EP2619343B1 - Hochfeste, bei raumtemperatur plastisch verformbare und mechanische energie absorbierende formkörper aus eisenlegierungen - Google Patents

Hochfeste, bei raumtemperatur plastisch verformbare und mechanische energie absorbierende formkörper aus eisenlegierungen Download PDF

Info

Publication number
EP2619343B1
EP2619343B1 EP11779110.3A EP11779110A EP2619343B1 EP 2619343 B1 EP2619343 B1 EP 2619343B1 EP 11779110 A EP11779110 A EP 11779110A EP 2619343 B1 EP2619343 B1 EP 2619343B1
Authority
EP
European Patent Office
Prior art keywords
phase
volume
shaped body
proportion
phases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11779110.3A
Other languages
English (en)
French (fr)
Other versions
EP2619343A1 (de
Inventor
Uta KÜHN
Jürgen Eckert
Uwe Siegel
Julia Hufenbach
Min Ha Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leibnitz-Institut fur Festkorper- und Werkstoffforschung Dresden Ev
Original Assignee
Leibnitz-Institut fur Festkorper- und Werkstoffforschung Dresden Ev
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibnitz-Institut fur Festkorper- und Werkstoffforschung Dresden Ev filed Critical Leibnitz-Institut fur Festkorper- und Werkstoffforschung Dresden Ev
Publication of EP2619343A1 publication Critical patent/EP2619343A1/de
Application granted granted Critical
Publication of EP2619343B1 publication Critical patent/EP2619343B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/04Alloys containing less than 50% by weight of each constituent containing tin or lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium

Definitions

  • the invention relates to the field of materials science and relates to high-strength, at room temperature plastically deformable and energy absorbing mechanical body of iron alloys.
  • Such moldings can be used as cutting, punching and splitting tools, in the aerospace industry, aerospace, the automotive industry and generally in mechanical engineering, as well as for mining tools, e.g. Dredger teeth, if particularly high demands on the mechanical loadability, the surface stress (wear) and in particular on the ability to absorb mechanical energy are provided.
  • composition ranges of multicomponent alloys in which such metallic glasses can also be produced by casting in solid form for example with dimensions> 1 mm.
  • Such alloys are, for example, Pd-Cu-Si, Pd 40 Ni 40 P 20 , Zr-Cu-Ni-Al, La-Al-Ni-Cu ( T. Masumoto: Mater. Sci. Closely. A179 / 180 (1994) 8-16 ; WL Johnson: Mater. Sci. Forum Vol. 225-227, pp. 35-50, Transtec Publications 1996, Switzerl and).
  • metallic glass moldings having a particularly high glass-forming ability (in dimensions up to 12 mm castable with vitreous structure) in the compositions Fe 48 Cr 15 Mo 14 Er 2 C 15 B 6 and (Fe 44.3 Cr 5 Co 5 Mo 12, 8 Mn 11.2 C 15.8 B 5.9 ) 98.5 Y 1.5 ( V. Ponnambalam, et al .: J. Mater. Res. 19, 5, (2004) 1320-1323 ; ZP Lu, et al .: Phys. Rev. Let. 92, 24, (2004) 245503-1 - 245503-4 ).
  • the invention has for its object to provide high-strength, plastically deformable at room temperature and mechanical energy absorbing moldings of iron alloys, which have macroscopic plasticity and strain hardening compared to moldings of metallic glasses, without thereby other properties such as breaking strength or corrosion behavior are significantly impaired, and compared to moldings of amorphous, semi-crystalline or crystalline metallic alloys have a significant increase in strength while having a comparatively high ductility.
  • ferritic and / or bainitic phases are present.
  • the volume fraction of the martensitic phase is 50 to 70%.
  • the volume fraction of the austenitic phase is 5 to ⁇ 30%, more preferably 10 to 20%.
  • the volume fraction of the boridic and / or carbidic and / or nitridic and / or oxidic phases is 5 to 15% by volume.
  • the alloying elements are mixed, melted and then poured into a mold, wherein the cooling of the alloy in the mold at a rate of> 20 K / s is realized and the cooling rate is chosen depending on the phase composition to be set, with higher cooling rates promote the formation of the martensitic phase.
  • the melting and casting is carried out with the exclusion of oxygen
  • molds are used to realize the cooling rates with a small thickness of the molded article to be produced, wherein molds having a thickness of the molded article of 1 to 30 mm, more preferably from 10 to 20 mm or from 12 to 20 mm used.
  • the shaped bodies according to the invention have improved properties compared to shaped bodies made of metallic glasses or of metallic alloys, which were not to be expected due to the sometimes small changes in the composition and / or in the production process.
  • compositions according to the invention and their preparation according to the invention which have the almost infinite number of possible compositions of metallic glasses or crystalline alloys having these advantageous properties. Alloy compositions also close to the compositions according to the invention show markedly poorer properties.
  • the homogeneous microstructure has a relatively high proportion by volume (40 to 80% by volume) of martensitic (tetragonal, body-centered) phase. This high volume fraction of martensitic phase leads to the known properties of iron alloys in general.
  • the shaped bodies according to the invention are produced according to the invention by mixing the alloy components and then melting.
  • the alloy components and the melting vessel should contain as few additives and impurities as possible.
  • the melt After melting, the melt is poured into a mold.
  • the cooling of the melt in the mold must be realized according to the invention with a cooling rate of> 20 K / s, advantageously between 20 and 200 K / s, so that the microstructure according to the invention can be achieved.
  • the choice of higher cooling rates promotes the formation of the martensitic phase.
  • a protective gas atmosphere for example consisting of argon, is used during melting and casting of the shaped body.
  • the cooling rate of the molten alloy can be controlled by the choice of the size of the mold.
  • the width and length of the casting mold and also of the shaped body to be produced play only a minor role. Decisive for the control of the cooling rate is above all the thickness of the shaped body to be produced. In this case, the smaller the thickness of the shaped body to be produced, the greater the cooling rate. Therefore, the cooling rate can also be controlled with the dimensions of the corresponding mold.
  • Advantageous thicknesses of the shaped bodies to be produced are in the range of 1 to 30 mm, advantageously in the range of 10 to 20 mm or 12 to 20 mm. Accordingly, molds having such dimensions can be selected.
  • such molds made of copper, so-called copper molds.
  • Typical dimensions of such molds are 70 x 120 x 14 mm 3 .
  • the melting of the alloy constituents can furthermore advantageously be carried out in an induction furnace, Al 2 O 3 also advantageously being used as the crucible material.
  • the alloy constituents used should advantageously be as free as possible of impurities and additives, and as a result of the melting and casting of the alloy, as few impurities and additives as possible should also be introduced into the melt and thus into the shaped body.
  • the alloy components are advantageously heated to temperatures of 1400-1900 ° C and poured at temperatures between 1400 and 1500 ° C in the mold.
  • the detection of the austenitic, the martensitic, the boridic and / or carbidic and / or nitridic and / or oxidic phases and the determination of the size and the volume fraction of these phases can be carried out by X-ray diffraction, scanning electron microscopy or transmission electron microscopy.
  • the cuboidal shaped body obtained consists of a high-strength, microcrystalline, martensitic (trz) phase, a microcrystalline austenitic (kfz) phase, as well as nano- and microcrystalline carbidic phases of the type MC and M 2 C.
  • the volume fraction of the martensitic phase is 75%
  • the Volume fraction of the austenitic phase is 15%
  • the volume fraction of the carbidic phases is 10%.
  • the molded article was tested in compression and a technical crushing of 13.6% (true crushing of 15.3%) at a technical breaking strength of 5060 MPa (true breaking strength of 4260 MPa) been determined.
  • the elastic compression at the 0.2% proof stress is 1.3% with a strength of 2480 MPa (techn.) Or 2010 MPa (true).
  • the modulus of elasticity is 212 GPa.
  • a molded body has been produced, which has a good resistance to deformation and a significant increase in strength coupled with good ductility.
  • the resulting rectangular shaped body consists of a high-strength, microcrystalline, martensitic (trz) phase, a microcrystalline austenitic (kfz) phase, as well as nano- and microcrystalline carbidic phases of the type MC and M 2 C.
  • the volume fraction of the martensitic phase is 70%
  • the Volume fraction of the austenitic phase is 18%
  • the volume fraction of the carbidic phases is 12%.
  • the molding was examined by compression and a technical crushing of 16.3% (true crushing fracture of 18.1%) at a technical breaking strength of 4350 MPa (true breaking strength of 3720 MPa) has been determined.
  • the elastic compression at the 0.2% proof stress is 1.2% at a strength of 2140 MPa (techn.) Or 1860 MPa (true).
  • the modulus of elasticity is 217 GPa.
  • a molded body has been produced, which has a good resistance to deformation and a significant increase in strength coupled with good ductility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

