EP2459813A1 - Stahlbetonbauteil mit bewehrung aus l-förmigen blechteilen - Google Patents

Stahlbetonbauteil mit bewehrung aus l-förmigen blechteilen

Info

Publication number
EP2459813A1
EP2459813A1 EP10734988A EP10734988A EP2459813A1 EP 2459813 A1 EP2459813 A1 EP 2459813A1 EP 10734988 A EP10734988 A EP 10734988A EP 10734988 A EP10734988 A EP 10734988A EP 2459813 A1 EP2459813 A1 EP 2459813A1
Authority
EP
European Patent Office
Prior art keywords
sheet metal
reinforced concrete
concrete component
reinforcement
bracket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10734988A
Other languages
English (en)
French (fr)
Other versions
EP2459813B1 (de
Inventor
Gerd GÜNTHER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Hochschule Mittelhessen
Original Assignee
Fachhochschule Giessen Friedberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fachhochschule Giessen Friedberg filed Critical Fachhochschule Giessen Friedberg
Priority to PL10734988T priority Critical patent/PL2459813T3/pl
Publication of EP2459813A1 publication Critical patent/EP2459813A1/de
Application granted granted Critical
Publication of EP2459813B1 publication Critical patent/EP2459813B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/06Reinforcing elements of metal, e.g. with non-structural coatings of high bending resistance, i.e. of essentially three-dimensional extent, e.g. lattice girders
    • E04C5/0645Shear reinforcements, e.g. shearheads for floor slabs
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/16Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups
    • E04C5/162Connectors or means for connecting parts for reinforcements
    • E04C5/163Connectors or means for connecting parts for reinforcements the reinforcements running in one single direction
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/16Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups
    • E04C5/162Connectors or means for connecting parts for reinforcements
    • E04C5/166Connectors or means for connecting parts for reinforcements the reinforcements running in different directions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/16Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups
    • E04C5/168Spacers connecting parts for reinforcements and spacing the reinforcements from the form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24008Structurally defined web or sheet [e.g., overall dimension, etc.] including fastener for attaching to external surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24132Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in different layers or components parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249923Including interlaminar mechanical fastener

Definitions

  • the invention relates to a reinforced concrete component having at least one upper and at least one lower Leksbewehrungslage, and a transverse force reinforcement, which is guided in its extension over the uppermost and lowermost longitudinal reinforcement, according to the preamble of claim 1.
  • shear reinforcement is often necessary in the area of bearing points, in particular in the area of column connections, for receiving the transverse forces occurring there as a result of the column forces.
  • shear reinforcement elements are largely known in the form of S-hooks or temples, dowel strips, double-headed bolts, underwire mats, lattice girders, Tobler WaIm, Geilinger collar and crack star.
  • shear reinforcement in the form of S-hooks or stirrups must enclose a mostly existing longitudinal bending reinforcement in order to prevent the shear reinforcement from tearing out. This to lay is very expensive and therefore also costly. At high degrees of reinforcement of the bending tensile reinforcement and high shear reinforcement proportion conventional ironing are considered no longer installable.
  • the dowels are provided at their end with a widened dowel head.
  • the dowels are welded with their other end with a dowel retaining rail.
  • a further development of such a dowel strip is known for example from DE 298 12 676 U1.
  • This dowel strip has a plurality of mutually spaced dowels having a plate-shaped widened dowel head at one end of its dowel shaft and which are fastened to a common dowel retaining rail at the other end, wherein the respective dowel shaft extends through a dowel bore of the dowel retaining rail and provided with a rivet head is.
  • Double head bolts consist of a cylindrical bolt and a relative to the bolt enlarged, above or below lying bolt head, which is usually formed approximately frusto-conical in each case.
  • Several such bolts are connected via a fixed to the lower or upper bolt head spacer bar to a shear reinforcement element, wherein the spacer bar for the correct orientation and the correct height position of the double-headed bolt in the installed state.
  • the double headed bolts are usually threaded from above in a star shape between the upper and lower layers of the longitudinal reinforcement.
  • Tobler WaIm and Geilinger collars are steel components that consist of welded-together steel profiles and are manufactured individually. Due to the high weight of the hoisting equipment, the installation parts must be moved. The production and installation are complex and costly, since this lifting tool is not available for other tasks on the construction site during the time of installation, or must be kept extra. Due to their size and weight, these solutions can not be used in prefabricated parts, since otherwise the transport to the construction site would no longer be economical. These reinforcing elements can therefore only be used for reinforced concrete components, which are manufactured in cast-in-situ construction.
  • the object of the invention is to overcome these and other disadvantages of the prior art and to provide a reinforced concrete component with which also large shear forces or transverse forces can be absorbed.
  • the steel or prestressed concrete part should also be inexpensive to produce and easy to install. Ideally, it should also be manufacturable as a finished part.
  • the invention provides that the transverse force reinforcement of at least 20 L-shaped sheet metal parts of structural steel and thereon attached ironing is formed.
  • the advantageous inventive design of the transverse force reinforcement of at least 20 L-shaped sheet metal parts and attached ironing ensures due to the large number of elements for a good bond between the concrete and the reinforcement.
  • Such a reinforced concrete component is inexpensive to manufacture and very stable.
  • the composite effect is also reinforced by the L-shape of the sheet metal part and a bracket attached to it because the sheet metal part in combination with the bracket complexed in concrete.
  • the cost of producing the reinforced concrete component are extremely low due to the inventive design of the transverse force reinforcement, since commercial structural steel can be used. Due to the simple geometry of the L-shaped sheet metal parts, they can be manufactured in a series production as freely falling stamped parts. It is through no welding operations, screw connections or solder joints necessary. The manufacturing costs of a reinforced concrete component according to the invention are significantly reduced by this embodiment, especially since the brackets are also made of inexpensive structural steel.
  • the transverse force reinforcement of a reinforced concrete component according to the invention is thus quickly mounted on the site, inexpensive to manufacture and installation, as no special skills or skills are necessary.
  • the puncture resistance of the reinforced concrete component at the same time the puncture resistance compared to conventional constructions is significantly increased because lateral forces and moments are better absorbed and distributed more favorably in the reinforced concrete component.
  • cracks caused by lateral force remain small and the load capacity of the reinforced concrete component can be significantly increased compared to conventional solutions.
  • the embodiment of the invention also offers the advantage that only one sheet size must be kept. Even with different ceiling thicknesses and the necessary adjustment of the shear force reinforcement to the ceiling cross section, the same sheet metal parts can be used. It is only necessary to adjust the strap lengths. As a result, maintenance costs can be minimized, construction costs are significantly reduced.
  • the transverse force reinforcement is formed from at least 50 sheet metal parts, more preferably from at least 70 sheet metal parts.
  • the tension in the reinforced concrete component can be distributed very homogeneously due to the large number of sheet metal parts, which further increases the load capacity and ensures higher ductility in the component.
  • each sheet metal part has a fold at one end. The fold is guided to the lowest longitudinal reinforcement. This embodiment of the invention provides for a better stress distribution within the shear force loaded zones of the reinforced concrete component, since the bond between sheet metal part and surrounding concrete is improved.
  • the bracket attached to the sheet metal part protrudes beyond the uppermost longitudinal reinforcement, so that the transverse force reinforcement, which is formed from the L-shaped freely falling sheet metal part and the bracket attached thereto, extends over the uppermost and lowermost longitudinal reinforcement.
  • the transverse force flow can thus be distributed over almost the entire reinforced concrete component ceiling.
  • the fold of the sheet metal part is preferably located on the side facing away from the iron and is guided to the lowest longitudinal reinforcement.
  • This embodiment of the invention provides for a better stress distribution.
  • The, in cross-section L-shaped, sheet metal part engages with the fold the lower bars of the longitudinal reinforcement layer, so that a slip-poor anchoring of the punching shear reinforcement in the pressure zone is achieved by the sheet metal part. In the concrete draw zone this is achieved by the bracket.
  • a guided through each recess longitudinal reinforcement rod of the lower longitudinal reinforcement according to the invention improves the carrying capacity of the reinforced concrete component, as obliquely introduced forces on the composite effect between the sheet metal part and longitudinal reinforcement rod are divided into a normal force component and lateral force component.
  • the reinforced concrete component thus has a further increased ductility.
  • each sheet metal part has a thickness of 3 or 5 mm. Tests carried out on the basis of carrying capacity have shown that, due to different thicknesses selected, it is not the optimum ratio of lateral force carrying capacity to the composite effect that is achieved. In addition, the provision of only two sheet metal parts has a particularly favorable effect on the material costs. The sheet metal parts do not need to be specially adapted. Rather, they can be manufactured as needed, thereby avoiding storage and storage costs for different sheet metal parts.
  • the sheet metal parts including brackets connected thereto, are arranged uniformly around a region with a high transverse force load.
  • the design of the reinforced concrete component can be done with simple means and existing possibilities. A comprehensive calculation for each individual case can thus be avoided.
  • the sheet metal parts are arranged parallel to each other. As a result, simple geometries, which are useful for the design of the reinforced concrete component realize.
  • the inventive construction of the reinforced concrete component is thus easy to manufacture and inexpensive.
  • the arrangement of the sheet metal parts which serve as a reinforcement, concentrates when installed in a reinforced concrete component in a core area.
  • the arranged there large, executed by the sheet metal reinforcement amount significantly increases the puncture resistance of the concrete component.
  • the number of sheet metal parts can be advantageously reduced.
  • the tangential distances of the reinforcement components can then be increased with increasing distance from the core region.
  • the invention provides that the bracket is mounted in a longitudinal recess of the sheet metal part.
  • the longitudinal recess is easy to produce, since the sheet metal parts - as mentioned above - are manufactured as freely falling stampings. The longitudinal recess can thus be easily punched out of the sheet.
  • the longitudinal recesses in the sheet metal part has a securing position for the bracket. This avoids that during the concreting process, the bracket is moved in its position relative to the sheet metal part.
