EP2580807B1 - Antennenanordnung mit verbessertem signal/rauschverhältnis - Google Patents

Antennenanordnung mit verbessertem signal/rauschverhältnis Download PDF

Info

Publication number
EP2580807B1
EP2580807B1 EP11733603.2A EP11733603A EP2580807B1 EP 2580807 B1 EP2580807 B1 EP 2580807B1 EP 11733603 A EP11733603 A EP 11733603A EP 2580807 B1 EP2580807 B1 EP 2580807B1
Authority
EP
European Patent Office
Prior art keywords
antenna
coupling electrode
coupling
conductor
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11733603.2A
Other languages
English (en)
French (fr)
Other versions
EP2580807A2 (de
Inventor
Gunther Vortmeier
Christoph Degen
Stefan Droste
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Priority to PL11733603T priority Critical patent/PL2580807T3/pl
Priority to EP11733603.2A priority patent/EP2580807B1/de
Publication of EP2580807A2 publication Critical patent/EP2580807A2/de
Application granted granted Critical
Publication of EP2580807B1 publication Critical patent/EP2580807B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens
    • H01Q1/1285Supports; Mounting means for mounting on windscreens with capacitive feeding through the windscreen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises

Definitions

  • the invention relates to an antenna arrangement with an area antenna for receiving electromagnetic waves, and to a method for operating an antenna arrangement.
  • the conductive coating serves for reflection of heat rays and thus, for example, in motor vehicles or in buildings for improving the thermal comfort. In many cases, it is also used as a heating layer to heat a transparent pane over its entire surface electrically.
  • transparent coatings can also be used as surface antennas for receiving electromagnetic waves because of their electrical conductivity.
  • the conductive coating is galvanically or capacitively coupled to a coupling electrode and the antenna signal is provided in the edge region of the disk.
  • the antenna signal is supplied to an antenna amplifier, which is connected in particular in motor vehicles with the electrically conductive body, whereby a high-frequency technically effective reference potential for the antenna signal is specified by this electrical connection.
  • the usable antenna voltage results from the difference between the reference potential and the potential of the antenna signal.
  • the U.S. Patent No. 5,285,048 shows an antenna assembly with two wire antennas, which are inductively and capacitively coupled. A capacitance allows high-frequency antenna signals to be grounded. Further state of the art can be found in the international patent application WO 2004/100311 A1 , the international patent application WO 93/23890 A1 , the European patent application EP 0 961 342 A2 and the French patent application FR 2 608 844 be removed.
  • the planar antenna due to the large antenna area, electromagnetic signals can be received within a relatively large space.
  • this has the consequence that, in addition to the useful signals, undesired interference signals from electrical devices such as cameras, sensors, instrument panel, Engine control unit and the like can be received by the planar antenna.
  • the signal-to-noise ratio (SNR) of the surface antenna can be significantly worsened.
  • a common way to improve the signal-to-noise ratio is to avoid spurious signals by filtering and shielding the sources of interference.
  • the influence of interference signals can be reduced if a relatively large geometric distance between sources of interference and surface antenna is maintained.
  • the implementation of these requirements is usually associated with difficulties.
  • suppression and shielding of sources of interference is technically complex and involves relatively high costs.
  • a correspondingly large spatial distance between sources of interference and surface antenna can often not be met, for example in the case of a front engine and an applied to the windshield surface antenna.
  • electrical equipment in the area of the foot of the rear view mirror are provided, which can act as sources of interference for a surface antenna on the windshield. If appropriate, a useful remedy can only be achieved by applying the planar antenna to the rear window.
  • the object of the present invention is to develop conventional antenna arrangements with an area antenna so that useful signals can be received with a satisfactory signal / noise ratio despite the presence of interference sources that radiate noise to the surface antenna. Furthermore, such an antenna arrangement in mass production should be simple and inexpensive to produce, as well as function reliably and safely.
  • the antenna arrangement of the present invention comprises at least one electrically insulating, transparent substrate, as well as at least one electrically conductive, transparent coating which is a surface of the substrate at least partially covered and at least partially as a planar antenna (surface antenna) is used to receive electromagnetic waves.
  • the conductive coating is adapted for use as a planar antenna and may for this purpose cover the substrate over a large area.
  • the antenna arrangement can comprise, for example, a single-pane glass or a composite pane.
  • the composite pane generally comprises two preferably transparent first substrates, which correspond to an inner and outer pane, which are firmly connected to each other by at least one thermoplastic adhesive layer, wherein the conductive coating may be located on at least one surface of at least one of the first substrates of the composite pane ,
  • the composite pane can be provided with a further second substrate, which is different from the first substrate and which is located between the two first substrates.
  • the second substrate in addition to or as an alternative to the first substrates, can serve as a carrier for the conductive coating, wherein at least one surface of the second substrate is provided with the conductive coating.
  • the antenna arrangement according to the invention furthermore comprises at least one first coupling electrode electrically coupled to the conductive coating for coupling useful signals out of the planar antenna.
  • the first coupling electrode may, for example, be capacitively or galvanically coupled to the conductive coating.
  • the antenna arrangement comprises at least one interference source, which is arranged such that interference signals from the planar antenna can be received electromagnetically, as well as a mass-acting, electrically conductive structure, for example a metallic vehicle body or a metallic window frame, of a motor vehicle.
  • the antenna arrangement according to the invention comprises at least one second coupling electrode electrically coupled to the conductive coating for the capacitive decoupling of interference signals of the at least one external interference source received from the planar antenna from the planar antenna.
  • the second coupling electrode may be capacitively or galvanically coupled to the conductive coating.
  • the antenna arrangement according to the invention is used in particular for coupling out interference signals from the planar antenna, which were received by the planar antenna as electromagnetic waves, ie, the interference signals are not via a galvanic or capacitive coupling by a separate electrical component (capacitor) in the planar antenna electrically transmitted but received by the planar antenna in its capacity as an antenna.
  • a separate electrical component capacitor
  • the at least one second coupling electrode is capacitively coupled to the conductive structure acting as an electrical ground, wherein the second coupling electrode has a first coupling surface and the conductive structure has a second coupling surface (coupling mating surface) capacitively coupled to the first coupling surface.
  • the capacitive coupling surfaces of the at least one second coupling electrode and the electrically conductive, electrically conductive structure are adapted for a capacitive coupling, i. they are arranged with a suitable spacing in juxtaposition.
  • the capacitively coupled coupling surfaces are designed such that they are selectively permeable for a predeterminable frequency range which corresponds to the frequency range of the interference signals to be coupled out of the planar antenna, i. for different frequencies, the capacitive coupling surfaces are not permeable.
  • the capacitive coupling surfaces for a frequency range above a threshold frequency of 170 MHz are selectively transmissive, corresponding to the frequency range of the terrestrial bands III-V, which can be well received by a line antenna.
  • the desired frequency selectivity can be easily adjusted by the size and spacing of the capacitively coupled coupling surfaces, i.
  • the size and spacing of the capacitive coupling surfaces are designed to be permeable to the frequency range of the interference signals of the interference source (s).
  • the at least one second coupling electrode is designed in the form of a projecting (areal) edge section of the conductive coating, the projecting edge section being designed to be capacitively coupled in opposition to the second coupling surface of the conductive structure acting as a ground.
  • the at least one second coupling electrode for decoupling the interference signals from the planar antenna near the first coupling electrode for decoupling the useful signals from the surface antenna is arranged.
  • antenna signals at the various coupling electrodes are coupled depending on the potential difference and distance to a surface portion of the surface coating antenna conductive coating: the greater the potential difference between a surface portion of the conductive coating and the coupling electrode and the smaller the distance to this surface portion, the more signal is decouple the coupling electrode (and the less signal is then coupled out at another, "competing" coupling electrode).
  • the antenna arrangement according to the invention can be achieved by the spatially close arrangement of the first coupling electrode and the at least one second coupling electrode in an advantageous manner that occurring during signal reception potential differences are substantially equal for both coupling electrodes. Due to the frequency-selective transmission behavior of the at least one second coupling electrode can furthermore be achieved that noise signals are coupled via the second coupling electrode and useful signals on the first coupling electrode. Due to the spatially close arrangement of the first coupling electrode and the at least one second coupling electrode can also be achieved that noise of all interfering with the surface antenna interference sources above the threshold or passage frequency of the second coupling electrode reliably and safely be coupled out of the planar antenna. The signal / noise ratio of the surface antenna can be significantly improved.
  • the at least one second coupling electrode for this purpose may have a distance from the first coupling electrode which is less than a quarter of the minimum wavelength of the interference signals to be coupled out of the planar antenna. By this measure, the signal / noise ratio of the surface antenna can be improved particularly well.
  • the second coupling electrode between a surface zone of the conductive coating (hereinafter referred to as "Störttlen preparationzone"), whose points are characterized in that they have a shortest distance from the generally physically formed source of interference, and the arranged first coupling electrode.
  • the points of the Störttlen conductingzone can have a shortest vertical distance to the source of interference.
  • the interference source area zone may, for example, correspond to a projection zone which results from projection, in particular orthogonal parallel projection, of the source of interference on the conductive coating.
  • the generally physical source of interference can be understood in the projection as a broad body.
  • second coupling electrode By arranged between the Störttlen concernedzone and the first coupling electrode second coupling electrode can be carried out in a beneficial manner, a spatially selective coupling out of interfering signals from the surface antenna, without significantly affecting the reception of useful signals. Due to the distance condition between the disturbance source and the disturbance source area zone, disturbance signals of the disturbance source in the disturbance source area zone having a largest signal amplitude or signal intensity are received. When the signal reception of the interference signals occurring potential differences between a Störttlen concernedzone containing surface portion of the conductive coating and the second coupling electrode are thus greater than potential differences between this surface portion and the first coupling electrode, so that the noise signals are mainly coupled out from the second coupling electrode. Generally, the shape of the noise source area zone depends on the shape of the noise source.
  • the second coupling electrode can furthermore receive useful signals from surface sections of the planar antenna, which are coupled out predominantly from the first coupling electrode.
  • the signal / noise ratio of the surface antenna can be significantly improved. It may be advantageous if the at least one second coupling electrode has a distance from the interference source surface zone which is less than a quarter of the minimum wavelength of the interference signals, whereby a further improvement in the signal / noise ratio of the surface antenna can be achieved.
  • the at least one second coupling electrode is arranged near a Störttlen vomzone the conductive coating whose points have a shortest distance from the at least one interference source and thus a maximum signal amplitude with respect to the interference signals of the interference source.
  • the close arrangement of the second coupling electrode at the Störttlen preparationzone causes upon receipt of the interference signals of the interference source potential differences between a Störttlen preparationzone containing surface portion of the surface antenna and the second coupling electrode, which are greater than potential differences between this surface portion and the first coupling electrode, so that the interference signals predominantly from the second coupling electrode are coupled out.
  • the first coupling electrode can furthermore receive useful signals from surface sections of the planar antenna in which potential differences occur which are greater than potential differences between a surface section containing the interference source surface zone and the first coupling electrode.
  • the signal / noise ratio of the surface antenna can be significantly improved. It may be advantageous if the at least one second coupling electrode has a distance from the interference source surface zone which is less than a quarter of the minimum wavelength of the interference signals, whereby the signal / noise ratio of the surface antenna can be further improved.
  • the first coupling electrode is electrically coupled to an unshielded, linear conductor, hereinafter referred to as "antenna conductor".
  • the antenna conductor serves as a line antenna for receiving electromagnetic waves.
  • the line-shaped conductor is located outside of a space which can be projected by orthogonal parallel projection on the surface antenna serving as a projection surface, whereby an antenna base of the line antenna becomes a common Antennenfußddling the line and surface antenna.
  • the first coupling electrode may, for example, be capacitively or galvanically coupled electrically to the line-shaped antenna conductor.
  • the antenna arrangement thus has a hybrid structure of surface and line antenna.
  • the antenna conductor serves as a line antenna and is designed to be suitable for this purpose, that is to say it has a form suitable for reception in the desired frequency range.
  • line antennas or line radiators have a geometric length (L) that exceeds their geometric width (B) by several orders of magnitude.
  • the geometric length of a line radiator is the distance between antenna base and antenna tip, the geometric width of the vertical dimension.
  • L / B ⁇ 100 For the geometric height (H), a corresponding relationship L / H ⁇ 100 applies in general, where the geometric height (H) is a dimension, which is both perpendicular to the length (L) and perpendicular to the width (B).
  • the antenna conductor is located outside a space defined by a projection operation, which is defined by the fact that each point of the space can be projected by an orthogonal parallel projection on the conductive coating or surface antenna serving as the projection surface. If the conductive coating is only partially effective as an area antenna, serves as a projection surface only effective as a surface antenna part of the conductive coating. The antenna conductor is thus not located in the space defined by the projection operation.
  • the projection beams are parallel to one another and meet at right angles to the projection surface, which in the present case is provided by the conductive coating serving as surface antenna or its surface antenna, the projection center being at infinity.
  • the projection surface is a projection plane containing the coating.
  • the said space is bounded by an (imaginary) edge area, which is positioned at the peripheral edge of the conductive coating or at the peripheral edge of the surface antenna effective part of the conductive coating and is perpendicular to the projection surface.
  • an antenna base of the line antenna becomes a common antenna base of the line and plane antenna.
  • the term "antenna footpoint" describes an electrical contact for picking up received antenna signals, in particular relating to a reference potential (e.g., ground) for determining the signal levels of the antenna signals.
  • the hybrid antenna arrangement thus advantageously allows a good reception performance with a high bandwidth, which combines the favorable reception properties of the area radiator in the frequency ranges of bands I and II with the favorable reception properties of the line radiator in the frequency ranges of bands II to V.
  • the hybrid antenna arrangement thus makes available the complete frequency range of the bands I to V with a satisfactory reception power, for example for a windscreen serving as an antenna disk.
  • the antenna conductor may be specially adapted for reception in the area of terrestrial bands III-V and for this purpose preferably has a length of more than 100 millimeters (mm) and a width of less than 1 mm and a height of less than 1 mm, corresponding to a ratio length / width ⁇ 100 or L / H ⁇ 100.
  • the antenna conductor has a resistance of less than 20 ohm / m, more preferably less than 10 ohm / m.
  • the first coupling electrode can be electrically coupled to the conductive coating such that the reception power (signal level) of the surface antenna is as high as possible.
  • the common antenna base of area and line antennas may be through a connection conductor with an electronic signal processing device for processing received antenna signals, such as an antenna amplifier, be electrically conductively connected, wherein the terminal contact is arranged so that the length of the connecting conductor is as short as possible.
  • the conductive coating can cover the surface of the substrate except for a circumferential, electrically insulated edge strip, wherein the antenna conductor is located within a space that can be projected by orthogonal parallel projection on the edge strip serving as a projection surface.
  • the antenna conductor can be applied to the substrate, for example in the region of the edge strip.
  • the conductive coating may be located on a surface of the at least one substrate and the line-shaped antenna conductor on a different surface thereof or a different substrate.
  • the first coupling electrode and the antenna conductor can be electrically conductively connected to one another by a first connecting conductor, which in particular creates the possibility of designing the first coupling electrode independently of the electrical connection to the linear antenna conductor, thereby improving the performance of the hybrid antenna arrangement can be.
  • the antenna conductor may be on a surface of the at least one substrate and the common antenna base may be on a different surface thereof or a substrate different therefrom.
  • the antenna conductor and the common Antennenfußddling are electrically connected to each other by a second connection conductor.
  • the hybrid antenna arrangement of the linear antenna conductor of a metallic printing paste for example by screen printing, printed on the at least one substrate or be laid in the form of a wire, whereby a particularly simple production of the antenna conductor is made possible.
  • at least one of the conductors selected from the first coupling electrode, the first connection conductor and the second connection conductor, can lead to the edge of the at least one substrate and be designed as a flat conductor with a width tapered in the region of the edge.
  • the line antenna and the first coupling electrode, as well as the two connection conductors (if present) may be hidden by an opaque masking layer, whereby the optical appearance of the antenna arrangement can be improved.
  • the conductive coating may comprise at least two planar segments which are insulated from one another by at least one line-shaped, electrically insulating region.
  • at least one sheet-shaped segment is divided by linearly electrically insulating regions. It is particularly advantageous if a particularly peripheral edge region of the conductive coating has a multiplicity of planar segments which are subdivided by linearly electrically insulating regions.
  • the second coupling electrode preferably has a high-pass range corresponding to the frequency range of the terrestrial bands III-V, in particular corresponding to the frequency range of the terrestrial bands IV and V.
  • an antenna structure with, inter alia, at least one electrically insulating, in particular transparent substrate, at least one electrically conductive, in particular transparent coating which at least partially covers a surface of the substrate and at least partially serves as a surface antenna for receiving electromagnetic waves, at least one with the conductive coating electrically coupled first coupling electrode for coupling useful signals from the surface antenna, and at least one electrically coupled to the conductive coating second coupling electrode for coupling noise from at least one source of interference from the planar antenna, wherein the at least one second coupling electrode has a first coupling surface, the thereto is formed to be capacitively coupled to a second coupling surface acting as an electrical mass, electrically conductive structure, wherein the first Coupling surface is formed so that it is selectively permeable together with the second coupling surface for a frequency range corresponding to the out-coupled from the surface antenna noise.
  • the at least one second coupling electrode is designed in the form of a projecting edge section of the conductive coating.
  • an antenna structure as described above as a functional and / or decorative single piece and as a built-in furniture, appliances and buildings, as well as means of locomotion for moving on land, in the air or on water, especially in motor vehicles, for example, as a windshield, Rear window, side window and / or glass roof.
  • the invention further extends to a method for operating such an antenna arrangement, in which useful signals via the first coupling electrode and Interference signals are selectively coupled via the second coupling electrode from the surface antenna.
  • the interference signals received by the planar antenna are coupled out of the planar antenna via at least one second coupling electrode designed in the form of a projecting edge section of the conductive coating.
  • the method according to the invention can be realized in particular in the antenna arrangement according to the invention described above.
  • the hybrid antenna assembly 1 is embodied here, for example, as a transparent composite disk 20, which in Fig. 1 only partially shown.
  • the composite pane 20 is transparent to visible light, for example in the wavelength range from 350 nm to 800 nm, the term "transparency" being understood to mean a light transmission of more than 50%, preferably more than 75% and especially preferably more than 80%.
  • the composite disk 20 serves, for example, as a windshield of a motor vehicle, but it can also be used elsewhere.
  • the composite pane 20 comprises two transparent individual panes, namely a rigid outer pane 2 and a rigid inner pane 3, which are firmly connected to each other via a transparent thermoplastic adhesive layer 21.
  • the individual panes have approximately the same size and are made for example of glass, in particular float glass, cast glass and ceramic glass, being equally made of a non-glassy material, such as plastic, in particular polystyrene (PS), polyamide (PA), polyester (PE), polyvinyl chloride (PVC), polycarbonate (PC), polymethylmethacrylate (PMA) or polyethylene terephthalate (PET).
  • PS polystyrene
  • PA polyamide
  • PE polyester
  • PVC polyvinyl chloride
  • PC polycarbonate
  • PMA polymethylmethacrylate
  • PET polyethylene terephthalate
  • the outer and inner panes 2, 3 may vary widely depending on the use and may be, for example, in the range of 1 to 24 mm for glass.
  • the composite disk 20 has an at least approximately trapezoidal curved contour (in Fig. 1 only partially recognizable), which results from a disc rim 5 which is common to the two individual discs 2, 3 and which is composed of two opposite long disc edges 5a and two opposite short disc edges 5b.
  • the disk surfaces are denoted by the Roman numerals I-IV, wherein “side I” of a first disk surface 24 of the outer disk 2, "side II” of a second disk surface 25 of the outer disk 2, “side III” of a third disk surface 26 of the inner disk 3 and “side IV” of a fourth disc surface 27 of the inner pane 3 corresponds.
  • side I of a first disk surface 24 of the outer disk 2
  • side II of a second disk surface 25 of the outer disk 2
  • side III of a third disk surface 26 of the inner disk 3
  • side IV of a fourth disc surface 27 of the inner pane 3
  • the adhesive layer 21 for connecting the outer and inner pane 2, 3 is preferably made of an adhesive plastic preferably based on polyvinyl butyral (PVB), ethylene-vinyl acetate (EVA) and polyurethane (PU).
  • PVB polyvinyl butyral
  • EVA ethylene-vinyl acetate