  • Die Erfindung bezieht sich auf das Gebiet der Materialwissenschaften und betrifft hochfeste, bei Raumtemperatur plastisch verformbare und mechanische Energie absorbierende Formkörper aus Eisenlegierungen. Derartige Formkörper sind einsetzbar als Schneid-, Stanz- und Spaltwerkzeuge, in der Flugzeugindustrie, der Raumfahrt, der Fahrzeugindustrie und allgemein im Maschinen- und Gerätebau, sowie für Gewinnungswerkzeuge, z.B. Baggerzähne, wenn besonders hohe Anforderungen an die mechanische Belastbarkeit, die Oberflächenbeanspruchung (Verschleiß) und insbesondere an das Vermögen mechanische Energie zu absorbieren gestellt werden.
  • Bekannt ist, dass bestimmte mehrkomponentige metallische Werkstoffe, z.B. FeCuNbSiB (Y. Yoshizawa, et al: J. Appl. Phys. 64 (10), (1988) 6044-6046) durch rasche Erstarrung in einen metastabilen glasartigen Zustand überführt werden können (metallische Gläser), um vorteilhafte (z.B. weichmagnetische, mechanische, katalytische) Eigenschaften zu erhalten. Meist sind diese Werkstoffe wegen der erforderlichen Abkühlrate der Schmelze nur mit geringen Abmessungen in mindestens einer Dimension z. B. dünne Bänder oder Pulver herstellbar. Damit sind sie als Konstruktionswerkstoff nicht geeignet (T. Masumoto: Mater. Sci. Eng. A179/180 (1994) 8-16).
  • Bekannt sind auch bestimmte Zusammensetzungsbereiche mehrkomponentiger Legierungen, in denen solche metallischen-Gläser auch in massiver Form, z.B. mit Abmessungen > 1 mm, durch Gießverfahren hergestellt werden können. Solche Legierungen sind z.B. Pd-Cu-Si, Pd40Ni40P20, Zr-Cu-Ni-Al, La-Al-Ni-Cu (T. Masumoto: Mater. Sci. Eng. A179/180 (1994) 8-16; W.L. Johnson: Mater. Sci. Forum Vol. 225-227, S. 35-50, Transtec Publications 1996, Switzerland). Dabei sind insbesondere metallische Fe-Basis Gläser mit Zusammensetzungen der chemischen Formeln Fe60Co8Zr10Mo5W2B15, (Fe0,75B0,15Si0,1)96Nb4, Fe77Ga2P9,5C4B4Si2,5, Fe65.5Cr4Mo4Ga4P12C5B5,5, Fe74Nb6B17Y3, [(Fe0,5Co0,5)0,75B0,2Si0,05]96Nb4, welche > 1 mm hergestellt werden können, bekannt (A. Inoue, et al: Appl. Phys. Lett. 71, 4, (1997) 464-466; A. Inoue, et al: J. Mater. Res. 18, 6, (2003) 1487-1492; M. Stoica, et al: J. Metastab. Nanocryst. Mat. 12, (2002) 77-84: D.S. Song, et al: J. All. Comp. 389, (2005) 159-164; A. Inoue, et al: Acta Mater. 52, (2004) 4093-4099).
  • Weiterhin bekannt sind metallische Glas-Formkörper mit besonders hoher Glasbildungsfähigkeit (in Dimensionen bis 12 mm gießbar mit glasartiger Struktur) in den Zusammensetzungen Fe48Cr15Mo14Er2C15B6 und (Fe44,3Cr5Co5Mo12,8Mn11,2C15,8B5,9)98,5Y1,5 (V. Ponnambalam, et al: J. Mater. Res. 19, 5, (2004) 1320-1323; Z.P. Lu, et al: Phys. Rev. Let. 92, 24, (2004) 245503-1 - 245503-4).
  • Ebenfalls bekannt sind hochfeste kristallinen Fe-Legierungen mit metastabilen Phasenanteilen auf Grund hoher Erstarrungsraten in den Zusammensetzungen (Fe84.4Cr5.2Mo5.2Ga5.2)100-xCx mit x = 9 und 17, Fe84.3Cr4.3Mo4.6V2.2C4.6 und Fe88.9Cr4.3V2.2C4.6, (K. Werniewicz, et al: Acta Mater. 55, (2007) 3513-3520; U. Kühn, et al: Appl. Phys. Lett. 90, (2007) 261901-1 - 261901-3; U. Kühn, et al: J. Mater. Res. 25 (2), (2010) 368-374).
  • Der Erfindung liegt die Aufgabe zugrunde, hochfeste, bei Raumtemperatur plastisch verformbare und mechanische Energie absorbierende Formkörper aus Eisenlegierungen anzugeben, die gegenüber Formkörpern aus metallischen Gläsern makroskopische Plastizität sowie Verformungsverfestigung aufweisen, ohne dass dadurch andere Eigenschaften, wie Bruchfestigkeit oder das Korrosionsverhalten wesentlich beeinträchtigt werden, und gegenüber Formkörpern aus amorphen, teilkristallinen oder kristallinen metallischen Legierungen eine signifikante Festigkeitssteigerung bei gleichzeitiger vergleichsweise hoher Duktilität aufweisen.
  • Diese Aufgabe wird mit der in den Patentansprüchen angegebenen Erfindung gelöst. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.
  • Die erfindungsgemäßen hochfesten, bei Raumtemperatur plastisch verformbaren und mechanische Energie absorbierenden Formkörper aus Eisenlegierungen, bei denen der Werkstoff der Formkörper eine Zusammensetzung

