EP2576103A1 - Verfahren zur erzeugung eines geschlossenporigen metallschaums sowie bauteil, welches einen geschlossenporigen metallschaum aufweist - Google Patents

Verfahren zur erzeugung eines geschlossenporigen metallschaums sowie bauteil, welches einen geschlossenporigen metallschaum aufweist

Info

Publication number
EP2576103A1
EP2576103A1 EP11722373.5A EP11722373A EP2576103A1 EP 2576103 A1 EP2576103 A1 EP 2576103A1 EP 11722373 A EP11722373 A EP 11722373A EP 2576103 A1 EP2576103 A1 EP 2576103A1
Authority
EP
European Patent Office
Prior art keywords
metal
metal foam
molecules
composite
closed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11722373.5A
Other languages
English (en)
French (fr)
Inventor
Frank Heinrichsdorff
Jens Dahl Jensen
Ursus KRÜGER
Gabriele Winkler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2576103A1 publication Critical patent/EP2576103A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1134Inorganic fillers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12153Interconnected void structure [e.g., permeable, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1355Elemental metal containing [e.g., substrate, foil, film, coating, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the invention relates to a method for producing a closed-cell metal foam, in which a composite of a metal or a metal alloy and a blowing agent is provided. This composite is subjected to adalebe ⁇ treatment, wherein the heating of the composite sufficient to cause the blowing agent forms with the formation of pores in the composite Senen CLOSED ⁇ a propellant gas. This means that the closed pores are created by the propellant gas being formed and trapped in the forming closed pores.
  • the invention relates to a component which consists at least partially of a closed-cell metal foam.
  • a component with a component of a closed-Me ⁇ tallschaums and a method for its production is known for example from US 5,151,246.
  • the component may for example consist of a sleeve, is housed in the interior of the closed-cell metal foam.
  • blowing agents are used, such.
  • metal hydrides especially titanium hydride or carbonates, such as. For example, calcium carbonate.
  • a composite is produced, which may for example consist of particles of both substances and is compacted by pressing.
  • This green body thus formed can then be subjected to a heat treatment, wherein the temperature must be high enough so that on the one hand a connection between the individual powder particles of the metal takes place and on the other hand, the propellant forms a propellant gas.
  • the temperature must be high enough so that on the one hand a connection between the individual powder particles of the metal takes place and on the other hand, the propellant forms a propellant gas.
  • the propellant forms a propellant gas.
  • at least diffusion processes between the particles must be made possible.
  • a sufficient warming of the metallic substance must take place.
  • Particles of metals which have a solidus temperature of up to 660 ° can be foamed in the abovementioned propellants.
  • Metal foams are used for example for sealing Gezzau ⁇ sepatenteden. According to WO 2008/145173 Al this is z. B. advantageous in gas discharge lamps, which are mounted in a lamp body. In order to enable electrical contact, contacts must be led out of the lamp body, whereby a hermetic seal of these bushings must be ensured so that no oxygen enters the interior of the lamp. The completion of the implementation between lamp body and metal electrode can be done reliably by means of a metal foam.
  • the selected propellant must be chosen with regard to whether ⁇ ner thermal properties (or the foaming metal alloy) that it fits to the solidus temperature of the foaming metal.
  • the temperature difference between the solidus temperature of the metal and the lower temperature at which the propellant releases the propellant must not exceed 120 ° C. This is the only way to ensure that a metal foam is reliably formed. If we talk about metal foams in the following, foams made of metal alloys are also to be understood here.
  • the object of the invention is to provide a method for producing a closed-cell metal foam and a building Specify with such a closed-cell metal foam, in which metals with solidus temperatures of more than 660 ° C can be used.
  • This object is achieved by the method mentioned ⁇ he inventions that are used as blowing agents molecules of C and / or molecules of B and N, which have a spherical or tubular structure, wherein the propellant chemically or physically to these moles - is bound.
  • the spherical molecules are known at ⁇ example as so-called fullerenes. These are regular structures, for example carbon atoms.
  • a special example is the Fulleren, which is designated as , ⁇ , whose structure resembles that of a football.
  • tubular structures are carbon nanotubes (in Fol ⁇ constricting briefly as CNT called) or boron nitride nanotubes (hereinafter referred to as BNNT) known.
  • a chemical binding of the propellant can be carried out, for example, by a functionalization of these molecules.
  • the blowing agent thus obtained reacts in the presence of a reactant such as O2 in a temperature range of more than 1000 ° C. This typically releases CO2, which then acts as a propellant gas. With this example of a blowing agent, it is thus possible to process metals into foams which have a solidus temperature of more than 1000 °.
  • the propellant is bound to the molecules by a coating thereof.
  • very thin layers with thick of one or more atomic layers for example by an ALD method (ALD stands for atomic layer deposition).
  • ALD atomic layer deposition
  • the nanoparticles are kept in motion in an eddy current process.
  • To beschich ⁇ Tenden particles can be, for example CNT or BNNT.
  • Ty- pisch enough, these molecules can with titanium hydride or precious metal oxides ⁇ such.
  • iridium oxide and / or molybdenum oxide and / or platinum oxide and / or copper (I) oxide and / or magnetite and / or vanadium pentoxide are coated.
  • noble metal oxides are advantageous because they decompose due to their low affinity for oxygen more easily into the Metallkompo ⁇ component and an oxygen component which represents the drive means. This is done in tempera ⁇ tures that are interesting for the formation of metal foams.
  • iridium oxide and platinum oxide decompose at temperatures of about 1200 ° C.
  • ruthenium oxide and rhodium oxide at temperatures of about 1100 ° C.
  • molybdenum oxide likewise at 1100 ° C.
  • Oxides with even higher decomposition temperatures are magnetic with a decomposition temperature of 1580 ° C, copper (I) oxide with a decomposition temperature of 1800 ° C and vanadium pentoxide with a decomposition temperature of 1750 ° C.
  • the oxides can be suitably selected depending on the solidus temperature of the metal used for foaming, where ⁇ must be taken into account that the decomposition temperature of the selected metal oxide must be lower than the relevant solidus temperature of the metal used, by up to 120 ° C.
  • the propellant gas can also be enclosed in these molecules, ie be present as propellant gas even at room temperature. However, this is only released when the spherical molecules are destroyed. For this purpose, a heating of the same to 1500 ° C is necessary.
  • gas-loaded fullerenes can He or 2 are included and will be referred to as He @ C60 or 2 @ C60. If the gas from the interior of the fullerenes liberated ⁇ , this is by disintegration thereof as propellant gas. This means that metals with a solidus temperature of about 1600 ° C. can also be foamed with such blowing agents.
  • the composite is formed from metal particles or metal alloy particles, wherein at least part of these particles is coated with a layer of the blowing agent.
  • the blowing agent so prior to the processing ⁇ processing of the metal particles to form a component (green compact) is so kondi ⁇ tioniert that the foaming agent is already incorporated in the green body in the production of the green compact.
  • the Konzentra ⁇ tion of the blowing agent can be achieved by loading the thickness of the coating on the particles, the particle size and the proportion of coated particles compared to uncoated particles set. This is advantageous to a very accurate method for adjusting the concentration
  • the composite consists of a layer having a plurality of layers, where ⁇ are provided at successive layers of the metal or metal alloy and ⁇ from the propellant. It is particularly advantageous if layers of the blowing agent and layers of the metal alloy or of the metal alternate with one another. The concentration of blowing agent can then be adjusted by the ratio of the thickness of the metal layers to the blowing agent layers. However, the layers must be sufficient be made thin, so that a uniform distribution of the propellant gas can be carried out in the composite, so that there is a uniform distribution of the pores in the forming foam. In this way, in particular consif ⁇ CHIGE components can advantageously be very economical with layers of a metal foam coat.
  • a material having a negative coefficient of thermal expansion is additionally introduced into the composite. This may, for example, as already explained above for the blowing agent, by coating of particles or the provision of layers of this material between other layers of the metal or the blowing agent. Having a negative coefficient of thermal expansion in the metal foam are provided materials, then this coefficient of thermal expansion of the Me ⁇ tallschaums can be influenced, which decreases as a result. , ⁇ advance reduction is, however, provided that the material is constantly be ⁇ thermally that it protrudes to the formation of the metal foam not ⁇ manoeuvrable heat treatment.
  • the metal foam is particularly Before ⁇ part if the metal foam with components is associated, which have a lower thermal expansion ⁇ coefficient than the metal foam, wherein said component of the material negative with the thermal expansion coefficient is missing.
  • metal can ⁇ foaming by this measure advantageous reliably ke ⁇ ramischen glass components or components to be connected.
  • the connection between the corresponding component and the metal foam is exposed by adapting the thermal expansion coefficients of metal foam and component lower mechanical loads. In particular, be achieved by that a sealing connection between the metal foam and the component can be made more reliable and over a longer period.
  • the object is achieved by a component in which are used in the metal foam used molecules of C and / or molecules of B and N, which have a spherical ⁇ or tubular structure.
  • This mole ⁇ cules are in fact suitable in the manner described above to bind a carrier gas physically or chemically, which is now contained in the pores of the metal foam.
  • the substances of the blowing agent are in fact bound to the molecules and by a heat treatment, the carrier gas, which has ge ⁇ forms the pores of the metal foam, is released.
  • this is formed as a housing structure of a different material from the metal foam with a cavity having an opening, wherein the opening is closed by the metal foam.
  • a hermetic sealing of the cavity is advantageously possible because it forms an intimate connection between the metal foam and the housing structure in the region of the opening.
  • the metal foam is adapted in terms of its coefficient of thermal expansion in the manner indicated above to that of the housing structure, a herme ⁇ zier seal can be advantageously ensured even under thermal stress of the component over a longer period. This is particularly advantageous if the cavity is formed by a glass body, in particular a lamp.
  • FIG. 1 to 3 embodiments of the invention ⁇ parts in section, in which each left and right of a fracture line, the state before or after application of an embodiment of the method for heat treatment ⁇ treatment (formation of the metal foam) is shown schematically and
  • a component with a housing structure 11 according to FIG. 1 has a cavity 12, wherein the component may be for example a tube which is open at both ends. Through the component further extends a copper conductor 13, wherein the remainder of the cross section of the cavity 12 is to be sealed.
  • layers 14 shown in the half to the left of the break Liene 16 applied to the inner walls of the housing structure 11, which comprises alternating layers of a metal 15a and 15b of a blowing agent aufwei ⁇ sen.
  • the layers 15a, 15b are shown in FIG. 1 with a non-realistic thickness.
  • these layers can be produced, for example, by cold gas spraying, by electrochemical coating or also by an ALD process (ALD stands for Atomic Layer Depositi). on).
  • ALD Atomic Layer Depositi
  • the possi ⁇ ability to provide additional layers in the composite which consist of Mate ⁇ materials with a negative coefficient of thermal expansion.
  • Mate ⁇ materials with a negative coefficient of thermal expansion.
  • materials are for example ZrW 2 0 5, ZrV 2 0 7, Sc 2 W 3 0i 2, Y 2 W 3 0i 2, K 5 Zr (P0 4) 2 or KZR 2 (P0 4) 3 be ⁇ known.
  • the finished metal foam 18 is shown in the right half of the illustration according to FIG. 1, that is to say to the right of the fault line 16, the finished metal foam 18 is shown. This has pores 17, wherein the metal foam completely fills the cavity 12. In this case, the metal foam rests both on the copper conductor 13 and on the inner wall of the cavity 12, so that a hermeti ⁇ cal seal is formed.
  • metal particles 19 are applied to the surface, all of which have a
  • the composite 21 is formed from different particles, namely the metal particles 19 and propellant particles 22, which are mixed (see the left of the fault line 16).
  • a heat treatment generates the metal foam 18 with the pores 17 shown on the right of the break line.
  • a glass body 23 for a gas discharge lamp is is as a component that forms the cavity structure 11, provided ⁇ .
  • the cavity 12 there are two electrodes 24, which are connected by means of pinched flat conductor 25 with connection contacts 26.
  • the connection contacts 26 are guided through openings 27, so that contacting from the outside is possible.
  • These openings 27 are filled in the manner according to the invention with the metal foam 18 in order to ensure a hermetic seal of the contact bushings in the openings 27.

Abstract

Die Erfindung betrifft ein Verfahren zur Erzeugung eines geschlossenporigen Metallschaums. Weiterhin betrifft die Erfindung ein Bauteil, in dem ein solcher Metallschaum zum Einsatz kommt. Das Bauteil (11) wird zwecks Bildung des Metallschaums (18) mit geschlossenen Poren (17) vor einer Wärmebehandlung mit einem Verbund (21) aus Partikeln (19) eines Metalls versehen, wobei diese Partikel beispielsweise eine Schicht (20) eines Treibmittels aufweisen können. Alternativ (nicht dargestellt) können das Metall und das Treibmittel auch in mehreren Lagen einer Schicht oder als Gemisch von Partikeln angeordnet sein. Durch die Wärmebehandlung setzt das Treibmittel ein Treibgas frei, wobei erfindungsgemäß vorgesehen ist, dass das Treibmittel aus Fullerenen oder Nanoröhrchen besteht, an die das Treibmittel chemisch oder physikalisch an diese Moleküle gebunden wird. Hierdurch lassen sich aufgrund der hohen Temperaturbeständigkeit der Nanoröhrchen oder Fullerene Treibmittel erzeugen, die bei vergleichsweise hohen Temperaturen von über 1000° C Treibgas freisetzen, wobei daher auch Metalle mit vergleichsweise hohen Solidus-Temperaturen von über 1000° C zu Metallschäumen verarbeitet werden können. Hierdurch entsteht eine größere Vielfalt von erzeugbaren Metallschäumen und daraus folgend eine größere konstruktive Freiheit.

Description

Beschreibung
Verfahren zur Erzeugung eines geschlossenporigen Metallschaums sowie Bauteil, welches einen geschlossenporigen Me- tallschaum aufweist
Die Erfindung betrifft ein Verfahren zur Erzeugung eines geschlossenporigen Metallschaums, bei dem ein Verbund aus einem Metall oder einer Metalllegierung und einem Treibmittel zur Verfügung gestellt wird. Dieser Verbund wird einer Wärmebe¬ handlung unterworfen, wobei die Erwärmung des Verbundes ausreicht, damit das Treibmittel unter Ausbildung von geschlos¬ senen Poren im Verbund ein Treibgas ausbildet. Dies bedeutet, dass die geschlossenen Poren dadurch entstehen, dass das Treibgas entsteht und in den sich ausbildenden geschlossenen Poren gefangen wird.
Weiterhin betrifft die Erfindung ein Bauteil, welches zumindest teilweise aus einem geschlossenporigen Metallschaum be- steht.
Ein Bauteil mit einer Komponente eines geschlossenporigen Me¬ tallschaums sowie ein Verfahren zu dessen Herstellung ist beispielsweise aus der US 5,151,246 bekannt. Das Bauteil kann beispielsweise aus einer Hülse bestehen, in dessen Inneren der geschlossenporige Metallschaum untergebracht ist. Um die¬ se Komponente aus einem geschlossenen Metallschaum herzustellen, werden Treibmittel verwendet, wie z. B. Metallhydride, insbesondere Titanhydrid oder Carbonate, wie z. B. Kalzium- carbonat . Aus diesen Treibmitteln und dem Metall, welches den Metallschaum bilden soll, wird ein Verbund hergestellt, der beispielsweise aus Partikeln beider Stoffe bestehen kann und durch Pressen verdichtet wird. Dieser so gebildete Grünkörper kann anschließend einer Wärmebehandlung unterzogen werden, wobei die Temperatur hoch genug sein muss, damit einerseits eine Verbindung zwischen den einzelnen Pulverteilchen des Metalls erfolgt und andererseits das Treibmittel ein Treibgas ausbildet. Um eine Verbindung zwischen den Metallpartikeln zu gewährleisten, müssen zumindest Diffusionsvorgänge zwischen den Partikeln ermöglicht werden. Hierzu muss eine genügende Erwärmung des metallischen Stoffes erfolgen. Bei den genannten Treibmitteln können Partikel aus Metallen geschäumt werden, welche eine Solidus-Temperatur von bis zu 660° haben.
Metallschäume werden beispielsweise zur Abdichtung von Gehäu¬ sestrukturen verwendet. Gemäß der WO 2008/145173 AI ist dies z. B. vorteilhaft bei Gasentladungslampen, die in einem Lampenkörper montiert werden. Um eine elektrische Kontaktierung zu ermöglichen, müssen Kontakte aus dem Lampenkörper herausgeführt werden, wobei eine hermetische Abdichtung dieser Durchführungen gewährleistet sein muss, damit kein Sauerstoff in das Lampeninnere gelangt. Das Ausfüllen der Durchführung zwischen Lampenkörper und Metallelektrode kann zuverlässig mittels eines Metallschaums erfolgen.
Weiterhin muss das ausgewählte Treibmittel hinsichtlich sei¬ ner thermischen Eigenschaften so ausgewählt werden, dass es zur Solidus-Temperatur des zu schäumenden Metalls (oder der zu schäumenden Metalllegierung) passt. Hierbei darf die Temperaturdifferenz zwischen der Solidus-Temperatur des Metalls und der geringeren Temperatur, bei der das Treibmittel das Treibgas freisetzt, nicht mehr als 120° C betragen. Nur so ist gewährleistet, dass sich zuverlässig ein Metallschaum bildet. Ist im Folgenden von Metallschäumen die Rede, so sind hiermit auch Schäume aus Metalllegierungen zu verstehen.
Die Aufgabe der Erfindung liegt darin, ein Verfahren zur Erzeugung eines geschlossenporigen Metallschaums sowie ein Bau- teil mit einem solchen geschlossenporigen Metallschaum anzugeben, bei dem Metalle mit Solidus-Temperaturen von mehr als 660 °C zum Einsatz kommen können. Diese Aufgabe wird mit dem eingangs genannten Verfahren er¬ findungsgemäß dadurch gelöst, dass als Treibmittel Moleküle aus C und/oder Moleküle aus B und N zum Einsatz kommen, die eine kugelförmige oder eine rohrförmige Struktur aufweisen, wobei das Treibgas chemisch oder physikalisch an diese Mole- küle gebunden wird. Die kugelförmigen Moleküle sind bei¬ spielsweise als sogenannte Fullerene bekannt. Hierbei handelt es sich um regelmäßige Strukturen, beispielsweise aus C- Atomen. Ein besonderes Beispiel ist das als Οβο bezeichnete Fulleren, dessen Struktur der eines Fußballs gleicht. Als rohrförmige Strukturen sind Kohlenstoff-Nanoröhrchen (im Fol¬ genden kurz als CNT bezeichnet) oder Bornitrid-Nanoröhrchen (im Folgenden als BNNT bezeichnet) bekannt. Eine chemische Bindung des Treibmittels kann beispielsweise durch eine Funk- tionalisierung dieser Moleküle erfolgen. Eine funktionelle Gruppe, die sich als Treibmittel eignet, stellt z. B. -COOMe dar. Diese Gruppe kann beispielsweise an ein C-Atom eines CNT gebunden werden, wobei Me insbesondere für Mo, Ni, Ir oder Co steht. Das so gewonnene Treibmittel reagiert bei Anwesenheit eines Reaktionspartners wie O2 in einem Temperaturbereich von mehr als 1000 °C. Dabei wird typischerweise CO2 freigesetzt, welches dann als Treibgas zur Wirkung kommt. Mit diesem Bei¬ spiel eines Treibmittels lassen sich also Metalle zu Schäumen verarbeiten, die eine Solidus-Temperatur von über 1000° aufweisen .
