EP2519480A2 - Graphithaltiger formkörper und verfahren zu seiner herstellung - Google Patents

Graphithaltiger formkörper und verfahren zu seiner herstellung

Info

Publication number
EP2519480A2
EP2519480A2 EP10803462A EP10803462A EP2519480A2 EP 2519480 A2 EP2519480 A2 EP 2519480A2 EP 10803462 A EP10803462 A EP 10803462A EP 10803462 A EP10803462 A EP 10803462A EP 2519480 A2 EP2519480 A2 EP 2519480A2
Authority
EP
European Patent Office
Prior art keywords
additive
graphite
shaped body
mixture
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10803462A
Other languages
English (en)
French (fr)
Inventor
Oswin ÖTTINGER
Rainer Schmitt
Jürgen Bacher
Sylvia Mechen
Bastian Hudler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SGL Carbon SE
Original Assignee
SGL Carbon SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102009055442A external-priority patent/DE102009055442A1/de
Priority claimed from DE102009055443A external-priority patent/DE102009055443A1/de
Priority claimed from DE102009055440A external-priority patent/DE102009055440A1/de
Priority claimed from DE102009055441A external-priority patent/DE102009055441A1/de
Priority claimed from DE200910055444 external-priority patent/DE102009055444A1/de
Priority claimed from DE201010002000 external-priority patent/DE102010002000A1/de
Priority claimed from DE201010002434 external-priority patent/DE102010002434B4/de
Priority claimed from DE102010002989A external-priority patent/DE102010002989A1/de
Priority claimed from DE102010041822A external-priority patent/DE102010041822A1/de
Priority claimed from US12/915,340 external-priority patent/US20120107662A1/en
Application filed by SGL Carbon SE filed Critical SGL Carbon SE
Publication of EP2519480A2 publication Critical patent/EP2519480A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/536Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite based on expanded graphite or complexed graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6269Curing of mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/63476Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63496Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/001Joining burned ceramic articles with other burned ceramic articles or other articles by heating directly with other burned ceramic articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/008Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of an organic adhesive, e.g. phenol resin or pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/028Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles by means of an interlayer consisting of an organic adhesive, e.g. phenol resin or pitch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/46Graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/447Phosphates or phosphites, e.g. orthophosphate or hypophosphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/61Mechanical properties, e.g. fracture toughness, hardness, Young's modulus or strength
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/363Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/38Fiber or whisker reinforced
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/269Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3854Woven fabric with a preformed polymeric film or sheet
    • Y10T442/3919Including particulate material other than fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/40Knit fabric [i.e., knit strand or strip material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/50FELT FABRIC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/674Nonwoven fabric with a preformed polymeric film or sheet

Definitions

  • the present invention relates to a graphite-containing molded body, which is particularly suitable for use as a seal, as a building material, such as wall or ceiling paneling, as a bipolar plate, for example, for a redox flow cell, as a heat exchanger plate or as a heat exchanger tube, and a Process for its preparation.
  • Seals such as gaskets, which are used for example in chemical apparatus construction, must meet a variety of requirements. In particular, they must have a low permeability to liquids and gases, in particular, as in the case of gaskets, in the plane of the gasket. Apart from that, they must be characterized by high tensile strength, high transverse strength, good thermal conductivity, good adaptability and good dry sliding properties. For a variety of applications also a high temperature resistance and a good resistance to aggressive chemicals are essential.
  • a disadvantage of such materials produced by liquid impregnation is that the impregnating agent, in particular in the depth direction or z-direction of the material, is distributed unevenly.
  • the impregnating agent in particular in the depth direction or z-direction of the material, is distributed unevenly.
  • the inner region of the material impregnated between the surface regions has no or only a comparatively low or uneven degree of impregnation.
  • the profile of requirements for molded articles designed for other applications may include high tensile strength, high electrical conductivity or low electrical resistance and low contact resistance.
  • Examples of such shaped bodies are in particular bipolar plates, which are used in fuel cells, in redox flow cells or in lead-acid batteries. Identical or at least similar requirement profiles are also required for shaped bodies which are used, for example, as a heat exchanger plate or as a heat exchanger tube.
  • Molded body is formed to produce a seal.
  • properties of sealing materials produced in this way are better than those of liquid-impregnated sealing materials, the sum of the properties of these materials is still in need of improvement in some applications.
  • this object is achieved by providing a graphite-containing molded article which is obtainable by a process in which graphite particles with at least one solid additive to a mixture containing at least one inorganic additive, a mixture of at least one inorganic additive and at least one organic additive contains more than 10 wt .-% organic additive, are mixed and the mixture thus obtained is then compressed, wherein the at least one additive used has a determined according to ISO 13320 average particle diameter (d 5 o) between 1 and 500 ⁇ .
  • This solution is based on the surprising finding that a molded article based on graphite and graphite with a specific particle size which is obtainable in this way not only has a high degree of infiltration of pore-containing additive, but also that the pore-sealing additive over all three dimensions and in particular in the depth direction of the shaped body, ie in the z-direction of the shaped body, is homogeneously distributed.
  • the shaped body has the same properties in all three dimensions and in particular also in the plane of the shaped body, that is to say in the xy direction or the plane in which the shaped body has its longest extent, and in particular also in the xy Direction by a high tensile strength, high strength in the z-direction, high thermal conductivity, a good dry sliding property, high temperature resistance, good chemical resistance, high density and in particular surface sealing against liquids and gases and by a high stability, namely especially even with a low surface pressure of the molding.
  • the homogeneous distribution of the additive or additives over all three dimensions namely in particular ensures that the additive is present not only in the near-surface regions of the molding, but in particular also in the located between the near-surface areas inner or central region of the molding. Thereby, it is prevented that the molded article has high impermeability only in its surface areas but can diffuse gases or liquids in the interior of the molded article. Rather, a high impermeability in all dimensions and therefore in particular a high surface density is achieved by the homogeneous distribution of additives in the interior of the molded body.
  • the moldings of the invention are fast, easy and inexpensive to produce, especially by a continuous process in which, for example, a graphite particles containing gas stream continuously a solid and preferably dry additive, for example via a Conveyor screw is added and mixed with it and this mixture is then continuously passed through a roller in which the mixture is compacted.
  • the shaped body according to the invention is obtained by a process in which graphite particles are first mixed with at least one solid additive to form a mixture, before the resulting mixture is subsequently compacted.
  • the at least one additive used has a mean particle diameter (d 5 o) between 1 and 500 ⁇
  • all additives used have a corresponding mean particle diameter (d 5 o) determined by the measuring methods specified in ISO 13320.
  • particles based on all known graphites as graphite starting material, for example particles of natural graphite or of synthetic graphite.
  • Expanded graphite is understood to mean graphite that is expanded by a factor of 80 or more in the plane perpendicular to the hexagonal carbon layers compared to natural graphite, for example.
  • expanded graphite is distinguished by outstanding formability and good toothability, which is why it is particularly suitable for producing the shaped bodies according to the invention.
  • Due to its likewise high porosity, expanded graphite can also be mixed very well with additive particles having a correspondingly small particle diameter and, due to the degree of expansion, easily compacted or compacted.
  • graphite such as natural graphite is usually mixed with an intercalation compound such as nitric acid or sulfuric acid and heat-treated at an elevated temperature of, for example, 600 to 1,200 ° C.
  • expanded graphite is used which has been produced from natural graphite having a mean particle diameter (d 5 o) of at least 149 ⁇ m and preferably of at least 180 ⁇ , determined in accordance with the measuring method and sieve set specified in DIN 66165.
  • particles of expanded graphite which has an expansion of 10 to 1 .400, preferably from 20 to 700 and particularly preferably from 60 to 100.
  • These graphite particles can be mixed and compacted particularly well with particulate additives.
  • the average diameter (d 5 o) of the graphite particles is determined in accordance with the measuring method and sieve set specified in DIN 66165.
  • the mixture to be compressed contains 50 to 99 wt .-%, preferably 75 to 97 wt .-% and particularly preferably 80 to 95 wt .-% graphite particles and preferably corresponding particles of expanded graphite.
  • the molded body at a surface pressure of 20 MPa using helium as a gas (40 bar pressure) a according to DIN EN 13555 as measured at room temperature impermeability of less than 10 "1 mg / (s' m), preferably less than 10 "2 mg / (sm), and more preferably less than 10 " 3 mg / (sm).
  • the present invention comprises three basic embodiments, namely, first, a graphite-containing shaped body, which contains only inorganic additive in addition to graphite, second, a graphite-containing molding body, which contains only organic additive in addition to graphite, in an amount of more than 10 wt .-%, and third, a graphite-containing molded body, which contains both inorganic additive and organic additive in addition to graphite.
  • this or the mixture to be compressed contains preferably 1 to 50 wt .-%, particularly preferably 2 to 20 wt .-% and most preferably 3 to 10 wt .-% of one or more inorganic additives.
  • an inorganic additive which has a melting temperature of at most 1 .800 ° C., preferably between 50 and 1 000 ° C.
  • the at least one inorganic additive has a glass transition temperature of at most 1, 800 ° C., preferably between 50 and 1 000 ° C., and particularly preferably between 100 and 650 ° C.
  • the at least one inorganic additive has a sintering temperature between 50 and 950 ° C., and preferably between 100 and 600 ° C.
  • the shaped body can also contain fillers in addition to the graphite and the inorganic additive, but this does not required and not preferred. Therefore, the molded article according to the invention according to this embodiment preferably consists of the aforementioned amount of inorganic additive and balance graphite.
  • the inorganic additive may be any inorganic material. Good results are obtained, in particular, if the inorganic additive is at least one glass former and / or at least one precursor of a glass former. With such materials, a high permeability of the molding for liquid and gaseous substances is achieved, in particular at comparatively high temperatures of, for example, 250 ° C. to 600 ° C.
  • the at least one glass former and / or the at least one precursor of a glass former is a compound selected from the group consisting of phosphates, silicates, aluminosilicates, boron oxides, borates and any mixtures of two or more of the aforementioned compounds.
  • a phosphate is used as glass former, because this can be distributed well throughout the cross section of the molding.
  • particularly suitable phosphates are those selected from the group consisting of ammonium dihydrogen phosphate, polyphosphate, hydrogen phosphate, calcium phosphates and aluminum phosphates.
  • the inorganic additive is preferably selected in terms of its chemical nature and amount used so that the molding is impermeable in a temperature range between 250 and 600 ° C and in particular in a temperature range between 300 and 550 ° C, being impermeable in the context of the present invention is understood that the molding at a surface pressure of 32 MPa preferably after the TA-air after a removal for 48 hours at 300 ° C or preferably after a storage for 48 hours at 400 ° C, a leakage rate of less than 1 x 10 "4 mbarl / s ' m (1, 1 bar, helium) in development of the inventive concept it is proposed that the inorganic additive and the inorganic additives a particular according to the ISO 13320 average particle diameter in the mixture to be compacted (d 5 o) ⁇ of 0.5 to 300 and preferably from 1 to 50 ⁇ have. Further, it is in that the molded article containing only an inorganic additive according to this embodiment has a density of at least 0.7 g g
  • the molding according to the invention contains only organic additive, but no inorganic additive.
  • the mixture or the molding to be compacted is more than 10 to 50% by weight, preferably 10 to 25% Wt .-% and particularly preferably 10 to 20 wt .-% of one or more organic additives.
  • a molded article with a very high tensile strength and with a high impermeability is obtained, in particular in the z-direction of the molded article.
  • the addition of a comparatively large amount of organic additive facilitates shaping and results in better
  • the shaped body in this embodiment can also contain fillers in addition to the graphite and the organic additive, but this is not necessary and also not preferred. Therefore, according to this embodiment, the shaped article according to the invention preferably consists of the abovementioned amount of organic additive and remainder of graphite.
  • any organic material can be used as the organic additive.
  • the organic additive is a polymer selected from the group consisting of thermoplastics, thermosets, elastomers and any mixtures thereof. With such materials, especially at comparatively low temperatures of, for example, -100 ° C. to 300 ° C., a high impermeability of the molding for liquid and gaseous substances is achieved.
  • Examples of corresponding polymers are silicone resins, polyolefins, epoxy resins, phenolic resins, melamine resins, urea resins, polyester resins, polyetheretherketones, benzoxazines, polyurethanes, nitrile rubbers, such as acrylonitrile-butadiene-styrene rubber, polyamides, polyimides, polysulfones, polyvinyl chloride and fluoropolymers, such as polyvinylidene fluoride , Ethylene-tetrafluoroethylene copolymers, polytetrafluoroethylene and mixtures or copolymers of two or more of the aforementioned compounds.
  • the organic additive or the organic additives are exclusively fluorine-free polymers.
  • this has surprisingly resulted in the balance of all the required properties, such as high tensile strength, high transverse strength, high thermal conductivity, good dry slip properties. shank, high temperature resistance, good chemical resistance and high impermeability to liquids and gases, proved to be particularly advantageous.
  • fluorine-free polymers are polymers selected from the group consisting of silicone resins, polyolefins, epoxy resins, phenolic resins, melamine resins, urea resins, polyester resins, polyetheretherketones, benzoxazines, polyurethanes, nitrile rubbers, polyamides, polyimides, polysulfones and any mixtures or copolymers of two or more of the aforementioned compounds.
  • particularly suitable polyols are polyethylene and polypropylene, acrylonitrile-butadiene-styrene rubber is particularly suitable as the nitrile rubber.
  • silicone resins better sealing and in particular a significantly better surface density is achieved compared to the addition of fluoropolymers.
  • the organic additive is preferably selected such that the shaped body is impermeable in a temperature range between -100 and 300 ° C. and in particular in a temperature range between -20 and 250 ° C. and very particularly at room temperature
  • Impermeable in the context of the present invention is understood that the molding at a surface pressure of 20 MPa with helium gas (40 bar internal pressure) according to DIN EN 13555 measured in the aforementioned temperature ranges impermeability of less than 10 "1 mg / (s ' m), preferably of less than 10 "2 mg / (sm), and more preferably less than 10 " 3 mg / (sm).
  • the molding in a temperature range between -100 and 300 ° C and INS special in a temperature range between -20 and 250 ° C at a surface pressure of 20 MPa with helium as gas (1 bar helium test gas internal pressure) in a measuring apparatus based on the DIN 28090-1 at room temperature in accordance with DIN 28090-1 in measured the aforementioned temperature ranges impermeability in the z-direction of less than 10 "1 mg / (s' m 2), preferably of less than 10" 2 mg / (sm 2), and more preferably of less than 10 "3 mg / ( sm 2 ).
  • the graphite-containing molded body Due to the addition of organic additive, it is easily possible to provide the graphite-containing molded body in such a way that it has a tensile strength of from 10 to 35 MPa, and preferably from 15 to 25 MPa, measured according to DIN ISO 1924-2.
  • the or- ganic additive or organic additives a particular according to the ISO 13320 average particle diameter in the to be compacted mixture (d 5 o) ⁇ from 1 to 150, preferably ⁇ 2-30 and particularly preferably from 3 to 10 ⁇ have.
  • the molded article containing only organic additive according to this embodiment has a density of at least 1.0 g / cm 3 , preferably a density of 1.2 to 1.8 g / cm 3 and particularly preferably a density of 1, 4 to 1.7 g / cm 3 .
  • the molding according to the invention contains organic additive and inorganic additive.
  • a particular advantage of this embodiment is that, due to the combination of organic additive and inorganic additive, a high impermeability of the shaped body to liquids and gases over a very broad temperature range from comparatively very low to comparatively high temperatures is reached.
  • This can be achieved, for example, by selecting an inorganic additive and an organic additive, the inorganic additive decomposing at one in the range of the temperature and in particular just below the temperature at which the organic additive decomposes, for example by pyrolysis, combustion or a decomposition reaction is, begins, for example, initiated by a sintering or melting process to contribute to a densification of the molding and thus take over the role of the organic additive at a higher temperature.
  • the mixture to be compacted or molded 1 to 25 wt .-% inorganic additive and 1 to 25 wt .-% organic additive and preferably 3 to 20 wt .-% inorganic additive and 5 to 15 wt .-% organic additive.
  • the shaped body in this embodiment in addition to the graphite, the inorganic additive and the organic additive still fillers, but this is not necessary and not preferred. Therefore, according to this embodiment, the shaped article according to the invention preferably consists of the abovementioned amount of organic additive, inorganic additive and remainder graphite.
  • Particularly suitable inorganic additives and organic additives are those already mentioned above for the other two particularly preferred embodiments of the present invention. Particularly with the combination of glass-forming agent as inorganic additive and silicone resin as organic additive, particularly good results are achieved, above all with regard to an excellent surface density.
  • the inorganic and Organic additives on the above-mentioned for the other two particularly preferred embodiments average particle diameter.
  • the organic additive and the inorganic additive are preferably selected with regard to their chemical nature and amounts used such that the shaped body is impermeable in a temperature range between -100 and 600 ° C. and in particular in a temperature range between -20 and 550 ° C.
  • the shaped body at a surface pressure of 20 MPa with helium gas (40 bar internal pressure) in a temperature range between -100 ° C and 600 ° C and preferably between -20 ° C and 550 ° C determined according to DIN EN 13555 impermeability less than 10 "2 mg / (sm), and more preferably less than 10 " 3 mg / (sm).
  • helium gas 40 bar internal pressure
  • the molding containing both organic and inorganic additive according to this embodiment have a density of at least 0.7 g / cm 3 and preferably a density of 1, 0 to 1, 8 g / cm 3 .
  • the shaped body is formed at least substantially flat, for example as a plate, tape or foil.
  • shaped bodies of essentially flat design are also understood as meaning specially shaped articles, such as, for example, sealing rings.
  • specially shaped articles such as, for example, sealing rings.
  • the advantage of a high surface density can be used particularly well.
  • this can be provided with a two- or three-dimensionally structured reinforcement.
  • structured sheets such as spits.
  • a further subject of the present invention is a process for the production of a previously described shaped body which comprises the following steps:
  • the process according to the invention is preferably carried out continuously so as to produce the shaped bodies according to the invention rapidly, simply and inexpensively.
  • the continuous process management can be carried out, for example, in a pipeline system in which the mixing according to process step a) is carried out so that a graphite particle-containing gas stream, a solid additive is supplied for example via a screw conveyor and the thus obtained, mixed, graphite particles and additive containing gas stream for compacting according to the method step b) is guided by a roller.
  • a graphite particle-containing gas stream a solid additive is supplied for example via a screw conveyor and the thus obtained, mixed, graphite particles and additive containing gas stream for compacting according to the method step b) is guided by a roller.
  • no mixing is carried out in a static or dynamic stirring device for more than 5 minutes, in particular for more than 20 minutes and in particular for more than 1 hour, prior to compacting.
  • the mixture containing graphite particles and additive is melted and / or sintered during compaction or after compaction according to method step b).
  • this can further increase the impermeability of the molding to liquids and gases.
  • the fusion of the graphite particles with the additive particles is improved by such melting or sintering, and further pores are closed and contact points are created by the then thin-fluid additive.
  • a separate shaping step can take place, in which the shaped body is formed, for example, by forming, profiling, joining, Hot pressing, Thermoumfornnen, edge, deep drawing, embossing or punching is formed.
  • the shaping step can advantageously take place before a final compression step.
  • pre-compaction can be carried out before deformation, for example by compression.
  • the shaped body can be heated in a mold, whereby certain profiles, shapes, waves and / or embossments are generated.
  • the additive stabilizes these forms and prevents the reformation known from conventional graphite films.
  • the mechanical load capacity generated by the present invention allows for the first time to apply such methods.
  • the present invention relates to the use of a previously described graphite molded body as a sealing element, as bipolar plate of a fuel cell, a redox flow battery, as a heat conducting foil, as a molded part in the construction sector, in particular wall cladding, ceiling cladding or heat conduction, as a current conductor in lead-acid batteries or in corresponding hybrid systems, as foil or fin in PCM graphite stores, as lining material, as contacting element, as electrode material for battery systems, as heat distribution element, as surface heater, as material for winding graphite tubes with weldability of the individual layers, as stuffing box, as packages for chemical columns, as a heat exchanger plate or as a heat exchanger tube.
  • the shaped body is preferably in the form of a foil or plate with a thickness of 0.02 to 1.5 mm, particularly preferably with a thickness of 0.2 to 1 mm and completely particularly preferably formed with a thickness of 0.5 to 0.8 mm.
  • Thicker plates can be produced, for example, by pressing, gluing, hot-bonding of two individual shaped bodies. This is possible with or without printing and by using adhesives, adhesion promoters or by the additive present in the molding. The direct weldability of two shaped bodies is particularly preferred.
  • a felt which preferably contains graphite and / or carbon and particularly preferably graphite and / or carbon fibers.
  • the connection can be made for example by gluing.
  • a conductive adhesive may be used, such as an adhesive filled with silver particles, carbon particles or graphite particles.
  • Such a compound can also be made by melting or by sintering with a plastic, in particular a polymer described above for the organic additive. In the simplest case, therefore, a felt is thermally bonded to a molding according to the invention without further materials.
  • the density of the felt is preferably 0.01 to 0.2 g / cm 3 .
  • the specific electrical resistance, measured in the felt plane is preferably between 0.5 and 15 ohm mm and the specific electrical resistance measured perpendicular to the felt plane, preferably between 2 and 20 ohm mm. These values refer to a compression of the felt of 20 to 30%. With stronger or weaker compression, the specific electrical resistance is correspondingly lower or higher.
  • the specific surface of the felt is preferably between 0.2 and 300 m 2 / g.
  • the molded article according to the invention as a molded part in the construction sector, in particular as wall cladding, ceiling cladding or réelleleitplatte, it has proven to be advantageous to provide the molded body plastically deformable and, for example, in the form of a plate, so that the molding at the installation simply to predetermined Contours of walls or ceilings, such as edges, bends, corners, friezes and the like, can be molded. Subsequently, the plate can then be finally consolidated at the installation site, for example by heating the still plastically deformable plate in the installed state.
  • the shaped body according to the invention can be used before or after a complete curing or before or after a melting and / or sintering of the additive.
  • the shaped body after a partial curing, melting and / or sintering of the additive, wherein the final curing, melting and / or sintering of the additive takes place, for example, when used at the operating temperature.
  • a high density of the molded body occurs only in the course of use. This has the advantage that in the mold, the moldability to achieve a better adaptation of the molding is possible, for example, to tightly connected parts.
  • a further subject matter of the present invention is the use of a previously described graphite-containing shaped body in a method for connecting the shaped body to another shaped body, wherein the other shaped body is, for example, a graphite foil, a metal foil, a metal sheet, a metal foil. tallblock, a textile fabric, preferably a felt body, or may be a previously described molding.
  • the bonding of the shaped body takes place without additional adhesive.
  • Such an adhesive is dispensable in the use according to the invention because the organic additive contained in the shaped body acts as a binder and thus allows the two bodies to be welded together.
  • Figure 1 is a graphite-containing molded body according to the prior art
  • FIG. 2 shows a graphite-containing molded body according to an embodiment of the present invention.
  • FIG. 1 shows a schematic cross section of a graphite-shaped molded body 1 according to the prior art which is designed as a plate.
  • This shaped body 1 contains pressed, expanded graphite 2 and a liquid binder 3, wherein the binder 3 has subsequently been introduced into the shaped body 1 by liquid or melt impregnation from the side surfaces of the shaped body 1. Due to the incorporation of the binder 3 by liquid or melt impregnation this is only unevenly and especially superficially penetrated into the molded body 1, which is why especially between the surface areas lying inner region, such as lying in the oval, dashed border area 4, little binder Contains 3 or is almost binder-free.
  • the characteristics of the Shaped body 1, in particular the mechanical strength and the impermeability, of the molded body 1, especially in the depth direction or z-direction, the inner region of the shaped body 1 lying between the surface regions having a poorer impermeability and poorer mechanical properties than the surface areas of the shaped body 1 has.
  • the molded body 5 according to the present invention shown in FIG. 2 consists of particles 6 of expanded graphite, which are configured worm-shaped or concertina-shaped in a known manner, as well as of additive particles 7.
  • the additive particles 7 are uniformly distributed in the shaped body 5 according to the invention in all dimensions of the shaped body 5, and in particular also in the inner area of the shaped body 5 lying between the surface areas.
  • the graphite particles 6 were first homogeneously mixed with the solid additive particles 7 before the mixture thus produced was compacted and shaped into the desired shape.
  • Expanded graphite having a bulk density of 3.5 g / l was treated with a silicone resin powder, namely Silres MK from Wacker Chemie AG in Burghausen, Germany, to form an 80% by weight expanded graphite and 20% by weight silicone rubber. mixture containing resin powder and then mixed in a container for 1 minute.
  • a silicone resin powder namely Silres MK from Wacker Chemie AG in Burghausen, Germany
  • the mixture thus obtained was then transferred to a steel tube of 90 mm diameter, pressed with a pressure piston by its own body weight and taken as a pre-compact with a density of about 0.07 g / cm 3 . Subsequently, the pre-compact was compressed with a press to the desired film thickness of 1 mm and the resulting doped film was conditioned at 180 ° C for 60 minutes to melt the plastic.
  • Comparative Example 1 According to the method described for Example 1, two graphite foils were produced, except that only expanded graphite and no additive were used for their production.
  • the additive improves the impermeability.
  • the addition of additive achieves a certain level of tightness even at significantly lower surface pressures.
  • the mixture thus obtained was then transferred to a steel tube of 90 mm diameter, pressed with a pressure piston by its own body weight and taken as a pre-compact with a density of about 0.07 g / cm 3 . Subsequently, the pre-compacts were compressed with a press to the desired film thickness of 1 mm and the resulting doped film was conditioned at 180 ° C for 60 minutes.
  • a graphite foil was produced according to the procedures described for Examples 2 and 3, except that exclusively expanded graphite and no additive were used for their production.
  • the leakage rate was measured according to DIN 28090-1 with nitrogen as the test gas and 32 MPa surface pressure based on a basis weight of the molded body of 2,000 g / m 2 .
  • Expanded graphite with a bulk density of 3.5 g / l was admixed with ammonium dihydrogen phosphate (NHH 2 PO 4 ) for Examples 4 and 5 and ammonium hydrogenphosphate (NH) 2 HPO 4 for Examples 6 and 7 as inorganic filler 95 wt .-% expanded graphite and 5 wt .-% inorganic filler containing mixtures added, which were then mixed in a container for 1 minute.
  • ammonium dihydrogen phosphate (NHH 2 PO 4 ) for Examples 4 and 5
  • ammonium hydrogenphosphate (NH) 2 HPO 4 ammonium hydrogenphosphate
  • the mixtures thus obtained were then transferred to a steel tube of 90 mm diameter, pressed with a pressure piston by its own body weight and removed as a pre-compact with a density of about 0.07 g / cm 3 . Subsequently, the preform was compressed with a press to the desired film thickness of 1 mm and the resulting doped films were at different conditions, which are summarized in the following Table 3, conditioned.
  • the leakage rate was measured according to DIN 28090-1 with nitrogen as the test gas and 32 MPa surface pressure based on a basis weight of the molded article of 2,000 g / m 2 .
  • Comparative Example 3 A graphite foil was produced according to the methods described for Examples 4 to 7, except that exclusively expanded graphite and no additive were used for their production.
  • the leakage rate was measured according to DIN 28090-1 with nitrogen as the test gas and 32 MPa surface pressure based on a basis weight of the molded body of 2,000 g / m 2 .
  • Example 8 Expanded graphite having a bulk density of 3.5 g / l was mixed with a polypropylene powder, namely with Licocene PP 2602 Clariant, Germany, to a 80 wt .-% expanded graphite and 20 wt .-% polypropylene polymer powder mixture and then in a container for 1 minute mixed.
  • a polypropylene powder namely with Licocene PP 2602 Clariant, Germany
  • the mixture thus obtained was then transferred to a steel tube of 90 mm diameter, pressed with a pressure piston by its own body weight and taken as a pre-compact with a density of about 0.07 g / cm 3 . Subsequently, the pre-compact was compressed with a press to the desired film thickness of 0.6 mm and the resulting doped film was removed at 180 ° C for 60 minutes to melt the plastic.
  • the impermeability of the molding in the z-direction at a surface pressure of 20 MPa with helium as gas (1 bar helium test gas internal pressure) in a measuring apparatus based on DIN 28090-1 at room temperature was determined.
  • the tensile strength of the graphite-containing molded body was determined according to DIN ISO 1924-2. The values obtained are summarized in Table 4 below.
  • Comparative Example 4 According to the method described for Example 8, a molded article was produced in the form of graphite foils, except that exclusively expanded graphite and no additive were used in the production.
  • the impermeability of the shaped body in the z-direction at a surface pressure of 20 MPa with helium as gas (1 bar helium test gas internal pressure) was determined a measuring apparatus based on DIN 28090-1 determined at room temperature.
  • the tensile strength of the graphite-containing molded body was determined according to DIN ISO 1924-2. The values obtained are summarized in Table 4 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Sealing Material Composition (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Inert Electrodes (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Ein graphithaltiger Formkörper (5) ist durch ein Verfahren erhältlich, bei dem Graphitpartikel (6) mit wenigstens einem festen Additiv (7) zu einer Mischung, welche wenigstens ein anorganisches Additiv, eine Mischung aus anorganischem Additiv und organischem Additiv oder mehr als 10 Gew. -% organisches Additiv enthält, vermischt werden und die so erhaltene Mischung anschließend verdichtet wird, wobei das eingesetzte wenigstens eine Additiv (7) einen gemäß der ISO 13320 bestimmten mittleren Partikeldurchmesser (d50) zwischen 1 und 500 μm aufweist.