            FeaCrc1Moc2Vc3CbYe

    mit a = 70-90, b = 3-6, c1 = 3-5, c2 = 3-5, c3 = 1-3, und e = 0,01-0,09 (in Atom-%) oder der Zusammensetzung

            FeaCrc1Moc2Vc3CbSidYe

    mit a = 70-90, b = 3-6, c1 = 3-5, c2 = 3-5, c3 = 1-3, d = 1-3 und e = 0,01-0,09 (in Atom-%)
    aufweist. und Verunreinigungen enthalten können,
    weisen ein Gefüge mit einer homogenen Mikrostruktur auf, die
    • 40 bis 80 Vol.-% martensitische (trz - tetragonal raumzentriert) Phase
      und
    • 5 bis 35 Vol.- % austenitische (kfz - kubisch flächenzentriert) Phase
      und
    • den Rest an boridischen und/oder carbidischen und/oder nitridischen und/oder oxidischen Phasen
      enthält, wobei der Volumenanteil an austenitischer Phase ansteigt, je geringer der Anteil an E2 ist.
  • Vorteilhafterweise sind ferritische und/oder bainitische Phasen vorhanden.
  • Weiterhin vorteilhafterweise beträgt der Volumenanteil der martensitischen Phase 50 bis 70 %.
  • Ebenfalls vorteilhafterweise beträgt der Volumenanteil der austenitischen Phase 5 bis < 30 %, noch vorteilhafterweise 10 bis 20 %.
  • Und auch vorteilhafterweise beträgt der Volumenanteil der boridischen und/oder carbidischen und/oder nitridischen und/oder oxidischen Phasen 5 - 15 Vol.-%.
  • Bei dem erfindungsgemäßen Verfahren zur Herstellung von hochfesten, bei Raumtemperatur plastisch verformbaren und mechanische Energie absorbierenden Formkörpern aus Eisenlegierungen werden die Legierungselemente gemischt, aufgeschmolzen und anschließend in eine Gussform gegossen, wobei die Abkühlung der Legierung in der Gussform mit einer Geschwindigkeit von > 20 K/s realisiert wird und die Abkühlungsgeschwindigkeit in Abhängigkeit von der einzustellenden Phasenzusammensetzung gewählt wird, wobei höhere Abkühlgeschwindigkeiten die Bildung der martensitischen Phase fördern.
  • Vorteilhafterweise wird zur Realisierung von boridischen und/oder carbidischen und/oder nitridischen Phasen im Gefüge das Aufschmelzen und Formgießen unter Ausschluss von Sauerstoff durchgeführt wird,
  • Ebenfalls werden zur Realisierung der Abkühlgeschwindigkeiten Gussformen mit einer geringen Dicke des herzustellenden Formkörpers eingesetzt, wobei Gussformen mit einer Dicke des herzustellenden Formkörpers von 1 bis 30 mm, noch vorteilhafterweise von 10 bis 20 mm oder von 12 bis 20 mm, eingesetzt.
  • Die erfindungsgemäßen Formkörper weisen derartig verbesserte Eigenschaften gegenüber Formkörpern aus metallischen Gläsern oder aus metallischen Legierungen auf, die aufgrund der zum Teil geringen Änderungen in der Zusammensetzung und/oder im Herstellungsverfahren nicht zu erwarten gewesen sind.
  • Es war überraschend, dass gerade die erfindungsgemäßen Zusammensetzungen und ihre erfindungsgemäße Herstellung aus der nahezu unendlichen Anzahl an möglichen Zusammensetzungen von metallischen Gläsern oder kristallinen Legierungen diese vorteilhaften Eigenschaften aufweisen. Legierungszusammensetzungen auch nahe bei den erfindungsgemäßen Zusammensetzungen zeigen deutlich schlechtere Eigenschaften.
  • Hervorzuheben sind bei den verbesserten Eigenschaften der erfindungsgemäßen Formkörper insbesondere, dass sie bei Raumtemperatur in unerwarteter Art und Weise plastisch verformbar sind und gleichzeitig deutlich mehr mechanische Energie absorbieren können. Dies führt zusammen zu einer signifikanten Festigkeitssteigerung der Formkörper.
  • Diese deutlich verbesserten Eigenschaften sind neben der konkreten Legierungszusammensetzung vor allem durch Einstellung der erfindungsgemäßen Gefügestruktur erreicht worden. Die homogene Mikrostruktur weist dabei erfindungsgemäß einen relativ hohen Volumenanteil (40 bis 80 Vol.-%) an martensitischer (trz - tetragonal raumzentriert) Phase auf. Dieser hohe Volumenanteil an martensitischer Phase führt zu den bekannten Eigenschaften von Eisenlegierungen allgemein.