Es ist auch möglich, dass das Treibmittel an die Moleküle durch eine Beschichtung derselben gebunden ist. Hierbei werden sehr dünne Schichten mit dicken von einer oder mehreren Atomlagen beispielsweise durch ein ALD-Verfahren (ALD steht für Atomic Layer Deposition) aufgebracht. Dabei werden die Nanopartikel in einem Wirbelstromverfahren in Bewegung gehalten. Dieses Verfahren ist bereits bekannt. Die zu beschich¬ tenden Partikel können beispielsweise CNT oder BNNT sein. Ty- pischerweise können diese Moleküle mit Titanhydrid oder Edel¬ metalloxiden, wie z. B. Iridiumoxid und/oder Molybdänoxid und/oder Platinoxid und/oder Kupfer ( I ) -Oxid und/oder Magnetid und/oder Vanadiumpentoxid beschichtet werden. Die Verwendung von Edelmetalloxiden ist vorteilhaft, da diese aufgrund ihrer geringen Affinität zu Sauerstoff leichter in die Metallkompo¬ nente und eine Sauerstoffkomponente zerfallen, welche das Treibmittel zur Verfügung stellt. Dies geschieht bei Tempera¬ turen, die für die Bildung von Metallschäumen interessant sind. So zerfallen Iridiumoxid und Platinoxid beispielsweise bei Temperaturen um 1200 °C, Rutheniumoxid und Rhodiumoxid bei Temperaturen von ungefähr 1100 °C und Molybdänoxid ebenfalls bei 1100 °C. Oxide mit noch höheren Zerfallstemperatu- ren sind Magnetid mit einer Zerfallstemperatur von 1580 °C, Kupfer ( I ) -Oxid mit einer Zerfallstemperatur von 1800 °C und Vanadiumpentoxid mit einer Zerfallstemperatur von 1750 °C. Damit können die Oxide je nach Solidustemperatur des zum Schäumen verwendeten Metalls geeignet ausgewählt werden, wo¬ bei berücksichtigt werden muss, dass die Zerfallstemperatur des gewählten Metalloxids geringer ausfallen muss, als die betreffende Solidustemperatur des verwendeten Metalls, und zwar um bis zu 120 °C.
Werden als Moleküle kugelförmige Moleküle verwendet, kann das Treibgas gemäß einer vorteilhaften Ausgestaltung der Erfin- dung auch in diese Moleküle eingeschlossen sein, also schon bei Raumtemperatur als Treibgas vorliegen. Dieses wird dann allerdings erst freigesetzt, wenn die kugelförmigen Moleküle zerstört werden. Hierzu ist eine Erwärmung derselben auf 1500°C notwendig. Gasbeladene Fullerene können beispielsweise He oder 2 enthalten und werden dann als He@C60 oder 2@C60 bezeichnet. Wird das Gas aus dem Inneren der Fullerene frei¬ gesetzt, so steht dies nach Zerfall derselben als Treibgas zur Verfügung. Dies bedeutet, dass mit derartigen Treibmit- teln auch Metalle mit einer Solidus-Temperatur von ca. 1600 °C geschäumt werden können.
Gemäß einer anderen Ausgestaltung der Erfindung ist vorgesehen, dass der Verbund aus Metallpartikeln oder Metalllegie- rungspartikeln gebildet ist, wobei zumindest ein Teil dieser Partikel mit einer Schicht des Treibmittels beschichtet ist. Hierbei wird das Treibmittel also bereits vor der Verarbei¬ tung der Metallpartikel zu einem Bauteil (Grünling) so kondi¬ tioniert, dass bei der Herstellung des Grünlings das Treib- mittel bereits in den Grünling eingebaut wird. Die Konzentra¬ tion des Treibmittels lässt sich durch die Dicke der Be- schichtung auf den Partikeln, die Partikelgröße bzw. den Anteil von beschichteten Partikeln im Vergleich zu unbeschichteten Partikeln einstellen. Hierdurch steht vorteilhaft ein sehr genaues Verfahren zur Einstellung der Konzentration an
Treibmittel zur Verfügung. Die Konzentration des Treibmittels entscheidet anschließend über die Größe und die Konzentration an Poren in dem Metallschaum und somit auch über dessen Dichte .
Eine andere Ausgestaltung der Erfindung wird erhalten, wenn der Verbund aus einer Schicht mit mehreren Lagen besteht, wo¬ bei aufeinanderfolgende Lagen aus dem Metall oder der Metall¬ legierung und aus dem Treibmittel vorgesehen sind. Besonders vorteilhaft ist es, wenn Lagen des Treibmittels und Lagen der Metalllegierung oder des Metalls einander abwechseln. Die Konzentration an Treibmittel kann dann durch das Verhältnis der Dicke der Metallschichten zu den Treibmittelschichten eingestellt werden. Allerdings müssen die Lagen hinreichend dünn ausgeführt sein, damit eine gleichmäßige Verteilung des Treibgases in dem Verbund erfolgen kann, so dass auch eine gleichmäßige Verteilung der Poren in dem sich ausbildenden Schaum erfolgt. Hierdurch lassen sich insbesondere größerflä¬ chige Bauteile vorteilhaft sehr wirtschaftlich mit Schichten eines Metallschaums überziehen.
Besonders vorteilhaft ist es, wenn in den Verbund zusätzlich ein Material mit einem negativen thermischen Ausdehnungskoeffizienten eingebracht wird. Dies kann beispielsweise, wie oben für das Treibmittel bereits erläutert, durch Beschichten von Partikeln oder das Vorsehen von Lagen dieses Materials zwischen anderen Lagen des Metalls bzw. des Treibmittels erfolgen. Werden Materialien mit einem negativen thermischen Ausdehnungskoeffizienten in dem Metallschaum vorgesehen, so kann hierdurch der thermische Ausdehnungskoeffizient des Me¬ tallschaums beeinflusst werden, der hierdurch sinkt. Voraus¬ setzung ist allerdings, dass das Material thermisch so be¬ ständig ist, dass es die zur Bildung des Metallschaumes not¬ wendige Wärmebehandlung übersteht.
Der durch das Material verringerte thermische Ausdehnungsko¬ effizient des Metallschaumes ist insbesondere dann von Vor¬ teil, wenn der Metallschaum mit Bauteilen in Verbindung gebracht wird, welche einen geringeren thermischen Ausdehnungs¬ koeffizienten aufweisen als der Metallschaum, bei dem die Komponente des Materials mit dem negativen thermischen Aus¬ dehnungskoeffizienten fehlt. Beispielsweise können Metall¬ schäume durch diese Maßnahme vorteilhaft zuverlässig mit ke¬ ramischen Bauteilen oder gläsernen Bauteilen verbunden werden. Die Verbindung zwischen dem entsprechenden Bauteil und dem Metallschaum ist durch Anpassung der thermischen Ausdehnungskoeffizienten von Metallschaum und Bauteil geringeren mechanischen Belastungen ausgesetzt. Insbesondere kann hier- durch erreicht werden, dass eine dichtende Verbindung zwischen dem Metallschaum und dem Bauteil zuverlässiger und über einen längeren Zeitraum erfolgen kann.
