EP2559502A1 - Nickelfeinpartikel, mischung aus nickelfeinpartikeln, leitpaste und verfahren zur herstellung von nickelfeinpartikeln - Google Patents
Nickelfeinpartikel, mischung aus nickelfeinpartikeln, leitpaste und verfahren zur herstellung von nickelfeinpartikeln Download PDFInfo
- Publication number
- EP2559502A1 EP2559502A1 EP11768681A EP11768681A EP2559502A1 EP 2559502 A1 EP2559502 A1 EP 2559502A1 EP 11768681 A EP11768681 A EP 11768681A EP 11768681 A EP11768681 A EP 11768681A EP 2559502 A1 EP2559502 A1 EP 2559502A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fine particle
- nickel
- nickel fine
- ring body
- nickel chloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/06—Metallic powder characterised by the shape of the particles
- B22F1/065—Spherical particles
- B22F1/0655—Hollow particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/20—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
- B22F9/22—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
Definitions
- the present invention relates to a nickel fine particle, a mixture of nickel fine particles, a conductive paste and a method for producing a nickel fine particle.
- a metal fine particle is used as a conductive filler contained in a conductive paste, and a nickel fine particle is known as such a metal fine particle.
- the nickel fine particle has characteristics that although the nickel fine particle has high intrinsic electric resistance compared to a silver fine particle and a copper fine particle, the nickel fine particle does not cause the migration, resists the oxidation relatively strongly and suffers minimally from a change in conductivity over time.
- Various shapes have been considered as a shape of the above-mentioned metal fine particle.
- a spherical shape is popular as a shape of the metal fine particle, from a viewpoint of forming a conductive paste into a thin film or the like, it is preferable that the metal fine particle have a thin flaky shape rather than a spherical shape.
- patent document 1 discloses a technique where a flaky nickel fine particle is manufactured by reducing a flaky nickel hydroxide particle which is formed by a reaction.
- patent document 2 discloses a technique where a flaky nickel fine particle is manufactured by plastically deforming a spherical nickel particle mechanically into a flattened shape using a ball mill or the like.
- the flaky nickel fine particle has the plate-shaped structure having a surface with a certain amount of area and hence, when the nickel fine particles are contained in a conductive paste together with binder resins as conductive fillers, the nickel fine particle exhibits inferior contact performance with the binder resin. Accordingly, in the conductive paste containing the flaky nickel fine particles, the nickel fine particles are liable to coagulate with each other or the binder resins are liable to coagulate with each other thus giving rise to a possibility that a conductive path is obstructed. Accordingly, it is an object of the present invention to provide a nickel fine particle which can easily form a conductive path when the nickel fine particle is contained in a conductive paste.
- the inventors of the present invention have made extensive studies for overcoming the above-mentioned drawbacks and, as a result, have found that by forming a nickel fine particle into a ring body, affinity between the nickel fine particle and a binder resin is improved so that a conductive path is easily formed, and have completed the present invention based on such finding. That is, the present invention provides the following (1) to (11).
- a nickel fine particle formed of a ring body having a ring shape (1) A nickel fine particle formed of a ring body having a ring shape.
- a mixture of nickel fine particles which contains the nickel fine particle described in any one of the above-mentioned (1) to (6) and other nickel fine particles.
- a conductive paste which contains at least the nickel fine particle described in any one of the above-mentioned (1) to (6) and a binder resin.
- a method of manufacturing a nickel fine particle comprising:
- a nickel fine particle according to the present invention is a nickel fine particle formed of a ring body having a ring shape.
- the nickel fine particle according to the present invention in summary, is formed by oxidizing a nickel chloride (NiCl 2 ) fine particle and, thereafter, by reducing the fine particle.
- NiCl 2 nickel chloride
- Fig. 1 is a schematic view showing the formation mechanism of the nickel fine particle according to the present invention.