Description

Graphithaltiger Formkörper und Verfahren zu seiner Herstellung
Die vorliegende Erfindung betrifft einen graphithaltigen Formkörper, welcher insbesondere für den Einsatz als Dichtung, als Baustoff, wie Wand- bzw. Deckenverkleidung, als Bipolarplatte, beispielsweise für eine Redox-Flow-Zelle, als Wärme- tauscherplatte oder als Wärmetauscherrohr geeignet ist, sowie ein Verfahren zu seiner Herstellung.
Dichtungen, wie Flachdichtungen, welche beispielsweise im chemischen Apparatebau eingesetzt werden, müssen eine Vielzahl von Anforderungen erfüllen. Insbesondere müssen diese eine niedrige Permeabilität für Flüssigkeiten und Gase aufweisen, und zwar insbesondere, wie im Fall von Flachdichtungen, in der Ebene der Dichtung. Abgesehen davon müssen sich diese durch eine hohe Zugfestigkeit, durch eine hohe Querfestigkeit, durch eine gute Wärmeleitfähigkeit, durch eine gute Anpassungsfähigkeit und durch gute Trockengleiteigenschaften auszeichnen. Für eine Vielzahl von Anwendungen sind ferner eine hohe Temperaturbeständigkeit sowie eine gute Beständigkeit gegen aggressive Chemikalien unabdingbar.
Aufgrund der hohen Temperaturbeständigkeit insbesondere zwischen -200 °C und +400 °C, der hervorragenden Dimensionsstabilität unter thermischer Belastung, der guten Chemikalienbeständigkeit und der hohen Rückfederung von Graphit werden derartige Dichtungen häufig aus Graphit hergestellt. Um die Dichtigkeit von Graphit zu erhöhen, ist es bereits vorgeschlagen worden, als Dichtungsmaterial flüssigimprägnierten Graphit einzusetzen, also Graphit, dessen Poren zumindest teilweise durch Flüssigimprägnierung bzw. Schmelzimprägnierung mit einem geeigneten Imprägniermittel geschlossen worden sind. Als Imprägniermittel werden beispielweise lösemittelfreie Harze eingesetzt, wobei hier der Graphitgehalt des Dichtungsmaterials herkömmlicherweise 90 Gew.-% oder mehr beträgt. Durch die Imprägnierung kann neben der Dichtigkeit zudem sowohl die Handhabung als auch die Kratzbeständigkeit des Materials verbessert werden.
Ein Nachteil solcher durch Flüssigimprägnierung hergestellter Materialien ist es jedoch, dass das Imprägniermittel, insbesondere in der Tiefenrichtung bzw. z- Richtung des Materials, ungleichmäßig verteilt ist. Während mithin in den Oberflächenbereichen des Materials ein hoher Imprägniergrad und eine vergleichsweise homogene Imprägnierung erreicht werden, weist der zwischen den Oberflächenbereichen liegende innere Bereich des so imprägnierten Materials keinen oder nur einen vergleichsweise niedrigen bzw. ungleichmäßigen Imprägniergrad auf. Dadurch weist eine aus einem solchen Material hergestellte Dichtung zwar in ihren Oberflächenbereichen durch die Oberflächenimprägnierung eine vergleichsweise hohe Impermeabilität für Flüssigkeiten und Gase auf; allerdings ist diese in dem zwischen den Oberflächenbereichen liegenden zentralen Bereich vergleichsweise permeabel, weswegen diese Dichtungen insbesondere für die Verwendung als Flachdichtungen nur bedingt geeignet sind.
Ein ähnliches Problem tritt auch bei Bauplatten, wie Wandverkleidungsplatten oder Wärmeleitplatten, auf Basis von Graphit auf. Um solchen Platten eine ausreichend hohe Festigkeit, eine ausreichend hohe Steifigkeit sowie eine ausreichend hohe Abriebsfestigkeit zu verleihen, damit diese den bei ihrer bestimmungsgemäßen Verwendung auftretenden mechanischen Belastungen standhalten können, werden diese üblicherweise ebenfalls durch Flüssigimprägnierung mit einem Bindemittel auf Basis von Harz oder Thermoplast imprägniert. Auch hier wird nur in den Oberflächenbereichen des Materials ein hoher Imprägniergrad und eine vergleichsweise homogene Imprägnierung erreicht, nicht jedoch in dem zwischen den Oberflächenbereichen liegenden inneren Bereich, weswegen diese Platten eine über ihren Querschnitt ungleichmäßige Steifigkeit und Stabilität aufweisen und die Querfestigkeit dieser Platten sehr stark variiert. Ferner kann das Anforderungsprofil für für andere Anwendungen konzipierte Formkörper, wie beispielsweise für Bipolarplatten, Stromableiter und Elektroden- materialien, eine hohe Zugfestigkeit, eine hohe elektrische Leitfähigkeit bzw. einen niedrigen elektrischen Widerstand sowie einen geringen Kontaktwiderstand um- fassen. Beispiele für solche Formkörper sind im Speziellen Bipolarplatten, welche in Brennstoffzellen, in Redox-Flow-Zellen oder in Blei-Säure-Batterien eingesetzt werden. Gleiche oder zumindest ähnliche Anforderungsprofile werden auch für Formkörper gefordert, welche beispielsweise als Wärmetauscherplatte oder als Wärmetauscherrohr eingesetzt werden.
Zur Überwindung wenigstens einen Teils der vorgenannten Probleme sind bereits Materialien beispielsweise zur Verwendung als Dichtungen auf Basis von Graphit vorgeschlagen worden, welche hergestellt werden, indem zum Verschließen der Poren des Graphits Graphit und ein festes Ethylen-Tetrafluorethylen-Copolymer miteinander vermischt werden, bevor aus der so hergestellten Mischung ein
Formkörper zur Herstellung einer Dichtung geformt wird. Obwohl die Eigenschaften so hergestellter Dichtungsmaterialien besser als die von flüssigimprägnierten Dichtungsmaterialien sind, ist die Summe der Eigenschaften dieser Materialien für manche Anwendungen noch verbesserungsbedürftig.
Aufgabe der vorliegenden Erfindung ist es daher, einen graphithaltigen Formkörper bereitzustellen, welcher nicht nur eine hohe Zugfestigkeit, eine hohe Querfestigkeit, eine hohe Wärmeleitfähigkeit, eine gute Trockengleiteigenschaft, eine hohe Temperaturbeständigkeit sowie eine gute Chemikalienbeständigkeit aufweist, sondern welcher sich über einen breiten Temperaturbereich und/oder bei einer geringen Flächenpressung insbesondere durch eine besonders hohe Impermeabi- lität gegenüber Flüssigkeiten und Gasen, und zwar in Abhängigkeit von der konkreten Anwendung insbesondere in der Ebene, d.h. in der x-y-Richtung der Dichtung, und/oder, wie dies beispielsweise für die Verwendung als Bipolarplatte oder Wärmetauscher wichtig ist, senkrecht zu der Ebene, d.h. in der z-Richtung, durch einen geringen Abrieb sowie durch einen geringen elektrischen Widerstand, aber dennoch durch eine gute Flexibilität auszeichnet, und, welcher einfach und kostengünstig hergestellt werden kann. Erfindungsgemäß wird diese Aufgabe durch die Bereitstellung eines graphithaltigen Formkörpers gelöst, welcher durch ein Verfahren erhältlich ist, bei dem Graphitpartikel mit wenigstens einem festen Additiv zu einer Mischung, welche wenigstens ein anorganisches Additiv, eine Mischung aus wenigstens einem anorganischen Additiv und wenigstens einem organischen Additiv oder mehr als 10 Gew.-% organisches Additiv enthält, vermischt werden und die so erhaltene Mischung anschließend verdichtet wird, wobei das eingesetzte wenigstens eine Additiv einen gemäß der ISO 13320 bestimmten mittleren Partikeldurchmesser (d5o) zwischen 1 und 500 μιτι aufweist. Diese Lösung basiert auf der überraschenden Erkenntnis, dass ein so erhältlicher Formkörper auf Basis von Graphit und Graphit mit einer spezifischen Partikelgröße nicht nur einen hohen Infiltrationsgrad an Poren verschließendem Additiv aufweist, sondern dass das Poren verschließende Additiv zudem über alle drei Dimensionen und insbesondere in der Tiefenrichtung des Formkörpers, also in der z-Richtung des Formkörpers, homogen verteilt ist. Aus diesem Grund weist der Formkörper in allen drei Dimensionen und insbesondere auch in der Ebene des Formkörpers, also in der x-y-Richtung bzw. der Ebene, in welcher der Formkörper seine längste Ausdehnung besitzt, gleiche Eigenschaften auf und zeichnet sich insbesondere auch in der x-y-Richtung durch eine hohe Zugfestigkeit, eine hohe Festigkeit in z-Richtung, eine hohe Wärmeleitfähigkeit, eine gute Trockengleiteigenschaft, eine hohe Temperaturbeständigkeit, eine gute Chemikalienbeständigkeit, eine hohe Dichtigkeit und insbesondere Flächendichtigkeit gegenüber Flüssigkeiten und Gasen sowie durch eine hohe Stabilität aus, und zwar insbesondere auch bei einer geringen Flächenpressung des Formkörpers. Aufgrund der homo- genen Verteilung des Additivs bzw. der Additive über alle drei Dimensionen wird nämlich insbesondere erreicht, dass das Additiv nicht nur in den oberflächennahen Bereichen des Formkörpers vorliegt, sondern insbesondere auch in dem zwischen den oberflächennahen Bereichen befindlichen inneren bzw. zentralen Bereich des Formkörpers. Dadurch wird es verhindert, dass der Formkörper nur in seinen Oberflächenbereichen eine hohe Impermeabilität aufweist, aber in dem Inneren des Formkörpers Gase oder Flüssigkeiten diffundieren können. Vielmehr wird durch die homogene Additivverteilung auch in dem Inneren des Formkörpers eine hohe Impermeabilität in allen Dimensionen und daher auch insbesondere eine hohe Flächendichtigkeit erreicht.
Im weiteren besondere Vorteil gegenüber den aus dem Stand der Technik bekannten Formkörpern sind die erfindungsgemäßen Formkörper schnell, einfach und kostengünstig herstellbar, und zwar insbesondere auch durch ein kontinuierliches Verfahren, bei dem beispielsweise einem Graphitpartikeln enthaltendem Gasstrom kontinuierlich ein festes und vorzugsweise trockenes Additiv beispielsweise über eine Förderschnecke zugegeben und damit vermischt wird und diese Mischung dann kontinuierlich durch eine Walze geführt wird, in welcher die Mischung verdichtet wird. Wie dargelegt, wird der erfindungsgemäße Formkörper durch ein Verfahren erhalten, bei dem Graphitpartikel zunächst mit wenigstens einem festen Additiv zu einer Mischung vermischt werden, bevor die so erhaltene Mischung anschließend verdichtet wird. Darunter wird im Rahmen der vorliegenden Patentanmeldung verstanden, dass im Gegensatz zu einer Flüssig- bzw. Schmelzimprägnierung bis zu der Verdichtung der Mischung weder die Graphitpartikel noch das Additiv noch die Graphitpartikel und Additiv enthaltende Mischung geschmolzen oder gesintert werden.
Mit der Spezifizierung, dass das eingesetzte wenigstens eine Additiv einen mittle- ren Partikeldurchmesser (d5o) zwischen 1 und 500 μιτι aufweist, ist gemeint, dass alle eingesetzten Additive einen entsprechenden, mit dem in der ISO 13320 spezifizierten Messverfahren bestimmten mittleren Partikeldurchmesser (d5o) aufweisen. Grundsätzlich können als Graphitausgangsmaterial Partikel auf Basis aller bekannten Graphite eingesetzt werden, also beispielsweise Partikel aus Naturgraphit oder aus synthetischem Graphit.
Allerdings wird es gemäß einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung vorgeschlagen, als Graphitpartikel Partikel aus expandiertem Graphit einzusetzen. Unter expandiertem Graphit wird Graphit verstanden, der im Vergleich zu natürlichem Graphit in der Ebene senkrecht zu den hexagona- len Kohlenstoffschichten beispielsweise um den Faktor 80 oder mehr expandiert ist. Aufgrund dieser Expansion zeichnet sich expandierter Graphit durch eine her- vorragende Formbarkeit und eine gute Verzahnbarkeit aus, weswegen dieser zur Herstellung der erfindungsgemäßen Formkörper besonders geeignet ist. Aufgrund seiner ebenfalls hohen Porosität lässt sich expandierter Graphit zudem sehr gute mit Additivpartikeln mit einem entsprechend kleinen Partikeldurchmesser vermischen und aufgrund des Expansionsgrades leicht verdichten bzw. kompaktieren. Zur Herstellung von expandiertem Graphit mit einer wurmförmigen Struktur wird üblicherweise Graphit, wie Naturgraphit, mit einer Interkalationsverbindung, wie beispielsweise Salpetersäure oder Schwefelsäure, vermischt und bei einer erhöhten Temperatur von beispielswiese 600 bis 1 .200 °C wärmebehandelt. Vorzugsweise wird expandierter Graphit eingesetzt, welcher aus Naturgraphit mit einem gemäß dem in der DIN 66165 spezifizierten Messverfahren und Siebsatz bestimmten mittleren Partikeldurchmesser (d5o) von wenigstens 149 μιτι und bevorzugt von wenigstens 180 μιτι hergestellt worden ist. Besonders gute Ergebnisse werden bei dieser Ausführungsform insbesondere mit Partikeln aus expandiertem Graphit erhalten, welcher einen Expansionsgrad von 10 bis 1 .400, vorzugsweise von 20 bis 700 und besonders bevorzugt von 60 bis 100 aufweist.