  • PU polyurethane
  • the adhesive layer 21 is formed for example as a bilayer in the form of two bonded together PVB films, which is not shown in more detail in the figures.
  • a planar support 4 preferably made of plastic, preferably based on polyamide (PA), polyurethane (PU), polyvinyl chloride (PVC), polycarbonate (PC), polyester (PE) and polyvinyl butyral (PVB), particularly preferably based on polyester (PE) and polyethylene terephthalate (PET).
  • the carrier 4 is formed for example in the form of a PET film.
  • the carrier 4 is embedded between the two PVB films of the adhesive layer 21 and arranged parallel to the outer and inner discs 2, 3 approximately centrally between the two, wherein a first carrier surface 22 of the second disc surface 25 and a second carrier surface 23 of the third disc surface 26th are facing.
  • the carrier 4 does not extend all the way to the wafer edge 5, so that a carrier edge 29 is set back inwards relative to the wafer edge 5 and a carrier-free, all-round peripheral edge zone 28 of the composite wafer 20 remains.
  • the edge zone 28 serves in particular for electrical insulation of the conductive coating 6 to the outside, for example to reduce a capacitive coupling with the electrically conductive, usually made of sheet metal Vehicle body.
  • the conductive coating 6 is protected against penetrating from the wafer edge 5 moisture.
  • a transparent, electrically conductive coating 6 is applied, which is bounded by a coating edge 8 which runs around on all sides.
  • the conductive coating 6 covers an area which is more than 50%, preferably more than 70%, more preferably more than 80% and even more preferably more than 90% of the area of the second disk surface 25 and the third disk surface 26, respectively.
  • the area covered by the conductive coating 6 is preferably more than 1 m 2 and may generally be in the range of 100 cm 2 to 25 m 2 regardless of the use of the composite pane 20 as a windshield.
  • the transparent, electrically conductive coating 6 contains or consists of at least one electrically conductive material.
  • TCO transparent conductive oxides
  • TCO is preferably indium tin oxide, fluorine-doped tin dioxide, aluminum-doped tin dioxide, gallium-doped tin dioxide, boron-doped tin dioxide, tin zinc oxide or antimony-doped tin oxide.
  • the conductive coating 6 can consist of a single layer with such a conductive material or of a layer sequence which contains at least one such single layer.
  • the layer sequence may comprise at least one layer of a conductive material and at least one layer of a dielectric material.
  • the thickness of the conductive coating 6 may vary widely depending on the use, and the thickness at each location may be, for example, in the range of 30 nm to 100 ⁇ m. In the case of TCO, the thickness is preferably in the range of 100 nm to 1.5 ⁇ m, preferably in the range of 150 nm to 1 ⁇ m, particularly preferably in the range of 200 nm to 500 nm.
  • the thickness is preferably 20 nm to 100 .mu.m, preferably 25 nm to 90 .mu.m, and particularly preferably 30 nm to 80 microns.
  • the layer sequence is thermally highly resilient, so that they are suitable for bending Glass panes required temperatures of typically more than 600 ° C without damage survives, but also thermally low loadable layer sequences can be provided.
  • the surface resistance of the conductive coating 6 is preferably less than 20 ohms and is for example in the range of 0.5 to 20 ohms. In the exemplary embodiment shown, the sheet resistance of the conductive coating 6 is 4 ohms, for example.
  • the conductive coating 6 is preferably deposited from the gas phase, for which purpose known methods such as chemical vapor deposition (CVD) or physical vapor deposition (PVD) can be used.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the coating 6 is applied by sputtering (magnetron sputtering).
  • the conductive coating 6 serves as an area antenna for receiving electromagnetic waves, preferably in the frequency range of the terrestrial broadcasting bands I and II.
  • the first coupling electrode 10 is galvanically coupled to the conductive coating 6, wherein a capacitive coupling may equally be provided.
  • the band-shaped first coupling electrode 10 consists for example of a metallic material, preferably silver, and is printed for example by means of screen printing. It preferably has a length of more than 10 mm with a width of 5 mm or larger, preferably a length of more than 25 mm with a width of 5 mm or larger.
  • the first coupling electrode 10 has a length of 300 mm and a width of 5 mm.
  • the thickness of the first coupling electrode 10 is preferably less than 0.015 mm.
  • the specific conductivity of a first coupling electrode 10 made of silver is for example 61.35 ⁇ 10 6 / ohm ⁇ m.
  • the first coupling electrode 10 extends on and in direct electrical contact with the conductive coating 6 approximately parallel to the upper coating edge 8 and extends into the carrier-free edge zone 28. It is the first coupling electrode 10 arranged so that the antenna signals of the planar antenna are optimized in terms of their reception power (signal level).
  • the conductive coating 6 is subdivided in a strip-shaped edge region 15 adjoining the support edge 29, for example by means of lasering, into a plurality of electrically insulated segments 16 between which electrically insulating (de-layered) regions 17 are located.
  • the edge region 15 runs essentially parallel to the support edge 29 and can in particular be circumferential on all sides.
  • a line-shaped, unshielded antenna conductor 12 as a line antenna for receiving electromagnetic waves, preferably in the frequency range of the terrestrial radio bands II to V, particularly preferably in the frequency range of the radio bands III to V and is designed to be suitable for this purpose.
  • the antenna conductor 12 is in the form of a wire 18, which is preferably longer than 100 mm and narrower than 1 mm.
  • the resistance of the antenna conductor 12 is preferably less than 20 ohm / m, more preferably less than 10 ohm / m.
  • the length of the antenna conductor 12 is about 650 mm with a width of 0.75 mm. Its resistance coating is for example 5 ohms / m.
  • the antenna conductor 12 has an at least approximately rectilinear profile and is located completely within the carrier-free and coating-free edge zone 28 of the composite pane 20, wherein it extends predominantly along the short pane edge 5b, for example below a vehicle trim (not shown) in the region of the masking strip 9 ,
  • the antenna conductor 12 has a sufficient distance from both the disk edge 5 and the coating edge 8, whereby a capacitive coupling with the conductive coating 6 and the vehicle body is counteracted.
  • a projection operation space 30 is bounded by a mental boundary surface 32, which is located at the coating edge 8 and 8 'and is directed perpendicular to the carrier 21.
  • the boundary surface 32 is arranged on the coating edge 8 ', since the positioning of the antenna conductor depends on the antenna function of the conductive coating 6.
  • the first coupling electrode 10 is electrically coupled to the line-shaped antenna conductor 12 at a first terminal 11, not shown.
  • the first coupling electrode 10 is galvanically coupled to the antenna conductor 12, wherein a capacitive coupling may equally be provided.
  • the first connection contact 11 of the first coupling electrode 10 or the connection point between the first coupling electrode 10 and the antenna conductor 12 can be considered as Antennenfußdazzling for tapping antenna signals of the surface antenna.
  • a second terminal contact 14 of the antenna conductor 12 serves as a common Antennenfußddling 13 for tapping the antenna signals of both the planar antenna and the line antenna. The antenna signals of the surface and the line antenna are thus provided at the second terminal contact 14.
  • the second terminal contact 14 is electrically coupled to a parasitic acting as an antenna terminal conductor 19.
  • the connection conductor 19 is galvanically coupled to the second connection contact 14, although a capacitive coupling may also be provided.
  • the hybrid antenna assembly 1 with downstream electronic components, such as an antenna amplifier, electrically connected, wherein the antenna signals are led out through the connection conductor 19 of the composite disk 20.
  • the connecting conductor 19 extends from the adhesive layer 21 on the disc edge 5 across the fourth disc surface 27 (page IV) and then leads away from the composite disc 20.
  • connection conductor 19 is as short as possible and its parasitic effect is minimized as an antenna, so that it is possible to dispense with the use of a conductor designed specifically for high-frequency technology.
  • the connection conductor 19 is preferably shorter than 100 mm. Accordingly, the connection conductor 19 is here for example designed as unshielded stranded wire or foil conductor, which is inexpensive and space-saving and can also be connected via a relatively simple connection technology.
  • the transparent, electrically conductive coating 6, depending on the material composition, fulfill other functions.
  • it may serve as a heat ray-reflecting coating for purposes of sunscreen, thermoregulation or thermal insulation or as a heating layer for electrically heating the composite disk 20.
  • These functions are of secondary importance to the present invention.
  • the outer pane 2 is provided with an opaque ink layer, which is applied to the second pane surface 25 (page II) and forms a frame-shaped circumferential masking strip 9, which is not shown in detail in the figures.
  • the color layer is preferably made of an electrically non-conductive, black-colored material that can be baked into the outer pane 2.
  • the masking strip 9 on the one hand prevents the view of an adhesive strand, with which the composite disc 20 can be glued into a vehicle body, on the other hand it serves as UV protection for the adhesive material used.
  • the surface coating serving as a conductive coating 6 is provided with two adjacent to the long edge of the disk 5a projecting surface areas, each serving as a second (capacitive) coupling electrode 36, 36 '.
  • the two planar projections at least approximately a rectangular shape, while equally any other suitable for use form may be provided.
  • the conductive coating 6 has no segmented edge region 15 in the surface sections adjoining the two second coupling electrodes 36, 36 '.
  • the two second coupling electrodes 36, 36' each extend into the otherwise coating-free edge strips 7.
  • the carrier 4 passes with the conductive coating 6 in a juxtaposition with an electrically conductive structure 37 and is capacitively coupled thereto. More precisely, there is a first surface portion 40, 40 'of the coating 6, which corresponds to the second coupling electrode 36, 36' and serves as a first capacitive coupling surface, in parallel juxtaposition to a second surface portion 41 of the electrically conductive structure 37, which as a second capacitive coupling surface (Coupling mating surface) is used, wherein the two first coupling surfaces are capacitively coupled to the second coupling surface.
  • the electrically conductive structure 37 may be, for example, the body of a motor vehicle.
  • the electrically conductive structure 37 is fixedly connected to the fourth disk surface 27 of the inner pane 3 here, for example, by means of an adhesive bead 38. Accordingly, the conductive coating 6 is capacitively coupled to the electrically conductive structure 37 via the two second coupling electrodes 36, 36 '. As in Fig. 2D is shown, the conductive coating 6 outside the two second coupling electrodes 36, 36 'is not in juxtaposition to the conductive structure 37, so that it is capacitively not coupled to the conductive structure 37.
  • various sources of interference such as clocked electrical equipment, such as sensors, cameras, engine control unit and the like, emit electromagnetic interference in the form of electromagnetic free space waves that can be received by serving as a surface antenna conductive coating 6 due to the large antenna surface.
  • clocked electrical equipment such as sensors, cameras, engine control unit and the like
  • Fig. 1 two physical interference sources 39, 39 'are based on their projection locations in the region of the coating-free region Edge strip 7 at the upper and lower long disc edge 5a schematically illustrated.
  • the interfering signals of the two interference sources 39, 39 'received by the planar antenna have in the two interference source surface zones 42, 42' a maximum signal amplitude or a signal amplitude which lies above a determinable amplitude value.
  • the points of the upper disturbance source area 42 have a shortest (for example, perpendicular) distance from the upper disturbance source 39 and the points of the lower disturbance source area 42 'a shortest (for example, perpendicular) distance from the lower disturbance source 39'.
  • the shapes of the noise source surface zones 42, 42 ' depend on the respective shapes of the noise sources 39, 39', it being understood that the in Fig. 1 illustrated forms are to be considered as exemplary only.
  • the second coupling electrode 36 is disposed in the vicinity of the first coupling electrode 10 and is located between the first coupling electrode 10 and the upper Störttlen Chemistryzone 42 of the upper interference source 39.
  • the second coupling electrode 36 has here, for example, a geometric distance from the first coupling electrode 10, the is less than 7.5 cm, corresponding to a quarter of the minimum wavelength of interfering signals in the frequency range of terrestrial bands III-V.
  • the second coupling electrode 36 ' is arranged in the vicinity of the lower interference source surface zone 42' of the lower interference source 39 '.
  • the second coupling electrode 36 ' has a geometric distance from the lower interference source surface zone 42', which is less than 7.5 cm.
  • the two second coupling electrodes 36, 36 ' together with the coupling mating surface of the conductive structure 37 a frequency-selective transmission behavior and act as a high-pass filter, the two second coupling electrodes 36, 36' and the coupling mating surface of the conductive structure 37 are formed here, for example, that they only allow frequencies above 170 MHz to pass.
  • the two second coupling electrodes 36, 36 'thus act frequency selective for the terrestrial bands III-V. In the present case, it is assumed that the interference signals of the two interference sources 39, 39 'are in a frequency range above 170 MHz.
  • the desired frequency selectivity can be achieved in a simple manner by adjusting the capacitive properties of the second coupling electrodes 36, 36 'capacitively coupled to the conductive structure 37. For this purpose, it is only necessary that Adjust the size of the opposing (capacitively active) areas of the second coupling electrodes 36, 36 'and the conductive structure 37 and the size of the intermediate distance of these capacitively active areas appropriately.
  • the interference signals received by the upper interference source 39 are thus coupled out of the upper second coupling electrode 36 from the conductive surface coating 6 as a surface antenna due to the frequency-selective transmission behavior of the upper second coupling electrode 36.
  • the interference signals of the upper interference source 39 are coupled out of the second coupling electrode 36 predominantly from a surface section of the conductive coating 6 containing the upper interference source area zone 42 and the upper second coupling electrode 36.
  • the interfering signals received from the lower interfering source 39' are primarily from the lower second coupling electrode 36 'made of the conductive coating 6 decoupled.
  • the spatial proximity of the second coupling electrode 36 'to the lower Störttlen conductingzone 42' causes signal differences in potential differences between a lower Störttlen conductingzone 42 'containing surface portion and the lower second coupling electrode 36', which are greater than potential differences between this surface portion and the first coupling electrode 10, so that These interference signals are primarily decoupled via the lower second coupling electrode 36 '.
  • the first coupling electrode 10 can decouple antenna signals from surface regions of the conductive coating 6 that are different from the interference source surface zones 42, 42, in which potential differences with respect to the first coupling electrode 10 occur during signal reception which are greater than potential differences with respect to the two second coupling electrodes 36 , 36 '.
  • Useful signals which lie in the frequency range coupled out as interference signals via the electrically conductive structure 37 (ground) can be received in an advantageous manner via the antenna conductor 12 serving as a line antenna, so that virtually no signal loss occurs.
  • the antenna conductor 12 is by the interference signals of the interference sources 39, 39 'not or only in negligible Way disturbed.
  • the antenna arrangement 100 with hybrid antenna structure 1 is thus distinguished by an outstanding signal / noise ratio.
  • FIGS. 3A and 3B shows a first variant of the antenna arrangement 100 with hybrid antenna structure 1.
  • FIGS. 1 . 2A and 2 B shows a first variant of the antenna arrangement 100 with hybrid antenna structure 1.
  • no support 4 is provided for the conductive coating 6 in the composite pane 20, since this is applied to the third pane surface 26 (side III) of the inner pane 3.
  • the conductive coating 6 does not extend all the way to the wafer edge 5, so that an edge strip 7 of the third wafer surface 26 which runs around on all sides and remains free of coating remains.
  • the width of the peripheral edge strip 7 can vary widely.
  • the width of the edge strip 7 is in the range of 0.2 to 1.5 cm, preferably in the range of 0.3 to 1.3 cm and particularly preferably in the range of 0.4 to 1.0 cm.
  • the edge strip 7 serves in particular for an electrical insulation of the conductive coating 6 to the outside and for reducing a capacitive coupling with surrounding conductive structures.
  • the edge strip 7 can be produced by subsequent removal of the conductive coating 6, for example by abrasive removal, laser ablation or etching, or by masking the inner pane 3 before the application of the conductive coating 6 to the third pane surface 26.
  • the antenna conductor 12 serving as a line antenna is applied to the third disk surface 26 in the region of the coating-free edge strip 7.
  • the antenna conductor 12 is formed in the form of a flat conductor track 35, which is preferably applied by printing, for example screen printing, a metallic printing paste.
  • the line antenna and the surface antenna are on the same surface (page III) of the inner pane 3.
  • the band-shaped first coupling electrode 10th extends beyond the line-shaped antenna conductor 12 and is galvanically coupled thereto, wherein a capacitive coupling may equally be provided.
  • the antenna radiator 12 is located outside the in Fig. 3A illustrated space 30, in which each point can be imaged by orthogonal parallel projection on the surface antenna, so that the line antenna is not electrically charged by the surface antenna.
  • Fig. 3A is the space 30 bounding (imaginary) boundary surface 32, which is directed perpendicular to the third disc surface 26 and at the coating edge 8 and 8 '(in the edge region 15) is arranged schematically.
  • the line-shaped antenna conductor 12 is located in an unspecified space in which each point can be imaged by orthogonal parallel projection on the non-coating edge strip 7 serving as a projection surface. An electrical load on the line antenna by the planar antenna is thereby avoided in an advantageous manner.
  • FIGS. 4A and 4B a second variant of the antenna arrangement 100 is shown with hybrid antenna structure 1, wherein only the differences from the first variant of FIGS. 3A and 3B Be described and otherwise made to the statements made there reference. Accordingly, no composite disk 20 but only a single-pane glass with a single pane corresponding to, for example, outer pane 2 is provided.
  • the conductive coating 6 is applied to the first pane surface 24 (side I), wherein the conductive coating 6 does not extend all the way to the pane edge 5, so that a circumferential, coating-free edge strip 7 of the first pane surface 24 remains on all sides.
  • connection conductor 19 makes contact with the second connection contact 14 of the antenna conductor 12 and then leads away from the antenna conductor 12 on the same side of the outer pane 2.
  • a carrier 4 is provided in the composite disk 20, on which the conductive coating 6 is applied.
  • the band-shaped first coupling electrode 10 is applied to the fourth surface (side IV) of the inner pane 3 and capacitively coupled to the conductive coating 6 serving as a planar antenna.
  • Serving as a line antenna antenna conductor 12 is also on the fourth disc surface 27 of the inner pane 3, for example by printing, for example screen printing, applied and galvanically coupled to the coupling electrode, but equally a capacitive coupling can be provided.
  • the patch antenna and the line antenna are on different surfaces of mutually different substrates.
  • the antenna conductor 12 is located outside the space 30, in which each point can be imaged by orthogonal parallel projection on the surface antenna 6, so that the line antenna is not electrically stressed by the planar antenna.
  • the connecting conductor 19 contacts the antenna conductor 12 and leads away directly from the composite disk 20.
  • FIG. 6 a fourth variant of the antenna arrangement 100 is shown with hybrid antenna structure 1, wherein only the differences from the third variant of Fig. 5A and 5B Be described and otherwise made to the statements made there reference.
  • the line-shaped antenna conductor 12 formed as a flat conductor track 35 is applied to the third disk surface 26 of the inner disk 3.
  • a second connecting conductor 34 is applied to the antenna conductor 12 at the base of the antenna and extends over the short disk edge 5b to the fourth disk surface 27 (side IV) of the inner disk 3.
  • the second connecting conductor 34 is galvanically coupled to the antenna conductor 12, where equally a capacitive coupling can be provided.
  • the second connection conductor 34 may be made of the same material as the coupling electrode 10, for example.
  • the connecting conductor 19 contacts the second connecting conductor 34 on the fourth disk surface 27 and leads away from the composite disk 20.
  • the width (dimension perpendicular to the extension direction) of the second connecting conductor 34 designed as a band-shaped flat conductor preferably tapers towards the short disk edge 5b, so that a capacitive coupling between the conductive coating 6 and the electrically conductive vehicle body can be counteracted.
  • a second embodiment of the antenna arrangement according to the invention is illustrated with hybrid antenna structure 1, wherein only the differences from the first embodiment of the FIGS. 1 . 2A and 2 B Be described and otherwise made to the statements made there reference.
  • a composite disk 20 is provided with a carrier 4 embedded in the adhesive layer 21 and a transparent, conductive coating 6 applied on the second carrier surface 23.
  • the conductive coating 6 is applied over the entire surface of the second support surface 23, wherein a segmented edge region 15 is not formed, however, may be provided equally.
  • the first coupling electrode 10 is located on the conductive coating 6 and is galvanically coupled thereto, but equally a capacitive coupling can be provided.
  • the first coupling electrode 10 extends over the upper, long disk edge 5a on the fourth disk surface 27 (side IV) of the inner pane 3.
  • the line-shaped antenna conductor 12 is analogous to that in connection with Fig. 5A and 5B described third variant of the first embodiment as a conductor 35 applied to the fourth disc surface 27 of the inner pane 3.
  • the first coupling electrode 10 is located on the antenna conductor 12 and is galvanically coupled thereto, but equally a capacitive coupling can be provided.
  • the antenna conductor 12 is located outside of the space 30 in which each point can be imaged by orthogonal parallel projection on the surface antenna, so that the line antenna is not electrically charged by the surface antenna.
  • the connecting conductor 19 contacts the antenna conductor 12 and leads away directly from the composite disk 20.
  • Fig. 9 a variant is shown, wherein to avoid repetition, only the differences from the second embodiment of Fig. 7 . 8A and 8B be explained.
  • the first coupling electrode 10 is formed only in the region of the conductive coating 6, this is in direct contact and is thus galvanically coupled to the conductive coating 6, wherein a capacitive coupling may equally be provided.
  • a first connecting conductor 33 is in direct contact with its one end of the first coupling electrode 10 and is galvanically connected to the conductive Coating 6 coupled, but equally a capacitive coupling can be provided.
  • the first connection conductor 33 extends beyond the upper long disk edge 5a to the fourth disk surface 27 (side IV) of the inner disk 3 and contacts with its other end the antenna conductor 12 formed as a conductor.
  • the first connection conductor 33 is in direct contact with the antenna conductor 12 and is, for example, galvanically coupled to it via a soldering contact, but equally a capacitive coupling can be provided.
  • the first connection conductor 33 may, for example, be made of the same material as the first coupling electrode 10, so that the first coupling electrode 10 and the first connection conductor 33 may together also be regarded as a two-part coupling electrode.
  • the width (dimension perpendicular to the extension direction) of the band-shaped flat conductor formed first connection conductor 33 preferably tapers towards the long edge of the disk 5 a, so that a capacitive coupling between the conductive coating 6 and the vehicle body can be counteracted.
  • the invention provides an antenna arrangement with a hybrid antenna structure, which enables a bandwidth-optimized reception of electromagnetic waves, wherein a satisfactory reception performance can be achieved by the combination of surface and line antenna over the entire frequency range of the bands I-V. Due to the possibility that noise signals from external interference sources received by the planar antenna as free space waves can be coupled out via a mass capacitively coupled to the planar antenna, the antenna arrangement has an excellent signal-to-noise ratio.

Landscapes

  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Structure Of Receivers (AREA)

Description

  • Die Erfindung betrifft eine Antennenanordnung mit einer Flächenantenne zum Empfangen von elektromagnetischen Wellen, sowie ein Verfahren zum Betreiben einer Antennenanordnung.
  • Substrate mit elektrisch leitfähigen Beschichtungen sind in der Patentliteratur bereits vielfach beschrieben worden. Lediglich beispielhaft sei diesbezüglich auf die Druckschriften DE 19858227 C1 , DE 10200705286 , DE 102008018147 A1 und DE 102008029986 A1 verwiesen. In aller Regel dient die leitfähige Beschichtung zur Reflexion von Wärmestrahlen und sorgt somit beispielsweise in Kraftfahrzeugen oder in Gebäuden für eine Verbesserung des thermischen Komforts. Vielfach wird sie auch als Heizschicht verwendet, um eine transparente Scheibe vollflächig elektrisch zu beheizen.
  • Wie beispielsweise aus den Druckschriften DE 10106125 A1 , DE 10319606 A1 , EP 0720249 A2 , US 2003/0112190 A1 und DE 19843338 C2 bekannt ist, lassen sich transparente Beschichtungen wegen ihrer elektrischen Leitfähigkeit auch als Flächenantennen zum Empfangen von elektromagnetischen Wellen einsetzen. Dazu wird die leitfähige Beschichtung mit einer Koppelelektrode galvanisch oder kapazitiv gekoppelt und das Antennensignal im Randbereich der Scheibe zur Verfügung gestellt. Gewöhnlich wird das Antennensignal einem Antennenverstärker zugeführt, der speziell in Kraftfahrzeugen mit der elektrisch leitfähigen Karosserie verbunden ist, wobei durch diese elektrische Verbindung ein hochfrequenztechnisch wirksames Bezugspotenzial für das Antennensignal vorgegeben wird. Die nutzbare Antennenspannung ergibt sich aus der Differenz zwischen dem Bezugspotenzial und dem Potenzial des Antennensignals.
  • Das US-Patent Nr. 5285048 A zeigt einen Antennenaufbau mit zwei Drahtantennen, die induktiv und kapazitiv gekoppelt sind. Über eine Kapazität können hochfrequente Antennensignale an Masse geleitet werden. Weiterer Stand der Technik kann der internationalen Patentanmeldung WO 2004/100311 A1 , der internationalen Patentanmeldung WO 93/23890 A1 , der europäischen Patentanmeldung EP 0 961 342 A2 und der französischen Patentanmeldung FR 2 608 844 entnommen werden.
  • Nun können mit der Flächenantenne aufgrund der großen Antennenfläche innerhalb eines relativ großen Raumbereichs elektromagnetische Signale empfangen werden. Dies hat beispielsweise in Kraftfahrzeugen zur Folge, dass neben den Nutzsignalen auch unerwünschte Störsignale von elektrischen Geräten wie Kameras, Sensoren, Instrumententafel, Motorsteuergerät und dergleichen von der Flächenantenne empfangen werden können. Durch diese Störsignale kann sich das Signal/Rausch-Verhältnis (SNR = signal noise ratio) der Flächenantenne deutlich verschlechtern.
  • Eine übliche Vorgehensweise zur Verbesserung des Signal/Rausch-Verhältnisses besteht darin, Störsignale zu vermeiden, indem die Störquellen entstört und abgeschirmt werden. Zudem kann der Einfluss von Störsignalen verringert werden, wenn ein relativ großer geometrischer Abstand zwischen Störquellen und Flächenantenne eingehalten wird. In der Praxis ist die Verwirklichung diese Vorgaben allerdings meist mit Schwierigkeiten verbunden. Einerseits ist eine Entstörung und Abschirmung von Störquellen technisch aufwändig und mit relativ hohen Kosten verbunden. Andererseits kann ein entsprechend großer räumlicher Abstand zwischen Störquellen und Flächenantenne häufig nicht eingehalten werden, beispielsweise im Falle eines Frontmotors und einer an der Windschutzscheibe aufgebrachten Flächenantenne. Erschwerend kommt hinzu, dass in modernen Fahrzeugen oftmals elektrische Geräte im Bereich des Fußpunkts des Innenrückspiegels vorgesehen sind, die als Störquellen für eine Flächenantenne an der Windschutzscheibe wirken können. Eine sinnvolle Abhilfe kann gegebenenfalls nur dadurch erreicht werden, dass die Flächenantenne an der Heckscheibe aufgebracht wird.
  • Demgegenüber besteht die Aufgabe der vorliegenden Erfindung darin, herkömmliche Antennenanordnungen mit einer Flächenantenne so weiterzubilden, dass Nutzsignale trotz des Vorliegens von Störquellen, die Störsignale an die Flächenantenne abstrahlen, mit einem zufriedenstellenden Signal/Rausch-Verhältnis empfangen werden können. Weiterhin soll eine solche Antennenanordnung in der Serienfertigung einfach und kostengünstig herstellbar sein, sowie zuverlässig und sicher funktionieren. Diese und weitere Aufgaben werden nach dem Vorschlag der Erfindung durch eine Antennenanordnung (System) und ein Verfahren zum Betreiben einer Antennenanordnung mit den Merkmalen der nebengeordneten Patentansprüche gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind durch die Merkmale der Unteransprüche angegeben.
  • Die Antennenanordnung der vorliegenden Erfindung umfasst mindestens ein elektrisch isolierendes, transparentes Substrat, sowie zumindest eine elektrisch leitfähige, transparente Beschichtung, die eine Oberfläche des Substrats zumindest abschnittsweise bedeckt und zumindest abschnittsweise als flächenförmige Antenne (Flächenantenne) zum Empfangen von elektromagnetischen Wellen dient. Die leitfähige Beschichtung ist zur Verwendung als Flächenantenne geeignet ausgebildet und kann zu diesem Zweck das Substrat großflächig bedecken. Die Antennenanordnung kann beispielsweise ein Einscheibenglas oder eine Verbundscheibe umfassen. Die Verbundscheibe umfasst in der Regel zwei vorzugsweise transparente erste Substrate, welche einer Innen- und Außenscheibe entsprechen, die durch zumindest eine thermoplastische Klebeschicht fest miteinander verbunden sind, wobei sich die leitfähige Beschichtung auf zumindest einer Oberfläche zumindest eines der beiden ersten Substrate der Verbundscheibe befinden kann. Zudem kann die Verbundscheibe mit einem weiteren, vom ersten Substrat verschiedenen zweiten Substrat versehen sein, das sich zwischen den beiden ersten Substraten befindet. Das zweite Substrat kann zusätzlich oder alternativ zu den ersten Substraten als Träger für die leitfähige Beschichtung dienen, wobei zumindest eine Oberfläche des zweiten Substrats mit der leitfähigen Beschichtung versehen ist.
  • Die erfindungsgemäße Antennenanordnung umfasst weiterhin mindestens eine mit der leitfähigen Beschichtung elektrisch gekoppelte erste Koppelelektrode zum Auskoppeln von Nutzsignalen aus der Flächenantenne. Die erste Koppelelektrode kann beispielsweise kapazitiv oder galvanisch mit der leitfähigen Beschichtung gekoppelt sein.
  • Weiterhin umfasst die Antennenanordnung mindestens eine Störquelle, die so angeordnet ist, dass Störsignale von der Flächenantenne elektromagnetisch empfangbar sind, sowie eine als Masse wirkende, elektrisch leitfähige Struktur, beispielsweise eine metallische Fahrzeugkarosserie oder ein metallischer Fensterrahmen, eines Kraftfahrzeugs. Ferner umfasst die erfindungsgemäße Antennenanordnung mindestens eine mit der leitfähigen Beschichtung elektrisch gekoppelte zweite Koppelelektrode zum kapazitiven Auskoppeln von von der Flächenantenne empfangenen Störsignalen der zumindest einen externen Störquelle aus der Flächenantenne. Die zweite Koppelelektrode kann kapazitiv oder galvanisch mit der leitfähigen Beschichtung gekoppelt sein. Demnach dient die erfindungsgemäße Antennenanordnung insbesondere zum Auskoppeln von Störsignalen aus der Flächenantenne, die von der Flächenantenne als elektromagnetische Wellen empfangen wurden, d.h., die Störsignale werden nicht über eine galvanische oder kapazitive Kopplung durch ein separates elektrisches Bauteil (Kondensator) in die Flächenantenne
    elektrisch übertragen, sondern von der Flächenantenne in ihrer Eigenschaft als Antenne empfangen.
  • Erfindungsgemäß ist die mindestens eine zweite Koppelelektrode mit der als elektrische Masse wirkenden, leitfähigen Struktur kapazitiv gekoppelt, wobei die zweite Koppelelektrode über eine erste Koppelfläche verfügt und die leitfähige Struktur über eine mit der ersten Koppelfläche kapazitiv gekoppelte zweite Koppelfläche (Koppelgegenfläche) verfügt. Die kapazitiven Koppelflächen der mindestens einen zweiten Koppelelektrode und der als elektrische Masse wirkenden, elektrisch leitfähigen Struktur sind für eine kapazitive Kopplung geeignet ausgebildet, d.h. sie sind mit einem geeigneten Zwischenabstand in Gegenüberstellung angeordnet.
  • Dabei sind die kapazitiv gekoppelten Koppelflächen so ausgebildet, dass sie für einen vorbestimmbaren Frequenzbereich, welcher dem Frequenzbereich der aus der Flächenantenne auszukoppelnden Störsignale entspricht, selektiv durchlässig sind, d.h. für hiervon verschiedene Frequenzen sind die kapazitiven Koppelflächen nicht durchlässig. Insbesondere sind die kapazitiven Koppelflächen für einen Frequenzbereich oberhalb einer Grenz- bzw. Durchlassfrequenz von 170 MHz selektiv durchlässig, entsprechend dem Frequenzbereich der terrestrischen Bänder III-V, die von einer Linienantenne gut empfangen werden können. Die gewünschte Frequenzselektivität kann in einfacher Weise durch Größe und Zwischenabstand der kapazitiv gekoppelten Koppelflächen eingestellt werden, d.h. Größe und Zwischenabstand der kapazitiven Koppelflächen sind dazu ausgebildet, für den Frequenzbereich der Störsignale der Störquelle(n) durchlässig zu sein.
  • Erfindungsgemäß ist die mindestens eine zweite Koppelelektrode in Form eines vorspringenden (flächigen) Randabschnitts der leitfähigen Beschichtung ausgebildet, wobei der vorspringende Randabschnitt dazu ausgebildet ist, in Gegenüberstellung mit der zweiten Koppelfläche der als Masse wirkenden leitfähigen Struktur kapazitiv gekoppelt zu sein. Durch diese Maßnahme ist eine in der Serienfertigung besonders einfache und kostengünstige Realisierung des erfindungsgemäßen Antennenanordnung ermöglicht, da die zumindest eine zweite Koppelelektrode als Abschnitt der leitfähigen Beschichtung hergestellt werden kann. Denkbar wäre aber auch, die zweite Koppelelektrode beispielsweise aus einem Metallfolienstreifen herzustellen, der mit der leitfähigen Beschichtung galvanisch oder kapazitiv gekoppelt wird.
  • In der erfindungsgemäßen Antennenanordnung ist es von Vorteil, wenn die mindestens eine zweite Koppelektrode zum Auskoppeln der Störsignale aus der Flächenantenne nahe der ersten Koppelelektrode zum Auskoppeln der Nutzsignale aus der Flächenantenne angeordnet ist. Allgemein werden Antennensignale an den verschiedenen Koppelelektroden je nach Potentialdifferenz und Abstand zu einem Flächenabschnitt der als Flächenantenne dienenden leitfähigen Beschichtung ausgekoppelt: je größer die Potentialdifferenz zwischen einem Flächenabschnitt der leitfähigen Beschichtung und der Koppelelektrode und je kleiner die Entfernung zu diesem Flächenabschnitt ist, desto mehr Signal wird die Koppelelektrode auskoppeln (und desto weniger Signal wird dann an einer weiteren, "konkurrierenden" Koppelelektrode ausgekoppelt). In der erfindungsgemäßen Antennenanordnung kann durch die räumlich nahe Anordnung der ersten Koppelelektrode und der mindestens einen zweiten Koppelelektrode in vorteilhafter Weise erreicht werden, dass beim Signalempfang auftretende Potenzialdifferenzen im Wesentlichen gleich für beide Koppelelektroden sind. Durch das frequenzselektive Durchlassverhalten der mindestens einen zweiten Koppelelektrode kann weiterhin erreicht werden, dass Störsignale über die zweite Koppelelektrode und Nutzsignale über die erste Koppelelektrode ausgekoppelt werden. Durch die räumlich nahe Anordnung der ersten Koppelelektrode und der mindestens einen zweiten Koppelelektrode kann zudem erreicht werden, dass Störsignale aller auf die Flächenantenne einwirkenden Störquellen oberhalb der Grenz- bzw. Durchlassfrequenz der zweiten Koppelelektrode zuverlässig und sicher aus der Flächenantenne ausgekoppelt werden. Das Signal/Rausch-Verhältnis der Flächenantenne kann dadurch deutlich verbessert werden. Als "nah" wird eine Anordnung der ersten Koppelelektrode und der mindestens einen zweiten Koppelelektrode verstanden, wenn die Koppelelektroden die genannten gewünschten Effekte bewirken. Insbesondere kann die mindestens eine zweite Koppelelektrode zu diesem Zweck einen Abstand von der ersten Koppelelektrode haben, der geringer als ein Viertel der minimalen Wellenlänge der aus der Flächenantenne auszukoppelnden Störsignale ist. Durch diese Maßnahme kann das Signal/Rauschverhältnis der Flächenantenne besonders gut verbessert werden.
  • Bei einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Antennenanordnung ist die zweite Koppelelektrode zwischen einer Flächenzone der leitfähigen Beschichtung (im Weiteren als "Störquellenflächenzone" bezeichnet), deren Punkte sich dadurch auszeichnen, dass sie einen kürzesten Abstand von der im Allgemeinen körperlich ausgebildeten Störquelle haben, und der ersten Koppelelektrode angeordnet. Dabei können die Punkte der Störquellenflächenzone insbesondere einen kürzesten senkrechten Abstand zur Störquelle haben. Die Störquellenflächenzone kann beispielsweise einer Projektionszone entsprechen, welche sich durch Projektion, insbesondere orthogonale Parallelprojektion, der Störquelle auf die leitfähige Beschichtung ergibt. Die im Allgemeinen körperliche Störquelle kann in der Projektion als flächig ausgedehnter Körper aufgefasst werden. Durch die zwischen der Störquellenflächenzone und der ersten Koppelektrode angeordnete zweite Koppelelektrode kann in vorteilhafter Weise ein räumlich selektives Auskoppeln von Störsignalen aus der Flächenantenne erfolgen, ohne dabei den Empfang von Nutzsignalen wesentlich zu beeinträchtigen. Aufgrund der Abstandsbedingung zwischen Störquelle und Störquellenflächenzone werden Störsignale der Störquelle in der Störquellenflächenzone mit einer größten Signalamplitude bzw. Signalintensität empfangen. Beim Signalempfang der Störsignale auftretende Potenzialdifferenzen zwischen einem die Störquellenflächenzone enthaltenden Flächenabschnitt der leitfähigen Beschichtung und der zweiten Koppelelektrode sind somit größer als Potenzialdifferenzen zwischen diesem Flächenabschnitt und der ersten Koppelelektrode, so dass die Störsignale überwiegend von der zweiten Koppelelektrode ausgekoppelt werden. Allgemein hängt die Form der Störquellenflächenzone von der Form der Störquelle ab. Zudem kann durch die räumliche Lage der zweiten Koppelelektrode zwischen der Störquellenflächenzone und der ersten Koppelelektrode eine bevorzugte Auskopplung von Störsignalen durch die zweite Koppelektrode erreicht werden. Die erste Koppelelektrode kann weiterhin Nutzsignale aus Flächenabschnitten der Flächenantenne erhalten, die überwiegend von der ersten Koppelektrode ausgekoppelt werden. Das Signal/Rausch-Verhältnis der Flächenantenne kann dadurch deutlich verbessert werden. Von Vorteil kann es sein, wenn die mindestens eine zweite Koppelelektrode einen Abstand von der Störquellenflächenzone hat, der geringer ist als ein Viertel der minimalen Wellenlänge der Störsignale, wodurch eine weitere Verbesserung des Signal/Rauschverhältnisses der Flächenantenne erreicht werden kann.
  • Bei einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Antennenanordnung ist die mindestens eine zweite Koppelelektrode nahe einer Störquellenflächenzone der leitfähigen Beschichtung, deren Punkte einen kürzesten Abstand von der mindestens einen Störquelle und somit eine größte Signalamplitude bezüglich der Störsignale der Störquelle haben, angeordnet. Durch die zweite Koppelelektrode kann in vorteilhafter Weise ein räumlich selektives Auskoppeln von Störsignalen aus der Flächenantenne erfolgen, ohne hierbei den Empfang von Nutzsignalen wesentlich zu beeinträchtigen. Die nahe Anordnung der zweiten Koppelelektrode an der Störquellenflächenzone bewirkt beim Empfang der Störsignale der Störquelle Potenzialdifferenzen zwischen einem die Störquellenflächenzone enthaltenden Flächenabschnitt der Flächenantenne und der zweiten Koppelelektrode, die größer sind als Potenzialdifferenzen zwischen diesem Flächenabschnitt und der ersten Koppelelektrode, so dass die Störsignale überwiegend von der zweiten Koppelelektrode ausgekoppelt werden. Die erste Koppelelektrode kann weiterhin Nutzsignale aus Flächenabschnitten der Flächenantenne erhalten, in denen Potenzialdifferenzen auftreten, die größer sind als Potenzialdifferenzen zwischen einem die Störquellenflächenzone enthaltenden Flächenabschnitt und der ersten Koppelelektrode. Das Signal/Rausch-Verhältnis der Flächenantenne kann dadurch deutlich verbessert werden. Von Vorteil kann es sein, wenn die mindestens eine zweite Koppelelektrode einen Abstand von der Störquellenflächenzone hat, der geringer ist als ein Viertel der minimalen Wellenlänge der Störsignale, wodurch das Signal/Rauschverhältnis der Flächenantenne weiter verbessert werden kann.
  • Erfindungsgemäß ist die erste Koppelelektrode mit einem ungeschirmten, linienförmigen Leiter, im Weiteren als "Antennenleiter" bezeichnet, elektrisch gekoppelt. Der Antennenleiter dient als Linienantenne zum Empfangen von elektromagnetischen Wellen. Dabei befindet sich der linienförmige Leiter außerhalb eines Raums, der durch orthogonale Parallelprojektion auf die als Projektionsfläche dienende Flächenantenne projizierbar ist, wodurch ein Antennenfußpunkt der Linienantenne zu einem gemeinsamen Antennenfußpunkt der Linien- und Flächenantenne wird. Die erste Koppelelektrode kann beispielsweise kapazitiv oder galvanisch mit dem linienförmigen Antennenleiter elektrisch gekoppelt sein. In dieser Ausgestaltung hat die Antennenanordnung somit einen hybriden Aufbau aus Flächen- und Linienantenne.
  • Der Antennenleiter dient als Linienantenne und ist zu diesem Zweck geeignet ausgebildet, das heißt, er verfügt über eine zum Empfang im gewünschten Frequenzbereich geeignete Form. Im Unterschied und in Abgrenzung zu Flächenstrahlern verfügen Linienantennen bzw. Linienstrahler über eine geometrische Länge (L), die deren geometrische Breite (B) um mehrere Größenordnungen übersteigt. Die geometrische Länge eines Linienstrahlers ist der Abstand zwischen Antennenfußpunkt und Antennenspitze, die geometrische Breite die hierzu senkrechte Abmessung. Für Linienstrahler gilt in der Regel der folgende Zusammenhang: L/B ≥ 100. Für deren geometrische Höhe (H) gilt in der Regel ein entsprechender Zusammenhang L/H ≥ 100, wobei unter der geometrischen Höhe (H) eine Abmessung zu verstehen ist, die sowohl senkrecht zur Länge (L) als auch senkrecht zur Breite (B) ist. Durch Linienstrahler kann im Bereich der terrestrischen Bänder II bis V ein zufrieden stellendes Antennensignal bereitgestellt werden. Gemäß einer Definition der Internationalen Fernmeldeunion (ITU = International Telecommunication Union) handelt es sich hierbei um den Frequenzbereich von 87,5 MHz bis 862 MHz (Band II: 87,5-108 MHz, Band III: 174-230 MHz, Band IV: 470-606 MHz, Band V: 606-862 MHz). Allerdings lässt sich durch Linienstrahler im vorgelagerten Frequenzbereich von Band I (47-68 MHz) keine zufrieden stellende Empfangsleistung mehr erzielen. Gleiches gilt auch für Frequenzen unterhalb von Band I.
  • Wesentlich in der hybriden Antennenanordnung ist, dass sich der Antennenleiter außerhalb eines durch eine Projektionsoperation definierten Raums befindet, welcher dadurch definiert ist, dass jeder Punkt des Raums durch eine orthogonale Parallelprojektion auf die als Projektionsfläche dienende, leitfähige Beschichtung bzw. Flächenantenne projizierbar ist. Falls die leitfähige Beschichtung nur abschnittsweise als Flächenantenne wirksam ist, dient als Projektionsfläche nur der als Flächenantenne wirksame Teil der leitfähigen Beschichtung. Der Antennenleiter befindet sich somit nicht in dem durch die Projektionsoperation definierten Raum. Wie üblich sind bei der Parallelprojektion die Projektionsstrahlen zueinander parallel und treffen im rechten Winkel auf die Projektionsfläche, welche im vorliegenden Fall durch die als Flächenantenne dienende, leitfähige Beschichtung bzw. deren als Flächenantenne wirksamer Teil gegeben ist, wobei sich das Projektionszentrum im Unendlichen befindet. Bei einem ebenen Substrat und einer demnach ebenen leitfähigen Beschichtung ist die Projektionsfläche eine die Beschichtung enthaltende Projektionsebene. Der besagte Raum wird durch eine (gedachte) Randfläche begrenzt, die am umlaufenden Rand der leitfähigen Beschichtung bzw. am umlaufenden Rand des als Flächenantenne wirksamen Teils der leitfähigen Beschichtung positioniert ist und senkrecht zur Projektionsfläche steht.
  • In der hybriden Antennenanordnung wird ein Antennenfußpunkt der Linienantenne zu einem gemeinsamen Antennenfußpunkt der Linien- und Flächenantenne. Wie üblich, umschreibt der Begriff "Antennenfußpunkt" einen elektrischen Kontakt zum Abgreifen empfangener Antennensignale, an dem insbesondere ein Bezug zu einem Referenzpotenzial (z.B. Masse) zur Bestimmung der Signalpegel der Antennensignale besteht. Die hybride Antennenanordnung ermöglicht somit in vorteilhafter Weise eine gute Empfangsleistung mit hoher Bandbreite, welche die günstigen Empfangseigenschaften des Flächenstrahlers in den Frequenzbereichen der Bänder I und II mit den günstigen Empfangseigenschaften des Linienstrahlers in den Frequenzbereichen der Bänder II bis V kombiniert. Durch die Positionierung des Linienstrahlers außerhalb des durch orthogonale Parallelprojektion auf die Flächenantenne projizierbaren Raums kann eine elektrische Belastung des Linienstrahlers durch den Flächenstrahler in besonders vorteilhafter Weise vermieden werden. Die hybride Antennenanordnung macht somit den vollständigen Frequenzbereich der Bänder I bis V mit einer zufrieden stellenden Empfangsleistung beispielsweise für eine als Antennenscheibe dienende Windschutzscheibe verfügbar.
  • In der hybriden Antennenanordnung kann der Antennenleiter für einen Empfang im Bereich der terrestrischen Bänder III-V speziell angepasst sein und zu diesem Zweck vorzugsweise eine Länge von mehr als 100 Millimeter (mm) und eine Breite von weniger als 1 mm sowie eine Höhe von weniger als 1 mm, entsprechend einem Verhältnis Länge/Breite ≥ 100 bzw. L/H ≥ 100 aufweisen. Für den gewünschten Zweck ist es weiterhin bevorzugt, wenn der Antennenleiter einen Widerstandsbelag von weniger als 20 Ohm/m, besonders bevorzugt weniger als 10 Ohm/m, aufweist. Weiterhin kann in der hybriden Antennenanordnung die erste Koppelelektrode so mit der leitfähigen Beschichtung elektrisch gekoppelt sein, dass die Empfangsleistung (Signalpegel) der Flächenantenne möglichst hoch ist. Diese Maßnahme ermöglicht in vorteilhafter Weise eine Optimierung des Signalpegels der Flächenantenne zur Verbesserung der Empfangseigenschaften der hybriden Antennenanordnung. Weiterhin kann in der hybriden Antennenanordnung der gemeinsame Antennenfußpunkt von Flächen- und Linienantenne durch einen Anschlussleiter mit einer elektronischen Signalverarbeitungseinrichtung zur Verarbeitung empfangener Antennensignale, beispielsweise ein Antennenverstärker, elektrisch leitend verbindbar sein, wobei der Anschlusskontakt so angeordnet ist, dass die Länge des Anschlussleiters möglichst kurz ist. Diese Maßnahme ermöglicht in vorteilhafter Weise, dass für den Anschlussleiter nicht zwingend ein spezifischer Hochfrequenzleiter mit Signalleiter und zumindest einem mitgeführten Masseleiter verwendet wird, sondern dass aufgrund der kurzen Signalübertragungsstrecke ein kostengünstiger nicht spezifisch für die Hochfrequenzleitung vorgesehener Signalleiter wie ein ungeschirmter Litzendraht oder bandförmiger Flachleiter verwendet werden kann, der zudem durch eine relativ wenig aufwändige Verbindungstechnik verbindbar ist. Hierdurch können in erheblichem Umfang Kosten bei der Herstellung der hybriden Antennenanordnung eingespart werden. Weiterhin kann in der hybriden Antennenanordnung die leitfähige Beschichtung die Oberfläche des Substrats bis auf einen umlaufenden, elektrisch isolierten Randstreifen bedecken, wobei sich der Antennenleiter innerhalb eines Raums befindet, der durch orthogonale Parallelprojektion auf den als Projektionsfläche dienenden Randstreifen projizierbar ist. Zu diesem Zweck kann der Antennenleiter beispielsweise im Bereich des Randstreifens auf das Substrat aufgebracht sein. Diese Maßnahme ermöglicht eine besonders einfache Herstellung der hybriden Antennenanordnung. Für den Fall, dass die hybride Antennenanordnung in Form einer Verbundscheibe realisiert ist, kann sich die leitfähige Beschichtung auf einer Oberfläche des zumindest einen Substrats und der linienförmige Antennenleiter auf einer hiervon verschiedenen Oberfläche desselben oder eines hiervon verschiedenen Substrats befinden. Durch diese Maßnahme kann eine besonders einfache Herstellung der erfindungsgemäßen hybriden Antennenanordnung realisiert werden. Weiterhin können in der hybriden Antennenanordnung die erste Koppelelektrode und der Antennenleiter durch einen ersten Verbindungsleiter elektrisch leitend miteinander verbunden sein, wodurch insbesondere die Möglichkeit geschaffen wird, die erste Koppelelektrode unabhängig von der elektrischen Anbindung zum linienförmigen Antennenleiter zu gestalten, wodurch die Leistung der hybriden Antennenanordnung verbessert werden kann. Weiterhin kann sich in der hybriden Antennenanordnung der Antennenleiter auf einer Oberfläche des zumindest einen Substrats und der gemeinsame Antennenfußpunkt auf einer hiervon verschiedenen Oberfläche desselben oder eines hiervon verschiedenen Substrats befinden. Zu diesem Zweck sind der Antennenleiter und der gemeinsame Antennenfußpunkt durch einen zweiten Verbindungsleiter miteinander elektrisch leitend verbunden. Durch diese Maßnahme kann insbesondere die elektrische Verbindung des gemeinsamen Antennenfußpunkts mit der nachgeschalteten Antennenelektronik in besonders einfacher Weise realisiert werden. Weiterhin kann in der hybriden Antennenanordnung der linienförmige Antennenleiter aus einer metallischen Druckpaste, beispielsweise im Siebdruckverfahren, auf das zumindest eine Substrat gedruckt oder in Form eines Drahts verlegt sein, wodurch eine besonders einfache Herstellung des Antennenleiters ermöglicht ist. Weiterhin kann in der hybriden Antennenanordnung zumindest einer der Leiter, gewählt aus erster Koppelelektrode, erster Verbindungsleiter und zweiter Verbindungsleiter, zum Rand des zumindest einen Substrats führen und als Flachleiter mit einer im Bereich des Rands verjüngten Breite ausgebildet sein. Durch diese Maßnahme kann in vorteilhafter Weise eine verringerte Koppelfläche am Substratrand beispielsweise beim Austritt des Leiters aus der Verbundscheibe zur Verminderung einer kapazitiven Kopplung mit der elektrisch leitfähigen Fahrzeugkarosserie erreicht werden. Weiterhin können in der hybriden Antennenanordnung die Linienantenne und die erste Koppelelektrode, sowie die beiden Verbindungsleiter (falls vorhanden) von einer opaken Maskierungsschicht verdeckt sein, wodurch die optische Erscheinung der Antennenanordnung verbessert werden kann. Weiterhin kann in der hybriden Antennenanordnung die leitfähige Beschichtung mindestens zwei flächenförmige Segmente umfassen, die durch mindestens einen linienförmigen, elektrisch isolierenden Bereich voneinander isoliert sind. Zudem ist mindestens ein flächenförmiges Segment durch linienförmig elektrisch isolierende Bereiche unterteilt. Von besonderem Vorteil ist es, wenn ein insbesondere umlaufender Randbereich der leitfähigen Beschichtung eine Vielzahl flächenförmiger Segmente aufweist, die durch linienförmig elektrisch isolierende Bereiche unterteilt sind. Bezüglich einer solchen Segmentierung der leitfähigen Beschichtung wird auf die unveröffentlichte internationale Patentanmeldung PCT/EP2009/066237 verwiesen.
  • In besonders vorteilhafter Weise können in der hybriden Antennenanordnung Störsignale aus der Flächenantenne ausgekoppelt werden, die in einem Frequenzbereich liegen, welcher von der Linienantenne gut empfangen werden kann, nämlich der Frequenzbereich der terrestrischen Bänder III-V oberhalb von 170 MHz. Somit treten keinerlei Einbußen im Nutzsignalanteil der Flächenantenne auf. Demnach verfügt die zweite Koppelelektrode vorzugsweise über einen Hochpassbereich entsprechend dem Frequenzbereich der terrestrischen Bänder III-V, insbesondere entsprechend dem Frequenzbereich der terrestrischen Bänder IV und V.
  • Gezeigt ist weiterhin ein Antennenaufbau mit unter anderem mindestens einem elektrisch isolierenden, insbesondere transparenten Substrat, mindestens einer elektrisch leitfähigen, insbesondere transparenten Beschichtung, die eine Oberfläche des Substrats zumindest abschnittsweise bedeckt und zumindest abschnittsweise als Flächenantenne zum Empfangen von elektromagnetischen Wellen dient, mindestens einer mit der leitfähigen Beschichtung elektrisch gekoppelten ersten Koppelelektrode zum Auskoppeln von Nutzsignalen aus der Flächenantenne, und mindestens einer mit der leitfähigen Beschichtung elektrisch gekoppelten zweiten Koppelelektrode zum Auskoppeln von Störsignalen zumindest einer Störquelle aus der Flächenantenne, wobei die mindestens eine zweite Koppelelektrode über eine erste Koppelfläche verfügt, die dazu ausgebildet ist, mit einer zweiten Koppelfläche einer als elektrische Masse wirkenden, elektrisch leitfähigen Struktur kapazitiv gekoppelt zu werden, wobei die erste Koppelfläche so ausgebildet ist, dass sie gemeinsam mit der zweiten Koppelfläche für einen Frequenzbereich, der den aus der Flächenantenne auszukoppelnden Störsignalen entspricht, selektiv durchlässig ist.
  • Bei einer Ausgestaltung ist die wenigstens eine zweite Koppelelektrode in Form eines vorspringenden Randabschnitts der leitfähigen Beschichtung ausgebildet. Gezeigt ist weiterhin die Verwendung eines wie oben beschriebenen Antennenaufbaus als funktionales und/oder dekoratives Einzelstück und als Einbauteil in Möbeln, Geräten und Gebäuden, sowie in Fortbewegungsmitteln zur Fortbewegung auf dem Lande, in der Luft oder zu Wasser, insbesondere in Kraftfahrzeugen beispielsweise als Windschutzscheibe, Heckscheibe, Seitenscheibe und/oder Glasdach.
  • Die Erfindung erstreckt sich weiterhin auf ein Verfahren zum Betreiben einer solchen Antennenanordnung, bei welchem Nutzsignale über die erste Koppelelektrode und Störsignale selektiv über die zweite Koppelektrode aus der Flächenantenne ausgekoppelt werden.
  • Das Verfahren umfasst die folgenden Schritte:
    • Empfangen von Nutzsignalen mittels einer Flächenantenne, welche in Form einer auf mindestens ein elektrisch isolierendes, insbesondere transparentes, Substrat aufgebrachten elektrisch leitfähigen, transparenten Beschichtung ausgebildet ist,
    • Auskoppeln der Nutzsignale aus der Flächenantenne mittels einer mit der Beschichtung elektrisch gekoppelten ersten Koppelelektrode, wobei die erste Koppelelektrode mit einem ungeschirmten, linienförmigen Antennenleiter, der als Linienantenne zum Empfangen von elektromagnetischen Wellen dient, elektrisch gekoppelt ist, wobei sich der linienförmige Antennenleiter außerhalb eines Raums befindet, der durch orthogonale Parallelprojektion auf die als Projektionsfläche dienende Flächenantenne projezierbar ist, wodurch ein Antennenfußpunkt der Linienantenne zu einem gemeinsamen Antennenfußpunkt der Linien- und Flächenantenne wird,
    • selektives Auskoppeln von von der Flächenantenne (elektromagnetisch) empfangenen Störsignalen zumindest einer Störquelle aus der Flächenantenne mittels einer mit der Beschichtung elektrisch gekoppelten zweiten Koppelelektrode, welche mit einer als Masse wirkenden leitfähigen Struktur, beispielsweise eine metallische Fahrzeugkarosserie oder ein metallischer Fensterrahmen, kapazitiv gekoppelt ist, wobei die zweite Koppelelektrode über eine erste Koppelfläche und die leitfähige Struktur über eine mit der ersten Koppelfläche kapazitiv gekoppelte zweite Koppelfläche (Koppelgegenfläche) verfügt.
  • Erfindungsgemäß werden die von der Flächenantenne empfangenen Störsignale über mindestens eine in Form eines vorspringenden Randabschnitts der leitfähigen Beschichtung ausgebildete zweite Koppelelektrode aus der Flächenantenne ausgekoppelt.
  • Das erfindungsgemäße Verfahren kann insbesondere in der oben beschriebenen erfindungsgemäßen Antennenanordnung realisiert sein.
  • Es versteht sich, dass die verschiedenen Ausgestaltungen der erfindungsgemäßen Antennenanordnung sowie des Verfahrens zum Betreiben einer Antennenanordnung einzeln oder in beliebigen Kombinationen realisiert sein können, um weitere Verbesserungen des Signal/Rauschverhältnisses der Antennenanordnung zu erreichen.
  • Kurze Beschreibung der Zeichnungen
  • Die Erfindung wird nun anhand von Ausführungsbeispielen näher erläutert, wobei Bezug auf die beigefügten Figuren genommen wird. Es zeigen in vereinfachter, nicht maßstäblicher Darstellung:
  • Fig. 1
    eine schematische perspektivische Ansicht einer in Form einer Verbundscheibe verkörperten, hybriden Antennenanordnung gemäß einem ersten Ausführungsbeispiel der Erfindung;
    Fig. 2A-2D
    Schnittansichten der hybriden Antennenanordnung von Fig. 1 gemäß Schnittlinie A-A (Fig. 2A), Schnittlinie B-B (Fig. 2B), Schnittlinien A'-A' (Fig. 2C) und Schnittlinie B'-B' (Fig. 2D);
    Fig. 3A-3B
    Schnittansichten einer ersten Variante der hybriden Antennenanordnung von Fig. 1 gemäß Schnittlinie A-A (Fig. 3A) und Schnittlinie B-B (Fig. 3B);
    Fig. 4A-4B
    Schnittansichten einer zweiten Variante der hybriden Antennenanordnung von Fig. 1 gemäß Schnittlinie A-A (Fig. 4A) und Schnittlinie B-B (Fig. 4B);
    Fig. 5A-5B
    Schnittansichten einer dritten Variante der hybriden Antennenanordnung von Fig. 1 gemäß Schnittlinie A-A (Fig. 5A) und Schnittlinie B-B (Fig. 5B);
    Fig. 6
    eine Schnittansicht einer vierten Variante der hybriden Antennenanordnung von Fig. 1 gemäß Schnittlinie B-B;
    Fig. 7
    eine schematische perspektivische Ansicht einer in Form einer Verbundscheibe verkörperten hybriden Antennenanordnung gemäß einem zweiten Ausführungsbeispiel der Erfindung;
    Fig. 8A-8B
    Schnittansichten der hybriden Antennenanordnung von Fig. 7 gemäß Schnittlinie A-A (Fig. 8A) und Schnittlinie B-B (Fig. 8B);
    Fig. 9
    eine Schnittansicht einer Variante der hybriden Antennenanordnung von Fig. 7 gemäß Schnittlinie A-A.
    Ausführliche Beschreibung der Zeichnungen
  • Seien zunächst Fig. 1 und Fig. 2A bis 2D betrachtet, worin als erstes Ausführungsbeispiel der Erfindung ein insgesamt mit der Bezugszahl 1 bezeichneter hybrider Antennenaufbau sowie eine den Antennenaufbau 1 enthaltende Antennenanordnung 100 veranschaulicht ist. Der hybride Antennenaufbau 1 ist hier beispielsweise als transparente Verbundscheibe 20 verkörpert, welche in Fig. 1 lediglich teilweise dargestellt ist. Die Verbundscheibe 20 ist für sichtbares Licht beispielsweise im Wellenlängenbereich von 350 nm bis 800 nm transparent, wobei unter dem Begriff "Transparenz" eine Lichtdurchlässigkeit von mehr als 50%, vorzugsweise mehr als 75% und insbesondere bevorzugt mehr als 80% zu verstehen ist. Die Verbundscheibe 20 dient beispielsweise als Windschutzscheibe eines Kraftfahrzeugs, wobei sie aber auch anderweitig verwendet werden kann.
  • Die Verbundscheibe 20 umfasst zwei transparente Einzelscheiben, nämlich eine starre Außenscheibe 2 und eine starre Innenscheibe 3, die über eine transparente thermoplastische Klebeschicht 21 fest miteinander verbunden sind. Die Einzelscheiben haben in etwa eine gleiche Größe und sind beispielsweise aus Glas, insbesondere Floatglas, Gussglas und Keramikglas gefertigt, wobei sie gleichermaßen aus einem nichtgläsernen Material, beispielsweise Kunststoff, insbesondere Polystyrol (PS), Polyamid (PA), Polyester (PE), Polyvinylchlorid (PVC), Polycarbonat (PC), Polymethylmethacrylat (PMA) oder Polyethylenterephthalat (PET) hergestellt sein können. Allgemein kann jedes Material mit hinreichender Transparenz, ausreichender chemischer Beständigkeit sowie geeigneter Form- und Größenstabilität verwendet werden. Für eine anderweitige Verwendung, beispielsweise als Dekorteil, wäre es auch möglich, die Außen- und Innenscheiben 2, 3 aus einem flexiblen Material herzustellen. Die jeweilige Dicke der Außen- und Innenscheiben 2, 3 kann je nach Verwendung breit variieren und kann für Glas beispielsweise im Bereich von 1 bis 24 mm liegen.
