Sensoren (125) feststehend angeordnet ist und
    • das zumindest eine Paar von Sensoren (125) bzw. das Gegenelement (113) angeordnet ist, bei einem Drehen des Drehknaufs (120) vom Drehknauf (120) entlang des Bewegungswegs mitbewegt zu werden.
EP11769776.3A 2010-09-30 2011-09-26 Sensorvorrichtung mit drehrichtungserfassung Active EP2622153B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010037877 2010-09-30
PCT/EP2011/004798 WO2012041471A1 (de) 2010-09-30 2011-09-26 Sensorvorrichtung mit drehrichtungserfassung

Publications (2)

Publication Number Publication Date
EP2622153A1 EP2622153A1 (de) 2013-08-07
EP2622153B1 true EP2622153B1 (de) 2020-09-02

Family

ID=44799970

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11769776.3A Active EP2622153B1 (de) 2010-09-30 2011-09-26 Sensorvorrichtung mit drehrichtungserfassung

Country Status (5)

Country Link
EP (1) EP2622153B1 (de)
CN (1) CN103154408B (de)
DE (1) DE102011114286A1 (de)
SG (1) SG188325A1 (de)
WO (1) WO2012041471A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20130460A1 (it) * 2013-03-27 2014-09-28 Microhard Srl Dispositivo di rilevamento dello stato di un battente di porte, cancelli e simili.
CN103953222B (zh) * 2014-03-14 2016-08-17 珠海优特电力科技股份有限公司 一种可检测锁芯转动方向的电子锁及其工作方法
DE202014006319U1 (de) * 2014-08-06 2015-11-11 Bks Gmbh Schließeinrichtung mit mindestens einem elektronischen Verbraucher
CN111321953B (zh) * 2020-02-19 2021-02-26 温州市东风通用机电厂 带阻尼的车门内开手柄
WO2022269285A1 (en) * 2021-06-25 2022-12-29 Avantis Hardware Ltd Lock apparatus, parts thereof and method of fitting a lock cylinder

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100482388B1 (ko) * 1996-11-05 2005-04-13 후프 휠스벡 운트 퓌르스트 게엠베하 운트 콤파니 카게 로크 실린더 및 다양한 전기적 기능용 스위치를 가진 장치
DE19819783C2 (de) * 1998-05-04 2001-07-12 Mannesmann Vdo Ag Verfahren und Schaltung zur Überprüfung der Weite des Luftspaltes bei einem Drehzahlsensor
DE19906937A1 (de) * 1999-02-19 2000-09-14 Mannesmann Vdo Ag Drehzahlgeber
DE10208452A1 (de) * 2002-02-27 2003-09-18 Bremicker Soehne Kg A Türschlossüberwachungseinheit
DE102008022276A1 (de) * 2008-05-06 2009-11-12 Eidebenz, Tino Sensorsystem bestehend aus einem elektronischen Kompass und einen Rotationssensor zur Bestimmung des Verschluss- und Verriegelungszustandes
DE202008010250U1 (de) * 2008-07-30 2009-12-10 Burg-Wächter Kg Schloss
GB2463943B (en) * 2008-10-06 2011-05-11 Cooper Security Ltd Locks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
SG188325A1 (en) 2013-04-30
CN103154408B (zh) 2016-05-18
WO2012041471A1 (de) 2012-04-05
EP2622153A1 (de) 2013-08-07
CN103154408A (zh) 2013-06-12
DE102011114286A1 (de) 2013-01-24

Similar Documents

Publication Publication Date Title
EP2622153B1 (de) Sensorvorrichtung mit drehrichtungserfassung
DE202008010249U1 (de) Schloss
DE19747720A1 (de) Vorrichtung mit einem Schlüssel betätigbaren Schließzylinder und mit einer elektrischen Schalteinrichtung, insbesondere elektronische Wegfahrsperre für ein Kraftfahrzeug
AT505058A2 (de) Türschliesssystem
DE102005047366A1 (de) Vorrichtung zur Bestimmung der tatsächlichen Drehrichtungsumkehr eines reversierenden Drehantriebs
EP2998473B1 (de) Vorichtung zur überwachung der schliessstellung einer verriegelungseinrichtung
EP2514658A2 (de) Verriegelungssystem
EP0542944B1 (de) Schloss mit motorisch verdrehbarem zylinderkern
EP2175166A2 (de) Sperrvorrichtung
DE10235201A1 (de) Türschließystem
DE3615173C2 (de)
EP3156567B1 (de) Überwachungseinrichtung eines treibstangenbeschlages für einen in einem rahmen verriegelbaren flügel
DE102007033365A1 (de) Eine ein temperaturabhängiges Signal liefernde Watchdog-Schaltung für einen Mikrocontroller einer ELV
DE3940457C1 (en) Motor vehicle lock illuminating device - is operated by proximity switch responding to metal and/or permanent magnet of car key
DE102008062230A1 (de) Meßanordnung einer Funktionseinheit in einem Kraftfahrzeug
DE10144702A1 (de) Sicherheitsschließsystem
EP1318255B1 (de) Vorrichtung zur Betätigung eines Schliesssystems an einer Tür, einer Klappe oder dgl., insbesondere bei einem Fahrzeug
DE4422094C2 (de) Schloß für Türen
DE19800304B4 (de) Antriebsanordnung für ein Schloß
WO2003093612A1 (de) Schliesszylinder
EP0650107A1 (de) Steuersystem für motorische Antriebe
DE202008010250U1 (de) Schloss
EP3480392B1 (de) Betätigungsvorrichtung zum bedienen einer verschlussvorrichtung für die öffnung einer wand
EP3312368B1 (de) Verschlusselement einer immobilie
DE19947483B4 (de) Kraftfahrzeug-Türschloss

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130502

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DOM-SICHERHEITSTECHNIK GMBH & CO. KG

Owner name: DORMA DEUTSCHLAND GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DORMAKABA DEUTSCHLAND GMBH

Owner name: DOM-SICHERHEITSTECHNIK GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180806

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191105

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200214

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1308973

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011016886

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FREI PATENTANWALTSBUERO AG, CH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201203

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201202

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011016886

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200926

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201102

26N No opposition filed

Effective date: 20210603

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200926

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210102

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200902

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20220921

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220928

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL