EP2576103A1 - Procédé pour produire une mousse métallique à pores fermés ainsi qu'élément comprenant une mousse métallique à pores fermés - Google Patents

Procédé pour produire une mousse métallique à pores fermés ainsi qu'élément comprenant une mousse métallique à pores fermés

Info

Publication number
EP2576103A1
EP2576103A1 EP11722373.5A EP11722373A EP2576103A1 EP 2576103 A1 EP2576103 A1 EP 2576103A1 EP 11722373 A EP11722373 A EP 11722373A EP 2576103 A1 EP2576103 A1 EP 2576103A1
Authority
EP
European Patent Office
Prior art keywords
metal
metal foam
molecules
composite
closed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11722373.5A
Other languages
German (de)
English (en)
Inventor
Frank Heinrichsdorff
Jens Dahl Jensen
Ursus KRÜGER
Gabriele Winkler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2576103A1 publication Critical patent/EP2576103A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1134Inorganic fillers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12153Interconnected void structure [e.g., permeable, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1355Elemental metal containing [e.g., substrate, foil, film, coating, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the invention relates to a method for producing a closed-cell metal foam, in which a composite of a metal or a metal alloy and a blowing agent is provided. This composite is subjected to adalebe ⁇ treatment, wherein the heating of the composite sufficient to cause the blowing agent forms with the formation of pores in the composite Senen CLOSED ⁇ a propellant gas. This means that the closed pores are created by the propellant gas being formed and trapped in the forming closed pores.
  • the invention relates to a component which consists at least partially of a closed-cell metal foam.
  • a component with a component of a closed-Me ⁇ tallschaums and a method for its production is known for example from US 5,151,246.
  • the component may for example consist of a sleeve, is housed in the interior of the closed-cell metal foam.
  • blowing agents are used, such.
  • metal hydrides especially titanium hydride or carbonates, such as. For example, calcium carbonate.
  • a composite is produced, which may for example consist of particles of both substances and is compacted by pressing.
  • This green body thus formed can then be subjected to a heat treatment, wherein the temperature must be high enough so that on the one hand a connection between the individual powder particles of the metal takes place and on the other hand, the propellant forms a propellant gas.
  • the temperature must be high enough so that on the one hand a connection between the individual powder particles of the metal takes place and on the other hand, the propellant forms a propellant gas.
  • the propellant forms a propellant gas.
  • at least diffusion processes between the particles must be made possible.
  • a sufficient warming of the metallic substance must take place.
  • Particles of metals which have a solidus temperature of up to 660 ° can be foamed in the abovementioned propellants.
  • Metal foams are used for example for sealing Gezzau ⁇ sepatenteden. According to WO 2008/145173 Al this is z. B. advantageous in gas discharge lamps, which are mounted in a lamp body. In order to enable electrical contact, contacts must be led out of the lamp body, whereby a hermetic seal of these bushings must be ensured so that no oxygen enters the interior of the lamp. The completion of the implementation between lamp body and metal electrode can be done reliably by means of a metal foam.
  • the selected propellant must be chosen with regard to whether ⁇ ner thermal properties (or the foaming metal alloy) that it fits to the solidus temperature of the foaming metal.
  • the temperature difference between the solidus temperature of the metal and the lower temperature at which the propellant releases the propellant must not exceed 120 ° C. This is the only way to ensure that a metal foam is reliably formed. If we talk about metal foams in the following, foams made of metal alloys are also to be understood here.
  • the object of the invention is to provide a method for producing a closed-cell metal foam and a building Specify with such a closed-cell metal foam, in which metals with solidus temperatures of more than 660 ° C can be used.
  • This object is achieved by the method mentioned ⁇ he inventions that are used as blowing agents molecules of C and / or molecules of B and N, which have a spherical or tubular structure, wherein the propellant chemically or physically to these moles - is bound.
  • the spherical molecules are known at ⁇ example as so-called fullerenes. These are regular structures, for example carbon atoms.
  • a special example is the Fulleren, which is designated as , ⁇ , whose structure resembles that of a football.
  • tubular structures are carbon nanotubes (in Fol ⁇ constricting briefly as CNT called) or boron nitride nanotubes (hereinafter referred to as BNNT) known.
  • a chemical binding of the propellant can be carried out, for example, by a functionalization of these molecules.
  • the blowing agent thus obtained reacts in the presence of a reactant such as O2 in a temperature range of more than 1000 ° C. This typically releases CO2, which then acts as a propellant gas. With this example of a blowing agent, it is thus possible to process metals into foams which have a solidus temperature of more than 1000 °.
  • the propellant is bound to the molecules by a coating thereof.
  • very thin layers with thick of one or more atomic layers for example by an ALD method (ALD stands for atomic layer deposition).
  • ALD atomic layer deposition
  • the nanoparticles are kept in motion in an eddy current process.
  • To beschich ⁇ Tenden particles can be, for example CNT or BNNT.
  • Ty- pisch enough, these molecules can with titanium hydride or precious metal oxides ⁇ such.
  • iridium oxide and / or molybdenum oxide and / or platinum oxide and / or copper (I) oxide and / or magnetite and / or vanadium pentoxide are coated.
  • noble metal oxides are advantageous because they decompose due to their low affinity for oxygen more easily into the Metallkompo ⁇ component and an oxygen component which represents the drive means. This is done in tempera ⁇ tures that are interesting for the formation of metal foams.
  • iridium oxide and platinum oxide decompose at temperatures of about 1200 ° C.
  • ruthenium oxide and rhodium oxide at temperatures of about 1100 ° C.
  • molybdenum oxide likewise at 1100 ° C.
  • Oxides with even higher decomposition temperatures are magnetic with a decomposition temperature of 1580 ° C, copper (I) oxide with a decomposition temperature of 1800 ° C and vanadium pentoxide with a decomposition temperature of 1750 ° C.
  • the oxides can be suitably selected depending on the solidus temperature of the metal used for foaming, where ⁇ must be taken into account that the decomposition temperature of the selected metal oxide must be lower than the relevant solidus temperature of the metal used, by up to 120 ° C.
  • the propellant gas can also be enclosed in these molecules, ie be present as propellant gas even at room temperature. However, this is only released when the spherical molecules are destroyed. For this purpose, a heating of the same to 1500 ° C is necessary.
  • gas-loaded fullerenes can He or 2 are included and will be referred to as He @ C60 or 2 @ C60. If the gas from the interior of the fullerenes liberated ⁇ , this is by disintegration thereof as propellant gas. This means that metals with a solidus temperature of about 1600 ° C. can also be foamed with such blowing agents.
  • the composite is formed from metal particles or metal alloy particles, wherein at least part of these particles is coated with a layer of the blowing agent.
  • the blowing agent so prior to the processing ⁇ processing of the metal particles to form a component (green compact) is so kondi ⁇ tioniert that the foaming agent is already incorporated in the green body in the production of the green compact.
  • the Konzentra ⁇ tion of the blowing agent can be achieved by loading the thickness of the coating on the particles, the particle size and the proportion of coated particles compared to uncoated particles set. This is advantageous to a very accurate method for adjusting the concentration
  • the composite consists of a layer having a plurality of layers, where ⁇ are provided at successive layers of the metal or metal alloy and ⁇ from the propellant. It is particularly advantageous if layers of the blowing agent and layers of the metal alloy or of the metal alternate with one another. The concentration of blowing agent can then be adjusted by the ratio of the thickness of the metal layers to the blowing agent layers. However, the layers must be sufficient be made thin, so that a uniform distribution of the propellant gas can be carried out in the composite, so that there is a uniform distribution of the pores in the forming foam. In this way, in particular consif ⁇ CHIGE components can advantageously be very economical with layers of a metal foam coat.
  • a material having a negative coefficient of thermal expansion is additionally introduced into the composite. This may, for example, as already explained above for the blowing agent, by coating of particles or the provision of layers of this material between other layers of the metal or the blowing agent. Having a negative coefficient of thermal expansion in the metal foam are provided materials, then this coefficient of thermal expansion of the Me ⁇ tallschaums can be influenced, which decreases as a result. , ⁇ advance reduction is, however, provided that the material is constantly be ⁇ thermally that it protrudes to the formation of the metal foam not ⁇ manoeuvrable heat treatment.