Weiterhin wird die Aufgabe durch ein Bauteil gelöst, bei dem in dem zum Einsatz kommenden Metallschaum Moleküle aus C und/oder Moleküle aus B und N enthalten sind, die eine kugel¬ förmige oder eine rohrförmige Struktur aufweisen. Diese Mole¬ küle sind nämlich in der oben angegebenen Weise geeignet, ein Trägergas physikalisch oder chemisch zu binden, welches nun in den Poren des Metallschaums enthalten ist. In der oben angegebenen Weise werden nämlich die Substanzen des Treibmittels an die Moleküle gebunden und durch eine Wärmebehandlung wird das Trägergas, welches die Poren des Metallschaums ge¬ bildet hat, freigesetzt.
Gemäß einer vorteilhaften Ausgestaltung des Bauteils ist vorgesehen, dass dieses als Gehäusestruktur aus einem vom Metallschaum verschiedenen Material mit einem eine Öffnung aufweisenden Hohlraum ausgebildet ist, wobei die Öffnung durch den Metallschaum verschlossen ist. Hierbei ist vorteilhaft eine hermetische Versiegelung des Hohlraums möglich, da sie zwischen dem Metallschaum und der Gehäusestruktur im Bereich der Öffnung eine innige Verbindung ausbildet. Insbesondere, wenn der Metallschaum hinsichtlich seines thermischen Ausdehnungskoeffizienten in der oben angegebenen Weise an denjenigen der Gehäusestruktur angepasst ist, lässt sich eine herme¬ tische Versiegelung auch bei thermischer Belastung des Bauteils über einen längeren Zeitraum vorteilhaft sicherstellen. Dies ist besonders vorteilhaft, wenn der Hohlraum durch einen Glaskörper, insbesondere einer Lampe, ausgebildet ist.
Weitere Einzelheiten der Erfindung werden nachfolgend anhand der Zeichnung beschrieben. Gleiche oder sich entsprechende Zeichnungselemente sind in den einzelnen Figuren jeweils mit dem gleichen Bezugszeichen versehen und werden nur insoweit mehrfach erläutert, wie sich Unterschiede zwischen den einzelnen Figuren ergeben. Es zeigen:
Figur 1 bis 3 Ausführungsbeispiele für erfindungsgemäße Bau¬ teile im Schnitt, bei denen jeweils links und rechts einer Bruchlinie der Zustand vor bzw. nach Anwendung eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens zur Wärmebehand¬ lung (Bildung des Metallschaumes) schematisch dargestellt ist und
Figur 4 einen Lampenkörper mit versiegelter Durchfüh- rungen für die Kontaktierung, wobei die Versiegelung durch ein Ausführungsbeispiel des erfindungsgemäßen Metallschaums ausgebildet ist . Ein Bauteil mit einer Gehäusestruktur 11 gemäß Figur 1 weist einen Hohlraum 12 auf, wobei das Bauteil beispielsweise ein Rohr sein kann, welches an beiden Enden offen ist. Durch das Bauteil verläuft weiterhin ein Kupferleiter 13, wobei der Rest des Querschnitts des Hohlraums 12 abgedichtet werden soll. Zu diesem Zweck werden Schichten 14 (dargestellt in der Hälfte links von der Bruchliene 16) auf die Innenwände der Gehäusestruktur 11 aufgebracht, die sich einander abwechselnde Lagen 15a eines Metalls und 15b eines Treibmittels aufwei¬ sen. Die Lagen 15a, 15b sind in Figur 1 mit einer nicht rea- listischen Dicke dargestellt. Es können selbstverständlich dünnere Lagen und hiervon eine wesentlich höhere Anzahl vorgesehen werden. Diese Lagen können beispielsweise durch Kaltgasspritzen, durch elektrochemisches Beschichten oder auch durch ein ALD-Verfahren (ALD steht für Atomic Layer Depositi- on) aufgebracht werden. Nicht dargestellt ist die Möglich¬ keit, weitere Lagen in dem Verbund vorzusehen, die aus Mate¬ rialien mit einem negativen thermischen Ausdehnungskoeffizienten bestehen. Als solche Materialien sind beispielsweise ZrW205, ZrV207, Sc2W30i2, Y2W30i2, K5Zr(P04)2 oder KzR2(P04)3 be¬ kannt .
In der rechten Hälfte der Darstellung gemäß Figur 1, also rechts der Bruchlinie 16, ist der fertig gestellte Metall- schäum 18 dargestellt. Dieser weist Poren 17 auf, wobei der Metallschaum den Hohlraum 12 vollständig ausfüllt. Dabei liegt der Metallschaum sowohl an dem Kupferleiter 13 als auch an der Innenwand des Hohlraums 12 an, so dass eine hermeti¬ sche Versiegelung ausgebildet ist.
Wie groß die Konzentration an Poren 17 im Metallschaum 18 ist, hängt von der Konzentration des Treibmittels ab. In Fi¬ gur 1 (sowie auch in den weiteren Figuren) sind die Poren lediglich exemplarisch dargestellt. Die Konzentration der Poren kann in der Realität sehr viel größer sein, so dass zwischen diesen lediglich verhältnismäßig dünnwandige metallische Strukturen ausgebildet sind. Hierdurch lässt sich insbesonde¬ re eine Dichtungsstruktur mit einem geringen spezifischen Gewicht erzielen.
Bei der Gehäusestruktur 11 gemäß Figur 2 sind auf die Oberfläche Metallpartikel 19 aufgebracht, welche alle eine
Schicht 20 aus dem Treibmittel aufweisen. Nicht dargestellt ist eine Variante, nach der lediglich ein Teil der Partikel 19 eine solche Schicht aufweisen, wodurch ein Gemisch aus be¬ schichteten und unbeschichteten Partikeln 19 entstehen würde. Nach einer Wärmebehandlung entsprechend dem erfindungsgemäßen Verfahren bildet sich durch Entstehung eines Treibgases aus der Schicht 20 des Treibmittels ein geschlossenporiger Me- tallschaum 18 aus, der rechts der Bruchlinie 16 dargestellt ist .
Gemäß Figur 3 wird der Verbund 21 aus unterschiedlichen Par- tikeln gebildet, nämlich den Metallpartikeln 19 und Treibmittelpartikeln 22, welche gemischt vorliegen (siehe links der Bruchlinie 16) . Auch hier erzeugt eine Wärmebehandlung den rechts der Bruchlinie dargestellten Metallschaum 18 mit den Poren 17.
Gemäß Figur 4 ist als Bauteil, welches die Hohlraumstruktur 11 bildet, ein Glaskörper 23 für eine Gasentladungslampe dar¬ gestellt. In dem Hohlraum 12 befinden sich zwei Elektroden 24, die über in Quetschungen befindliche Flachleiter 25 mit Anschlusskontakten 26 verbunden sind. Die Anschlusskontakte 26 werden durch Öffnungen 27 geführt, damit eine Kontaktie- rung von außen möglich ist. Diese Öffnungen 27 sind in der erfindungsgemäßen Weise mit dem Metallschaum 18 gefüllt, um eine hermetische Versiegelung der Kontaktdurchführungen in den Öffnungen 27 zu gewährleisten.