- the nickel chloride fine particle is explained. As shown in Fig. 1(A) , the nickel chloride fine particle is a crystal having a hexagonal thin plate shape. This is because the crystal is liable to grow in the longitudinal direction of the plate.
- a nickel chloride fine particle may be obtained by directly charging a raw material into a reaction system, it is preferable to obtain the nickel chloride fine particle by changing a nickel chloride phase into a solid phase from a gas phase by cooling a nickel chloride gas in a reaction system.
- a size of the obtained fine particle can be controlled based on conditions at the time of changing the phase of the nickel chloride into a solid phase from a gas phase.
- a method of obtaining a nickel chloride gas for example, a method which sublimates solid nickel chloride, a method which blows a chlorine gas into heated metal nickel or the like is named.
- a chlorine gas corrodes metal thus making handling of the chlorine gas difficult
- a temperature at which solid nickel chloride is sublimated may preferably be set to a high temperature for increasing an amount of sublimation, there is an upper limit with respect to a temperature at which an inexpensive exothermic body can be used and hence, it is preferable to set the temperature to 900 to 1200°C.
- a nickel oxide fine particle is obtained by oxidizing the nickel chloride fine particle.
- the oxidization is finished before the nickel chloride fine particle is completely oxidized and hence, as shown in Fig. 1(B) , a state where only an outer peripheral portion of the nickel chloride fine particle is oxidized is brought about.
- a ring-shaped nickel oxide (NiO) fine particle is obtained.
- the nickel fine particle according to the present invention is obtained in a state where a ring shape of the nickel oxide fine particle is maintained as it is. That is, the nickel fine particle according to the present invention is formed of a ring body having a ring shape.
- the nickel fine particle according to the present invention is formed of a ring body having a ring shape.
- the outer diameter of the ring body it is preferable to set the outer diameter of the ring body to 0.05 to 100 ⁇ m, and it is more preferable to set the outer diameter of the ring body to 0.5 to 10 ⁇ m. It is preferable to set a plate thickness of the ring body to 0.01 to 10 ⁇ m.
- a size of the ring depends on a size of a planar particle of nickel chloride formed by sublimation. Accordingly, along with the increase in a size of the nickel chloride particle brought about by the prolongation of the time the nickel chloride stays in a sublimation portion, the ring having a larger outer diameter is formed.
- An outer peripheral portion of the planar nickel chloride is constituted of a surface having high interfacial surface energy and hence, a reaction is liable to occur on the outer peripheral portion. Accordingly, when the nickel chloride particle is oxidized, the oxidization occurs from the outer peripheral portion. The longer a time for oxidizing the formed nickel chloride particle, the more the oxidization progresses so that a size of an inner hole is decreased. Further, a reaction speed also influences the control of an inner diameter of the ring, and it is possible to make the reaction progress faster corresponding to the elevation of temperature within a temperature range where nickel chloride is not sublimated. Still further, the higher the oxygen concentration, the faster the reaction progresses. By making the reaction progress faster, it is possible to acquire an advantageous effect substantially equal to an advantageous effect which is acquired by prolonging a reaction time.
- a reducing agent used in reducing the nickel oxide fine particle for example, hydrogen, magnesium or the like is named. However, in view of a reason that magnesium is liable to form an alloy thereof, hydrogen is preferably used.
- a reaction expressed by the following formula (II) progresses. NiO+H 2 ⁇ Ni+H 2 O (II)
- the mechanism that the nickel fine particle according to the present invention is formed has been explained heretofore, in the present invention, it is preferable to reduce a reduction product using hydrogen after a nickel chloride gas is made to react with water vapor.
- a nickel chloride gas is made to react with water vapor.
- solid nickel oxide is formed. Since this reaction is an exothermic reaction, the remaining nickel chloride gas not used in the reaction is cooled so that a nickel chloride phase is changed into a solid phase from a gas phase and thereby a nickel chloride fine particle having a hexagonal thin plate shape is formed.