  • the metal foam is particularly Before ⁇ part if the metal foam with components is associated, which have a lower thermal expansion ⁇ coefficient than the metal foam, wherein said component of the material negative with the thermal expansion coefficient is missing.
  • metal can ⁇ foaming by this measure advantageous reliably ke ⁇ ramischen glass components or components to be connected.
  • the connection between the corresponding component and the metal foam is exposed by adapting the thermal expansion coefficients of metal foam and component lower mechanical loads. In particular, be achieved by that a sealing connection between the metal foam and the component can be made more reliable and over a longer period.
  • the object is achieved by a component in which are used in the metal foam used molecules of C and / or molecules of B and N, which have a spherical ⁇ or tubular structure.
  • This mole ⁇ cules are in fact suitable in the manner described above to bind a carrier gas physically or chemically, which is now contained in the pores of the metal foam.
  • the substances of the blowing agent are in fact bound to the molecules and by a heat treatment, the carrier gas, which has ge ⁇ forms the pores of the metal foam, is released.
  • this is formed as a housing structure of a different material from the metal foam with a cavity having an opening, wherein the opening is closed by the metal foam.
  • a hermetic sealing of the cavity is advantageously possible because it forms an intimate connection between the metal foam and the housing structure in the region of the opening.
  • the metal foam is adapted in terms of its coefficient of thermal expansion in the manner indicated above to that of the housing structure, a herme ⁇ zier seal can be advantageously ensured even under thermal stress of the component over a longer period. This is particularly advantageous if the cavity is formed by a glass body, in particular a lamp.
  • FIG. 1 to 3 embodiments of the invention ⁇ parts in section, in which each left and right of a fracture line, the state before or after application of an embodiment of the method for heat treatment ⁇ treatment (formation of the metal foam) is shown schematically and
  • a component with a housing structure 11 according to FIG. 1 has a cavity 12, wherein the component may be for example a tube which is open at both ends. Through the component further extends a copper conductor 13, wherein the remainder of the cross section of the cavity 12 is to be sealed.
  • layers 14 shown in the half to the left of the break Liene 16 applied to the inner walls of the housing structure 11, which comprises alternating layers of a metal 15a and 15b of a blowing agent aufwei ⁇ sen.
  • the layers 15a, 15b are shown in FIG. 1 with a non-realistic thickness.
  • these layers can be produced, for example, by cold gas spraying, by electrochemical coating or also by an ALD process (ALD stands for Atomic Layer Depositi). on).
  • ALD Atomic Layer Depositi
  • the possi ⁇ ability to provide additional layers in the composite which consist of Mate ⁇ materials with a negative coefficient of thermal expansion.
  • Mate ⁇ materials with a negative coefficient of thermal expansion.
  • materials are for example ZrW 2 0 5, ZrV 2 0 7, Sc 2 W 3 0i 2, Y 2 W 3 0i 2, K 5 Zr (P0 4) 2 or KZR 2 (P0 4) 3 be ⁇ known.
  • the finished metal foam 18 is shown in the right half of the illustration according to FIG. 1, that is to say to the right of the fault line 16, the finished metal foam 18 is shown. This has pores 17, wherein the metal foam completely fills the cavity 12. In this case, the metal foam rests both on the copper conductor 13 and on the inner wall of the cavity 12, so that a hermeti ⁇ cal seal is formed.
  • metal particles 19 are applied to the surface, all of which have a
  • the composite 21 is formed from different particles, namely the metal particles 19 and propellant particles 22, which are mixed (see the left of the fault line 16).
  • a heat treatment generates the metal foam 18 with the pores 17 shown on the right of the break line.
  • a glass body 23 for a gas discharge lamp is is as a component that forms the cavity structure 11, provided ⁇ .
  • the cavity 12 there are two electrodes 24, which are connected by means of pinched flat conductor 25 with connection contacts 26.
  • the connection contacts 26 are guided through openings 27, so that contacting from the outside is possible.
  • These openings 27 are filled in the manner according to the invention with the metal foam 18 in order to ensure a hermetic seal of the contact bushings in the openings 27.