  • the position assurance is designed as a detent, resulting in a quick assembly and thus to save working hours.
  • the construction costs of a reinforced concrete component according to the invention are thereby reduced.
  • brackets are attached to this.
  • higher Querkraftbewehrungsgrade can be achieved without much additional installation effort.
  • two brackets are inserted in a longitudinal recess of a sheet metal part instead of a bracket.
  • the invention provides that the brackets are made of structural steel with a diameter of 6 mm.
  • This value determined according to the invention with a large number of experiments also has many advantages. So high bond strengths can be achieved. At the same time, installation on the construction site is easy because rebars of this thickness can easily be deformed by a few millimeters. Even complicated geometries are thus easy to defend.
  • the brackets are simply on the upper longitudinal reinforcement and extend through it.
  • the brackets, as part of the shear force reinforcement not necessarily be additionally secured in position.
  • the assembly cost is further reduced, which reduces the cost of producing a reinforced concrete component according to the invention.
  • brackets mounted in an angular position to the respective sheet metal part are pivoted to 45 °.
  • brackets for reinforced concrete ceilings with thicknesses of 18 cm or 20 cm can be used.
  • the storage on site can be reduced which contributes to further cost reduction in the manufacture of the reinforced concrete component.
  • the value of the equation h B h - c 0 - c u - 6.5.
  • C 0 corresponds to the upper concrete cover and c u to the lower concrete cover.
  • So trained reinforced concrete components always have an optimal support ratio, since the bracket is always at a favorable angle and thus enters into a good bond with the surrounding concrete and thus is not pulled out of the slot of the sheet.
  • the critical round cut must be made in accordance with DIN 1045-1, section 10.5.2 for inner supports as well as supports near openings in the plate. Supports that are less than 6 hours away from at least one edge of the board are considered edge or corner supports.
  • the round cut is to be carried out in accordance with DIN 1045-1, Figure 41, with a margin of 6 h (instead of 3 d according to Figure 41). If a round cut guide according to DIN 1045-1, picture 39, results in a smaller round cut length, this is decisive.
  • V Rd c t is determined as follows for interior, edge and corner columns:
  • K is the scale factor according to equation (106) in DIN 1045-1,
  • Pi mean longitudinal reinforcement within the considered round section d static component height
  • the shear force reinforcement is formed from as many L-shaped sheet metal parts made of structural steel with brackets attached thereto, that the equation ß - y Ed ⁇ ⁇ W is satisfied.
  • V Rd , S y, ⁇ _ the punching resistance of the L-sheets
  • V Rd , S y, l_ k1 ⁇ V Rd: C t ⁇ U
  • + 2 ⁇ nßugel 'k2 ⁇ AS, stirrup' fyd 'crack plate k1 1, 70 for the round cut at a distance of 0.5 d from the edge of the support
  • a thus configured reinforced concrete component has a greater punching performance than all comparable known solutions in the prior art.
  • the distances between the sheets in the direction of the course of the round sections s t are advantageously within the following values: s t ⁇ 0.75 xdx 0.8 xi ⁇ 3.5 xdi Number of the round cut
  • the largest load capacities are achieved.
  • a method according to the invention for producing a reinforced concrete component it is provided that first the L-shaped sheet-metal parts are threaded onto the lowest layer of the longitudinal evaluation. The sheet metal parts are then upwards, since they form-fit the recess of the longitudinal reinforcement and prevent tipping over. The sheet metal parts protrude beyond the lower longitudinal reinforcement layer, but do not yet touch the area of the upper longitudinal reinforcement layer. Subsequently, the brackets are hung in the longitudinal recess of the sheet metal parts and lie with their shoulders on the uppermost layer of the longitudinal reinforcement. Then the reinforcement is poured in a batch with concrete. After hardening of the concrete, the reinforced concrete component is finished and loadable.
  • the casting in two steps It can be cast with the sheet metal parts, for example, after threading the sheet metal parts on the lowest longitudinal reinforcement, the lower longitudinal reinforcement. This can be done in a precast plant. After curing, these plates so produced can be transported to the site. Here, the installation of the upper longitudinal reinforcement layer and the hanging of the bracket in the recesses of the sheet metal part takes place. Then the upper reinforcement layer is backfilled until the desired ceiling thickness is reached. After the concrete has hardened, the reinforced concrete component according to the invention is ready.
  • the bracket are locked in the recesses before the complete casting with concrete, so that during the concreting no changes in position of the bracket can be done relative to the sheet metal part.
  • FIG. 1 section of a reinforced concrete component according to the invention
  • Fig. 2 a L-shaped sheet metal part in side view
  • Fig. 4 reinforcement arrangement of a reinforced concrete component according to the invention 1 shows a section of a reinforced concrete component 10 with at least one upper longitudinal reinforcement layer Bo and at least one lower longitudinal reinforcement layer Bu, and a transverse force reinforcement Q, which is guided in its extension L over the uppermost longitudinal reinforcement Boo and the lowermost longitudinal reinforcement Buu, the transverse force reinforcement Q from free-falling sheet metal parts 20 with attached straps 30 is formed.