- the nickel chloride fine particle having a hexagonal thin plate shape formed in this manner due to a reaction between the nickel chloride fine particle and water vapor which is not used in the above-mentioned reaction, only an outer peripheral portion of the fine particle is oxidized and a center portion of the fine particle is sublimated and thereby a ring-shaped nickel oxide fine particle according to the present invention is obtained. Thereafter, the ring-shaped nickel oxide fine particle according to the present invention is reduced using hydrogen so that the nickel fine particle according to the present invention is formed.
- Nickel chloride sublimated from the center portion of the nickel chloride fine particle having a hexagonal thin plate shape also reacts with water vapor not used in the above-mentioned reaction so that nickel oxide which differs from the ring-shaped nickel oxide fine particle according to the present invention is formed.
- This reaction is also an exothermic reaction, and also due to this exothermic reaction, a nickel chloride gas is cooled so that a nickel chloride phase is changed into a solid phase from a gas phase and thereby a nickel chloride fine particle having a hexagonal thin plate shape is formed.
- the nickel fine particle according to the present invention is formed of the ring body as described above, and the ring body has a center hole portion and a peripheral portion which surrounds the periphery of the hole portion.
- Fig. 3 is an SEM photograph obtained by photographing a nickel fine particle. Examples which clearly show a ring-body shape of the nickel fine particle according to the present invention are ring bodies indicated by A to D in the SEM photograph shown in Fig. 3 . Although all ring bodies A through D are included in the category of the nickel fine particle according to the present invention, the present invention is not limited to such ring bodies.
- the ring body A is a typical example where a shape of the nickel chloride fine particle which is a hexagonal thin plate shape is held. That is, the ring body A is formed into a thin plate shape and includes a hexagonal peripheral portion and a circular hole portion.
- the ring body B is also an example where the ring body B is formed into a thin plate shape in the same manner as the ring body A, and includes a hexagonal peripheral portion and a circular hole portion. However, a diameter of the hole portion of the ring body B is set smaller than a diameter of the hole portion of the ring body A.
- the ring body C has a thin plate shape and, also includes a hexagonal peripheral portion and a circular hole portion. However, a part of the peripheral portion is broken. That is, the ring body C includes a breaking portion where the peripheral portion is broken, and the breaking portion forms a part of the peripheral portion in the present invention. In the ring body C, the breaking portion occupies approximately 1/6 of a volume of the peripheral portion. Further, in the ring body D, a breaking portion occupies an amount slightly smaller than 1/2 of a volume of a peripheral portion. It is considered that this breaking portion is formed in the course of the manufacture of a nickel fine particle.
- the ring body such as the above-mentioned ring body A, for example, has a minimum outer diameter and a maximum outer diameter in the plate surface direction.
- a ratio between the minimum outer diameter and the maximum outer diameter theoretically becomes ⁇ 3/2 (8.66/10).
- an area ratio between the peripheral portion and the hole portion to 1/1 to 1/1000.
- the nickel fine particle exhibits excellent affinity with a binder resin.
- Fig. 4 and Fig. 5 show SEM photographs obtained by photographing nickel fine particles.
- Fig. 4 and Fig. 5 show the SEM photographs obtained by photographing the nickel fine particles which are formed by methods different from the above-mentioned method.
- the nickel fine particle which the SEM photograph shown in Fig. 4 indicates is a nickel fine particle which was manufactured by excessively oxidizing a nickel chloride fine particle having a hexagonal thin plate shape. In this case, as shown in Fig. 4 , although a flaky nickel fine particle was confirmed, a ring body was not confirmed.
- the nickel fine particle which the SEM photograph shown in Fig. 5 indicates is a nickel fine particle which was manufactured by insufficiently oxidizing a nickel chloride fine particle having a hexagonal thin plate shape. In this case, as shown in Fig. 5 , a ring body was not confirmed, and string-shaped nickel was confirmed.