  • Durch den erfindungsgemäßen Volumenanteil (5 bis 35 Vol.- %) an austenitischer (kfz - kubisch flächenzentriert) Phase, und durch die weiterhin vorhandenen boridischen und/oder carbidischen und/oder nitridischen und/oder oxidischen Phasen werden dann deutlich verbesserten Eigenschaften erreicht.
  • Dabei ist zu berücksichtigen, dass im Falle einer Legierungszusammensetzung mit einem geringen Anteil an einem oder mehreren Elementen der Gruppe Cr, V, Mo, W, Ti, Ta, Zr, Hf und Nb der Volumenanteil an austenitischer Phase ansteigen muss. Das ist dadurch bedingt, da diese Elemente der austenitischen Phase Kohlenstoff entziehen und carbidische Phasen bilden.
  • Ist jedoch der Kohlenstoffgehalt in der austenitischen Phase entsprechend hoch und wird dieser nicht durch die carbidbildenden Elemente entzogen, so führt dies zu einer Austenitstabilisierung durch den Kohlenstoff.
  • Die erfindungsgemäßen Formkörper werden erfindungsgemäß hergestellt durch Mischen der Legierungsbestandteile und anschließendem Aufschmelzen. Dabei sollten durch die Legierungsbestandteile und das Schmelzgefäß möglichst wenige Zusätze und Verunreinigungen eingebracht werden.
  • Nach dem Aufschmelzen wird die Schmelze in eine Form gegossen. Die Abkühlung der Schmelze in der Form muss dabei erfindungsgemäß mit einer Abkühlgeschwindigkeit von > 20 K/s, vorteilhafterweise zwischen 20 und 200 K/s realisiert werden, damit die erfindungsgemäße Gefügestruktur erreicht werden kann. Dabei wird durch die Wahl von höheren Abkühlgeschwindigkeiten die Bildung der martensitischen Phase gefördert.
  • Im Fall, dass im Gefüge keine oxidischen Phasen eingestellt werden sollen, ist es erforderlich, dass das Aufschmelzen und Formgießen der Legierung zu Formkörpern unter Ausschluss von Sauerstoff durchgeführt wird. Im diesem Falle wird bei Erschmelzen und Gießen des Formkörpers eine Schutzgasatmosphäre, beispielsweise bestehend aus Argon, eingesetzt.
  • Weiterhin kann vorteilhafterweise die Abkühlungsgeschwindigkeit der geschmolzenen Legierung durch die Wahl der Abmessung der Gussform gesteuert werden. Dabei spielen die Breite und Länge der Gussform und auch des herzustellenden Formkörpers nur eine untergeordnete Rolle. Entscheidend für die Steuerung der Abkühlgeschwindigkeit ist vor allem die Dicke des herzustellenden Formkörpers. Dabei gilt, je geringer die Dicke des herzustellenden Formkörpers ist, umso größer ist die Abkühlgeschwindigkeit. Daher kann auch mit den Abmessungen der entsprechenden Gussform die Abkühlgeschwindigkeit gesteuert werden. Vorteilhafte Dicken der herzustellenden Formkörper liegen im Bereich von 1 bis 30 mm, vorteilhafterweise im Bereich von 10 bis 20 mm oder 12 bis 20 mm. Dementsprechend können Gussformen ausgewählt werden, die solche Abmessungen aufweisen.
  • Vorteilhafterweise bestehen solche Gussformen aus Kupfer, sogenannte Kupferkokillen. Typische Abmessungen derartiger Kokillen sind 70 x 120 x 14 mm3.
  • Das Aufschmelzen der Legierungsbestandteile kann weiterhin vorteilhafterweise in einem Induktionsofen durchgeführt werden, wobei als Tiegelmaterial auch vorteilhafterweise Al2O3 eingesetzt wird.
  • Die eingesetzten Legierungsbestandteile sollen vorteilhafterweise möglichst frei von Verunreinigungen und Zusätzen sein und durch das Aufschmelzen und Gießen der Legierung sollen ebenfalls möglichst wenig Verunreinigungen und Zusätze in die Schmelze und damit in den Formkörper eingebracht werden.
  • Die Legierungsbestandteile werden vorteilhafterweise bis auf Temperaturen von 1400 - 1900 °C erwärmt und bei Temperaturen zwischen 1400 und 1500 °C in die Form gegossen.