  • each sheet metal part 20 has a fold 40.
  • the fold 40 is arranged on the side facing away from the bracket 20 of the sheet metal part.
  • Each sheet metal part 20 preferably has a thickness of 3 or 5 mm.
  • the reinforced concrete component thickness h runs over the entire cross section.
  • the upper concrete cover c 0 is formed from the upper end of the component to the beginning of the bracket 30, the lower concrete cover c u extends from the end of the sheet 20 to the lower end of the component.
  • Figure 1 shows that the sheet metal parts 20 are arranged parallel to each other.
  • the brackets 30 are suspended in a longitudinal recess 22 of the sheet metal part 20.
  • the clip plate part 24 ensures the secure attachment of the bracket 30 in the longitudinal recess 22 of the sheet metal part 20.
  • the clip plate part 24 acts as a detent which prevents accidental slipping out of the bracket 30 from the longitudinal recess 22 of the sheet metal part 20.
  • the bracket 30 are with their side facing away from the sheet metal part 20 on an approximately rectangular bend formed on the uppermost layer Boo the longitudinal movement Bo. According to the invention, the bracket 30 are also formed approximately T-shaped and are produced by a bending technique.
  • Figure 2a shows a sheet metal part 20 with a longitudinal recess 22 and a clip sheet metal part 24 attached thereto.
  • a bent portion 40 is formed in the lower region of the sheet metal part 20, a bent portion 40 is formed.
  • the fold 40 is followed by circular recesses 50.
  • FIG. 2b shows a sheet-metal part 20, where recesses 52 are arranged in the fold, which clearly increase the composite of the sheet-metal part 20 in the concrete.
  • Figure 2c shows an L-shaped sheet metal part 20 with inserted bracket 30 in front view, before pouring concrete.
  • the sheet metal part 20 is guided over the lowermost Lssensbewehrungslage Buu, wherein the fold 40 engages around the lower longitudinal reinforcement rod S.
  • Each two longitudinal reinforcing rods S are passed through the recesses 50 and thus ensure a secure bond between the sheet metal part 20 and lower longitudinal reinforcement layer Buu.
  • the clip plate part 24 holds the bracket 30 in the longitudinal recess 22 of the sheet metal part 20.
  • the bracket 30 has two shoulders 32 which rest on the uppermost layer Boo the upper longitudinal reinforcement Bo.
  • FIG. 3 a shows the same installation situation as FIG. 2 c, but in a side view.
  • the bracket 30 is arbitrarily installable with respect to an angle ⁇ to the vertical axis. As a result, a complex alignment of the bracket 30 relative to the sheet metal part 20 is unnecessary.
  • the bracket 30 is held in the longitudinal recess 22 by the clip plate part 24 in a mounting region BF.
  • Figure 3a shows that the lowermost reinforcement layer Buu the longitudinal reinforcement Bu is guided through the recesses 50.
  • the fold 40 is advantageously arranged near the recesses 50.
  • the sheet metal part 20 and the bracket 30 thus form the transverse force reinforcement Q according to the invention for a reinforced concrete component 10 according to the invention.
  • FIG. 3b shows by way of example that two brackets 30 per sheet metal part 20 can also be used.
  • both brackets 30 are held securely in position in a fastening region BF by the clip sheet metal part 24.
  • the respective shoulders 32 rest on the uppermost longitudinal reinforcement layer Boo.
  • the bracket 30 thus form in conjunction with the sheet metal part 20, the transverse force reinforcement Q.
  • FIG. 4 shows a reinforcement arrangement BA using at least 20 L-shaped sheet-metal parts 20 made of mild steel and having brackets 30 fastened thereto. It can be seen that the sheet-metal parts 20 are arranged concentrically around a core region K. The sheet metal parts 20 are doing with one or two brackets 30 in correspondence and thus form in their commonality the transverse force reinforcement Q.
  • the invention is not limited to any of the prescribed embodiments, but can be modified in many ways.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

Stahlbetonbauteil (10) mit mindestens einer oberen (Bo) und mindestens einer unteren (Bu) Längsbewehrungslage, und einer Querkraftbewehrung (Q), wobei diese in ihrer Ausdehnung (L) bis zur oberen (Bo) und unteren (Bu) Längsbewehrung geführt ist, wobei die Querkraftbewehrung (Q) aus mindestens 20 L-förmigen Blechteilen (20) aus Baustahl mit daran befestigten Bügeln (30) gebildet ist. Jedes Blechteil weist dabei eine Abkantung auf.

Description

Stahlbetonbauteil mit Bewehrung aus L-förmigen Blechteilen
Die Erfindung betrifft ein Stahlbetonbauteil mit mindestens einer oberen und mindestens einer unteren Längsbewehrungslage, und einer Querkraftbewehrung, wobei diese in ihrer Ausdehnung über die oberste und unterste Längsbewehrung geführt ist, gemäß dem Oberbegriff von Anspruch 1.