Claims

Patentansprüche
1. Verfahren zur Erzeugung eines geschlossenporigen Metallschaumes (18), bei dem
· ein Verbund (21) aus einem Metall oder einer Metallle¬ gierung und einem Treibmittel zur Verfügung gestellt wird und
• der Verbund (21) einer Wärmebehandlung unterworfen wird, wobei die Erwärmung des Verbundes ausreicht, damit das Treibmittel unter Ausbildung von geschlossenen Poren
(17) im Verbund (21) ein Treibgas ausbildet,
d a d u r c h g e k e n n z e i c h n e t ,
dass als Treibmittel Moleküle aus C und/oder Moleküle aus B und N zu Einsatz kommen, die eine kugelförmige oder eine rohrförmige Struktur aufweisen, wobei das Treibgas chemisch oder physikalisch an diese Moleküle gebunden wird.
2. Verfahren nach Anspruch 1,
d a d u r c h g e k e n n z e i c h n e t ,
dass das Treibmittel an die Moleküle durch eine Funktionali¬ sierung derselben oder Beschichtung derselben gebunden wird.
3. Verfahren nach Anspruch 2,
d a d u r c h g e k e n n z e i c h n e t ,
dass die Funktionalisierung der Moleküle durch Anbindung der funktionellen Gruppe -COOMe erfolgt, wobei Me insbesondere Mo, Ni, Ir oder Co ist.
4. Verfahren nach einem der vorangehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t ,
dass als Moleküle kugelförmige Moleküle verwendet werden, in die das Treibgas eingeschlossen ist.
5. Verfahren nach Anspruch 4,
d a d u r c h g e k e n n z e i c h n e t ,
dass als Treibgas Helium und/oder Stickstoff in die Moleküle eingeschlossen ist.
6. Verfahren nach einem der vorangehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t ,
dass der Verbund (21) aus Metallpartikeln (19) oder Metallle- gierungspartikeln gebildet ist, wobei zumindest ein Teil die¬ ser Partikel mit einer Schicht (20) des Treibmittels be¬ schichtet ist.
7. Verfahren nach einem der vorangehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t ,
dass der Verbund aus einer Schicht (14) mit mehreren Lagen (15a, 15b) besteht, wobei (15a, 15b) aufeinander folgende La¬ gen aus dem Metall oder der Metalllegierung und aus dem
Treibmittel vorgesehen sind.
8. Verfahren nach einem der vorangehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t ,
dass in den Verbund (21) zusätzlich ein Material mit einem negativen thermischen Ausdehnungskoeffizienten eingebracht wird.
9. Bauteil, welches zumindest teilweise aus einem geschlos¬ senporigen Metallschaum (18) besteht,
d a d u r c h g e k e n n z e i c h n e t ,
dass in dem Metallschaum (18) Moleküle aus C und/oder Molekü¬ le aus B und N enthalten sind, die eine kugelförmige oder ei¬ ne rohrförmige Struktur aufweisen.
10. Bauteil nach Anspruch 9,
d a d u r c h g e k e n n z e i c h n e t ,
dass dieses als Gehäusestruktur (11) aus einem vom Metall- schäum (18) verschiedenen Material mit einem eine Öffnung
(27) aufweisenden Hohlraum (12) ausgebildet ist, welche durch den Metallschaum (18) verschlossen ist.
11. Bauteil nach Anspruch 10,
d a d u r c h g e k e n n z e i c h n e t ,
dass der Hohlraum (12) durch einen Glaskörper (23) insbesondere einer Lampe gebildet ist.
12. Bauteil nach einem der Ansprüche 10 oder 11,
d a d u r c h g e k e n n z e i c h n e t ,
dass zusätzlich ein Material mit einem negativen thermischen Ausdehnungskoeffizienten in dem Metallschaum vorhanden ist, dessen Anteil so gewählt ist, dass der Metallschaum (18) zu¬ mindest im wesentlichen den gleichen Ausdehnungskoeffizienten wie die Gehäusestruktur (11) im Bereich der Öffnung (27) aufweist.
EP11722373.5A 2010-05-31 2011-05-19 Verfahren zur erzeugung eines geschlossenporigen metallschaums sowie bauteil, welches einen geschlossenporigen metallschaum aufweist Withdrawn EP2576103A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010022598A DE102010022598B3 (de) 2010-05-31 2010-05-31 Verfahren zur Erzeugung eines geschlossenporigen Metallschaums sowie Bauteil, welches einen geschlossenporigen Metallschaum aufweist
PCT/EP2011/058178 WO2011151193A1 (de) 2010-05-31 2011-05-19 Verfahren zur erzeugung eines geschlossenporigen metallschaums sowie bauteil, welches einen geschlossenporigen metallschaum aufweist

Publications (1)

Publication Number Publication Date
EP2576103A1 true EP2576103A1 (de) 2013-04-10

Family

ID=44119141

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11722373.5A Withdrawn EP2576103A1 (de) 2010-05-31 2011-05-19 Verfahren zur erzeugung eines geschlossenporigen metallschaums sowie bauteil, welches einen geschlossenporigen metallschaum aufweist

Country Status (5)