Dies entspricht im Wesentlichen expandiertem Graphit mit einem Schüttgewicht von 0,5 bis 95 g/l, vorzugsweise von 1 bis 25 g/l und besonders bevorzugt von 2 bis 10 g/l. In Weiterbildung des Erfindungsgedankens wird es vorgeschlagen, Graphitpartikel und insbesondere Partikel aus expandiertem Graphit mit einem mittleren Partikeldurchmesser (d5o) von 150 bis 3.500 μιτι, vorzugsweise von 250 bis 2.000 μιτι und besonders bevorzugt von 500 bis 1 .500 μιτι einzusetzen. Diese Graphitpartikel lassen sich besonders gut mit partikelförmigen Additiven vermischen und verdich- ten. Dabei wird der mittlere Durchmesser (d5o) der Graphitpartikel gemäß dem in der DIN 66165 spezifizierten Messverfahren und Siebsatz bestimmt.
Vorzugsweise enthält die zu verdichtende Mischung 50 bis 99 Gew.-%, bevorzugt 75 bis 97 Gew.-% und besonders bevorzugt 80 bis 95 Gew.-% Graphitpartikel und bevorzugt entsprechende Partikel aus expandiertem Graphit.
Gemäß einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung weist der Formkörper bei einer Flächenpressung von 20 MPa mit Helium als Gas (40 bar Innendruck) eine gemäß der DIN EN 13555 bei Raumtemperatur gemessene Impermeabilität von weniger als 10"1 mg/(s'm), bevorzugt von weniger als 10"2 mg/(s m) und besonders bevorzugt von weniger als 10"3 mg/(s m) auf.
Wie dargelegt, umfasst die vorliegende Erfindung drei grundsätzliche Ausführungsformen, nämlich erstens einen graphithaltigen Formkörper, welcher neben Graphit nur anorganisches Additiv enthält, zweitens einen graphithaltigen Form- körper, welcher neben Graphit nur organisches Additiv, und zwar in einer Menge von mehr als 10 Gew.-%, enthält, und drittens einen graphithaltigen Formkörper, welcher neben Graphit sowohl anorganisches Additiv als auch organisches Additiv enthält.
In der erstgenannten Ausführungsform, bei welcher der graphithaltige Formkörper nur anorganisches Additiv, aber kein organisches Additiv enthält, enthält dieser bzw. die zu verdichtende Mischung vorzugsweise 1 bis 50 Gew.-%, besonders bevorzugt 2 bis 20 Gew.-% und ganz besonders bevorzugt 3 bis 10 Gew.-% eines oder mehrerer anorganischer Additive. Dadurch wird nicht nur eine hohe Imper- meabilität erreicht, sondern insbesondere auch eine gute Oxidationsbeständigkeit bis 500 °C sowie eine hohe Zugfestigkeit und insgesamt eine exzellente mechanische Stabilität des Formkörpers. In Weiterbildung des Erfindungsgedankens wird es vorgeschlagen, ein anorganisches Additiv einzusetzen, welches eine Schmelztemperatur von maximal 1 .800 °C, bevorzugt zwischen 50 und 1 .000 °C und besonders bevorzugt zwischen 100 und 650 °C aufweist. Gute Ergebnisse werden insbesondere auch erreicht, wenn das wenigstens eine anorganische Additiv eine Glasübergangstemperatur von maximal 1 .800 °C, bevorzugt zwischen 50 und 1 .000 °C und besonders bevorzugt zwischen 100 und 650 °C aufweist. Gemäß einer weiteren bevorzugten Variante der vorliegenden Ausführungsform weist das wenigstens eine anorganische Additiv eine Sintertemperatur zwischen 50 und 950 °C und bevorzugt zwischen 100 und 600 °C auf.
Grundsätzlich kann der Formkörper bei dieser Ausführungsform neben dem Gra- phit und dem anorganischen Additiv noch Füllstoffe enthalten, was jedoch nicht erforderlich und auch nicht bevorzugt ist. Daher besteht der erfindungsgemäße Formkörper gemäß dieser Ausführungsform bevorzugt aus der vorgenannte Menge anorganischem Additiv und Rest Graphit. Bei dem anorganischen Additiv kann es sich um jedes beliebige anorganische Material handeln. Gute Ergebnisse werden insbesondere erhalten, wenn das anorganische Additiv wenigstens ein Glasbildner und/oder wenigstens eine Vorstufe eines Glasbildners ist. Mit solchen Materialien wird insbesondere bei vergleichsweise hohen Temperaturen von beispielsweise 250 °C bis 600 °C eine hohe Im- permeabilität des Formkörpers für flüssige und gasförmige Substanzen erreicht.
Gute Ergebnisse diesbezüglich werden insbesondere erreicht, wenn der wenigstens eine Glasbildner und/oder die wenigstens eine Vorstufe eines Glasbildners eine Verbindung ist, welche aus der Gruppe ausgewählt ist, welche aus Phospha- ten, Silicaten, Aluminosilicaten, Boroxiden, Boraten und beliebigen Mischungen von zwei oder mehr der vorgenannten Verbindungen besteht.
Gemäß einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung wird als Glasbildner ein Phosphat eingesetzt, weil sich dieses gut im gesam- ten Querschnitt des Formkörpers verteilen lässt. Beispiele für besonders geeignete Phosphate sind solche, welche aus der Gruppe ausgewählt sind, welche aus Ammoniumdihydrogenphosphat, Polyphosphat, Hydrogenphosphat, Calcium- phosphaten und Aluminiumphosphaten besteht. Mithin wird das anorganische Additiv hinsichtlich seiner chemischen Natur und eingesetzten Menge bevorzugt so ausgewählt, dass der Formkörper in einem Temperaturbereich zwischen 250 und 600 °C und insbesondere in einem Temperaturbereich zwischen 300 und 550 °C impermeabel ist, wobei unter impermeabel im Sinne der vorliegenden Erfindung verstanden wird, dass der Formkörper bei einer Flächenpressung von 32 MPa vorzugsweise eine nach der TA-Luft nach einer Auslagerung für 48 Stunden bei 300 °C oder bevorzugt nach einer Auslagerung für 48 Stunden bei 400 °C eine Leckagerate von weniger als 1 x 10"4 mbarl/s'm (1 ,1 bar, Helium) aufweist. In Weiterbildung des Erfindungsgedankens wird es vorgeschlagen, dass das anorganische Additiv bzw. die anorganischen Additive in der zu verdichtenden Mischung einen gemäß der ISO 13320 bestimmten mittleren Partikeldurchmesser (d5o) von 0,5 bis 300 μιτι und vorzugsweise von 1 bis 50 μιτι aufweisen. Ferner ist es bevorzugt, dass der nur anorganisches Additiv enthaltende Formkörper gemäß dieser Ausführungsform eine Dichte von wenigstens 0,7 g/cm3 und bevorzugt eine Dichte von 1 ,0 bis 1 ,4 g/cm3 aufweist.
Gemäß einer zweiten ganz besonders bevorzugten Ausführungsform der vorlie- genden Erfindung enthält der erfindungsgemäße Formkörper nur organisches Additiv, aber kein anorganisches Additiv. Gute Ergebnisse insbesondere im Hinblick auf eine gewünschte Impermeabilität, aber auch im Hinblick auf eine hohe Zugfestigkeit und mechanische Stabilität werden insbesondere erreicht, wenn die zu verdichtende Mischung bzw. der Formkörper mehr als 10 bis 50 Gew.-%, be- vorzugt 10 bis 25 Gew.-% und besonders bevorzugt 10 bis 20 Gew.-% eines oder mehrerer organischer Additive enthält. Durch den Zusatz von mehr als 10 Gew.-% organischem Additiv wird ein Formkörper mit einer sehr hohen Zugfestigkeit und mit einer hohen Impermeabilität insbesondere in der z-Richtung des Formkörpers erhalten. Abgesehen davon erleichtert der Zusatz einer vergleichsweise großen Menge organischem Additiv die Formgebung und führt zu einer besseren
Verschweißbarkeit des Formkörpers mit beispielsweise einem anderen erfindungsgemäßen Formkörper, mit einer Graphitfolie, Metallfolie, einem Metallblech oder einem Metallblock oder mit einem textilen Flächengebilde, wie beispielsweise mit einem Filz. Zudem wird dadurch eine bessere Gleitreibung sowie eine höhere Querfestigkeit als bei dem Zusatz geringerer Mengen organischem Additiv erreicht.
Grundsätzlich kann der Formkörper bei dieser Ausführungsform neben dem Gra- phit und dem organischen Additiv noch Füllstoffe enthalten, was jedoch nicht erforderlich und auch nicht bevorzugt ist. Daher besteht der erfindungsgemäße Formkörper gemäß dieser Ausführungsform bevorzugt aus der vorgenannte Menge organischem Additiv und Rest Graphit. Grundsätzlich kann als organisches Additiv jedes beliebige organische Material eingesetzt werden. Gute Ergebnisse werden insbesondere erhalten, wenn das organische Additiv ein Polymer ausgewählt aus der Gruppe bestehend aus Thermoplasten, Duroplasten, Elastomeren und beliebigen Mischungen hiervon ist. Mit solchen Materialien wird insbesondere bei vergleichsweise niedrigen Temperatu- ren von beispielsweise -100 °C bis 300 °C eine hohe Impermeabilität des Formkörpers für flüssige und gasförmige Substanzen erreicht.
Beispiele für entsprechende Polymere sind Siliconharze, Polyolefine, Epoxidharze, Phenolharze, Melaminharze, Harnstoffharze, Polyesterharze, Polyetheretherketo- ne, Benzoxazine, Polyurethane, Nitrilkautschuke, wie Acrylnitril-Butadien-Styrol- Kautschuk, Polyamide, Polyimide, Polysulfone, Polyvinylchlorid und Fluorpolymere, wie Polyvinylidenfluorid, Ethylen-Tetrafluorethylen-Copolymere, Polytetrafluor- ethylen und Mischungen oder Copolymere von zwei oder mehr der vorgenannten Verbindungen.
Gemäß einer ganz besonders bevorzugten Variante dieser Ausführungsform ist das organische Additiv bzw. sind die organischen Additive ausschließlich fluorfreie Polymere. Dies hat sich im Rahmen der vorliegenden Erfindung überraschenderweise für die Ausgewogenheit aller erforderlicher Eigenschaften, wie hohe Zugfes- tigkeit, hohe Querfestigkeit, hohe Wärmeleitfähigkeit, gute Trockengleiteigen- schaft, hohe Temperaturbeständigkeit, gute Chemikalienbeständigkeit und hohe Impermeabilität gegenüber Flüssigkeiten und Gasen, als besonders vorteilhaft erwiesen. Beispiele für entsprechende, fluorfreie Polymere sind Polymere ausgewählt aus der Gruppe bestehend aus Siliconharzen, Polyolefinen, Epoxidharzen, Phenolharzen, Melaminharzen, Harnstoffharzen, Polyesterharzen, Polyetheretherketonen, Benzoxazinen, Polyurethanen, Nitrilkautschuken, Polyamiden, Polyimiden, Poly- sulfonen und beliebigen Mischungen oder Copolymeren von zwei oder mehr der vorgenannten Verbindungen. Während Beispiele für besonders geeignete Polyole- fine Polyethylen und Polypropylen sind, ist als Nitrilkautschuk insbesondere Acryl- nitril-Butadien-Styrol-Kautschuk geeignet. Insbesondere durch den Zusatz von Siliconharzen wird im Vergleich zu dem Zusatz von Fluorpolymeren eine bessere Dichtigkeit und insbesondere eine signifikant bessere Flächendichtigkeit erreicht.
Folglich wird das organische Additiv hinsichtlich seiner chemischen Natur und eingesetzten Menge bevorzugt so ausgewählt, dass der Formkörper in einem Temperaturbereich zwischen -100 und 300 °C und insbesondere in einem Temperaturbereich zwischen -20 und 250 °C und ganz insbesondere bei Raumtempera- tur impermeabel ist, wobei unter impermeabel im Sinne der vorliegenden Erfindung verstanden wird, dass der Formkörper bei einer Flächenpressung von 20 MPa mit Helium als Gas (40 bar Innendruck) eine gemäß der DIN EN 13555 in den vorgenannten Temperaturbereichen gemessene Impermeabilität von weniger als 10"1 mg/(s'm), bevorzugt von weniger als 10"2 mg/(s m) und besonders bevor- zugt von weniger als 10"3 mg/(s m) aufweist.
Insbesondere Formkörper, welche für Anwendungen, wie beispielsweise als Bipolarplatten oder als Wärmetauscherplatten konzipiert werden, bei denen vor allem eine hohe Impermeabilität in der z-Richtung erforderlich ist, ist es bevorzugt, dass der Formkörper in einem Temperaturbereich zwischen -100 und 300 °C und ins- besondere in einem Temperaturbereich zwischen -20 und 250 °C bei einer Flächenpressung von 20 MPa mit Helium als Gas (1 bar Helium Prüfgassinnendruck) in einer Messapparatur in Anlehnung an die DIN 28090-1 bei Raumtemperatur eine in Anlehnung an die DIN 28090-1 in den vorgenannten Temperaturbereichen gemessene Impermeabilität in der z-Richtung von weniger als 10"1 mg/(s'm2), bevorzugt von weniger als 10"2 mg/(s m2) und besonders bevorzugt von weniger als 10"3 mg/(s m2) aufweist.
Aufgrund des Zusatzes an organischem Additiv ist es leicht möglich, den graphit- haltigen Formkörper so vorzusehen, dass dieser eine gemäß der DIN ISO 1924-2 gemessene Zugfestigkeit von 10 bis 35 MPa und bevorzugt von 15 bis 25 MPa aufweist.