- the mixture of nickel fine particles according to the present invention is a mixture of nickel fine particles which contains a nickel fine particle according to the present invention and other nickel fine particles.
- other nickel fine particles are also included besides the nickel fine particle according to the present invention and hence, it is safe to say that the SEM photograph shown in Fig. 3 indicates the mixture of nickel fine particles according to the present invention.
- a mass ratio between the nickel fine particle according to the present invention and other nickel fine particles is above 1/1.
- the conductive paste according to the present invention is a metal paste which contains at least a nickel fine particle according to the present invention and a binder resin.
- the conductive paste according to the present invention contains the nickel fine particle according to the present invention and hence, a conductive path can be easily formed and thereby the conductive paste exhibits excellent conductivity.
- the conductive paste according to the present invention may contain a solvent, various additives and the like when necessary.
- a method of manufacturing the conductive paste according to the present invention is not particularly limited and, for example, a method which mixes nickel powder according to the present invention, a binder resin, a solvent, various additives and the like together using a kneader, a roll or the like is named.
- a reaction device 101 shown in Fig. 2 was used.
- Fig. 2 is a cross-sectional view schematically showing the reaction device 101.
- a nickel fine particle was manufactured by causing a reaction in the inside of a quartz tube 103 having an inner diameter of 46 mm ⁇ which the reaction device 101 includes.
- a horizontal furnace 102 which covers the quartz tube 103 (and a portion of the quartz tube 103 which the horizontal furnace 102 covers) is divided into three zones (a zone 1, a zone 2 and a zone 3), and predetermined temperatures in the respective zones were made different from each other depending on cases.
- a nitrogen (N 2 ) gas which is a carrier gas was supplied to the quartz tube 103 at a rate of 6.5Nl/min. Further, a quartz-made nozzle 104 was arranged in the inside of the quartz tube 103, and a hydrogen (H 2 ) gas was supplied to the zone 3 in the inside of the quartz tube 103 at a rate of 3Nl/min.
- a nickel-made crucible 111 in which water is stored was arranged in the zone 1 in the inside of the quartz tube 103, and the water was vaporized.
- a crucible made of nickel 112 in which solid nickel chloride (purity: 99.9%, made by Wako Pure Chemical Industries, Ltd.) is stored was arranged in the zone 2 in the quartz tube 103, and the solid nickel chloride was sublimated.
- a collector (not shown in the drawing) was arranged at a terminal end of the quartz tube 103.
- a glass fiber filter made by Advantec Co., Ltd. was used as the collector.
- a nitrogen (N 2 ) gas for cooling is supplied to an area in the vicinity of the terminal end in the inside of the quartz tube 103.
- a nickel chloride fine particle having a hexagonal thin plate shape was formed from the sublimated nickel chloride, and a nickel oxide fine particle was formed by causing a reaction between the nickel chloride fine particle and water vapor. Then, in the zone 3, the nickel oxide fine particle was reduced by causing a reaction between the nickel oxide fine particle and hydrogen thus forming a nickel fine particle.
- the predetermined temperature in the horizontal furnace 102 was set such that the temperature in the zone 1 was 1000°C, the temperature in the zone 2 was 1000°C and the temperature in the zone 3 was 980°C.
- the crucible 111 storing 10g of water and the crucible 112 storing 40g of solid nickel chloride were arranged in the lateral furnace 102.
- a carrier gas and a hydrogen gas were supplied to the horizontal furnace 102 under the above-mentioned conditions, and a reaction time was set to 10 minutes.
- FIG. 3 shows the SEM photograph obtained by photographing the nickel fine particle which is the reaction product in the example 1.
- a nickel fine particle which is a ring body was confirmed.