Country Link
US (1) US8871357B2 (de)
EP (1) EP2576103A1 (de)
CN (1) CN102917820B (de)
DE (1) DE102010022598B3 (de)
WO (1) WO2011151193A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010022598B3 (de) 2010-05-31 2011-12-01 Siemens Aktiengesellschaft Verfahren zur Erzeugung eines geschlossenporigen Metallschaums sowie Bauteil, welches einen geschlossenporigen Metallschaum aufweist
DE102012203685A1 (de) 2012-03-08 2013-09-12 Siemens Aktiengesellschaft Kurzschlussmeldemodul für ein elektrisches Schaltgerät sowie elektrisches Schaltgerät
DE102013210198A1 (de) * 2013-05-31 2014-12-04 Siemens Aktiengesellschaft Verfahren zum Herstellen eines Metallschaums sowie Verfahren zum Herstellen von für das vorgenannte Verfahren geeigneten Partikeln
US9321101B2 (en) * 2013-07-05 2016-04-26 Dell Products L.P. High-strength structural elements using metal foam for portable information handling systems
US20170229273A1 (en) * 2014-08-06 2017-08-10 Siemens Aktiengesellschaft Electric fuse arrangement with a metal foam and method for interrupting an electric current using the fuse arrangement
CN105642898B (zh) * 2016-01-14 2017-07-25 哈尔滨工程大学 一种采用激光3d打印技术制造封闭孔结构材料的方法
CN110252998B (zh) * 2019-05-06 2021-12-03 上海大学 竹节或类竹节形式的轻质复合材料的制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4099961A (en) * 1976-12-21 1978-07-11 The United States Of America As Represented By The United States Department Of Energy Closed cell metal foam method
DE4018360C1 (en) * 1990-06-08 1991-05-29 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De Porous metal body prodn. - involves compaction at low temp. followed by heating to near melting point of metal
DE4101630A1 (de) * 1990-06-08 1991-12-12 Fraunhofer Ges Forschung Verfahren zur herstellung aufschaeumbarer metallkoerper und verwendung derselben
US6759004B1 (en) * 1999-07-20 2004-07-06 Southco, Inc. Process for forming microporous metal parts
JP4402823B2 (ja) 2000-09-26 2010-01-20 独立行政法人科学技術振興機構 多孔質金属間化合物又はセラミックスの製造方法
JP4177244B2 (ja) 2003-12-15 2008-11-05 日信工業株式会社 多孔質複合金属材料の製造方法
JP4201794B2 (ja) 2005-12-07 2008-12-24 日信工業株式会社 多孔質複合材料及びその製造方法、複合材料の製造方法
AU2008206953A1 (en) 2007-01-19 2008-07-24 Cinvention Ag Porous, non-degradable implant made by powder molding
WO2008145173A1 (de) * 2007-05-25 2008-12-04 Osram Gesellschaft mit beschränkter Haftung Elektrische lampe mit einem lampenkolben und verfahren zum herstellen einer elektrischen lampe
US7644854B1 (en) * 2008-07-16 2010-01-12 Baker Hughes Incorporated Bead pack brazing with energetics
KR100974932B1 (ko) 2008-09-30 2010-08-10 한국원자력기술 주식회사 수소 제거용 수소 재결합기 제조방법
DE102010022598B3 (de) 2010-05-31 2011-12-01 Siemens Aktiengesellschaft Verfahren zur Erzeugung eines geschlossenporigen Metallschaums sowie Bauteil, welches einen geschlossenporigen Metallschaum aufweist

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011151193A1 *

Also Published As

Publication number Publication date
DE102010022598B3 (de) 2011-12-01
US20130216743A1 (en) 2013-08-22
US8871357B2 (en) 2014-10-28
CN102917820B (zh) 2015-07-01
CN102917820A (zh) 2013-02-06
WO2011151193A1 (de) 2011-12-08

Similar Documents

Publication Publication Date Title
DE102010022598B3 (de) Verfahren zur Erzeugung eines geschlossenporigen Metallschaums sowie Bauteil, welches einen geschlossenporigen Metallschaum aufweist
EP1251985B1 (de) Hohlkugel und verfahren zur herstellung von hohlkugeln und leichtbauteilen mit hohlkugeln
EP0460392B1 (de) Verfahren zur Herstellung aufschäumbarer Metallkörper
WO2008003290A2 (de) Verfahren zur herstellung von metallschäumen und metallschaum
EP2009132A1 (de) Verfahren zur Herstellung einer funktionalen Schicht, Beschichtungsmaterial, Verfahren zu seiner Herstellung sowie funktionale Schicht
DE102010022599B3 (de) Verfahren zur Erzeugung eines geschlossenporigen Metallschaums sowie Bauteil, welches einen geschlossenporigen Metallschaum aufweist
DE3319580A1 (de) Verfahren zur herstellung eines extrudierten aluminium-hohlkoerpers
DE102018130962A1 (de) Verfahren zur Bereitstellung eines Partikelmaterials
DE10115230A1 (de) Verfahren zur Herstellung poröser Metallkörper und Verwendung derselben
EP2571603A1 (de) Bauteil mit einer katalytischen oberfläche, verfahren zu dessen herstellung und verwendung dieses bauteils
WO2010127668A2 (de) Pulvermetallurgisches verfahren zur herstellung von metallschaum
EP1466036A1 (de) Schichtsystem mit einer porösen schicht
AT510086B1 (de) Verfahren zur herstellung von metallschäumen und metallschaum
WO2019053184A1 (de) Verfahren zum schäumen von metall im flüssigkeitsbad
EP0990713B1 (de) Anwendung eines thermischen Spritzverfahrens zur Herstellung einer Wärmedämmschicht
DE102009015176B4 (de) Verfahren zu Herstellung offenporiger Metallschaumkörper
DE2717752A1 (de) Waermerohr mit gesinterter kapillarer struktur und verfahren zu seiner herstellung
WO2022106613A1 (de) Elektrisch leitfähiger poröser sinterkörper
DE1539126A1 (de) Verfahren und Vorrichtung zum Evakuieren von elektrischen Vakuum-Entladungsgeraeten
DE10038841C1 (de) SiO¶2¶-Glaskolben mit mindestens einer Stromdurchführung, Verfahren zur Herstellung einer gasdichten Verbindung zwischen beiden sowie ihre Verwendung in einer Gasentladungslampe
DE102016213537A1 (de) Verfahren zur Herstellung eines Stromsammlers für eine Brennstoffzelle und Brennstoffzelle
DE102006045531B3 (de) Verfahren zum Herstellen einer Schicht auf einem Träger
DE1533236B1 (de) Verfahren zur Herstellung von dispersionsgehaerteten Werkstoffen
AT413986B (de) Verfahren zur behandlung von verstärkungselementen
DE102021132139A1 (de) Verfahren zur Herstellung einer porösen Schicht oder eines porösen Körpers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150922

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161201