In Weiterbildung des Erfindungsgedankens wird es vorgeschlagen, dass das or- ganische Additiv bzw. die organischen Additive in der zu verdichtenden Mischung einen gemäß der ISO 13320 bestimmten mittleren Partikeldurchmesser (d5o) von 1 bis 150 μιτι, vorzugsweise von 2 bis 30 μιτι und besonders bevorzugt von 3 bis 10 μιτι aufweisen. Ferner ist es bevorzugt, dass der nur organisches Additiv enthaltende Formkörper gemäß dieser Ausführungsform eine Dichte von wenigstens 1 ,0 g/cm3, bevorzugt eine Dichte von 1 ,2 bis 1 ,8 g/cm3 und besonders bevorzugt eine Dichte von 1 ,4 bis 1 ,7 g/cm3 aufweist. Gemäß einer dritten ganz besonders bevorzugten Ausführungsform der vorliegenden Erfindung enthält der erfindungsgemäße Formkörper organisches Additiv und anorganisches Additiv. Ein besonderer Vorteil dieser Ausführungsform ist es, dass durch die Kombination aus organischem Additiv und anorganischem Additiv eine hohe Impermeabilität des Formkörpers gegenüber Flüssigkeiten und Gasen über einen sehr breiten Temperaturbereich von vergleichsweise sehr niedrigen bis vergleichsweise sehr hohen Temperaturen erreicht wird. Dies kann beispielsweise dadurch erreicht werden, dass ein anorganisches Additiv und ein organisches Additiv ausgewählt werden, wobei sich das anorganische Additiv bei einer im Bereich der Temperatur und insbesondere knapp unterhalb der Temperatur, bei welcher das organische Additiv beispielsweise durch Pyrolyse, Verbrennung oder eine Zersetzungsreaktion zersetzt wird, beginnt, beispielsweise initiiert durch einen Sinter- oder Schmelzvorgang zu einer Verdichtung des Formkörpers beizutragen und so bei einer höheren Temperatur die Rolle des organischen Additivs zu übernehmen.
Um diesbezüglich besonders gute Ergebnisse zu erreichen, wird es in Weiterbildung des Erfindungsgedankens vorgeschlagen, dass die zu verdichtende Mischung bzw. der Formkörper 1 bis 25 Gew.-% anorganisches Additiv und 1 bis 25 Gew.-% organisches Additiv und bevorzugt 3 bis 20 Gew.-% anorganisches Addi- tiv und 5 bis 15 Gew.-% organisches Additiv enthält.
Grundsätzlich kann der Formkörper bei dieser Ausführungsform neben dem Graphit, dem anorganischen Additiv und dem organischen Additiv noch Füllstoffe enthalten, was jedoch nicht erforderlich und auch nicht bevorzugt ist. Daher be- steht der erfindungsgemäße Formkörper gemäß dieser Ausführungsform bevorzugt aus der vorgenannte Menge organischem Additiv, anorganischem Additiv und Rest Graphit.
Als anorganische Additive und als organische Additive eignen sich insbesondere die vorstehend bereits für die beiden anderen ganz besonders bevorzugten Ausführungsformen der vorliegenden Erfindung genannten. Insbesondere mit der Kombination Glasbildner als anorganisches Additiv und Siliconharz als organisches Additiv werden vor allem im Hinblick auf eine exzellente Flächendichtigkeit besonders gute Ergebnisse erreicht. Vorzugsweise weisen die anorganischen und organischen Additive die vorstehend für die beiden anderen ganz besonders bevorzugten Ausführungsformen genannten mittleren Partikeldurchmesser auf.
Bevorzugt werden das organische Additiv und das anorganische Additiv hinsicht- lieh ihrer chemischen Natur und eingesetzten Mengen so ausgewählt, dass der Formkörper in einem Temperaturbereich zwischen -100 und 600 °C und insbesondere in einem Temperaturbereich zwischen -20 und 550 °C impermeabel ist, wobei unter impermeabel im Sinne der vorliegenden Erfindung verstanden wird, dass der Formkörper bei einer Flächenpressung von 20 MPa mit Helium als Gas (40 bar Innendruck) eine gemäß der DIN EN 13555 in einem Temperaturbereich von -100 bis 300 °C gemessene Impermeabilität von weniger als 10"1 mg/(s'm) aufweist und der Formkörper bei einer Flächenpressung von 32 MPa eine nach der TA-Luft in einem Temperaturbereich von 300 bis 600 °C nach einer Auslagerung für 48 Stunden gemessene Leckagerate von weniger als 1 x 10"4 mbarl/s'm (1 ,1 bar, Helium) aufweist. Vorzugsweise weist der Formkörper bei einer Flächenpressung von 20 MPa mit Helium als Gas (40 bar Innendruck) in einem Temperaturbereich zwischen -100°C und 600°C und bevorzugt zwischen -20°C und 550°C eine gemäß der DIN EN 13555 bestimmte Impermeabilität von weniger als 10"2 mg/(s m) und besonders bevorzugt von weniger als 10"3 mg/(s m) auf.
In Weiterbildung des Erfindungsgedankens wird es vorgeschlagen, dass der sowohl organisches als auch anorganisches Additiv enthaltende Formkörper gemäß dieser Ausführungsform eine Dichte von wenigstens 0,7 g/cm3 und bevorzugt eine Dichte von 1 ,0 bis 1 ,8 g/cm3 aufweist.
Gemäß einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung ist der Formkörper zumindest im Wesentlichen flächig ausgebildet, und zwar beispielsweise als Platte, Band oder Folie. Unter im Wesentlichen flächig ausgebildeter Formkörper werden im Rahmen der vorliegenden Erfindung auch speziell aus- geformte Formkörper, wie beispielsweise Dichtungsringe, verstanden. Für flächig ausgebildete Formkörper lässt sich der Vorteil einer hohen Flächendichtigkeit besonders gut nutzen.
Um die mechanische Stabilität des Formköpers zu erhöhen, kann dieser mit einer zwei- oder dreidimensional strukturierten Verstärkung versehen sein. Für diesen Zweck eigen sich insbesondere strukturierte Bleche, wie beispielsweise Spießbleche.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung eines zuvor beschriebenen Formkörpers, welches die nachfolgenden Schritte umfasst:
Vermischen von Graphitpartikeln mit wenigstens einem festen Additiv zu einer Mischung, welche wenigstens ein anorganisches Additiv, eine Mischung aus wenigstens einem anorganischen Additiv und wenigstens einem organischen Additiv oder mehr als 10 Gew.-% organisches Additiv enthält, wobei das eingesetzte wenigstens eine Additiv einen gemäß der ISO 13320 bestimmten mittleren Partikeldurchmesser (d5o) zwischen 1 und 500 μιτι aufweist, sowie
Verdichten der in dem Verfahrensschritt a) erhaltenen Mischung.
Vorzugsweise wird das erfindungsgemäße Verfahren kontinuierlich durchgeführt, um so die erfindungsgemäßen Formkörper schnell, einfach und kostengünstig herzustellen.
Die kontinuierliche Verfahrensführung kann beispielsweise in einem Rohrleitungssystem durchgeführt werden, in dem das Vermischen gemäß dem Verfahrensschritt a) so durchgeführt wird, dass einem Graphitpartikel enthaltendem Gasstrom ein festes Additiv beispielsweise über eine Förderschnecke zugeführt wird und der so erhaltene, vermischte, Graphitpartikel und Additiv enthaltende Gasstrom zum Verdichten gemäß dem Verfahrensschritt b) durch eine Walze geführt wird. So lassen sich nicht nur die Graphitpartikel und das Additiv schnell und einfach miteinander vermischen, sondern insbesondere schonend, d.h. ohne größere me- chanische Beanspruchung, vermischen, so dass ein Zerkleinern, wie Zermahlen, der Feststoffpartikel bei dem Vermischen, wie dies bei dem Vermischen in einem statischen oder dynamischen Rührer für mehrere Minuten oder gar Stunden zwangsläufig auftritt, vermieden wird. Dadurch werden die vorstehenden vorteilhaften Eigenschaften der erfindungsgemäßen Formkörper, vor allem eine hohe Zugfestigkeit sowie eine hohe Querfestigkeit, begünstigt.
Bei dem erfindungsgemäßen Verfahren wird mithin vor dem Verdichten kein Vermischen in einer statischen oder dynamischen Rühreinrichtung für mehr als 5 Minuten, vor allem für mehr als 20 Minuten und insbesondere für mehr als 1 Stun- de durchgeführt.
Gemäß einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung wird die Graphitpartikel und Additiv enthaltende Mischung bei dem Verdichten oder nach dem Verdichten gemäß dem Verfahrensschritt b) geschmolzen und/oder gesintert. Im Rahmen der vorliegenden Erfindung wurde überraschenderweise festgestellt, dass dadurch die Impermeabilität des Formkörpers gegenüber Flüssigkeiten und Gasen weiter gesteigert werden kann. Ohne an eine Theorie gebunden werden zu wollen, wird es erachtet, dass durch ein solches Schmelzen bzw. Sintern die Verbindung der Graphitpartikel mit den Additivpartikeln ver- bessert wird und durch das dann dünnflüssige Additiv weitere Poren geschlossen und Kontaktpunkte erzeugt werden.
Zur endgültigen Formgebung kann ein separater Formgebungsschritt erfolgen, bei welchem der Formkörper beispielsweise durch Umformen, Profilieren, Fügen, Heißpressen, Thermoumfornnen, Umkanten, Tiefziehen, Prägen oder Stanzen ausgebildet wird.
Dabei kann der Formgebungsschritt vorteilhafterweise vor einem endgültigen Verdichtungsschritt erfolgen. Beispielsweise kann es bei dem Einsatz des Formkörpers als Dichtung vorteilhaft sein, den Formkörper durch ein Einklemmen zwischen zwei abzudichtende Teile zu verformen und anschließend endgültig zu verdichten, beispielsweise durch Temperaturanwendung. Eine Vorverdichtung kann jedoch schon vor dem Verformen durchgeführt werden, beispielsweise durch ein Verpressen.
Außerdem kann der Formkörper in einer Pressform erhitzt werden, wodurch bestimmte Profile, Formen, Wellen und/oder Prägungen erzeugt werden. Das Additiv stabilisiert diese Formen und verhindert das von herkömmlichen Graphitfolien bekannte Rückverformen. Die durch die vorliegende Erfindung erzeugte mechanische Belastbarkeit erlaubt es erstmalig, solche Verfahren anzuwenden.
Schließlich betrifft die vorliegende Erfindung die Verwendung eines zuvor beschriebenen graphithaltigen Formkörpers als Dichtungselement, als Bipolarplatte einer Brennstoffzelle, einer Redox-Flow-Batterie, als Wärmeleitfolie, als Formteil im Baubereich, insbesondere Wandverkleidung, Deckenverkleidung oder Wärmeleitplatte, als Stromableiter in Blei-Säure-Batterien oder in entsprechenden Hybridsystemen, als Folie oder Finne in PCM-Graphit-Speichern, als Auskleidungsmaterial, als Kontaktierungselement, als Elektrodenmaterial für Batteriesysteme, als Wärmeverteilungselement, als Flächenheizer, als Material zum Wickeln von Graphitrohren mit Verschweißbarkeit der einzelnen Lagen, als Stopfbuchspackung, als Packungen für chemische Kolonnen, als Wärmetauscherplatte oder als Wärmetauscherrohr. Für die erfindungsgemäße Verwendung des Formkörpers als Bipolarplatte in einer Redox-Flow-Batterie ist der Formkörper vorzugsweise als Folie oder Platte mit einer Dicke von 0,02 bis 1 ,5 mm, besonders bevorzugt mit einer Dicke von 0,2 bis 1 mm und ganz besonders bevorzugt mit einer Dicke von 0,5 bis 0,8 mm ausge- bildet. Dickere Platten können beispielsweise durch Verpressen, Verkleben, Heißkleben von zwei einzelnen Formkörpern hergestellt werden. Dies ist mit oder ohne Druck und durch Verwendung von Klebstoffen, Haftvermittlern oder durch das in dem Formkörper vorliegende Additiv möglich. Dabei ist die direkte Verschweiß- barkeit zweier Formkörper besonders bevorzugt.
Bei der erfindungsgemäßen Verwendung des Formkörpers als Bipolarplatte kann es besonders vorteilhaft sein, den erfindungsgemäßen Formkörper mit einem Filz, der vorzugsweise Graphit und/oder Kohlenstoff und besonders bevorzugt Graphit- und/oder Kohlenstofffasern enthält, zu verbinden. Dabei kann die Verbindung beispielsweise durch Verklebung erfolgen. Insbesondere kann ein leitfähiger Klebstoff verwendet werden, wie etwa ein mit Silberpartikeln, Kohlenstoffpartikeln oder Graphitpartikeln gefüllter Klebstoff. Eine solche Verbindung kann auch durch Aufschmelzen oder durch Sintern mit einem Kunststoff, insbesondere einem vorstehend für das organische Additiv beschriebenen Polymer, erfolgen. Im einfachsten Fall wird also ein Filz thermisch mit einem erfindungsgemäßen Formkörper ohne weitere Materialien verbunden.
Bei der vorstehend beschriebenen Ausführungsform beträgt die Dichte des Filzes vorzugsweise 0,01 bis 0,2 g/cm3. Dabei liegt der spezifische elektrische Wider- stand, in der Filzebene gemessen, bevorzugt zwischen 0,5 und 15 Ohm mm und der spezifische elektrische Widerstand, senkrecht zu der Filzebene gemessen, bevorzugt zwischen 2 und 20 Ohm mm. Diese Werte beziehen sich auf eine Kompression des Filzes von 20 bis 30 %. Bei stärkerer bzw. schwächerer Kompression ist der spezifische elektrische Widerstand entsprechend niedriger bzw. höher. Die spezifische Oberfläche des Filzes beträgt vorzugsweise zwischen 0,2 und 300 m2/g.
Vor allem bei der erfindungsgemäßen Verwendung des Formkörpers als Formteil im Baubereich, insbesondere als Wandverkleidung, Deckenverkleidung oder Wärmeleitplatte, hat es sich als vorteilhaft erwiesen, den Formkörper plastisch verformbar und beispielsweise in der Form einer Platte vorzusehen, so dass der Formkörper am Einbauort einfach an vorgegebene Konturen von Wänden oder Decken, beispielsweise Kanten, Krümmungen, Ecken, Friesen und dergleichen, angeformt werden kann. Anschließend kann die Platte dann am Einbauort, beispielsweise durch Erhitzen der noch plastisch verformbaren Platte im eingebauten Zustand, endverfestigt werden.