- FIG. 6 shows an SEM photograph obtained by photographing a nickel oxide fine particle. From the reference example 1, it is understood that a ring body was already formed before the hydrogen reduction was performed in the zone 3 in the inside of the quartz tube 103 according to the above-mentioned example 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
- Powder Metallurgy (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010091360A JP2011219830A (ja) | 2010-04-12 | 2010-04-12 | ニッケル微粒子、ニッケル微粒子混合物、および、導電性ペースト |
PCT/JP2011/055012 WO2011129160A1 (ja) | 2010-04-12 | 2011-02-25 | ニッケル微粒子、ニッケル微粒子混合物、導電性ペースト、および、ニッケル微粒子の製造方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2559502A1 true EP2559502A1 (de) | 2013-02-20 |
EP2559502A4 EP2559502A4 (de) | 2016-04-20 |
EP2559502B1 EP2559502B1 (de) | 2017-06-28 |
Family
ID=44798539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11768681.6A Not-in-force EP2559502B1 (de) | 2010-04-12 | 2011-02-25 | Nickelfeinpartikel, mischung aus nickelfeinpartikeln, leitpaste und verfahren zur herstellung von nickelfeinpartikeln |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2559502B1 (de) |
JP (1) | JP2011219830A (de) |
WO (1) | WO2011129160A1 (de) |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4003222B2 (ja) | 1998-08-13 | 2007-11-07 | 住友金属鉱山株式会社 | 鱗片状ニッケル粉末の製造方法 |
JP2000234109A (ja) * | 1999-02-09 | 2000-08-29 | Sumitomo Metal Mining Co Ltd | 積層セラミックコンデンサー電極用金属粉末の製造方法 |
JP4075214B2 (ja) * | 1999-05-26 | 2008-04-16 | 住友金属鉱山株式会社 | 積層セラミックコンデンサー電極用ニッケル粉末の製造方法および製造装置 |
DE10018501C1 (de) * | 2000-04-14 | 2001-04-05 | Glatt Systemtechnik Dresden | Metallische miniaturisierte hohle Formkörper und Verfahren zur Herstellung derartiger Formkörper |
JP4280184B2 (ja) | 2004-03-10 | 2009-06-17 | 大研化学工業株式会社 | 鱗片状卑金属粉末の製造方法及び導電性ペースト |
EP1772186B1 (de) * | 2004-05-31 | 2011-08-24 | Japan Science and Technology Agency | Verfahren zur herstellung von nanopartikeln oder nanostrukturen unter verwendung von nanoporösem material |
FR2888145B1 (fr) * | 2005-07-07 | 2008-08-29 | Onera (Off Nat Aerospatiale) | Procede de fabrication et d'assemblage par brasure de billes en superalliage et objets fabriques avec de tels assemblages |
US7544322B2 (en) * | 2005-07-07 | 2009-06-09 | Onera (Office National D'etudes Et De Recherches Aerospatiales) | Process for the pressureless sintering of metal alloys; and application to the manufacture of hollow spheres |
JP2008308629A (ja) * | 2007-06-18 | 2008-12-25 | Nippon Electric Glass Co Ltd | 樹脂組成物 |
CN100551588C (zh) * | 2008-01-17 | 2009-10-21 | 四川大学 | 一种中空微纳米镍粉末的制备方法 |
JP2009209346A (ja) * | 2008-02-08 | 2009-09-17 | Toyo Ink Mfg Co Ltd | 導電性インキ |
JP2010043228A (ja) * | 2008-08-18 | 2010-02-25 | Toyo Ink Mfg Co Ltd | 導電性インキ |
-
2010
- 2010-04-12 JP JP2010091360A patent/JP2011219830A/ja active Pending
-
2011
- 2011-02-25 WO PCT/JP2011/055012 patent/WO2011129160A1/ja active Application Filing
- 2011-02-25 EP EP11768681.6A patent/EP2559502B1/de not_active Not-in-force
Also Published As
Publication number | Publication date |
---|---|
WO2011129160A1 (ja) | 2011-10-20 |
EP2559502B1 (de) | 2017-06-28 |
EP2559502A4 (de) | 2016-04-20 |
JP2011219830A (ja) | 2011-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112105471B (zh) | 含有球形粉末的阳极和电容器 | |
US20200203706A1 (en) | Plasma processing of lithium transition metal oxides for lithium ion batteries | |
JP5546124B2 (ja) | キャパシタ製造用の亜酸化ニオブ粉末、キャパシタ用の亜酸化ニオブアノード、および固体電解キャパシタ | |
CN111819016A (zh) | 球形钽粉末、含其的产品以及其制造方法 | |
JP2017514273A (ja) | リチウムイオン電池アノードのための方法及び材料 | |