Bei Stahl- oder Spannbetonbauteilen ist im Bereich von Auflagerstellen, insbesondere im Bereich von Stützenanschlüssen, zur Aufnahme der dort infolge der Stützenkräfte auftretenden Querkräfte oft eine Schubbewehrung notwendig.
Derartige Schubbewehrungselemente sind weitestgehend bekannt in Form von S-Haken oder Bügeln, Dübelleisten, Doppelkopfbolzen, Bügelmatten, Gitterträgern, Tobler WaIm, Geilinger Kragen sowie Riss-Stern.
Eine Schubbewehrung in Form von S-Haken oder Bügeln muss aus Gründen der schlechten Verankerung eine meist vorhandene Biege-Längsbewehrung umschließen, um ein Ausreißen der Schubbewehrung zu verhindern. Dieses zu verlegen ist sehr aufwendig und dadurch auch kostenintensiv. Bei hohen Bewehrungsgraden der Biegezugbewehrung und hohem Schubbewehrungsanteil gelten herkömmliche Bügel als nicht mehr einbaubar.
Bei der, aus der DE 27 27 159 A1 bekannten Dübelleiste, sind die Dübel an ihrem Ende mit einem verbreiterten Dübelkopf versehen. Dabei sind die Dübel mit ihrem anderen Ende mit einer Dübelhalteschiene verschweißt. Eine Weiterentwicklung einer solchen Dübelleiste ist beispielsweise aus der DE 298 12 676 U1 bekannt. Diese Dübelleiste weist mehrere im Abstand zueinander angeordnete Dübel auf, die an einem Ende ihres Dübelschafts einen tellerförmig verbreiterten Dübelkopf aufweisen und die am anderen Ende an einer gemeinsamen Dübelhalteschiene befestigt sind, wobei sich der jeweilige Dübelschaft durch eine Dübelbohrung der Dübelhalteschiene erstreckt und mit einem Nietkopf versehen ist.
Auch wenn derartige Dübelleisten seit langem vielfältig im Einsatz sind, hat sich in der Praxis herausgestellt, dass diese Dübelleisten bei starken Schubkräften versagen, da sich die Dübel dann verbiegen. Dadurch wird der Verbund zwischen Beton und Bewehrung zudem gelockert, eine Dauerhaftigkeit des Stahlbetonbauteils ist nicht immer gegeben.
Doppelkopfbolzen bestehen aus einem zylindrischen Bolzen und einem gegenüber dem Bolzen vergrößerten, darüber bzw. darunter liegenden Bolzenkopf, der jeweils in der Regel etwa kegelstumpfförmig ausgebildet ist. Mehrere solcher Bolzen sind über eine am unteren oder oberen Bolzenkopf festgelegte Distanzleiste zu einem Schubbewehrungselement verbunden, wobei die Distanzleiste für die richtige Orientierung sowie die korrekte Höhenposition der Doppelkopfbolzen im Einbauzustand sorgt.
Ein Nachteil dieses Schubbewehrungselementes liegt darin, dass das Herstellen der
Doppelkopfbolzen recht aufwendig ausfällt und beispielsweise durch Stauchen der
Bolzenenden zur Herstellung der Bolzenköpfe oder durch Anschweißen der kegelstumpfförmigen Bolzenköpfe an den Bolzen erfolgt.
Hinzu kommt, dass die Doppelkopfbolzen gewöhnlich von oben sternförmig zwischen die obere und untere Lage der Längsbewehrung eingefädelt werden. Bei hohen Bewehrungsgraden der Biegezugbewehrung sowie unterschiedlichen Maschenweiten der oberen und unteren Bewehrungslage ist der Einbau dadurch sehr schwierig, manchmal sogar unmöglich. Tobler WaIm und Geilinger Kragen sind Stahleinbauteile, die aus zusammengeschweißten Stahlprofilen bestehen und einzeln angefertigt werden. Das Versetzen der Einbauteile muss wegen des hohen Eigengewichts mit Hebezeug erfolgen. Die Herstellung und der Einbau sind aufwändig und kostenintensiv, da dieses Hebewerkzeug in der Zeit des Einbaus nicht für andere Aufgaben auf der Baustelle zur Verfügung steht, bzw. extra vorgehalten werden muss. Aufgrund ihrer Größe und ihres Gewichts können diese Lösungen nicht in Fertigteilen verwendet werden, da ansonsten der Transport auf die Baustelle nicht mehr wirtschaftlich wäre. Diese Bewehrungselemente können daher nur für Stahlbetonbauteile verwendet werden, die in Ortbetonbauweise hergestellt werden.
Aufgabe der Erfindung ist es, diese und weitere Nachteile des Standes der Technik zu überwinden und ein Stahlbetonbauteil zur Verfügung zu stellen mit dem auch große Schubkräfte bzw. Querkräfte aufgenommen werden können. Das Stahl- oder Spannbetonteil soll zudem kostengünstig herstellbar und leicht einbaubar sein. Idealerweise soll es auch als Fertigteil herstellbar sein.