  • Weiterhin ist es vorteilhaft, dass durch das erfindungsgemäße Verfahren anschließende Wärmebehandlungen überflüssig werden, da der erfindungsgemäße Formkörper seine besonderen mechanischen Eigenschaften bereits im Gusszustand aufweist.
  • Der Nachweis der austenitischen, der martensitischen, der boridischen und/oder carbidischen und/oder nitridischen und/oder oxidischen Phasen und die Bestimmung der Größe und des Volumenanteils dieser Phasen kann über Röntgenbeugung, Rasterelektronenmikroskopie oder Transmissionselektronenmikroskopie erfolgen.
  • Die Erfindung ist nachstehend anhand von mehreren Ausführungsbeispielen näher erläutert.
  • Beispiel 1
  • Zur Herstellung einer Legierung mit der Zusammensetzung Fe84,31Cr4,26Mo4,62V2,18C4,61Y0,02 (in Atom-%) werden 849,8 g Fe, 40 g Cr, 80 g Mo, 20 g V, 10 g C und 0,2 g Y eingewogen und gemischt. Diese Mischung wird in einer Induktionsschmelzanlage unter Argonschutzgas bei Temperaturen von 1500° C aufgeschmolzen und in eine rechteckige Kupferkokille mit den Abmessungen 70 x 100 x 14 mm3 abgegossen. Aufgrund der Größe der Kupferkokille und der Abmessungen des Gussteiles beträgt die Abkühlungsgeschwindigkeit 200 K/s.
  • Der erhaltene quaderförmige Formkörper besteht aus einer hochfesten, mikrokristallinen, martensitischen (trz) Phase, einer mikrokristallinen austenitischen (kfz) Phase, sowie nano- und mikrokristallinen carbidischen Phasen vom Typ MC und M2C. Der Volumenanteil der martensitischen Phase beträgt 75 %, der Volumenanteil der austenitischen Phase beträgt 15 % und der Volumenanteil der carbidischen Phasen beträgt 10 %.
  • Nachfolgend ist der Formkörper im Druckversuch untersucht worden und eine technische Bruchstauchung von 13,6 % (wahre Bruchstauchung von 15,3 %) bei einer technischen Bruchfestigkeit von 5060 MPa (wahre Bruchfestigkeit von 4260 MPa) ermittelt worden. Die elastische Stauchung an der 0,2 % Dehngrenze beträgt 1,3 % bei einer Festigkeit von 2480 MPa (techn.) oder 2010 MPa (wahr). Der Elastizitätsmodul beträgt 212 GPa.
  • Damit ist ein Formkörper hergestellt worden, der eine gute Verformungsfestigkeit und eine deutliche Festigkeitssteigerung bei gleichzeitiger guter Duktilität aufweist.
  • Beispiel 2 (Vergleichsbeispiel)
  • Zur Herstellung einer Legierung mit der Zusammensetzung Fe81,9Cr4,32Mo4,63V2,15C4,56Si2,34Sm0,10 (in Atom-%) werden 835 g Fe, 41 g Cr, 81 g Mo, 20 g V, 10 g C, 12 g Si und 1 g Sm eingewogen und gemischt. Diese Mischung wird in einer Induktionsschmelzanlage unter Argonschutzgas bei Temperaturen von 1500 ° C aufgeschmolzen und in eine quadratische Kupferkokille mit den Abmessungen 70 x 70 x 18 mm3 abgegossen. Aufgrund der Größe der Kupferkokille und der Abmessungen des Gussteiles beträgt die Abkühlungsgeschwindigkeit 150 K/s.
  • Der erhaltene quaderförmige Formkörper besteht aus einer hochfesten, mikrokristallinen, martensitischen (trz) Phase, einer mikrokristallinen austenitischen (kfz) Phase, sowie nano- und mikrokristallinen carbidischen Phasen vom Typ MC und M2C. Der Volumenanteil der martensitischen Phase beträgt 70 %, der Volumenanteil der austenitischen Phase beträgt 18 % und der Volumenanteil der carbidischen Phasen beträgt 12 %.
  • Nachfolgend ist der Formkörper im Druckversuch untersucht worden und eine technische Bruchstauchung von 16,3 % (wahre Bruchstauchung von 18,1 %) bei einer technischen Bruchfestigkeit von 4350 MPa (wahre Bruchfestigkeit von 3720 MPa) ermittelt worden. Die elastische Stauchung an der 0,2 % Dehngrenze beträgt 1,2 % bei einer Festigkeit von 2140 MPa (techn.) oder 1860 MPa (wahr). Der Elastizitätsmodul beträgt 217 GPa.
  • Damit ist ein Formkörper hergestellt worden, der eine gute Verformungsfestigkeit und eine deutliche Festigkeitssteigerung bei gleichzeitiger guter Duktilität aufweist.