  • Die Verbundscheibe 20 hat eine zumindest annähernd trapezförmig geschwungene Kontur (in Fig. 1 nur teilweise erkennbar), die sich aus einem den beiden Einzelscheiben 2, 3 gemeinsamen Scheibenrand 5, der aus zwei gegenüberliegenden langen Scheibenrändern 5a und zwei gegenüberliegenden kurzen Scheibenrändern 5b zusammengesetzt ist, ergibt. In üblicher Weise sind die Scheibenflächen mit den römischen Ziffern I-IV bezeichnet, wobei "Seite I" einer ersten Scheibenfläche 24 der Außenscheibe 2, "Seite II" einer zweiten Scheibenfläche 25 der Außenscheibe 2, "Seite III" einer dritten Scheibenfläche 26 der Innenscheibe 3 und "Seite IV" einer vierten Scheibenfläche 27 der Innenscheibe 3 entspricht. In der Verwendung als Windschutzscheibe ist Seite I der äußeren Umgebung und Seite IV der Fahrgastzelle des Kraftfahrzeugs zugewandt.
  • Die Klebeschicht 21 zur Verbindung von Außen- und Innenscheibe 2, 3 besteht vorzugsweise aus einem klebenden Kunststoff bevorzugt auf Basis von Polyvinylbutyral (PVB), Ethylen-Vinyl-Acetat (EVA) und Polyurethan (PU). Hier ist die Klebeschicht 21 beispielsweise als Bilayer in Form zweier miteinander verklebter PVB-Folien ausgebildet, was in den Figuren nicht näher dargestellt ist.
  • Zwischen Außen- und Innenscheibe 2, 3 befindet sich ein flächenhafter Träger 4, der vorzugsweise aus Kunststoff, bevorzugt auf Basis von Polyamid (PA), Polyurethan (PU), Polyvinylchlorid (PVC), Polycarbonat (PC), Polyester (PE) und Polyvinylbutyral (PVB), besonders bevorzugt auf Basis von Polyester (PE) und Polyethylenterephthalat (PET), hergestellt ist. Hier ist der Träger 4 beispielsweise in Form einer PET-Folie ausgebildet. Der Träger 4 ist zwischen den beiden PVB-Folien der Klebeschicht 21 eingebettet und parallel zur Außen- und Innenscheibe 2, 3 in etwa mittig zwischen diesen beiden angeordnet, wobei eine erste Trägerfläche 22 der zweiten Scheibenfläche 25 und eine zweite Trägerfläche 23 der dritten Scheibenfläche 26 zugewandt sind. Der Träger 4 reicht nicht ganz bis zum Scheibenrand 5, so dass ein Trägerrand 29 gegenüber dem Scheibenrand 5 nach innen zurückversetzt ist und eine trägerfreie, allseitig umlaufende Randzone 28 der Verbundscheibe 20 verbleibt. Die Randzone 28 dient insbesondere einer elektrischen Isolierung der leitfähigen Beschichtung 6 nach außen, beispielsweise zur Verringerung einer kapazitiven Kopplung mit der elektrisch leitfähigen, in der Regel aus Blech gefertigten Fahrzeugkarosserie. Zudem wird die leitfähige Beschichtung 6 gegen vom Scheibenrand 5 vordringende Feuchtigkeit geschützt.
  • Auf der zweiten Trägerfläche 23 ist eine transparente, elektrisch leitfähige Beschichtung 6 aufgebracht, welche durch einen allseitig umlaufenden Beschichtungsrand 8 begrenzt ist. Die leitfähige Beschichtung 6 bedeckt eine Fläche, welche mehr als 50%, bevorzugt mehr als 70%, insbesondere bevorzugt mehr als 80% und noch stärker bevorzugt mehr als 90% der Fläche der zweiten Scheibenfläche 25 bzw. der dritten Scheibenfläche 26 beträgt. Die von der leitfähigen Beschichtung 6 bedeckte Fläche beträgt vorzugsweise mehr als 1 m2 und kann allgemein, ungeachtet der Anwendung der Verbundscheibe 20 als Windschutzscheibe, beispielsweise im Bereich von 100 cm2 bis 25 m2 liegen. Die transparente, elektrisch leitfähige Beschichtung 6 enthält mindestens ein elektrisch leitfähiges Material oder besteht hieraus. Beispiele hierfür sind Metalle mit einer hohen elektrischen Leitfähigkeit wie Silber, Kupfer, Gold, Aluminium oder Molybdän, Metall-Legierungen wie mit Palladium legiertes Silber, sowie transparente elektrisch leitfähige Oxide (TCO = Transparent Conductive Oxides). Bei TCO handelt es sich vorzugsweise um Indiumzinnoxid, fluordotiertes Zinndioxid, aluminiumdotierts Zinndioxid, galliumdotiertes Zinndioxid, bordotiertes Zinndioxid, Zinnzinkoxid oder antimondotiertes Zinnoxid.
  • Die leitfähige Beschichtung 6 kann aus einer Einzelschicht mit einem solchen leitfähigen Material oder aus einer Schichtenfolge, welche zumindest eine solche Einzelschicht enthält, bestehen. Beispielsweise kann die Schichtenfolge mindestens eine Schicht aus einem leitfähigen Material und mindestens eine Schicht aus einem dielektrischen Material umfassen. Die Dicke der leitfähigen Beschichtung 6 kann je nach Verwendung breit variieren, wobei die Dicke an jeder Stelle beispielsweise im Bereich von 30 nm bis 100 µm liegen kann. Im Falle von TCO liegt die Dicke vorzugsweise im Bereich von 100 nm bis 1,5 µm, bevorzugt im Bereich von 150 nm bis 1 µm, insbesondere bevorzugt im Bereich von 200 nm bis 500 nm. Besteht die leitfähige Beschichtung aus einer Schichtenfolge mit mindestens einer Schicht aus einem elektrisch leitfähigen Material und mindestens einer Schicht aus einem dielektrischen Material beträgt die Dicke vorzugsweise 20 nm bis 100 µm, bevorzugt 25 nm bis 90 µm, und insbesondere bevorzugt 30 nm bis 80 µm. Vorteilhaft ist die Schichtenfolge thermisch hoch belastbar, so dass sie die zum Biegen von Glasscheiben erforderlichen Temperaturen von typischer Weise mehr als 600°C ohne Schädigung übersteht, wobei aber auch thermisch gering belastbare Schichtenfolgen vorgesehen sein können. Der Flächenwiderstand der leitfähigen Beschichtung 6 ist vorzugsweise geringer als 20 Ohm und liegt beispielsweise im Bereich von 0,5 bis 20 Ohm. Im gezeigten Ausführungsbeispiel beträgt der Flächenwiderstand der leitfähigen Beschichtung 6 beispielsweise 4 Ohm.
  • Die leitfähige Beschichtung 6 wird vorzugsweise aus der Gasphase abgeschieden, zu welchem Zweck an sich bekannte Verfahren wie chemische Gasphasenabscheidung (CVD = Chemical Vapor Deposition) oder physikalische Gasphasenabscheidung (PVD = Physical Vapor Deposition) eingesetzt werden können. Vorzugsweise wird die Beschichtung 6 durch Sputtern (Magnetron-Kathodenzerstäubung) aufgebracht.
  • In der Verbundscheibe 20 dient die leitfähige Beschichtung 6 als Flächenantenne zum Empfangen von elektromagnetischen Wellen, vorzugsweise im Frequenzbereich der terrestrischen Rundfunkbänder I und II. Zu diesem Zweck ist die leitfähige Beschichtung 6 mit einer ersten Koppelelektrode 10, welche hier beispielsweise als bandförmiger Flachleiter ausgebildet ist, elektrisch gekoppelt. Im Ausführungsbeispiel ist die erste Koppelelektrode 10 mit der leitfähigen Beschichtung 6 galvanisch gekoppelt, wobei gleichermaßen eine kapazitive Kopplung vorgesehen sein kann. Die bandförmige erste Koppelelektrode 10 besteht beispielsweise aus einem metallischen Material, vorzugsweise Silber, und ist beispielsweise mittels Siebdruck aufgedruckt. Sie hat vorzugsweise eine Länge von mehr als 10 mm bei einer Breite von 5 mm oder größer, bevorzugt eine Länge von mehr als 25 mm bei einer Breite von 5 mm oder größer. Im Ausführungsbeispiel hat die erste Koppelelektrode 10 eine Länge von 300 mm und eine Breite von 5 mm. Die Dicke der ersten Koppelelektrode 10 beträgt vorzugsweise weniger als 0,015 mm. Die spezifische Leitfähigkeit einer aus Silber bestehenden ersten Koppelektrode 10 beträgt beispielsweise 61,35·106 /Ohm·m.
  • Wie in Fig. 1 gezeigt, verläuft die erste Koppelelektrode 10 auf und in direktem elektrischem Kontakt mit der leitfähigen Beschichtung 6 in etwa parallel zum oberen Beschichtungsrand 8 und erstreckt sich bis in die trägerfreie Randzone 28 hinein. Dabei ist die erste Koppelelektrode 10 so angeordnet, dass die Antennensignale der Flächenantenne hinsichtlich ihrer Empfangsleistung (Signalpegel) optimiert sind.
  • Wie in Fig. 2A und 2B gezeigt ist, ist die leitfähige Beschichtung 6 in einem an den Trägerrand 29 angrenzenden, streifenförmigen Randbereich 15 beispielsweise mittels Laserung in eine Vielzahl elektrisch isolierter Segmente 16 unterteilt, zwischen denen sich jeweils elektrisch isolierende (entschichtete) Bereiche 17 befinden. Der Randbereich 15 verläuft im Wesentlichen parallel zum Trägerrand 29 und kann insbesondere allseitig umlaufend sein. Durch diese Maßnahme kann in vorteilhafter Weise einer kapazitiven Verkopplung der leitfähigen Beschichtung 6 mit umgebenden leitfähigen Strukturen, beispielsweise einer elektrisch leitfähigen Fahrzeugkarosserie, entgegen gewirkt werden. Da der Randbereich 15 der leitfähigen Beschichtung 6 als Flächenantenne nicht wirksam ist, wird ein für die Funktion als Flächenantenne wirksamer Teil der leitfähigen Beschichtung 6 durch einen Beschichtungsrand 8' begrenzt.
  • Innerhalb der trägerfreien Randzone 28 der Verbundscheibe 20 befindet sich, eingebettet in die Klebeschicht 4, ein linienförmiger, ungeschirmter Antennenleiter 12, der als Linienantenne zum Empfangen von elektromagnetischen Wellen, vorzugsweise im Frequenzbereich der terrestrischen Rundfunkbänder II bis V, besonders bevorzugt im Frequenzbereich der Rundfunkbänder III bis V dient und zu diesem Zweck geeignet ausgebildet ist. Im vorliegenden Ausführungsbeispiel ist der Antennenleiter 12 in Form eines Drahts 18 ausgeführt, der vorzugsweise länger als 100 mm und schmaler als 1 mm ist. Der Widerstandsbelag des Antennenleiters 12 ist vorzugsweise geringer als 20 Ohm/m, besonders bevorzugt geringer als 10 Ohm/m. Im gezeigten Ausführungsbeispiel beträgt die Länge des Antennenleiters 12 ca. 650 mm bei einer Breite von 0,75 mm. Sein Widerstandsbelag beträgt beispielsweise 5 Ohm/m.
  • Der Antennenleiter 12 hat hier beispielsweise einen zumindest annähernd geradlinigen Verlauf und befindet sich vollständig innerhalb der träger- und beschichtungsfreien Randzone 28 der Verbundscheibe 20, wobei er sich überwiegend entlang des kurzen Scheibenrands 5b beispielsweise unterhalb einer Fahrzeugverkleidung (nicht gezeigt) im Bereich des Maskierungsstreifens 9 erstreckt. Dabei hat der Antennenleiter 12 einen hinreichenden Abstand sowohl vom Scheibenrand 5 als auch vom Beschichtungsrand 8, wodurch einer kapazitiven Verkopplung mit der leitfähigen Beschichtung 6 und der Fahrzeugkarosserie entgegen gewirkt wird. Insbesondere wird durch den segmentierten Randbereich 15 in vorteilhafter Weise erreicht, dass der hochfrequenztechnisch wirksame Abstand zwischen der leitfähigen Beschichtung 6 und der Linienantenne vergrößert wird.
  • Da sich der Antennenleiter 12 außerhalb eines in Fig. 2A schematisch angedeuteten Raums 30 befindet, der dadurch definiert ist, dass sich jeder darin enthaltene Punkt durch orthogonale Parallelprojektion auf die eine Projektionsfläche darstellende, als Flächenantenne dienende leitfähige Beschichtung 6 (bzw. auf den als Flächenantenne wirksamen Teil der leitfähigen Beschichtung 6) abbilden lässt, wird die Linienantenne durch die Flächenantenne elektrisch nicht belastet. Dieser durch eine Projektionsoperation definierte Raum 30 wird durch eine gedankliche Begrenzungsfläche 32, welche am Beschichtungsrand 8 bzw. 8' angeordnet ist und senkrecht zum Träger 21 gerichtet ist, begrenzt. Für den segmentierten Randbereich 15 ist die Begrenzungsfläche 32 am Beschichtungsrand 8' angeordnet, da es für die Positionierung des Antennenleiters auf die Antennenfunktion der leitfähigen Beschichtung 6 ankommt.
  • Die erste Koppelelektrode 10 ist an einem nicht näher dargestellten ersten Anschlusskontakt 11 mit dem linienförmigen Antennenleiter 12 elektrisch gekoppelt. Im vorliegenden Ausführungsbeispiel ist die erste Koppelelektrode 10 mit dem Antennenleiter 12 galvanisch gekoppelt, wobei gleichermaßen eine kapazitive Kopplung vorgesehen sein kann. Der erste Anschlusskontakt 11 der ersten Koppelelektrode 10 bzw. die Verbindungsstelle zwischen der ersten Koppelelektrode 10 und dem Antennenleiter 12 kann als Antennenfußpunkt zum Abgreifen von Antennensignalen der Flächenantenne angesehen werden. Tatsächlich dient aber ein zweiter Anschlusskontakt 14 des Antennenleiters 12 als gemeinsamer Antennenfußpunkt 13 zum Abgreifen der Antennensignale sowohl der Flächenantenne als auch der Linienantenne. Die Antennensignale der Flächen- und der Linienantenne werden somit am zweiten Anschlusskontakt 14 zur Verfügung gestellt.
  • Der zweite Anschlusskontakt 14 ist mit einem parasitär als Antenne wirkenden Anschlussleiter 19 elektrisch gekoppelt. Im vorliegenden Ausführungsbeispiel ist der Anschlussleiter 19 mit dem zweiten Anschlusskontakt 14 galvanisch gekoppelt, wobei aber auch eine kapazitive Kopplung vorgesehen sein kann. Über den Anschlussleiter 19 und einen damit verbundenen Konnektor 31 ist der hybride Antennenaufbau 1 mit nachgeschalteten elektronischen Komponenten, beispielsweise ein Antennenverstärker, elektrisch verbunden, wobei die Antennensignale durch den Anschlussleiter 19 aus der Verbundscheibe 20 herausgeführt werden. Wie in Fig. 2B gezeigt, erstreckt sich der Anschlussleiter 19 von der Klebeschicht 21 über den Scheibenrand 5 hinweg auf die vierte Scheibenfläche 27 (Seite IV) und führt dann von der Verbundscheibe 20 weg. Dabei ist die räumliche Lage des zweiten Anschlusskontakts 14 so gewählt, dass der Anschlussleiter 19 möglichst kurz ist und dessen parasitäre Wirkung als Antenne minimiert wird, so dass auf die Verwendung eines hochfrequenztechnisch spezifisch ausgebildeten Leiters verzichtet werden kann. Der Anschlussleiter 19 ist vorzugsweise kürzer als 100 mm. Entsprechend ist der Anschlussleiter 19 hier beispielsweise als ungeschirmter Litzendraht oder Folienleiter ausgebildet, der kostengünstig und platzsparend ist und zudem über eine relative einfache Verbindungstechnik angeschlossen werden kann. Die Breite des hier beispielsweise als Flachleiter ausgebildeten Anschlussleiters 19 verjüngt sich vorzugsweise zum Scheibenrand 5 hin, um einer kapazitiven Verkopplung mit der Fahrzeugkarosserie entgegen zu wirken.
  • In dem hybriden Antennenaufbau 1 kann die transparente, elektrisch leitfähige Beschichtung 6, je nach stofflicher Zusammensetzung, weitere Funktionen erfüllen. Beispielsweise kann sie als Wärmestrahlen reflektierende Beschichtung zum Zwecke eines Sonnenschutzes, Thermoregulierung oder Wärmeisolation oder als Heizschicht zum elektrischen Beheizen der Verbundscheibe 20 dienen. Diese Funktionen sind für die vorliegende Erfindung von untergeordneter Bedeutung.
  • Weiterhin ist die Außenscheibe 2 mit einer opaken Farbschicht versehen, die auf der zweiten Scheibenfläche 25 (Seite II) aufgebracht ist und einen rahmenförmig umlaufenden Maskierungsstreifen 9 bildet, welcher in den Figuren nicht näher dargestellt ist. Die Farbschicht besteht vorzugsweise aus einem elektrisch nicht-leitenden, schwarz eingefärbten Material, das in die Außenscheibe 2 eingebrannt werden kann. Der Maskierungsstreifen 9 verhindert einerseits die Sicht auf einen Klebestrang, mit dem die Verbundscheibe 20 in eine Fahrzeugkarosserie eingeklebt werden kann, andererseits dient er als UV-Schutz für das verwendete Klebematerial.
  • Die als Flächenantenne dienende leitfähige Beschichtung 6 ist mit zwei zum angrenzenden langen Scheibenrand 5a hin vorspringenden Flächenbereichen versehen, die jeweils als zweite (kapazitive) Koppelelektrode 36, 36' dienen. In Fig. 1 haben die beiden flächigen Vorsprünge zumindest annähernd eine Rechteckform, wobei gleichermaßen jede andere für die Verwendung geeignete Form vorgesehen sein kann. Die leitfähige Beschichtung 6 verfügt in den an die beiden zweiten Koppelelektroden 36, 36' angrenzenden Flächenabschnitten über keinen segmentierten Randbereich 15. Die beiden zweiten Koppelelektroden 36, 36' erstrecken sich jeweils in den ansonsten beschichtungsfreien Randstreifen 7 hinein.
  • Wie in Fig. 2C dargestellt, gelangt der Träger 4 mit der leitfähigen Beschichtung 6 dabei in eine Gegenüberstellung mit einer elektrisch leitfähigen Struktur 37 und ist mit dieser kapazitiv gekoppelt. Genauer ausgedrückt, befindet sich ein erster Flächenabschnitt 40, 40' der Beschichtung 6, welcher der zweiten Koppelelektrode36, 36' entspricht und als erste kapazitive Koppelfläche dient, in paralleler Gegenüberstellung zu einem zweiten Flächenabschnitt 41 der elektrisch leitfähigen Struktur 37, welcher als zweite kapazitive Koppelfläche (Koppelgegenfläche) dient, wobei die beiden ersten Koppelflächen mit der zweiten Koppelfläche kapazitiv gekoppelt sind. Bei der elektrisch leitfähigen Struktur 37 kann es sich beispielsweise um die Karosserie eines Kraftfahrzeugs handeln. Die elektrisch leitfähige Struktur 37 ist hier beispielsweise mittels einer Kleberaupe 38 mit der vierten Scheibenfläche 27 der Innenscheibe 3 fest verbunden. Die leitfähige Beschichtung 6 ist demnach über die beiden zweiten Koppelelektroden 36, 36' mit der elektrisch leitfähigen Struktur 37 kapazitiv verkoppelt. Wie in Fig. 2D dargestellt, befindet sich die leitfähige Beschichtung 6 außerhalb der beiden zweiten Koppelelektroden 36, 36' nicht in Gegenüberstellung zur leitfähigen Struktur 37, so dass sie mit der leitfähigen Struktur 37 kapazitiv nicht gekoppelt ist.
  • Nun können beispielsweise in einem Kraftfahrzeug diverse Störquellen, wie getaktete elektrische Geräte, beispielsweise Sensoren, Kameras, Motorsteuergerät und dergleichen, elektromagnetische Störsignale in Form von elektromagnetischen Freiraumwellen aussenden, die von der als Flächenantenne dienenden leitfähigen Beschichtung 6 aufgrund der großen Antennenfläche empfangen werden können. In Fig. 1 sind beispielhaft zwei körperliche Störquellen 39, 39' anhand ihrer Projektionsorte im Bereich des beschichtungsfreien Randstreifens 7 am oberen und unteren langen Scheibenrand 5a schematisch veranschaulicht.
  • Die von der Flächenantenne empfangenen Störsignale der beiden Störquellen 39, 39' haben in den beiden Störquellenflächenzonen 42, 42' eine größte Signalamplitude bzw. eine Signalamplitude, die oberhalb eines bestimmbaren Amplitudenwerts liegt. Dabei haben die Punkte der oberen Störquellenflächenzone 42 einen kürzesten (beispielsweise senkrechten) Abstand von der oberen Störquelle 39 und die Punkte der unteren Störquellenflächenzone 42' einen kürzesten (beispielsweise senkrechten) Abstand von der unteren Störquelle 39'. Die Formen der Störquellenflächenzonen 42, 42' hängen von den jeweiligen Formen der Störquellen 39, 39' ab, wobei es sich versteht, dass die in Fig. 1 dargestellten Formen nur als beispielhaft aufzufassen sind.
  • Wie in Fig. 1 dargestellt, ist die zweite Koppelelektrode 36 in der Nähe der ersten Koppelelektrode 10 angeordnet und befindet sich zwischen der ersten Koppelelektrode 10 und der oberen Störquellenflächenzone 42 der oberen Störquelle 39. Die zweite Koppelelektrode 36 hat hier beispielsweise einen geometrischen Abstand von der ersten Koppelektrode 10, der geringer als 7,5 cm ist, entsprechend einem Viertel der minimalen Wellenlänge von Störsignalen im Frequenzbereich der terrestrischen Bänder III-V. Die zweite Koppelelektrode 36' ist in der Nähe der unteren Störquellenflächenzone 42' der unteren Störquelle 39' angeordnet. Die zweite Koppelelektrode 36' hat hier beispielsweise einen geometrischen Abstand von der unteren Störquellenflächenzone 42', der geringer als 7,5 cm ist. Zudem haben die beiden zweiten Koppelektroden 36, 36' gemeinsam mit der Koppelgegenfläche der leitfähigen Struktur 37 ein frequenzselektives Durchlassverhalten und wirken als Hochpassfilter, wobei die beiden zweiten Koppelelektroden 36, 36' und die Koppelgegenfläche der leitfähigen Struktur 37 hier beispielsweise so ausgebildet sind, dass sie nur Frequenzen oberhalb von 170 MHz passieren lassen. Die beiden zweiten Koppelelektroden 36, 36' wirken somit frequenzselektiv für die terrestrischen Bänder III-V. Im vorliegenden Fall sei angenommen, dass sich die Störsignale der beiden Störquellen 39, 39' in einem Frequenzbereich oberhalb von 170 MHz befinden. Die gewünschte Frequenzselektivität kann in einfacher Weise durch eine Einstellung der kapazitiven Eigenschaften der mit leitfähigen Struktur 37 kapazitiv gekoppelten zweiten Koppelelektroden 36, 36' erreicht werden. Zu diesem Zweck ist es lediglich erforderlich, die Größe der in Gegenüberstellung befindlichen (kapazitiv aktiven) Flächen der zweiten Koppelelektroden 36, 36' und der leitfähigen Struktur 37 und die Größe des Zwischenabstands dieser kapazitiv aktiven Flächen in geeigneter Weise einzustellen.
  • Die von der oberen Störquelle 39 (und zusätzlich von der unteren Störquelle 39') empfangenen Störsignale werden somit aufgrund des frequenzselektiven Durchlassverhaltens der oberen zweiten Koppelelektrode 36 vorrangig von der oberen zweiten Koppelelektrode 36 aus der als Flächenantenne dienenden leitfähigen Beschichtung 6 ausgekoppelt. Zudem werden die Störsignale der oberen Störquelle 39 aufgrund der räumlichen Lage zwischen der oberen Störquellenflächenzone 42 und der ersten Koppelelektrode 10 aus einem die obere Störquellenflächenzone 42 und die obere zweite Koppelelektrode 36 enthaltenden Flächenabschnitt der leitfähigen Beschichtung 6 vorrangig von der zweiten Koppelelektrode 36 ausgekoppelt. Andererseits werden die von der unteren Störquelle 39' empfangenen Störsignale aufgrund der räumlichen Nähe der zweiten Koppelelektrode 36' zu der unteren Störquellenflächenzone 42' und zudem aufgrund des frequenzselektiven Durchlassverhaltens der zweiten Koppelelektrode 36' vorrangig von der unteren zweiten Koppelelektrode 36' aus der leitfähigen Beschichtung 6 ausgekoppelt. Die räumliche Nähe der zweiten Koppelelektrode 36' zur unteren Störquellenflächenzone 42' bewirkt beim Signalempfang Potenzialdifferenzen zwischen einem die untere Störquellenflächenzone 42' enthaltenden Flächenabschnitt und der unteren zweiten Koppelelektrode 36', die größer sind als Potenzialdifferenzen zwischen diesem Flächenabschnitt und der ersten Koppelelektrode 10, so dass diese Störsignale vorrangig über die untere zweite Koppelelektrode 36' ausgekoppelt werden.
  • Gleichwohl kann die erste Koppelelektrode 10 Antennensignale aus von den Störquellenflächenzonen 42, 42' verschiedenen Flächenabschnitten der leitfähigen Beschichtung 6 auskoppeln, in denen beim Signalempfang Potenzialdifferenzen in Bezug auf die erste Koppelelektrode 10 auftreten, die größer sind als Potenzialdifferenzen in Bezug auf die beiden zweiten Koppelelektroden 36, 36'. Nutzsignale, welche in dem als Störsignale über die elektrisch leitfähige Struktur 37 (Masse) ausgekoppelten Frequenzbereich liegen, können in vorteilhafter Weise über den als Linienantenne dienenden Antennenleiter 12 empfangen werden, so dass praktisch kein Signalverlust auftritt. Der Antennenleiter 12 wird durch die Störsignale der Störquellen 39, 39' nicht oder nur in vernachlässigbarer Weise gestört. Die Antennenanordnung 100 mit hybridem Antennenaufbau 1 zeichnet sich somit durch ein hervorragendes Signal/Rauschverhältnis aus.
  • Unter Bezugnahme auf die weiteren Figuren werden im Folgenden verschiedene Ausgestaltungen der Antennenanordnung 1 mit hybridem Antennenaufbau 1 erläutert, in denen jeweils eine kapazitive Kopplung der zweiten Koppelelektroden 36, 36' mit der leitfähigen Struktur 37 verwirklicht ist.
  • Es wird nun Bezug auf die Figuren 3A und 3B genommen, worin eine erste Variante der Antennenanordnung 100 mit hybridem Antennenaufbau 1 gezeigt ist. Um unnötige Wiederholungen zu vermeiden, werden lediglich die Unterschiede zum Ausführungsbeispiel der Figuren 1, 2A und 2B beschrieben und ansonsten wird auf die dort gemachten Ausführungen Bezug genommen. Demnach ist in der Verbundscheibe 20 kein Träger 4 für die leitfähige Beschichtung 6 vorgesehen, da diese auf die dritte Scheibenfläche 26 (Seite III) der Innenscheibe 3 aufgebracht ist. Die leitfähige Beschichtung 6 reicht nicht ganz bis zum Scheibenrand 5, so dass ein allseitig umlaufender, beschichtungsfreier Randstreifen 7 der dritten Scheibenfläche 26 verbleibt. Die Breite des umlaufenden Randstreifens 7 kann breit variieren. Vorzugsweise liegt die Breite des Randstreifens 7 im Bereich von 0,2 bis 1,5 cm, bevorzugt im Bereich von 0,3 bis 1,3 cm und insbesondere bevorzugt im Bereich von 0,4 bis 1,0 cm. Der Randstreifen 7 dient insbesondere einer elektrischen Isolierung der leitfähigen Beschichtung 6 nach außen und zur Verringerung einer kapazitiven Kopplung mit umgebenden leitfähigen Strukturen. Der Randstreifen 7 kann durch nachträgliches Entfernen der leitfähigen Beschichtung 6, beispielsweise durch abrasiven Abtrag, Laserablation oder Ätzen, oder durch Maskieren der Innenscheibe 3 vor dem Aufbringen der leitfähigen Beschichtung 6 auf die dritte Scheibenfläche 26 hergestellt werden.
  • Der als Linienantenne dienende Antennenleiter 12 ist im Bereich des beschichtungsfreien Randstreifens 7 auf die dritte Scheibenfläche 26 aufgebracht. In der gezeigten Variante ist der Antennenleiter 12 in Form einer flachen Leiterbahn 35 ausgebildet, die vorzugsweise durch Drucken, beispielsweise Siebdruck, einer metallischen Druckpaste aufgebracht ist. Somit befinden sich die Linienantenne und die Flächenantenne auf derselben Oberfläche (Seite III) der Innenscheibe 3. Die bandförmige erste Koppelelektrode 10 erstreckt sich bis über den linienförmigen Antennenleiter 12 und ist mit diesem galvanisch gekoppelt, wobei gleichermaßen eine kapazitive Kopplung vorgesehen sein kann.
  • Der Antennenstrahler 12 befindet sich außerhalb des in Fig. 3A veranschaulichten Raums 30, in dem sich jeder Punkt durch orthogonale Parallelprojektion auf die Flächenantenne abbilden lässt, so dass die Linienantenne durch die Flächenantenne elektrisch nicht belastet wird. In Fig. 3A ist die den Raum 30 begrenzende (gedachte) Begrenzungsfläche 32, welche senkrecht zur dritten Scheibenfläche 26 gerichtet ist und am Beschichtungsrand 8 bzw. 8' (im Randbereich 15) angeordnet ist, schematisch dargestellt. Anders ausgedrückt, befindet sich der linienförmige Antennenleiter 12 in einem nicht näher gekennzeichneten Raum, in dem sich jeder Punkt durch orthogonale Parallelprojektion auf den als Projektionsfläche dienenden, beschichtungsfreien Randstreifen 7 abbilden lässt. Eine elektrische Belastung der Linienantenne durch die Flächenantenne wird hierdurch in vorteilhafter Weise vermieden.
  • In den Figuren 4A und 4B ist eine zweite Variante der Antennenanordnung 100 mit hybridem Antennenaufbau 1 gezeigt, wobei lediglich die Unterschiede zur ersten Variante der Figuren 3A und 3B beschrieben werden und ansonsten auf die dort gemachten Ausführungen Bezug genommen wird. Demnach ist keine Verbundscheibe 20 sondern lediglich ein Einscheibenglas mit einer Einzelscheibe entsprechend beispielsweise Außenscheibe 2 vorgesehen. Die leitfähige Beschichtung 6 ist auf die erste Scheibenfläche 24 (Seite I) aufgebracht, wobei die leitfähige Beschichtung 6 nicht ganz bis zum Scheibenrand 5 reicht, so dass ein allseitig umlaufender, beschichtungsfreier Randstreifen 7 der ersten Scheibenfläche 24 verbleibt. Im Bereich des beschichtungsfreien Randstreifens 7 ist der als Linienantenne dienende, in Form einer Leiterbahn 35 ausgebildete linienförmige Antennenleiter 12 auf die erste Scheibenfläche 24 aufgebracht. Der Antennenleiter 12 befindet sich somit außerhalb des in Fig. 4A veranschaulichten Raums 30, in dem sich jeder Punkt durch orthogonale Parallelprojektion auf die Flächenantenne abbilden lässt. Der Anschlussleiter 19 kontaktiert den zweiten Anschlusskontakt 14 des Antennenleiters 12 und führt dann auf der gleichen Seite der Außenscheibe 2 vom Antennenleiter 12 weg.
  • In den Figuren 5A und 5B ist eine dritte Variante der Antennenanordnung 100 mit hybridem Antennenaufbau 1 gezeigt, wobei lediglich die Unterschiede zum ersten Ausführungsbeispiel der Figuren 1, 2A und 2B beschrieben werden und ansonsten auf die dort gemachten Ausführungen Bezug genommen wird. Demnach ist ein Träger 4 in der Verbundscheibe 20 vorgesehen, auf dem die leitfähige Beschichtung 6 aufgebracht ist. Die bandförmige erste Koppelelektrode 10 ist auf die vierte Oberfläche (Seite IV) der Innenscheibe 3 aufgebracht und mit der als Flächenantenne dienenden, leitfähigen Beschichtung 6 kapazitiv gekoppelt. Der als Linienantenne dienende Antennenleiter 12 ist ebenfalls auf der vierten Scheibenfläche 27 der Innenscheibe 3 beispielsweise durch Drucken, beispielsweise Siebdruck, aufgebracht und mit der Koppelelektrode galvanisch gekoppelt, wobei aber gleichermaßen eine kapazitive Kopplung vorgesehen sein kann. Somit befinden sich die Flächenantenne und die Linienantenne auf verschiedenen Oberflächen voneinander verschiedener Substrate. Der Antennenleiter 12 befindet sich außerhalb des Raums 30, in dem jeder Punkt durch orthogonale Parallelprojektion auf die Flächenantenne 6 abgebildet werden kann, so dass die Linienantenne durch die Flächenantenne elektrisch nicht belastet wird. Der Anschlussleiter 19 kontaktiert den Antennenleiter 12 und führt direkt von der Verbundscheibe 20 weg.
  • In Figur 6 ist eine vierte Variante der Antennenanordnung 100 mit hybridem Antennenaufbau 1 gezeigt, wobei lediglich die Unterschiede zur dritten Variante der Fig. 5A und 5B beschrieben werden und ansonsten auf die dort gemachten Ausführungen Bezug genommen wird. Demnach ist der als flache Leiterbahn 35 ausgebildete, linienförmige Antennenleiter 12 auf der dritten Scheibenfläche 26 der Innenscheibe 3 aufgebracht. Ein zweiter Verbindungsleiter 34 ist im Antennenfußpunkt auf den Antennenleiter 12 aufgebracht und erstreckt sich über den kurzen Scheibenrand 5b hinweg auf die vierte Scheibenfläche 27 (Seite IV) der Innenscheibe 3. In der gezeigten Variante ist der zweite Verbindungsleiter 34 mit dem Antennenleiter 12 galvanisch gekoppelt, wobei gleichermaßen eine kapazitive Kopplung vorgesehen sein kann. Der zweite Verbindungsleiter 34 kann beispielsweise aus dem gleichen Material wie die Koppelelektrode 10 gefertigt sein. Der Anschlussleiter 19 kontaktiert den zweiten Verbindungsleiter 34 auf der vierten Scheibenfläche 27 und führt von der Verbundscheibe 20 weg. Die Breite (Abmessung senkrecht zur Erstreckungsrichtung) des als bandförmiger Flachleiter ausgebildeten zweiten Verbindungsleiters 34 verjüngt sich vorzugsweise zum kurzen Scheibenrand 5b hin, so dass einer kapazitive Verkopplung zwischen der leitfähigen Beschichtung 6 und der elektrisch leitfähigen Fahrzeugkarosserie entgegen gewirkt werden kann.
  • In den Fig. 7, 8A und 8B ist ein zweites Ausführungsbeispiel der erfindungsgemäßen Antennenanordnung mit hybridem Antennenaufbau 1 veranschaulicht, wobei lediglich die Unterschiede zum ersten Ausführungsbeispiel der Figuren 1, 2A und 2B beschrieben werden und ansonsten auf die dort gemachten Ausführungen Bezug genommen wird. Demnach ist eine Verbundscheibe 20 mit einem in der Klebeschicht 21 eingebetteten Träger 4 und einer auf der zweiten Trägerfläche 23 aufgebrachten transparenten, leitfähigen Beschichtung 6 vorgesehen. Die leitfähige Beschichtung 6 ist vollflächig auf die zweite Trägerfläche 23 aufgebracht, wobei ein segmentierter Randbereich 15 nicht ausgebildet ist, jedoch gleichermaßen vorgesehen sein kann.
  • Die erste Koppelektrode 10 liegt der leitfähigen Beschichtung 6 auf und ist mit dieser galvanisch gekoppelt, wobei aber gleichermaßen eine kapazitive Kopplung vorgesehen sein kann. Die erste Koppelelektrode 10 erstreckt sich über den oberen, langen Scheibenrand 5a hinweg auf die vierte Scheibenfläche 27 (Seite IV) der Innenscheibe 3. Der linienförmige Antennenleiter 12 ist analog zu der in Verbindung mit Fig. 5A und 5B beschriebenen dritten Variante des ersten Ausführungsbeispiels als Leiterbahn 35 auf die vierte Scheibenfläche 27 der Innenscheibe 3 aufgebracht. An ihrem anderen Ende liegt die erste Koppelelektrode 10 dem Antennenleiter 12 auf und ist mit diesem galvanisch gekoppelt, wobei aber gleichermaßen eine kapazitive Kopplung vorgesehen sein kann. Der Antennenleiter 12 befindet sich außerhalb des Raums 30, in dem jeder Punkt durch orthogonale Parallelprojektion auf die Flächenantenne abgebildet werden kann, so dass die Linienantenne durch die Flächenantenne elektrisch nicht belastet wird. Der Anschlussleiter 19 kontaktiert den Antennenleiter 12 und führt direkt von der Verbundscheibe 20 weg.
  • In Fig. 9 ist eine Variante gezeigt, wobei zur Vermeidung von Wiederholungen lediglich die Unterschiede zum zweiten Ausführungsbeispiel von Fig. 7, 8A und 8B erläutert werden. Demnach ist die erste Koppelelektrode 10 nur im Bereich der leitfähigen Beschichtung 6 ausgebildet, liegt dieser in direktem Kontakt auf und ist somit galvanisch mit der leitfähigen Beschichtung 6 gekoppelt, wobei gleichermaßen eine kapazitive Kopplung vorgesehen sein kann. Ein erster Verbindungsleiter 33 liegt mit seinem einen Ende der ersten Koppelelektrode 10 in direktem Kontakt auf und ist galvanisch mit der leitfähigen Beschichtung 6 gekoppelt, wobei aber gleichermaßen eine kapazitive Kopplung vorgesehen sein kann. Der erste Verbindungsleiter 33 erstreckt sich über den oberen langen Scheibenrand 5a hinweg auf die vierte Scheibenfläche 27 (Seite IV) der Innenscheibe 3 und kontaktiert mit seinem anderen Ende den als Leiterbahn ausgebildeten Antennenleiter 12. Der erste Verbindungsleiter 33 liegt dem Antennenleiter 12 in direktem Kontakt auf und ist beispielsweise über einen Lötkontakt mit diesem galvanisch gekoppelt, wobei aber gleichermaßen eine kapazitive Kopplung vorgesehen sein kann. Der erste Verbindungsleiter 33 kann beispielsweise aus dem gleichen Material wie die erste Koppelelektrode 10 gefertigt sein, so dass die erste Koppelektrode 10 und der erste Verbindungsleiter 33 gemeinsam auch als zweiteilige Koppelelektrode angesehen werden können. Die Breite (Abmessung senkrecht zur Erstreckungsrichtung) des als bandförmiger Flachleiter ausgebildeten ersten Verbindungsleiters 33 verjüngt sich vorzugsweise zum langen Scheibenrand 5a hin, so dass einer kapazitive Verkopplung zwischen der leitfähigen Beschichtung 6 und der Fahrzeugkarosserie entgegen gewirkt werden kann.
  • Die Erfindung stellt eine Antennenanordnung mit hybridem Antennenaufbau zur Verfügung, die einen bandbreitenoptimierten Empfang von elektromagnetischen Wellen ermöglicht, wobei durch die Kombination aus Flächen- und Linienantenne über den kompletten Frequenzbereich der Bänder I-V eine zufrieden stellende Empfangsleistung erreichbar ist. Durch die Möglichkeit, dass von der Flächenantenne als Freiraumwellen empfangene Störsignale externer Störquellen über eine mit der Flächenantenne kapazitiv gekoppelte Masse ausgekoppelt werden können, verfügt die Antennenanordnung über ein ausgezeichnetes Signal/Rausch-Verhältnis.
  • Bezugszeichenliste
    • 1 Antennenaufbau
    • 2 Außenscheibe
    • 3 Innenscheibe
    • 4 Träger
    • 5 Scheibenrand
    • 5a langer Scheibenrand
    • 5b kurzer Scheibenrand
    • 6 Beschichtung
    • 7 Randstreifen
    • 8, 8' Beschichtungsrand
    • 9 Maskierungsstreifen
    • 10 erste Koppelelektrode
    • 11 erster Anschlusskontakt
    • 12 Antennenleiter
    • 13 Antennenfußpunkt
    • 14 zweiter Anschlusskontakt
    • 15 Randbereich
    • 16 Segment
    • 17 isolierender Bereich
    • 18 Draht
    • 19 Anschlussleiter
    • 20 Verbundscheibe
    • 21 Klebeschicht
    • 22 erste Trägerfläche
    • 23 zweite Trägerfläche
    • 24 erste Scheibenfläche
    • 25 zweite Scheibenfläche
    • 26 dritte Scheibenfläche
    • 27 vierte Scheibenfläche
    • 28 Randzone
    • 29 Trägerrand
    • 30 Raum
    • 31 Konnektor
    • 32 Begrenzungsfläche
    • 33 erster Verbindungsleiter
    • 34 zweiter Verbindungsleiter
    • 35 Leiterbahn
    • 36, 36' zweite Koppelelektrode
    • 37 leitfähige Struktur
    • 38 Kleberaupe
    • 39, 39' Störquelle
    • 40, 40' erster Flächenabschnitt
    • 41 zweiter Flächenabschnitt
    • 42, 42' Störquellenflächenzone
    • 100 Antennenanordnung