Grundsätzlich kann der erfindungsgemäße Formkörper vor oder nach einer voll- ständigen Aushärtung oder vor oder nach einem Aufschmelzen und/oder Sintern des Additivs verwendet werden.
Alternativ dazu ist es auch möglich, den Formkörper nach einem teilweisen Aushärten, Aufschmelzen und/oder Sintern des Additivs zu verwenden, wobei das endgültige Aushärten, Aufschmelzen und/oder Sintern des Additivs beispielsweise bei der Verwendung bei der Betriebstemperatur erfolgt. Bei dieser Ausführungsform tritt beispielsweise eine hohe Dichtigkeit des Formkörpers erst im Laufe des Einsatzes ein. Dies hat den Vorteil, dass bei dem Einbau die Formbarkeit zur Erzielung einer besseren Anpassung des Formkörpers beispielsweise an dicht zu verbindende Teile möglich ist.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung eines zuvor beschriebenen graphithaltigen Formkörpers in einem Verfahren zum Verbinden des Formkörpers mit einem anderen Formkörper, wobei der andere Form- körper beispielsweise eine Graphitfolie, eine Metallfolie, ein Metallblech, ein Me- tallblock, ein textiles Flächengebilde, bevorzugt ein Filzkörper, oder auch ein zuvor beschriebener Formkörper sein kann. Dabei findet das Verbinden der Formkörper ohne zusätzlichen Klebstoff statt. Ein solcher Klebstoff ist bei der erfindungsge- mäßen Verwendung entbehrlich, weil das in dem Formkörper enthaltene organi- sehe Additiv als Bindemittel wirkt und so eine Verschweißung der beiden Körper zulässt.
Nachfolgend wird die vorliegende Erfindung rein beispielhaft anhand vorteilhafter Ausführungsformen und unter Bezugnahme auf die beigefügten Zeichnungen beschrieben.
Dabei zeigen:
Figur 1 einen graphithaltigen Formkörper gemäß dem Stand der Technik und
Figur 2 einen graphithaltigen Formkörper gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. In der Figur 1 ist ein schematischer Querschnitt eines als Platte ausgebildeten graphithaltigen Formkörpers 1 gemäß dem Stand der Technik dargestellt. Dieser Formkörper 1 enthält verpressten, expandierten Graphit 2 und ein flüssiges Bindemittel 3, wobei das Bindemittel 3 nachträglich durch Flüssig- oder Schmelzimprägnierung von den Seitenflächen des Formkörpers 1 in den Formkörper 1 ein- gebracht worden ist. Aufgrund des Einbringens des Bindemittels 3 durch Flüssigoder Schmelzimprägnierung ist dieses nur ungleichmäßig und vor allem oberflächlich in den Formkörper 1 eingedrungen, weswegen vor allem der zwischen den Oberflächenbereichen liegende innere Bereich, wie beispielsweise der in der ovalen, gestrichelten Umrandung liegende Bereich 4, nur wenig Bindemittel 3 enthält bzw. nahezu bindemittelfrei ist. Aufgrund dessen variieren die Eigenschaften des Formkörpers 1 , insbesondere die mechanische Festigkeit und die Dichtigkeit, des Formkörpers 1 vor allem in der Tiefenrichtung bzw. z-Richtung, wobei der zwischen den Oberflächenbereichen liegende innere Bereich des Formkörpers 1 eine schlechtere Dichtigkeit und schlechtere mechanische Eigenschaften als die Ober- flächenbereiche des Formkörpers 1 aufweist.
Der in der Figur 2 dargestellte Formkörper 5 gemäß der vorliegenden Erfindung besteht aus Partikeln 6 aus expandiertem Graphit, welche in bekannter Weise wurm- oder ziehharmonikaförmig ausgestaltet sind, sowie aus Additivpartikeln 7. Im Unterschied zu dem in der Figur 1 gezeigten Formkörper 1 gemäß dem Stand der Technik sind die Additivpartikel 7 in dem erfindungsgemäßen Formkörper 5 in allen Dimensionen des Formkörpers 5 gleichmäßig verteilt, und zwar insbesondere auch in dem zwischen den Oberflächenbereichen liegenden inneren Bereich des Formkörpers 5.
Zur Herstellung des in der Figur 2 dargestellten erfindungsgemäßen Formkörpers 5 wurden zunächst die Graphitpartikel 6 mit den festen Additivpartikeln 7 homogen vermischt, bevor die so hergestellte Mischung verdichtet und zu der gewünschten Form geformt wurde.
Nachfolgend wird die vorliegende Erfindung anhand von diese erläuternden, diese aber nicht einschränkenden Beispielen weiter beschrieben.
Beispiele
Beispiel 1
Expandierter Graphit mit einem Schüttgewicht von 3,5 g/l wurde mit einem Siliconharzpulver, nämlich Silres MK der Firma Wacker Chemie AG in Burghausen, Deutschland, zu einer 80 Gew.-% expandierten Graphit und 20 Gew.-% Silicon- harzpulver enthaltenden Mischung versetzt und anschließend in einem Behälter für 1 Minute vermischt.
Die so erhaltene Mischung wurde dann in ein Stahlrohr mit 90 mm Durchmesser überführt, mit einem Druckkolben durch das eigene Körpergewicht verpresst und als Vorpressling mit einer Dichte von ca. 0,07 g/cm3 entnommen. Anschließend wurde der Vorpressling mit einer Presse auf die gewünschte Folienstärke von 1 mm komprimiert und die so entstandene dotierte Folie wurde bei 180°C für 60 Minuten konditioniert, um den Kunststoff aufzuschmelzen.
Zwei dieser Folien wurden mit einem Spießblech mit einer Dicke von 0,1 mm verpresst und es wurde die Leckagerate dieses Formkörpers gemäß der DIN EN 13555 mit Helium als Prüfgas (40 bar Innendruck) bestimmt. In der untenstehenden Tabelle 1 sind die bestimmten Flächenpressungen angegeben, welche benötigt werden, um eine bestimmte Leckageklasse zu erreichen.
Vergleichsbeispiel 1 Gemäß dem für das Beispiel 1 beschriebenen Verfahren wurden zwei Graphitfolien hergestellt, ausgenommen, dass zu deren Herstellung ausschließlich expandierter Graphit und kein Additiv eingesetzt wurde.
Zwei dieser Folien wurden mit einem Spießblech mit einer Dicke von 0,1 mm ver- presst und es wurde die Leckagerate dieses Formkörpers gemäß der DIN EN 13555 mit Helium als Prüfgas (40 bar Innendruck) bestimmt.
Die erhaltenen Werte sind in der nachfolgenden Tabelle 1 zusammengefasst. Tabelle 1
Es ist deutlich zu erkennen, dass durch das Additiv die Impermeabilität verbessert wird. Durch den Zusatz von Additiv wird schon bei deutlich niedrigeren Flächenpressungen ein bestimmtes Dichtigkeitsniveau erreicht.
Beispiele 2 und 3 Expandierter Graphit mit einem Schüttgewicht von 3,5 g/l wurde mit einem anorganischem Füllstoff, nämlich Ammoniumdihydrogenphosphat (NH H2PO4) in dem Beispiel 2 und Borcarbid (B C) in dem Beispiel 3, zu einer 90 Gew.-% expandierten Graphit und 10 Gew.-% anorganischen Füllstoff enthaltenden Mischung versetzt und anschließend in einem Behälter für 1 Minute vermischt.
Die so erhaltene Mischung wurde dann in ein Stahlrohr mit 90 mm Durchmesser überführt, mit einem Druckkolben durch das eigene Körpergewicht verpresst und als Vorpressling mit einer Dichte von ca. 0,07 g/cm3 entnommen. Anschließend wurde der Vorpresslinge mit einer Presse auf die gewünschte Folienstärke von 1 mm komprimiert und die so entstandene dotierte Folie wurde bei 180°C für 60 Minuten konditioniert.
Für beide Proben wurde die Leckagerate nach DIN 28090-1 mit Stickstoff als Prüfgas und 32 MPa Flächenpressung bezogen auf ein Flächengewicht des Formkörpers von 2.000 g/m2 gemessen. Die erhaltenen Werte sind in der nachfolgenden Tabelle 2 zusammengefasst.
Verqleichsbeispiel 2
Gemäß den für die Beispiele 2 und 3 beschriebenen Verfahren wurde eine Graphitfolie hergestellt, ausgenommen, dass zu deren Herstellung ausschließlich expandierter Graphit und kein Additiv eingesetzt wurde.
Für die Probe wurde die Leckagerate nach DIN 28090-1 mit Stickstoff als Prüfgas und 32 MPa Flächenpressung bezogen auf ein Flächengewicht des Formkörpers von 2.000 g/m2 gemessen.
Die erhaltenen Werte sind in der nachfolgenden Tabelle 2 zusammengefasst.
Tabelle 2
VBsp.: Vergleichsbeispiel
Bsp.: Beispiel
Aus den in der Tabelle 2 wiedergegebenen Werten lässt sich deutlich erkennen, dass durch den Zusatz des anorganischen Additivs die Leckagerate des Formköpers beträchtlich verringert wird. Zudem wird nach Ausbildung des nun im ganzen Folienverbund vorliegenden glasartigen Netzwerkes die Druckfestigkeit positiv beeinflusst.
Beispiele 4 bis 7
Expandierter Graphit mit einem Schüttgewicht von 3,5 g/l wurde mit Ammoniumdi- hydrogenphosphat (NH H2PO4) für die Beispiele 4 und 5 und Ammoniumhydro- genphosphat (NH )2HPO4für die Beispiele 6 und 7 als anorganischem Füllstoff zu 95 Gew.-% expandierten Graphit und 5 Gew.-% anorganischen Füllstoff enthal- tenden Mischungen versetzt, welche anschließend in einem Behälter für 1 Minute vermischt wurden.
Die so erhaltene Mischungen wurde dann in ein Stahlrohr mit 90 mm Durchmesser überführt, mit einem Druckkolben durch das eigene Körpergewicht verpresst und als Vorpressling mit einer Dichte von ca. 0,07 g/cm3 entnommen. Anschließend wurde die Vorpressling mit einer Presse auf die gewünschte Folienstärke von 1 mm komprimiert und die so entstandene dotierten Folien wurden bei verschiedenen Bedingungen, welche in der nachfolgenden Tabelle 3 zusammenge- fasst sind, konditioniert.
Für alle Proben wurde die Leckagerate nach DIN 28090-1 mit Stickstoff als Prüfgas und 32 MPa Flächenpressung bezogen auf ein Flächengewicht des Formkörpers von 2.000 g/m2 gemessen.
Die erhaltenen Werte sind in der nachfolgenden Tabelle 3 zusammengefasst.
Verqleichsbeispiel 3 Gemäß den für die Beispiele 4 bis 7 beschriebenen Verfahren wurde eine Graphitfolie hergestellt, ausgenommen, dass zu deren Herstellung ausschließlich expandierter Graphit und kein Additiv eingesetzt wurde. Für die Probe wurde die Leckagerate nach DIN 28090-1 mit Stickstoff als Prüfgas und 32 MPa Flächenpressung bezogen auf ein Flächengewicht des Formkörpers von 2.000 g/m2 gemessen.
Die erhaltenen Werte sind in der nachfolgenden Tabelle 3 zusammengefasst.
Tabelle 3
Bsp.: Beispiel
Aus den in der Tabelle 3 wiedergegebenen Werten lässt sich deutlich erkennen, dass durch den Zusatz des anorganischen Additivs die Leckagerate des Formköpers beträchtlich verringert wird und diese durch die Art der Konditionierung zusätzlich beeinflusst werden kann.
Beispiel 8 Expandierter Graphit mit einem Schüttgewicht von 3,5 g/l wurde mit einem Polypropylenpulver, nämlich mit Licocene PP 2602 der Firma Clariant, Deutschland, zu einer 80 Gew.-% expandierten Graphit und 20 Gew.-% Polypropylenpolymerpulver enthaltenden Mischung versetzt und anschließend in einem Behälter für 1 Minute vermischt.
Die so erhaltene Mischung wurde dann in ein Stahlrohr mit 90 mm Durchmesser überführt, mit einem Druckkolben durch das eigene Körpergewicht verpresst und als Vorpressling mit einer Dichte von ca. 0,07 g/cm3 entnommen. Anschließend wurde der Vorpressling mit einer Presse auf die gewünschte Folienstärke von 0,6 mm komprimiert und die so entstandene dotierte Folie wurde bei 180°C für 60 Minuten ausgelagert, um den Kunststoff aufzuschmelzen.
Es wurde die Impermeabilität des Formkörpers in z-Richtung bei einer Flächen- pressung von 20 MPa mit Helium als Gas (1 bar Helium Prüfgassinnendruck) in einer Messapparatur in Anlehnung an die DIN 28090-1 bei Raumtemperatur bestimmt. Zudem wurde die Zugfestigkeit des graphithaltigen Formkörper gemäß der DIN ISO 1924-2 bestimmt. Die erhaltenen Werte sind in der nachfolgenden Tabelle 4 zusammengefasst.
Verqleichsbeispiel 4 Gemäß dem für das Beispiel 8 beschriebenen Verfahren wurde ein Formkörper in Form einer Graphitfolien hergestellt, ausgenommen, dass bei der Herstellung ausschließlich expandierter Graphit und kein Additiv eingesetzt wurde.
Es wurde die Impermeabilität des Formkörpers in z-Richtung bei einer Flächen- pressung von 20 MPa mit Helium als Gas (1 bar Helium Prüfgassinnendruck) in einer Messapparatur in Anlehnung an die DIN 28090-1 bei Raumtemperatur bestimmt. Zudem wurde die Zugfestigkeit des graphithaltigen Formkörper gemäß der DIN ISO 1924-2 bestimmt. Die erhaltenen Werte sind in der nachfolgenden Tabelle 4 zusammengefasst.
Tabelle 4
VBsp.: Vergleichsbeispiel
Bsp.: Beispiel
Es ist deutlich zu erkennen, dass durch den Zusatz des organischen Additivs in eine Graphitfolie deren Impermeabilitat insbesondere auch in der z-Richtung verbessert wird und auch die Zugfestigkeit im Vergleich zu einem additivfreien graphithaltigen Formkörpers deutlich gesteigert werden kann.
Bezugszeichenliste
1 Formkörper gemäß dem Stand der Technik
2 (expandierter) Graphit
3 Bindemittel
4 Bereich des Formkörpers
5 Formkörper gemäß der vorliegenden Erfindung 6 Partikel aus (expandiertem) Graphit
7 Additivpartikel