Claims (7)

  1. Hochfeste, bei Raumtemperatur plastisch verformbare und mechanische Energie absorbierende Formkörper aus Eisenlegierungen, bei denen der Werkstoff der Formkörper eine Zusammensetzung

            FeaCrc1Moc2Vc3CbYe

    mit a = 70-90, b = 3-6, c1 = 3-5, c2 = 3-5, c3 = 1-3, und e = 0,01-0,09 (in Atom-%) oder der Zusammensetzung

            FeaCrc1Moc2Vc3CbSidYe

    mit a = 70-90, b = 3-6, c1 = 3-5, c2 = 3-5, c3 = 1-3, d = 1-3 und e = 0,01-0,09 (in Atom-%)
    aufweist, und Verunreinigungen enthalten sein kann und deren Gefüge eine homogene Mikrostruktur aufweist, die
    - 40 bis 80 Vol.-% martensitische (trz - tetragonal raumzentriert) Phase
    und
    - 5 bis 35 Vol.- % austenitische (kfz - kubisch flächenzentriert) Phase
    und
    - den Rest an boridischen und/oder carbidischen und/oder nitridischen und/oder oxidischen Phasen
    enthält, wobei der Volumenanteil an austenitischer Phase ansteigt, je geringer der Anteil an Cr, Mo oder V ist.
  2. Formkörper nach Anspruch 1, bei denen ferritische und/oder bainitische Phasen vorhanden sind.
  3. Formkörper nach Anspruch 1, bei denen der Volumenanteil der martensitischen Phase 50 bis 70 % beträgt.
  4. Formkörper nach Anspruch 1, bei denen der Volumenanteil der austenitischen Phase 5 bis < 30 %, vorteilhafterweise 10 bis 20 %, beträgt.
  5. Formkörper nach Anspruch 1, bei denen der Volumenanteil der boridischen und/oder carbidischen und/oder nitridischen und/oder oxidischen Phasen 5 - 15 Vol.-% beträgt.
  6. Verfahren zur Herstellung von hochfesten, bei Raumtemperatur plastisch verformbaren und mechanische Energie absorbierenden Formkörpern aus Eisenlegierungen gemäß einem der Ansprüche 1-5, bei dem die Legierungselemente gemischt, aufgeschmolzen und anschließend in eine Gussform gegossen werden, wobei zur Realisierung der Abkühlgeschwindigkeiten Gussformen mit einer Dicke von 12 bis 20 mm des herzustellenden Formkörpers eingesetzt werden, und die Abkühlung der Legierung in der Gussform mit einer Geschwindigkeit von > 20 K/s realisiert wird und die Abkühlungsgeschwindigkeit in Abhängigkeit von der einzustellenden Phasenzusammensetzung gewählt wird, wobei höhere Abkühlgeschwindigkeiten die Bildung der martensitischen Phase fördern.
  7. Verfahren nach Anspruch 6, bei dem zur Realisierung von boridischen und/oder carbidischen und/oder nitridischen Phasen im Gefüge das Aufschmelzen und Formgießen unter Ausschluss von Sauerstoff durchgeführt wird,
EP11779110.3A 2010-09-24 2011-09-20 Hochfeste, bei raumtemperatur plastisch verformbare und mechanische energie absorbierende formkörper aus eisenlegierungen Active EP2619343B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010041366A DE102010041366A1 (de) 2010-09-24 2010-09-24 Hochfeste, bei Raumtemperatur plastisch verformbare und mechanische Energie absorbierende Formkörper aus Eisenlegierungen
PCT/EP2011/066283 WO2012048993A1 (de) 2010-09-24 2011-09-20 Hochfeste, bei raumtemperatur plastisch verformbare und mechanische energie absorbierende formkörper aus eisenlegierungen

Publications (2)

Publication Number Publication Date
EP2619343A1 EP2619343A1 (de) 2013-07-31
EP2619343B1 true EP2619343B1 (de) 2014-11-05

Family

ID=44907805

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11779110.3A Active EP2619343B1 (de) 2010-09-24 2011-09-20 Hochfeste, bei raumtemperatur plastisch verformbare und mechanische energie absorbierende formkörper aus eisenlegierungen

Country Status (4)