Hauptmerkmale der Erfindung sind im kennzeichnenden Teil von Anspruch 1 und Anspruch 24 angegeben. Ausgestaltungen sind Gegenstand der Ansprüche 2 bis 23 sowie 25 bis 26.
Bei einem Stahlbetonbauteil mit mindestens einer oberen und mindestens einer unteren Längsbewehrungslage, und einer Querkraftbewehrung, wobei diese in ihrer Ausdehnung über die oberste und unterste Längsbewehrung geführt ist, sieht die Erfindung vor, dass die Querkraftbewehrung aus mindestens 20 L-förmigen Blechteilen aus Baustahl und daran befestigten Bügeln gebildet ist. Die vorteilhafte erfindungsgemäße Ausgestaltung der Querkraftbewehrung aus mindestens 20 L-förmigen Blechteilen und daran befestigten Bügeln sorgt aufgrund der Vielzahl der Elemente für eine gute Verbundwirkung zwischen dem Beton und der Bewehrung. Ein solches Stahlbetonbauteil ist günstig herzustellen und sehr tragfähig. Die Verbundwirkung wird zudem über die L-Form des Blechteils sowie einem daran befestigten Bügel noch verstärkt, da sich das Blechteil in Kombination mit dem Bügel komplex im Beton verkeilt.
Die Kosten zur Herstellung des Stahlbetonbauteils sind durch die erfindungsgemäße Ausgestaltung der Querkraftbewehrung äußerst gering, da handelsüblicher Baustahl verwendet werden kann. Durch die einfache Geometrie der L-förmigen Blechteile können sie in einer Serienfertigung als frei fallende Stanzteile gefertigt werden. Es sind dadurch keine Schweißvorgänge, Schraubverbindungen oder Lötverbindungen notwendig. Die Herstellkosten eines erfindungsgemäßen Stahlbetonbauteils werden durch diese Ausgestaltung deutlich gesenkt, zumal die Bügel ebenfalls aus kostengünstigem Baustahl gefertigt sind. Die Querkraftbewehrung eines erfindungsgemäßen Stahlbetonbauteils ist somit auf der Baustelle schnell montiert, preiswert in der Herstellung sowie im Einbau, da keine besonderen Fachkenntnisse oder Fertigkeiten notwendig sind.
Gleichzeitig wird neben der Querkrafttragfähigkeit des Stahlbetonbauteils zugleich die Durchstanzfestigkeit gegenüber herkömmlichen Konstruktionen deutlich erhöht, da Querkräfte und Momente besser aufgenommen und im Stahlbetonbauteil günstiger verteilt werden. Somit bleiben auch durch Querkraft bedingte Risse klein und die Traglast des Stahlbetonbauteils kann gegenüber herkömmlichen Lösungen signifikant gesteigert werden.
Ein weiterer wesentlicher Vorteil ist, dass die Schubkraftübertragung in der Verbundfuge, die bei Elementdecken nachzuweisen ist, ebenfalls durch die Bleche übernommen werden kann.
Die erfindungsgemäße Ausgestaltung bietet zudem den Vorteil, dass nur eine Blechgröße vorgehalten werden muss. Selbst bei unterschiedlichen Deckendicken und der damit notwendigen Anpassung der Querkraftbewehrung an den Deckenquerschnitt, können die gleichen Blechteile verwendet werden. Es ist nur notwendig die Bügellängen anzupassen. Dadurch können Vorhaltekosten minimiert werden, Baukosten werden deutlich gesenkt.
Bei der Elementdeckenfertigung im Fertigteilwerk können somit ebenfalls immer dieselben Blechteile verwendet werden. Dazu wählt man eine Blechlänge, die noch aus der Fertigdecke hinausragt. Erst auf der Baustelle wird die Querkraftbewehrung durch Einhängen der Bügel fertig gestellt. Dadurch reduziert sich die Bauteilhöhe einer Elementdecke. Es können daher mehr Elementdecken gleichzeitig transportiert werden, wodurch Transport- und andere Logistikkosten reduziert werden.
Bevorzugt ist die Querkraftbewehrung aus mindestens 50 Blechteilen gebildet, besonders bevorzugt aus mindestens 70 Blechteilen. Die Spannung im Stahlbetonbauteil kann durch die Vielzahl der Blechteile sehr homogen verteilt werden, was die Tragfähigkeit nochmals erhöht sowie für eine höhere Duktilität im Bauteil sorgt. Um die Verbundwirkung der Querkraftbewehrung im erfindungsgemäßen Stahlbetonbauteil noch weiter zu verbessern, hat jedes Blechteil an einem Ende eine Abkantung. Die Abkantung ist dabei bis zur untersten Längsbewehrung geführt. Diese erfindungsgemäße Ausgestaltung sorgt für eine bessere Spannungsverteilung innerhalb der Querkraft belasteten Zonen des Stahlbetonbauteils, da der Verbund zwischen Blechteil sowie umgebenden Beton verbessert wird. Der am Blechteil befestigte Bügel ragt dabei über die oberste Längsbewehrung, sodass die Querkraftbewehrung, die aus dem L-förmigen frei fallenden Blechteil sowie dem daran befestigten Bügel gebildet ist, sich über die oberste und unterste Längsbewehrung erstreckt. Der Querkraftfluss kann somit über nahezu die gesamte Stahlbetonbauteildecke verteilt werden.