Claims

Patentansprüche
Graphithaltiger Formkörper (5) erhältlich durch ein Verfahren, bei dem Graphitpartikel (6) mit wenigstens einem festen Additiv (7) zu einer Mischung, welche wenigstens ein anorganisches Additiv (7), eine Mischung aus wenigstens einem anorganischen Additiv (7) und wenigstens einem organischen Additiv (7) oder mehr als 10 Gew.-% organisches Additiv (7) enthält, vermischt werden und die so erhaltene Mischung anschließend verdichtet wird, wobei das eingesetzte wenigstens eine Additiv (7) einen gemäß der ISO 13320 bestimmten mittleren Partikeldurchmesser (d5o) zwischen 1 und 500 μιτι aufweist.
Formkörper (5) nach Anspruch 1 ,
dadurch gekennzeichnet, dass
die Graphitpartikel (6), das wenigstens eine feste Additiv (7) und die daraus hergestellte Mischung vordem Verdichten nicht geschmolzen und nicht gesintert werden.
Formkörper (5) nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
als Graphitpartikel (6) Partikel aus expandiertem Graphit (6) eingesetzt werden, welcher bevorzugt aus Naturgraphit mit einem gemäß dem in der DIN 66165 spezifizierten Messverfahren und Siebsatz bestimmten mittleren Partikeldurchmesser (d5o) von wenigstens 149 μιτι und bevorzugt von wenigstens 180 μιτι hergestellt worden ist.
4. Formkörper (5) nach Anspruch 3,
dadurch gekennzeichnet, dass die Partikel aus expandiertem Graphit (6) ein Schüttgewicht von 0,5 bis 95 g/l, vorzugsweise von 1 bis 25 g/l und besonders bevorzugt von 2 bis 10 g/l aufweisen.
Formkörper (5) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
dieser bei einer Flächenpressung von 20 MPa mit Helium als Gas (40 bar Innendruck) eine gemäß der DIN EN 13555 bei Raumtemperatur gemessene Impermeabilität von weniger als 10"1 mg/(s'm), bevorzugt von weniger als 10"2 mg/(s m) und besonders bevorzugt von weniger als 10"3 mg/(s m) aufweist.
Formkörper (5) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
dieser bei einer Flächenpressung von 20 MPa mit Helium als Gas (1 bar Helium Prüfgassinnendruck) in einer Messapparatur in Anlehnung an die DIN 28090-1 bei Raumtemperatur eine gemessene Impermeabilität in der z-Richtung von weniger als 10-1 mg/(s m2), bevorzugt von weniger als 10-2 mg/(s m2) und besonders bevorzugt von weniger als 10-3 mg/(s m2) aufweist.
Formkörper (5) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
die zu verdichtende Mischung 1 bis 50 Gew.-%, bevorzugt 2 bis 20 Gew.-% und besonders bevorzugt 3 bis 10 Gew.-% eines oder mehrerer anorganischer Additive (7) enthält.
Formkörper (5) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das wenigstens eine anorganische Additiv eine Schmelztemperatur und/oder Glasübergangstemperatur von maximal 1.800 °C, bevorzugt zwischen 50 und 1.000 °C und besonders bevorzugt zwischen 100 und 650 °C aufweist.
9. Formkörper (5) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
die zu verdichtende Mischung mehr als 10 bis 50 Gew.-%, bevorzugt 10 bis 25 Gew.-% und besonders bevorzugt 10 bis 20 Gew.-% eines oder mehrerer organischer Additive (7) enthält.
10. Formkörper (5) nach Anspruch 9,
dadurch gekennzeichnet, dass
die zu verdichtende Mischung als organisches Additiv (7) nur fluorfreie(s) Polymer(e) enthält.
11. Formkörper (5) nach Anspruch 9 oder 10,
dadurch gekennzeichnet, dass
die zu verdichtende Mischung als organisches Additiv (7) wenigstens ein Polymer ausgewählt aus der Gruppe bestehend aus Siliconharzen, Polyole- finen, bevorzugt Polyethylen oder Polypropylen, Epoxidharzen, Phenolharzen, Melaminharzen, Harnstoffharzen, Polyesterharzen, Polyetheretherke- tonen, Benzoxazinen, Polyurethanen, Nitrilkautschuken, bevorzugt Acryl- nitril-Butadien-Styrol-Kautschuk, Polyamiden, Polyimiden, Polysulfonen und beliebigen Mischungen oder Copolymeren von zwei oder mehr der vorgenannten Verbindungen enthält.
12. Formkörper (5) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass organische(s) Additiv(e) (7) mit einem gemäß der ISO 13320 bestimmten mittleren Partikeldurchmesser (d5o) von 1 bis 150 μιτι, vorzugsweise von 2 bis 30 μιτι und besonders bevorzugt von 3 bis 10 μιτι eingesetzt
wird/werden.
13. Formkörper (5) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
die zu verdichtende Mischung wenigstens ein anorganisches Additiv (7) und wenigstens ein organisches Additiv (7) enthält.
14. Formkörper (5) nach Anspruch 13,
dadurch gekennzeichnet, dass
dieser bei einer Flächenpressung von 20 MPa mit Helium als Gas (40 bar Innendruck) eine gemäß der DIN EN 13555 in einem Temperaturbereich von -100 bis 300 °C gemessene Impermeabilität von weniger als 10"1 mg/(s'm) aufweist und der Formkörper bei einer Flächenpressung von 32 MPa eine nach der TA-Luft in einem Temperaturbereich von 300 bis 600 °C nach einer Auslagerung für 48 Stunden gemessene Leckagerate von weniger als 1 x 10-4 mbarl/(s'm) (1,1 bar, Helium) aufweist.
15. Formkörper (5) nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
dieser nur anorganisches Additiv enthält und eine Dichte von 0,7 bis 1 ,4 g/cm3 aufweist, dieser nur organisches Additiv enthält und eine Dichte von 1 ,0 bis 1 ,8 g/cm3 aufweist oder dieser anorganisches und organisches Additiv enthält und eine Dichte von 0,7 bis 1,8 g/cm3 aufweist.
16. Verfahren zur Herstellung eines Formkörpers (5) nach zumindest einem der vorhergehenden Ansprüche, welches die nachfolgenden Schritte umfasst: a) Vermischen von Graphitpartikeln (6) mit wenigstens einem festen Additiv (7) zu einer Mischung, welche wenigstens ein anorganisches Additiv (7), eine Mischung aus wenigstens einem anorganischen Additiv (7) und wenigstens einem organischen Additiv (7) oder mehr als 10 Gew.-% organisches Additiv (7) enthält, wobei das eingesetzte wenigstens eine Additiv (7) einen gemäß der ISO 13320 bestimmten mittleren Partikeldurchmesser (d5o) zwischen 1 und 500 μιτι aufweist, sowie
b) Verdichten der in dem Schritt a) erhaltenen Mischung.
17. Verfahren nach Anspruch 16,
dadurch g e k e n n z e i c h n e t, dass
dieses zusätzlich einen Formgebungsschritt umfasst, bei welchem der Formkörper (5) durch Umformen, Profilieren, Heißpressen, Thermoumfor- men, Umkanten, Tiefziehen, Prägen oder Stanzen ausgebildet wird.
18. Verwendung eines graphithaltigen Formkörpers (5) nach zumindest einem der Ansprüche 1 bis 15 als Dichtungselement, als Bipolarplatte einer Brennstoffzelle, bevorzugt einer Redox-Flow-Batterie, als Wärmeleitfolie, als Formteil im Baubereich, insbesondere Wandverkleidung, Deckenverkleidung oder Wärmeleitplatte, als Stromableiter in Blei-Säure-Batterien o- der entsprechenden Hybridsystemen, als Folie oder Finne in PCM-Graphit- Speichern, als Auskleidungsmaterial, als Kontaktierungselement, als Elektrodenmaterial für Batteriesysteme, als Wärmeverteilungselement, als Flächenheizer, als Material zum Wickeln von Graphitrohren mit Verschweiß- barkeit der einzelnen Lagen, als Stopfbuchspackung, als Packungen für chemische Kolonnen, als Wärmetauscherplatte oder als Wärmetauscherrohr. Verwendung eines graphithaltigen Formkörpers (5) nach zumindest einem der Ansprüche 1 bis 15 in einem Verfahren zum Verbinden des Formkörpers (5) mit einem anderen Formkörper, insbesondere durch Verschweißen, wobei der andere Formkörper ein Formkörper nach einem der Ansprüche 1 bis 15, eine Graphitfolie, eine Metallfolie, ein Metallblech, ein Metallblock oder ein textiles Flächengebilde, bevorzugt ein Filzkörper, ist.
EP10803462A 2009-12-31 2010-12-31 Graphithaltiger formkörper und verfahren zu seiner herstellung Withdrawn EP2519480A2 (de)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
DE102009055443A DE102009055443A1 (de) 2009-12-31 2009-12-31 Decken- oder Wandelement
DE102009055440A DE102009055440A1 (de) 2009-12-31 2009-12-31 Decken- oder Wandelement mit einem Heiz- oder Kühlregister
DE102009055441A DE102009055441A1 (de) 2009-12-31 2009-12-31 Einrichtung zur Temperierung eines Raumes
DE200910055444 DE102009055444A1 (de) 2009-12-31 2009-12-31 Graphithaltiger Formkörper und Verfahren zu seiner Herstellung
DE102009055442A DE102009055442A1 (de) 2009-12-31 2009-12-31 Graphithaltige Platte und Verfahren zur Herstellung einer graphithaltigen Platte
DE201010002000 DE102010002000A1 (de) 2010-02-16 2010-02-16 Wärmeableiter und elektrischer Energiespeicher
DE201010002434 DE102010002434B4 (de) 2010-02-26 2010-02-26 Temperiersystem
DE102010002989A DE102010002989A1 (de) 2010-03-17 2010-03-17 Materialzusammensetzung, deren Herstellung und Verwendung
DE102010041085 2010-09-20
DE102010041822A DE102010041822A1 (de) 2010-09-30 2010-09-30 Thermosolares Verkleidungselement
US12/915,340 US20120107662A1 (en) 2010-10-29 2010-10-29 Thermal management matrix
PCT/EP2010/070976 WO2011080336A2 (de) 2009-12-31 2010-12-31 Graphithaltiger formkörper und verfahren zu seiner herstellung