Abstract

L'invention concerne un procédé pour produire une mousse métallique à pores fermés. L'invention concerne également un élément dans lequel une telle mousse métallique est utilisée. L'élément (11) est pourvu, à des fins de formation de la mousse métallique (18) à pores fermés (17), d'un composite (21) de particules (19) d'un métal avant un traitement thermique, ces particules pouvant présenter par exemple une couche (20) d'un agent moussant. En variante (non représentée), le métal et l'agent moussant peuvent aussi être disposés dans plusieurs strates d'une couche ou comme mélange de particules. L'agent moussant libère par le traitement thermique un gaz propulseur, le gaz propulseur étant constitué selon l'invention de fullerènes ou de nanotubes auxquels l'agent moussant est chimiquement ou physiquement lié. Du fait de la résistance des nanotubes ou fullerènes aux températures élevées, il est possible de générer des agents moussants qui libèrent le gaz propulseur à des températures comparativement élevées de plus de 1000° C, raison pour laquelle des métaux ayant des températures de solidus comparativement élevées de plus de 1000° C peuvent aussi être transformés en mousses métalliques. Il est ainsi possible de produire une plus grande variété de mousses métalliques avec pour résultat une plus grande liberté de construction.
EP11722373.5A 2010-05-31 2011-05-19 Procédé pour produire une mousse métallique à pores fermés ainsi qu'élément comprenant une mousse métallique à pores fermés Withdrawn EP2576103A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010022598A DE102010022598B3 (de) 2010-05-31 2010-05-31 Verfahren zur Erzeugung eines geschlossenporigen Metallschaums sowie Bauteil, welches einen geschlossenporigen Metallschaum aufweist
PCT/EP2011/058178 WO2011151193A1 (fr) 2010-05-31 2011-05-19 Procédé pour produire une mousse métallique à pores fermés ainsi qu'élément comprenant une mousse métallique à pores fermés

Publications (1)

Publication Number Publication Date
EP2576103A1 true EP2576103A1 (fr) 2013-04-10

Family

ID=44119141

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11722373.5A Withdrawn EP2576103A1 (fr) 2010-05-31 2011-05-19 Procédé pour produire une mousse métallique à pores fermés ainsi qu'élément comprenant une mousse métallique à pores fermés

Country Status (5)

Country Link
US (1) US8871357B2 (fr)
EP (1) EP2576103A1 (fr)
CN (1) CN102917820B (fr)
DE (1) DE102010022598B3 (fr)
WO (1) WO2011151193A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010022598B3 (de) 2010-05-31 2011-12-01 Siemens Aktiengesellschaft Verfahren zur Erzeugung eines geschlossenporigen Metallschaums sowie Bauteil, welches einen geschlossenporigen Metallschaum aufweist
DE102012203685A1 (de) 2012-03-08 2013-09-12 Siemens Aktiengesellschaft Kurzschlussmeldemodul für ein elektrisches Schaltgerät sowie elektrisches Schaltgerät
DE102013210198A1 (de) * 2013-05-31 2014-12-04 Siemens Aktiengesellschaft Verfahren zum Herstellen eines Metallschaums sowie Verfahren zum Herstellen von für das vorgenannte Verfahren geeigneten Partikeln
US9321101B2 (en) * 2013-07-05 2016-04-26 Dell Products L.P. High-strength structural elements using metal foam for portable information handling systems
US20170229273A1 (en) * 2014-08-06 2017-08-10 Siemens Aktiengesellschaft Electric fuse arrangement with a metal foam and method for interrupting an electric current using the fuse arrangement
CN105642898B (zh) * 2016-01-14 2017-07-25 哈尔滨工程大学 一种采用激光3d打印技术制造封闭孔结构材料的方法
CN110252998B (zh) * 2019-05-06 2021-12-03 上海大学 竹节或类竹节形式的轻质复合材料的制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4099961A (en) * 1976-12-21 1978-07-11 The United States Of America As Represented By The United States Department Of Energy Closed cell metal foam method
DE4018360C1 (en) * 1990-06-08 1991-05-29 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De Porous metal body prodn. - involves compaction at low temp. followed by heating to near melting point of metal
DE4101630A1 (de) 1990-06-08 1991-12-12 Fraunhofer Ges Forschung Verfahren zur herstellung aufschaeumbarer metallkoerper und verwendung derselben
US6759004B1 (en) 1999-07-20 2004-07-06 Southco, Inc. Process for forming microporous metal parts
JP4402823B2 (ja) * 2000-09-26 2010-01-20 独立行政法人科学技術振興機構 多孔質金属間化合物又はセラミックスの製造方法
JP4177244B2 (ja) * 2003-12-15 2008-11-05 日信工業株式会社 多孔質複合金属材料の製造方法
JP4201794B2 (ja) * 2005-12-07 2008-12-24 日信工業株式会社 多孔質複合材料及びその製造方法、複合材料の製造方法
BRPI0806916A2 (pt) 2007-01-19 2014-04-29 Cinv Ag Implante poroso, não degradável feito por moldagem de pó
WO2008145173A1 (fr) * 2007-05-25 2008-12-04 Osram Gesellschaft mit beschränkter Haftung Lampe électrique dotée d'une ampoule et procédé de fabrication d'une lampe électrique
US7644854B1 (en) * 2008-07-16 2010-01-12 Baker Hughes Incorporated Bead pack brazing with energetics
KR100974932B1 (ko) * 2008-09-30 2010-08-10 한국원자력기술 주식회사 수소 제거용 수소 재결합기 제조방법
DE102010022598B3 (de) 2010-05-31 2011-12-01 Siemens Aktiengesellschaft Verfahren zur Erzeugung eines geschlossenporigen Metallschaums sowie Bauteil, welches einen geschlossenporigen Metallschaum aufweist