JP2017514273A5 (de) | ||
EP2178797B1 (de) | Zusammensetzung von teilchen in kugelförmiger anordnung aus kupfer(i)-oxid und herstellungsverfahren dafür | |
WO2012131779A1 (ja) | ニッケル複合水酸化物粒子および非水系電解質二次電池 | |
US20230032362A1 (en) | Lithium lanthanum zirconium oxide (llzo) materials | |
JP6347227B2 (ja) | マンガンニッケルチタン複合水酸化物粒子とその製造方法、および、非水系電解質二次電池用正極活物質の製造方法 | |
US20120201759A1 (en) | Tunable multiscale structures comprising bristly, hollow metal/metal oxide particles, methods of making and articles incorporating the structures | |
JP4921806B2 (ja) | タングステン超微粉及びその製造方法 | |
JP4049964B2 (ja) | 窒素含有金属粉末およびその製造方法ならびにそれを用いた多孔質焼結体および固体電解コンデンサー | |
CN112678877B (zh) | 非水类电解质二次电池用正极活性物质 | |
JP7452570B2 (ja) | 非水系電解質二次電池用正極活物質 | |
EP1018386A1 (de) | Verfahren zur herstellung von metallpuder | |
JP4425888B2 (ja) | コンポジット構造を有するナノ球状粒子、粉末、及び、その製造方法 | |
JP2008038163A5 (de) | ||
JP2004124257A (ja) | 金属銅微粒子及びその製造方法 | |
EP2559502A1 (de) | Nickelfeinpartikel, mischung aus nickelfeinpartikeln, leitpaste und verfahren zur herstellung von nickelfeinpartikeln | |
JP7119302B2 (ja) | 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法 | |
KR102498711B1 (ko) | 게터의 안정화 처리 방법 | |
JP2019212396A (ja) | リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質、及びリチウムイオン二次電池 | |
KR100503126B1 (ko) | 기상법에 의한 구형 니켈 미세분말의 제조 방법 | |
JP5724008B2 (ja) | ニッケル微粒子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20121015 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B22F 9/22 20060101ALI20160310BHEP Ipc: B22F 1/00 20060101AFI20160310BHEP Ipc: H01B 1/22 20060101ALI20160310BHEP Ipc: B22F 9/00 20060101ALI20160310BHEP Ipc: B22F 9/28 20060101ALI20160310BHEP Ipc: H01B 5/00 20060101ALI20160310BHEP |
|
RA4 | Supplementary search report drawn up and despatched (corrected) |
Effective date: 20160317 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01B 1/22 20060101ALI20170209BHEP Ipc: H01B 5/00 20060101ALI20170209BHEP Ipc: B22F 9/22 20060101ALI20170209BHEP Ipc: B22F 9/28 20060101ALI20170209BHEP Ipc: B22F 9/00 20060101ALI20170209BHEP Ipc: B22F 1/00 20060101AFI20170209BHEP Ipc: C22C 19/03 20060101ALI20170209BHEP |
|
INTG | Intention to grant announced |
Effective date: 20170227 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 904408 Country of ref document: AT Kind code of ref document: T Effective date: 20170715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011039143 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170929 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170928 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170628 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 904408 Country of ref document: AT Kind code of ref document: T Effective date: 20170628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170928 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20171028 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011039143 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602011039143 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180225 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180225 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180225 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180228 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180225 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110225 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170628 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200113 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210228 |