Country Link
EP (1) EP2619343B1 (de)
KR (1) KR101827866B1 (de)
DE (1) DE102010041366A1 (de)
WO (1) WO2012048993A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014217122B4 (de) 2013-08-30 2021-02-25 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Zusatzwerkstoff für das Auftragsschweißen
DE102014217369A1 (de) 2014-09-01 2016-03-03 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Hochfeste, mechanische energie absorbierende und korrosionsbeständige formkörper aus eisenlegierungen und verfahren zu deren herstellung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3248866A1 (de) * 1981-06-30 1983-06-16 Foote Mineral Co Bor-legierungszusatz fuer kontinuierliches giessen von borstahl
KR100374980B1 (ko) * 1999-02-12 2003-03-06 히다찌긴조꾸가부시끼가이사 우수한 기계가공성을 갖는 다이스용 고장력강
NO310980B1 (no) * 2000-01-31 2001-09-24 Elkem Materials Fremgangsmate for kornforfining av stal, kornforfiningslegering for stal og fremgangsmate for fremstillingav kornforfiningslegering
DE102006024358B4 (de) * 2006-05-17 2013-01-03 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Hochfeste, bei Raumtemperatur plastisch verformbare Formkörper aus Eisenlegierungen

Also Published As

Publication number Publication date
KR20130122627A (ko) 2013-11-07
KR101827866B1 (ko) 2018-02-12
WO2012048993A1 (de) 2012-04-19
EP2619343A1 (de) 2013-07-31
DE102010041366A1 (de) 2012-03-29

Similar Documents

Publication Publication Date Title
DE69025295T2 (de) Amorphe Legierungen mit erhöhter Bearbeitbarkeit
DE69620998T2 (de) Oxidationsbeständige molybdänlegierung
DE68922873T2 (de) Gasturbine, Deckband für eine Gasturbine und Verfahren zur Herstellung des Deckbandes.
DE3035433C2 (de) Verwendung einer glasartigen Legierung
DE69508319T2 (de) Hochfeste und hochduktile Aluminium-Legierung und Verfahren zu deren Herstellung
DE3043503A1 (de) Kristalline metallegierung
WO2007087785A1 (de) Eisen-nickel-legierung
DE60122214T2 (de) Amorphe legierung auf cu-be-basis
DE102007044160A1 (de) Verbundwerkstoff aus Metall und Keramik und Verfahren zu dessen Herstellung
EP3444370B1 (de) Kupfer-basierte legierung für die herstellung metallischer massivgläser
DE60111216T2 (de) Verfahren zur herstellung von mineralwolle, kobalt-basislegierungen für das verfahren und andere anwendungen
DE69713451T2 (de) Stahl, wiederherstellbar durch Schweissen, für die Herstellung von Pressformen für Plastikwerkstoffen
DE102006024358B4 (de) Hochfeste, bei Raumtemperatur plastisch verformbare Formkörper aus Eisenlegierungen
EP2619343B1 (de) Hochfeste, bei raumtemperatur plastisch verformbare und mechanische energie absorbierende formkörper aus eisenlegierungen
DE102010062011B3 (de) Verfahren zur Wärmebehandlung von hochfesten Eisenlegierungen
EP0149210B1 (de) Verfahren zum Herstellen hochfester, duktiler Körper aus Kohlenstoffreichen Eisenbasislegierungen
DE19833329C2 (de) Hochfeste Formkörper aus Zirkonlegierungen
DE102019104492B4 (de) Verfahren zur herstellung einer kristallinen aluminium-eisen-silizium-legierung
EP3189172B1 (de) Hochfeste, mechanische energie absorbierende und korrosionsbeständige formkörper aus eisenlegierungen und verfahren zu deren herstellung
DE19623943C2 (de) gamma-gehärtete einkristalline Turbinenschaufellegierung für mit Wasserstoff betriebene Triebwerkssysteme, Formgegenstand und wärmebehandelter Gegenstand daruas sowie Verfahren zur Herstellung der Legierung
DE102009046718A1 (de) Metastabile Legierungen und Verfahren zu ihrer Herstellung
DE4110543A1 (de) Oxiddispersionsgehaertete ausscheidungshaertbare nickel-chromlegierung
DE69207308T2 (de) Kompaktierter und verstärkter Werkstoff aus Aluminium-Legierung und Verfahren zur Herstellung
AT242375B (de) Chromlegierung
DE1161693B (de) Verfahren zum Herstellen eines Hartstoffes hoher Oxydationsbestaendigkeit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130423

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140520

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 694709

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011004909

Country of ref document: DE

Effective date: 20141218

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141105

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150205

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150305

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150206

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011004909

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

26N No opposition filed

Effective date: 20150806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150920

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170925

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20170925

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141105

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180920

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220922

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230927

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231018

Year of fee payment: 13

Ref country code: CH

Payment date: 20231101

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930