Die Abkantung des Blechteils befindet sich bevorzugt an der bügelabgewandten Seite und ist dabei bis zur untersten Längsbewehrung geführt. Diese erfindungsgemäße Ausgestaltung sorgt für eine bessere Spannungsverteilung. Das, im Querschnitt L- förmige, Blechteil umgreift dabei mit der Abkantung die unteren Stäbe der Längsbewehrungslage, sodass eine schlupfarme Verankerung der Durchstanzbewehrung in der Druckzone durch das Blechteil erreicht wird. In der Betonzugzone wird dies durch den Bügel erreicht.
Besonders bevorzugt sind dabei zwei kreisförmige Ausnehmungen innerhalb der Abkantung ausgebildet. Beton kann durch diese kreisförmigen Ausnehmungen dringen und somit für eine Verzahnung des Blechteils mit dem Beton sorgen. Das Stahlbetonbauteil wird somit äußerst belastbar. Ferner sind die Blechteile dadurch auch fest verankert und verschieben sich nicht beim Eingießen des Betons.
Ein durch jede Ausnehmung geführter Längsbewehrungsstab der unteren Längsbewehrung verbessert erfindungsgemäß die Tragfähigkeit des Stahlbetonbauteils, da schräg eingeleitete Kräfte über die Verbundwirkung zwischen Blechteil und Längsbewehrungsstab in eine Normalkraftkomponente sowie Querkraftkomponente aufgeteilt werden. Das Stahlbetonbauteil besitzt dadurch eine weiter gesteigerte Duktilität.
Besonders vorteilhaft ist die Ausgestaltung der Erfindung derart, dass die Abkantungen mit zusätzlichen Aussparungen ausgebildet sind. Dadurch wird die Verbundwirkung zwischen den Blechteilen sowie dem Beton im Stahlbetonbauteil nochmals weiter verbessert, die Tragfähigkeit des Stahlbetonbauteils wird nochmals erhöht. Vorteilhafterweise weist jedes Blechteil eine Dicke von 3 oder 5 mm auf. Aus Gründen der Tragfähigkeit durchgeführte Versuche haben gezeigt, dass durch anders gewählte Dicken nicht das optimale Verhältnis von Querkrafttragfähigkeit in Bezug auf die Verbundwirkung erreicht wird. Zudem wirkt sich die Vorhaltung nur zweier Blechteile besonders günstig auf die Materialkosten aus. Die Blechteile müssen nicht speziell angepasst werden. Vielmehr können sie nach Bedarf hergestellt werden, wodurch Lager- und Vorhaltekosten für unterschiedliche Blechteile vermieden werden.
Erfindungsgemäß sind in einer bevorzugten Ausführungsform die Blechteile samt damit verbundenen Bügeln gleichmäßig um einen Bereich mit einer hohen Querkraftbelastung angeordnet. Dadurch kann die Bemessung des Stahlbetonbauteils mit einfachen Mitteln und bestehenden Möglichkeiten erfolgen. Eine umfangreiche Berechnung für jeden Einzelfall kann somit vermieden werden. Erfindungsgemäß ist es zudem vorteilhaft, wenn die Blechteile parallel zueinander angeordnet sind. Dadurch lassen sich einfache Geometrien, die der Bemessung des Stahlbetonbauteils dienlich sind, verwirklichen. Die erfindungsgemäße Konstruktion des Stahlbetonbauteils ist somit einfach herzustellen und kostengünstig.
Die Anordnung der Blechteile, die als Bewehrung dienen, konzentriert sich beim Einbau in ein Stahlbetonbauteil in einem Kernbereich. Die dort angeordnete große, durch die Blechteile ausgeführte, Bewehrungsmenge erhöht die Durchstanzfestigkeit des Betonbauteils signifikant. Bei größerer Entfernung zum Kernbereich, der im Idealfall in der Zone der stärksten Querkraftbelastung liegt, z. B. in einem Stützenbereich, kann die Anzahl der Blechteile vorteilhaft verringert werden. Die Tangentialabstände der Bewehrungsbauteile sind dann mit zunehmendem Abstand vom Kernbereich vergrößerbar.
Vorteilhafterweise sieht die Erfindung vor, dass der Bügel in einer Längsausnehmung des Blechteils eingehängt ist. Die Längsausnehmung lässt sich einfach herstellen, da die Blechteile - wie eingangs erwähnt - als frei fallende Stanzteile gefertigt werden. Die Längsausnehmung kann somit einfach aus dem Blech herausgestanzt werden.