Claims (7)

  1. Antennenanordnung (100), welche umfasst:
    - mindestens ein elektrisch isolierendes, transparentes Substrat (2-4),
    - mindestens eine elektrisch leitfähige, transparente Beschichtung (6), die eine Oberfläche (22-27) des Substrats zumindest abschnittsweise bedeckt und zumindest abschnittsweise als Flächenantenne zum Empfangen von elektromagnetischen Wellen dient,
    - mindestens eine mit der leitfähigen Beschichtung (6) elektrisch gekoppelte erste Koppelelektrode (10) zum Auskoppeln von Nutzsignalen aus der Flächenantenne, wobei die erste Koppelelektrode (10) mit einem ungeschirmten, linienförmigen Antennenleiter (12), der als Linienantenne zum Empfangen von elektromagnetischen Wellen dient, elektrisch gekoppelt ist, wobei sich der linienförmige Antennenleiter außerhalb eines Raums (30) befindet, der durch orthogonale Parallelprojektion auf die als Projektionsfläche dienende Flächenantenne projezierbar ist, wodurch ein Antennenfußpunkt der Linienantenne zu einem gemeinsamen Antennenfußpunkt (13) der Linien- und Flächenantenne wird,
    - mindestens eine Störquelle (39, 39'), die so angeordnet ist, dass Störsignale von der Flächenantenne empfangbar sind,
    - eine als Masse wirkende, elektrisch leitfähige Struktur (37), beispielsweise eine metallische Fahrzeugkarosserie oder ein metallischer Fensterrahmen,
    - mindestens eine mit der leitfähigen Beschichtung (6) elektrisch gekoppelte zweite Koppelelektrode (36, 36') zum Auskoppeln von Störsignalen der zumindest einen Störquelle (39, 39') aus der Flächenantenne, wobei die mindestens eine zweite Koppelelektrode (36, 36') über eine erste Koppelfläche (40, 40') und die leitfähige Struktur (37) über eine mit der ersten Koppelfläche (43) kapazitiv gekoppelte zweite Koppelfläche (41) verfügen und die Koppelflächen (40, 40', 41) so ausgebildet sind, dass sie für einen Frequenzbereich, der den aus der Flächenantenne auszukoppelnden Störsignalen entspricht, selektiv durchlässig sind, wobei die wenigstens eine zweite Koppelelektrode (36, 36') in Form eines vorspringenden Randabschnitts der leitfähigen Beschichtung (6) ausgebildet ist.
  2. Antennenanordnung (100) nach Anspruch 1, dadurch gekennzeichnet, dass die mindestens eine zweite Koppelelektrode (36, 36') nahe der ersten Koppelelektrode (10) angeordnet ist und insbesondere einen Abstand von der ersten Koppelelektrode (10) hat, der geringer als ein Viertel der minimalen Wellenlänge der Störsignale ist.
  3. Antennenanordnung (100) nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die mindestens eine zweite Koppelelektrode (36, 36') zwischen einer Störquellenflächenzone (42, 42') der leitfähigen Beschichtung (6), deren Punkte einen kürzesten Abstand von der mindestens einen Störquelle (39, 39') haben, und der ersten Koppelelektrode (10) angeordnet ist.
  4. Antennenanordnung (100) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein geometrischer Abstand zwischen der mindestens einen zweiten Koppelelektrode (36, 36') und einer Störquellenflächenzone (42, 42') der leitfähigen Beschichtung (6), deren Punkte einen kürzesten Abstand von der mindestens einen Störquelle (39, 39') haben, geringer ist als ein geometrischer Abstand zwischen der ersten Koppelelektrode (10) und der Störquellenflächenzone (42, 42').
  5. Antennenanordnung (100) nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die mindestens eine zweite Koppelelektrode (36, 36') einen Abstand von der Störquellenflächenzone (42, 42') hat, der geringer als ein Viertel der minimalen Wellenlänge der Störsignale ist.
  6. Antennenanordnung (100) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die kapazitiv gekoppelten Koppelflächen (40, 40', 41) der mindestens einen zweiten Koppelelektrode (36, 36') und leitfähigen Struktur (37) so ausgebildet sind, dass sie für einen Frequenzbereich oberhalb von 170 MHz selektiv durchlässig sind.
  7. Verfahren zum Betreiben einer Antennenanordnung (100), mit den folgenden Schritten:
    - Empfangen von Nutzsignalen mittels einer Flächenantenne, welche in Form einer auf mindestens ein elektrisch isolierendes, transparentes, Substrat (2-4) aufgebrachten elektrisch leitfähigen, transparenten Beschichtung (6) ausgebildet ist,
    - Auskoppeln der Nutzsignale aus der Flächenantenne mittels einer mit der Beschichtung (6) elektrisch gekoppelten ersten Koppelelektrode (10), wobei die erste Koppelelektrode (10) mit einem ungeschirmten, linienförmigen Antennenleiter (12), der als Linienantenne zum Empfangen von elektromagnetischen Wellen dient, elektrisch gekoppelt ist, wobei sich der linienförmige Antennenleiter außerhalb eines Raums (30) befindet, der durch orthogonale Parallelprojektion auf die als Projektionsfläche dienende Flächenantenne projezierbar ist, wodurch ein Antennenfußpunkt der Linienantenne zu einem gemeinsamen Antennenfußpunkt (13) der Linien- und Flächenantenne wird,
    - selektives Auskoppeln von von der Flächenantenne empfangenen Störsignalen zumindest einer Störquelle (39, 39') aus der Flächenantenne mittels einer mit der Beschichtung (6) elektrisch gekoppelten zweiten Koppelelektrode (36, 36'), welche mit einer als Masse wirkenden, leitfähigen Struktur (37), beispielsweise eine metallische Fahrzeugkarosserie oder ein metallischer Fensterrahmen, kapazitiv gekoppelt ist, wobei die zweite Koppelelektrode (36, 36') über eine erste Koppelfläche (40, 40') und die leitfähige Struktur (37) über eine mit der ersten Koppelfläche (40, 40') kapazitiv gekoppelte zweite Koppelfläche (41) verfügt, und wobei die von der Flächenantenne empfangenen Störsignale über mindestens eine in Form eines vorspringenden Randabschnitts der leitfähigen Beschichtung (6) ausgebildete zweite Koppelelektrode (36, 36') aus der Flächenantenne ausgekoppelt werden.
EP11733603.2A 2010-06-14 2011-06-14 Antennenanordnung mit verbessertem signal/rauschverhältnis Active EP2580807B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL11733603T PL2580807T3 (pl) 2010-06-14 2011-06-14 Układ antenowy o poprawionym stosunku sygnału do szumu
EP11733603.2A EP2580807B1 (de) 2010-06-14 2011-06-14 Antennenanordnung mit verbessertem signal/rauschverhältnis