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011151193A1 *

Also Published As

Publication number Publication date
US20130216743A1 (en) 2013-08-22
CN102917820B (zh) 2015-07-01
WO2011151193A1 (fr) 2011-12-08
CN102917820A (zh) 2013-02-06
DE102010022598B3 (de) 2011-12-01
US8871357B2 (en) 2014-10-28

Similar Documents

Publication Publication Date Title
DE102010022598B3 (de) Verfahren zur Erzeugung eines geschlossenporigen Metallschaums sowie Bauteil, welches einen geschlossenporigen Metallschaum aufweist
EP1251985B1 (fr) Sphere creuse, et procede de production de spheres creuses et de composants legers constitues de spheres creuses
EP0460392B1 (fr) Procédé pour la production d'un corps en mousse métallique
WO2008003290A2 (fr) Procédé de fabrication de mousses métalliques et mousse métallique ainsi obtenue
EP2009132A1 (fr) Procédé destiné à la fabrication d'une couche fonctionnelle, matériau de revêtement, son procédé de fabrication tout comme couche fonctionnelle
DE102010022599B3 (de) Verfahren zur Erzeugung eines geschlossenporigen Metallschaums sowie Bauteil, welches einen geschlossenporigen Metallschaum aufweist
DE10115230C2 (de) Verfahren zur Herstellung poröser Metallkörper und Verwendung derselben
DE3319580A1 (de) Verfahren zur herstellung eines extrudierten aluminium-hohlkoerpers
DE102018130962A1 (de) Verfahren zur Bereitstellung eines Partikelmaterials
EP2571603A1 (fr) Pièce pourvue d'une surface catalytique, procédé de fabrication et utilisation de ladite pièce
DE2227747C3 (de) Verfahren zur Herstellung einer porösen Metallauflageschicht auf Kupferrohren
WO2010127668A2 (fr) Procédé du domaine de la métallurgie des poudres pour fabriquer une mousse métallique
WO2003060195A1 (fr) Systeme de couches comprenant une couche poreuse
AT510086B1 (de) Verfahren zur herstellung von metallschäumen und metallschaum
WO2019053184A1 (fr) Procédé de moussage de métal dans un bain de liquide
EP0990713B1 (fr) Procédé de revêtement de barrière thermique
DE102009015176B4 (de) Verfahren zu Herstellung offenporiger Metallschaumkörper
DE2717752A1 (de) Waermerohr mit gesinterter kapillarer struktur und verfahren zu seiner herstellung
WO2022106613A1 (fr) Corps fritté poreux électroconducteur
DE19943409A1 (de) Verbund aus einer Kompositmembran
DE1539126A1 (de) Verfahren und Vorrichtung zum Evakuieren von elektrischen Vakuum-Entladungsgeraeten
DE10038841C1 (de) SiO¶2¶-Glaskolben mit mindestens einer Stromdurchführung, Verfahren zur Herstellung einer gasdichten Verbindung zwischen beiden sowie ihre Verwendung in einer Gasentladungslampe
DE102016213537A1 (de) Verfahren zur Herstellung eines Stromsammlers für eine Brennstoffzelle und Brennstoffzelle
DE1533236B1 (de) Verfahren zur Herstellung von dispersionsgehaerteten Werkstoffen
AT413986B (de) Verfahren zur behandlung von verstärkungselementen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150922

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161201