Publications (1)

Publication Number Publication Date
EP2519480A2 true EP2519480A2 (de) 2012-11-07

Family

ID=43755122

Family Applications (3)

Application Number Title Priority Date Filing Date
EP10798152.4A Active EP2519479B1 (de) 2009-12-31 2010-12-31 Schichtverbundwerkstoff zur verwendung in einer redox-flow-batterie
EP10803103A Withdrawn EP2519576A1 (de) 2009-12-31 2010-12-31 Graphithaltige platte und verfahren zur herstellung einer graphithaltigen platte
EP10803462A Withdrawn EP2519480A2 (de) 2009-12-31 2010-12-31 Graphithaltiger formkörper und verfahren zu seiner herstellung

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP10798152.4A Active EP2519479B1 (de) 2009-12-31 2010-12-31 Schichtverbundwerkstoff zur verwendung in einer redox-flow-batterie
EP10803103A Withdrawn EP2519576A1 (de) 2009-12-31 2010-12-31 Graphithaltige platte und verfahren zur herstellung einer graphithaltigen platte

Country Status (8)

Country Link
US (1) US20130040194A1 (de)
EP (3) EP2519479B1 (de)
JP (2) JP2013516374A (de)
KR (2) KR20120112676A (de)
CA (3) CA2786180A1 (de)
ES (1) ES2641013T3 (de)
SG (1) SG182294A1 (de)
WO (3) WO2011080336A2 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785023B2 (en) 2008-07-07 2014-07-22 Enervault Corparation Cascade redox flow battery systems
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
PL2631584T3 (pl) * 2012-02-22 2014-09-30 Zehnder Verkaufs Und Verwaltungs Ag Grzejnik
DE202012003810U1 (de) 2012-03-15 2013-02-08 Sgl Carbon Se Wärmeleitendes Verbundelement auf Basis von expandiertem Graphit
DE102012024753A1 (de) 2012-12-19 2014-06-26 Eisenhuth Gmbh & Co. Kg Rahmen mit integrierter Bipolarplatte für elektrochemischen Reaktor
JP2015138692A (ja) * 2014-01-23 2015-07-30 東洋紡株式会社 一体化炭素電極
KR101580405B1 (ko) * 2014-08-14 2015-12-28 일도에프엔씨(주) 레독스 플로우 배터리용 플로우프레임 일체형 분리판 바이폴라 플레이트
JPWO2016084864A1 (ja) * 2014-11-25 2017-08-31 東洋炭素株式会社 膨張黒鉛シート及びその膨張黒鉛シートを用いた電池
KR102000658B1 (ko) * 2015-08-21 2019-07-16 롯데케미칼 주식회사 레독스 흐름 전지용 전극의 제조 방법 및 레독스 흐름 전지
KR101693438B1 (ko) * 2015-09-15 2017-01-05 한국해양대학교 산학협력단 생물전기화학전지용 전극 결합제 및 그 제조 방법
TW201817597A (zh) * 2016-05-26 2018-05-16 東洋炭素股份有限公司 複合體及複合體之製造方法
CN105968706A (zh) * 2016-07-11 2016-09-28 南通星球石墨设备有限公司 一种石墨管
CN106848346B (zh) * 2017-03-06 2019-07-26 昆山知氢信息科技有限公司 液流电池用双极板及其制备方法
CN109096693A (zh) * 2018-07-10 2018-12-28 天长市优信电器设备有限公司 一种耐撕裂电动汽车充电器外壳
DE102021203265B3 (de) 2021-03-31 2022-09-22 Sgl Carbon Se Separatorplatte
EP4163090A1 (de) 2021-10-08 2023-04-12 Branson Ultraschall Niederlassung der Emerson Technologies GmbH & Co. oHG Durchgangsübertragungverbindungsvorrichtung, verbindungsverfahren mit verwendung der vorrichtung sowie verbindungsstruktur
KR102653132B1 (ko) 2021-11-11 2024-04-02 금성테크 주식회사 재활용된 흑연 압출 성형체 및 이의 제조방법
KR102685517B1 (ko) 2023-09-27 2024-07-15 김태정 흑연전극봉용 흑연압출재 및 이를 통해 형성된 흑연전극봉

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6794078B1 (en) * 1999-12-06 2004-09-21 Hitachi Chemical Company, Ltd. Fuel cell, fuel cell separator, and method of manufacture thereof

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB991581A (en) 1962-03-21 1965-05-12 High Temperature Materials Inc Expanded pyrolytic graphite and process for producing the same
US3492197A (en) * 1965-03-22 1970-01-27 Dow Chemical Co Novel compressed cohered graphite structures and method of preparing same
JPS5756512B2 (de) * 1974-07-19 1982-11-30
US4214969A (en) * 1979-01-02 1980-07-29 General Electric Company Low cost bipolar current collector-separator for electrochemical cells
JPS62162671A (ja) * 1986-01-14 1987-07-18 新日本製鐵株式会社 炉底耐火物目地材用膨張黒鉛シ−ト
JPH0273881A (ja) * 1988-09-09 1990-03-13 Agency Of Ind Science & Technol グランドパッキンの製造法
JPH06290796A (ja) * 1993-03-30 1994-10-18 Shin Etsu Polymer Co Ltd 2次電池用反応電極層付双極板
US5882570A (en) * 1994-06-20 1999-03-16 Sgl Technic, Inc. Injection molding graphite material and thermoplastic material
JP3259751B2 (ja) * 1994-12-28 2002-02-25 日本電信電話株式会社 温度差電池
JP3976822B2 (ja) * 1996-09-30 2007-09-19 積水化学工業株式会社 可撓性グラファイト複合難燃組成物及び難燃シート
JP3455466B2 (ja) * 1998-04-07 2003-10-14 日立化成工業株式会社 燃料電池及び燃料電池用セパレータ
WO2000016424A1 (de) * 1998-09-16 2000-03-23 Schunk Kohlenstofftechnik Gmbh Kunststoffplatte sowie verfahren zur herstellung einer solchen
CH710862B1 (de) * 1999-11-26 2016-09-15 Imerys Graphite & Carbon Switzerland Sa Verfahren zur Herstellung von Graphitpulvern mit erhöhter Schüttdichte.
JP2001196085A (ja) * 2000-01-14 2001-07-19 Toray Ind Inc 多孔質導電シート
DE10060839A1 (de) * 2000-12-07 2002-06-13 Sgl Carbon Ag Imprägnierter Körper aus expandiertem Graphit
JP2004043549A (ja) * 2002-07-09 2004-02-12 Chuo Techno Service:Kk 非凝集性雲母粒子、その製法及び雲母粒子含有塗工層を有する防湿性紙
JP2004123805A (ja) * 2002-09-30 2004-04-22 Daikyo Kagaku Kk 難燃性ポリビニルアルコール合成繊維とその製造方法
JP2004303453A (ja) * 2003-03-28 2004-10-28 Nichias Corp 燃料電池用セパレータの製造方法
CA2518273C (en) * 2003-03-31 2010-10-05 Young Woo Shin Manufacturing method of expanded graphite products
DE10341255B4 (de) * 2003-09-04 2005-06-16 Sgl Carbon Ag Wärmeleitplatten aus expandiertem Graphit sowie Verfahren zu ihrer Herstellung
DE10356376B3 (de) * 2003-12-03 2005-06-09 Sgl Carbon Ag Kohlenstoffsteine mit geeigneter Porosität und Verfahren zu deren Herstellung
EP1588994B1 (de) * 2004-04-16 2007-10-24 Sgl Carbon Ag Verfahren zur Herstellung von Formkörpern aus expandiertem Graphit
CA2591542A1 (en) * 2004-12-20 2006-06-29 Dainippon Ink And Chemicals, Inc. Sheet molding material for fuel cell bipolar plate, method of producing same and bipolar plate or fuel cell
WO2007114443A1 (ja) * 2006-04-05 2007-10-11 National Institute Of Advanced Industrial Science And Technology 黒鉛粘土複合材及びその製造方法、並びにこの複合材からなるガスケット又はパッキン、及びこの複合材に用いられる粘土分散液
US20080277628A1 (en) * 2007-05-08 2008-11-13 Aruna Zhamu Exfoliated graphite composite compositions for fuel cell flow field plates
DE102007037435B4 (de) * 2007-08-08 2012-03-22 Sgl Carbon Se Schichtstoff
JP5169517B2 (ja) * 2008-06-16 2013-03-27 藤倉化成株式会社 導電性接着剤および電子部品
CN101538381B (zh) * 2009-04-22 2011-06-15 南京固柏橡塑制品有限公司 纤维增强石墨橡胶板

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6794078B1 (en) * 1999-12-06 2004-09-21 Hitachi Chemical Company, Ltd. Fuel cell, fuel cell separator, and method of manufacture thereof

Also Published As

Publication number Publication date
KR20120112676A (ko) 2012-10-11
ES2641013T3 (es) 2017-11-07
SG182294A1 (en) 2012-08-30
KR20120110151A (ko) 2012-10-09
EP2519479B1 (de) 2017-08-23
WO2011080336A3 (de) 2011-10-20
WO2011080334A2 (de) 2011-07-07
US20130040194A1 (en) 2013-02-14
WO2011080334A3 (de) 2011-10-20
CA2786143A1 (en) 2011-07-07
EP2519479A2 (de) 2012-11-07
WO2011080339A1 (de) 2011-07-07
CA2786180A1 (en) 2011-07-07
JP2013516374A (ja) 2013-05-13
WO2011080336A2 (de) 2011-07-07
CA2786134A1 (en) 2011-07-07
JP2013527964A (ja) 2013-07-04
EP2519576A1 (de) 2012-11-07

Similar Documents

Publication Publication Date Title
EP2519480A2 (de) Graphithaltiger formkörper und verfahren zu seiner herstellung
US20130032278A1 (en) Graphite-containing molded body and method for the production thereof
DE69612798T2 (de) Mit der papierherstellungstechnik hergestellte verpressbare folie und verfahren zum herstellen von verpressten folien mit geringen gewicht
EP1213272B1 (de) Imprägnierter Körper aus expandiertem Graphit
EP0059860B2 (de) Wärmedämmender Pressstoff auf der Basis von aus der Flammenhydrolyse gewonnenem mikroporösem Oxidaerogel, sowie Verfahren zu seiner Herstellung, eine daraus hergestellte Folie und ein damit hergestelltes kaschiertes Wärmedämmelement
DE3247799C2 (de) Brennstoffzellenelektrodensubstrat und Verfahren zu seiner Herstellung
DE69611778T2 (de) Separator für feststoffpolyelektrolytbrennstoffzellen und dessen herstellung
CN102781876A (zh) 含石墨的模制体及其制备方法
WO1997010188A1 (de) Faserhaltiges aerogel-verbundmaterial
JPS61501398A (ja) 低密度繊維強化可塑性複合体
EP0175877B1 (de) Polygranularer Kohlenstoffkörper und Verfahren zu seiner Herstellung
DE60222955T2 (de) Brennstoffzellenseparator und Verfahren zur Herstellung desselben
DE202017003886U1 (de) Türmodul
EP3536494A1 (de) Einstufiges fügeverfahren für verbundkörper aus faserverstärktem bauteil und aerogel
DE3413646A1 (de) Undurchlaessige, kohlenstoffhaltige formkoerper und verfahren zu deren herstellung
EP0315169B1 (de) Wärmedämmformkörper mit Umhüllung
DE19836267A1 (de) Elektrisch leitfähiges Schichtmaterial
WO2021116153A2 (de) Flächenmaterial, sandwichmaterial, elektrochemische speichereinheit und verfahren zur herstellung eines flächenmaterials
DE3603305C1 (de) Verfahren zum Herstellen eines aus mehreren Schichten bestehenden,zwischen den Schichten Graphitfolie enthaltenden fuer Fluide undurchlaessigen Kohlenstoff- oder Graphitkoerpers und dessen Verwendung
DE10128346A1 (de) Flachdichtung und Verfahren zu ihrer Herstellung
DE102004031967B4 (de) Verfahren zur Herstellung eines Vakuumisolationsformkörpers
DE19622865A1 (de) Aerogel- und klebstoffhaltiges Verbundmaterial, Verfahren zu seiner Herstellung sowie seine Verwendung
DE102009055444A1 (de) Graphithaltiger Formkörper und Verfahren zu seiner Herstellung
DE1778516A1 (de) Verfahren zur Herstellung von Formkoerpern aus schaumfoermigen Olefinpolymerisaten
DE3336560C2 (de) Flachmaterial für Flachdichtungen sowie Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120731

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SGL CARBON SE

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160317

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180703