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10165892A EP2400591A1 (de) 2010-06-14 2010-06-14 Antennenaufbau mit verbessertem Signal/Rauschverhältnis
EP11733603.2A EP2580807B1 (de) 2010-06-14 2011-06-14 Antennenanordnung mit verbessertem signal/rauschverhältnis
PCT/EP2011/059807 WO2011157689A2 (de) 2010-06-14 2011-06-14 Antennenanordnung und antennenaufbau mit verbessertem signal/rauschverhältnis

Publications (2)

Publication Number Publication Date
EP2580807A2 EP2580807A2 (de) 2013-04-17
EP2580807B1 true EP2580807B1 (de) 2019-07-24

Family

ID=42970399

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10165892A Withdrawn EP2400591A1 (de) 2010-06-14 2010-06-14 Antennenaufbau mit verbessertem Signal/Rauschverhältnis
EP11733603.2A Active EP2580807B1 (de) 2010-06-14 2011-06-14 Antennenanordnung mit verbessertem signal/rauschverhältnis

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10165892A Withdrawn EP2400591A1 (de) 2010-06-14 2010-06-14 Antennenaufbau mit verbessertem Signal/Rauschverhältnis

Country Status (12)

Country Link
US (1) US9929464B2 (de)
EP (2) EP2400591A1 (de)
JP (1) JP5650840B2 (de)
KR (1) KR101513787B1 (de)
CN (1) CN102934282B (de)
BR (1) BR112012022652A2 (de)
EA (1) EA030071B1 (de)
ES (1) ES2749880T3 (de)
MX (1) MX2012011447A (de)
PL (1) PL2580807T3 (de)
PT (1) PT2580807T (de)
WO (1) WO2011157689A2 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201342246A (zh) * 2012-04-02 2013-10-16 Nuvoton Technology Corp 電子裝置
US20150125624A1 (en) * 2013-11-01 2015-05-07 Tyco Electronics Corporation Spray Application Process for Three Dimensional Articles
JP6035300B2 (ja) * 2014-09-18 2016-11-30 本田技研工業株式会社 ノイズ除去機構
US10347964B2 (en) 2014-12-16 2019-07-09 Saint-Gobain Glass France Electrically heatable windscreen antenna, and method for producing same
JP6763306B2 (ja) * 2014-12-24 2020-09-30 Agc株式会社 電気接続部材及びそれを用いた積層板
ES2849948T3 (es) 2015-04-08 2021-08-24 Saint Gobain Luna con antena para vehículos
JP6513216B2 (ja) 2015-04-08 2019-05-15 サン−ゴバン グラス フランスSaint−Gobain Glass France アンテナ板材
CN109417221B (zh) * 2016-10-21 2021-04-27 株式会社友华 车载天线装置及天线系统
US11133580B2 (en) * 2017-06-22 2021-09-28 Innolux Corporation Antenna device
DE102017220732A1 (de) * 2017-11-21 2019-05-23 Ford Global Technologies, Llc Kraftfahrzeug mit einem Glasdach und mit einer auf diesem Glasdach aufsitzenden Antennenanordnung
US11095016B2 (en) * 2019-04-15 2021-08-17 Hyundai Motor Company Vehicle roof having conductive coating for wireless communication
WO2020230819A1 (ja) * 2019-05-16 2020-11-19 Agc株式会社 平面アンテナ、アンテナ積層体及び車両用窓ガラス
FR3099132B1 (fr) * 2019-07-26 2022-01-28 Mbda France Capot pour vehicule, en particulier pour vehicule supersonique ou hypersonique
JP2021142805A (ja) * 2020-03-10 2021-09-24 トヨタ自動車株式会社 自動車用ドア
WO2022030395A1 (ja) * 2020-08-03 2022-02-10 Agc株式会社 周波数選択表面装荷部材および車両用窓部材

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2608844A1 (fr) * 1986-12-19 1988-06-24 Central Glass Co Ltd Antenne sur vitre de vehicule utilisant un film conducteur transparent
WO1993023890A1 (de) * 1992-05-18 1993-11-25 Fuba Hans Kolbe & Co. Funkantennenanordnung in der nähe von fahrzeug-fensterscheiben
EP0961342A2 (de) * 1998-05-26 1999-12-01 General Motors Corporation Transparente Scheibenantenne für Fahrzeuge mit kapazitiver Verbindungsvorrichtung

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1984338U (de) 1968-01-17 1968-04-25 Ilseder Huette Rechengeraet.
BE858256A (nl) 1977-08-31 1978-02-28 Agfa Gevaert Nv Fluorescerende materialen voor gebruik in de rontgenfotografie
US4746925A (en) * 1985-07-31 1988-05-24 Toyota Jidosha Kabushiki Kaisha Shielded dipole glass antenna with coaxial feed
JPS6352305U (de) * 1986-09-24 1988-04-08
JPH04249407A (ja) * 1991-02-05 1992-09-04 Harada Ind Co Ltd 自動車用ガラスアンテナ
US5670966A (en) 1994-12-27 1997-09-23 Ppg Industries, Inc. Glass antenna for vehicle window
JPH10126132A (ja) * 1996-10-18 1998-05-15 Asahi Glass Co Ltd 車両ガラスアンテナ用アース構造
US5999134A (en) * 1996-12-19 1999-12-07 Ppg Industries Ohio, Inc. Glass antenna system with an impedance matching network
DE19858227C1 (de) 1998-12-17 2000-06-15 Sekurit Saint Gobain Deutsch Wärmereflektierendes Schichtsystem für transparente Substrate
US6292150B1 (en) * 1999-08-23 2001-09-18 Nippon Sheet Glass Co., Ltd. Glass antenna device
JP2001085921A (ja) * 1999-09-17 2001-03-30 Dx Antenna Co Ltd 平板型アンテナ
EP1313166B1 (de) 2000-04-19 2007-11-14 Advanced Automotive Antennas, S.L. Fortschrittliche mehrebenenantenne fuer kraftfahrzeuge
DE10106125B4 (de) 2001-02-08 2014-04-10 Delphi Technologies, Inc. Kraftfahrzeugscheibe mit Antennenstrukturen
DE10319606B4 (de) 2003-05-02 2005-07-14 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Antennenscheibe für Fahrzeuge
ITVI20050023A1 (it) * 2005-01-28 2006-07-29 Calearo Antenne Srl Sistema di antenne per veicoli
DE602005005935T2 (de) 2005-02-01 2009-06-25 Research In Motion Ltd., Waterloo Tragbares Mobilfunkgerät mit integrierter Antenne und Tastatur und dazugehörige Verfahren
DE102007053286A1 (de) 2007-09-20 2009-04-02 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Bauelements
DE202008017848U1 (de) 2008-04-10 2010-09-23 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Transparente Scheibe mit einer beheizbaren Beschichtung und niederohmigen leitenden Schichten
DE102008029986B4 (de) 2008-06-24 2017-03-23 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Transparente Scheibe mit einer beheizbaren Beschichtung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2608844A1 (fr) * 1986-12-19 1988-06-24 Central Glass Co Ltd Antenne sur vitre de vehicule utilisant un film conducteur transparent
WO1993023890A1 (de) * 1992-05-18 1993-11-25 Fuba Hans Kolbe & Co. Funkantennenanordnung in der nähe von fahrzeug-fensterscheiben
EP0961342A2 (de) * 1998-05-26 1999-12-01 General Motors Corporation Transparente Scheibenantenne für Fahrzeuge mit kapazitiver Verbindungsvorrichtung

Also Published As

Publication number Publication date
BR112012022652A2 (pt) 2016-11-01
PT2580807T (pt) 2019-10-31
JP2013534095A (ja) 2013-08-29
US9929464B2 (en) 2018-03-27
WO2011157689A2 (de) 2011-12-22
ES2749880T3 (es) 2020-03-24
EA201291353A1 (ru) 2013-04-30
MX2012011447A (es) 2013-02-07
CN102934282B (zh) 2015-10-14
CN102934282A (zh) 2013-02-13
JP5650840B2 (ja) 2015-01-07
EP2400591A1 (de) 2011-12-28
EP2580807A2 (de) 2013-04-17
EA030071B1 (ru) 2018-06-29
WO2011157689A3 (de) 2012-03-15
KR101513787B1 (ko) 2015-04-20
PL2580807T3 (pl) 2020-01-31
US20130141289A1 (en) 2013-06-06
KR20130079392A (ko) 2013-07-10

Similar Documents

Publication Publication Date Title
EP2580807B1 (de) Antennenanordnung mit verbessertem signal/rauschverhältnis
EP3235339B1 (de) Elektrisch beheizbare antennenscheibe sowie herstellungsverfahren hierfür
EP3281247B1 (de) Fahrzeugantennenscheibe
EP2695233B1 (de) Flachleiter-anschlusselement für eine antennenstruktur
DE19832228C2 (de) Antennenscheibe für Kraftfahrzeuge
EP0594809B1 (de) Funkantennenanordnung in der nähe von fahrzeug-fensterscheiben
EP2936925B1 (de) Scheibe mit elektrischer heizschicht
EP2572403B1 (de) Bandbreitenoptimierte antenne durch hybriden aufbau aus flächen- und linienstrahler
EP3962733B1 (de) Verbundscheibe mit einer aussparung in der innenscheibe
EP3135075B1 (de) Elektrisch beheizbare scheibe mit schaltbereich
EP3189706B1 (de) Scheibe mit elektrischem heizbereich
EP3132656B2 (de) Transparente scheibe mit heizbeschichtung
EP3362284B1 (de) Beheizbare laminierte fahrzeugscheibe mit verbesserter wärmeverteilung
EP3189707B1 (de) Transparente scheibe mit heizbeschichtung
WO2020201170A1 (de) Antennenscheibe
WO2017102168A1 (de) Verfahren zur reparatur von substraten mit elektrisch leitfähiger beschichtung und laserschnittmuster
EP2256856B1 (de) Transparente, flächenförmige Vorrichtung zum Empfangen und/oder Senden elektromagnetischer Strahlung mit mindestens einer weiteren Funktion, Verfahren zu ihrer Herstellung und ihre Verwendung
DE202020005661U1 (de) Antennenscheibe mit Antenne planarer Bauart
DE202021004000U1 (de) Scheibenanordnung mit kapazitivem Schaltbereich
EP4288283A1 (de) Verbundscheibe mit elektrisch beheizbarem kamerafenster
WO2011141151A2 (de) Antennen in metallisierten scheiben eines fahrzeuges
DE202010017313U1 (de) Transparente, flächenförmige Vorrichtung zum Empfangen und / oder Senden elektromagnetischer Strahlung mit mindestens einer weiteren Funktion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130103

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160330

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190107

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1159303

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011015939

Country of ref document: DE

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 2580807

Country of ref document: PT

Date of ref document: 20191031

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20191022

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191024

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191024

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191025

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191124

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 33038

Country of ref document: SK

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2749880

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011015939

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SAINT-GOBAIN GLASS FRANCE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20200705

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200615

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1159303

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200614

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210707

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220513

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20220513

Year of fee payment: 12

Ref country code: RO

Payment date: 20220525

Year of fee payment: 12

Ref country code: LU

Payment date: 20220527

Year of fee payment: 12

Ref country code: IT

Payment date: 20220510

Year of fee payment: 12

Ref country code: GB

Payment date: 20220506

Year of fee payment: 12

Ref country code: FR

Payment date: 20220510

Year of fee payment: 12

Ref country code: DE

Payment date: 20220505

Year of fee payment: 12

Ref country code: CZ

Payment date: 20220526

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220614

Year of fee payment: 12

Ref country code: PL

Payment date: 20220511

Year of fee payment: 12

Ref country code: BE

Payment date: 20220526

Year of fee payment: 12

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011015939

Country of ref document: DE

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 33038

Country of ref document: SK

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230614

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230614

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230701

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230701

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240103

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230614

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230630