Weiterhin ist eine schnelle Verbindung auf der Baustelle möglich, da das Einhängen die schnellste Verbindemethode darstellt. Zudem wird die Verbundwirkung des Bauteils durch das Umgießen der aus Blechteil und Bügel bestehenden Querkraftbewehrung durch diese Längsausnehmung noch erhöht, da Beton zwischen den verbleibenden Zwischenraum der Längsausnehmung im Blechteil während des Betoniervorgangs fließt und nach Aushärten des Betons diesen vollständig ausfüllt.
Zur Herstellung eines erfindungsgemäßen Stahlbetonbauteils ist es vorteilhaft, wenn die Längsausnehmungen im Blechteil eine Lagesicherung für den Bügel aufweist. Dadurch wird vermieden, dass beim Betoniervorgang der Bügel in seiner Position relativ zum Blechteil bewegt wird.
Besonders vorteilhaft ist die Lagesicherung dabei als Rastung ausgebildet, was zu einer schnellen Montage und damit zur Einsparung von Arbeitszeiten führt. Die Baukosten eines erfindungsgemäßen Stahlbetonbauteils werden dadurch verringert.
Besonders bevorzugt sind je Blechteil zwei Bügel an diesem befestigt. Dadurch können höhere Querkraftbewehrungsgrade erreicht werden, ohne großen zusätzlichen Montageaufwand. Vor dem Betonieren werden anstelle eines Bügels zwei Bügel in eine Längsausnehmung eines Blechteils eingeführt.
Besonders vorteilhafterweise sieht die Erfindung vor, dass die Bügel aus Baustahl mit einem Durchmesser von 6 mm gefertigt sind. Dieser mit einer Großzahl an Versuchen erfindungsgemäß ermittelte Wert hat zugleich viele Vorteile. So können hohe Verbundfestigkeiten erreicht werden. Gleichzeitig ist die Montage auf der Baustelle einfach, da sich Bewehrungsstäbe dieser Dicke leicht um wenige Millimeter verformen lassen. Auch komplizierte Geometrien sind damit leicht zu bewehren.
Besonders bevorzugt liegen die Bügel einfach auf der oberen Längsbewehrung auf und erstrecken sich durch diese hindurch. Dadurch müssen die Bügel, als Teil der Querkraftbewehrung nicht zwingend in ihrer Lage zusätzlich gesichert werden. Der Montageaufwand wird weiterhin vermindert, was die Kosten für die Herstellung eines erfindungsgemäßen Stahlbetonbauteils senkt.
Dabei ist besonders vorteilhaft, dass die Bügel in einer Winkellage zum jeweiligen Blechteil bist zu 45° verschwenkt eingebaut sind. Dadurch wird erfindungsgemäß sichergestellt, dass möglichst wenige Bügelgrößen vorgehalten werden müssen.
Somit können die gleichen Bügel für Stahlbetondecken mit Dicken von 18 cm oder z.B. 20 cm verwendet werden. Die Bevorratung auf der Baustelle kann dadurch verringert werden, was zu einer weiteren Kostensenkung in der Herstellung des Stahlbetonbauteils beiträgt.
Besonders bevorzugt ist das Stahlbetonbauteil wenn die Bügellänge (hB), bei einer Bauteildicke (h) kleiner 24 cm, dem Wert der Gleichung hB = (h - co - cu - 7,5) * 1,06 entspricht. Ebenso vorteilhaft entspricht die Bügellänge (hB), bei einer Bauteildicke (h) größer oder gleich 24 cm, dem Wert der Gleichung hB = h - c0 - cu - 6,5. Dabei entspricht C0 der oberen Betonüberdeckung und cu der unteren Betonüberdeckung.
So ausgebildete Stahlbetonbauteile verfügen immer über ein optimales Tragverhältnis, da der Bügel immer in einem günstigen Winkel liegt und damit mit dem umgebenden Beton einen guten Verbund eingeht und somit nicht aus dem Langloch des Blechs herausgezogen wird.
Besonders vorteilhaft ist die Ausgestaltung der Erfindung derart, dass die Querkraftbewehrung aus derart vielen L-förmigen Blechteilen aus Baustahl mit daran ß . y
befestigten Bügeln gebildet ist, dass die Gleichung — < vRd max erfüllt ist.
Dabei sind:
Ukπt der Umfang des kritischen Rundschnitts nach Abschnitt 10.5.2 von DIN 1045-1 unter Berücksichtigung nachstehenden Angaben, wobei DIN 1045-1 , Abschnitt 10.5.2(14) hier keine Anwendung findet.
Der kritische Rundschnitt ist nach DIN 1045-1 , Abschnitt 10.5.2 für Innenstützen sowie Stützen in der Nähe von Öffnungen in der Platte zu führen. Stützen, die weniger als 6 h von mindestens einem Plattenrand entfernt sind, gelten als Rand- bzw. Eckstützen. Für diese ist der Rundschnitt in Anlehnung an DIN 1045-1 , Bild 41 zu führen, wobei als Randabstand 6 h zu setzen ist (anstatt 3 d nach Bild 41 ). Ergibt eine Rundschnittführung nach DIN 1045-1 , Bild 39 dadurch eine kleinere Rundschnittlänge, so ist diese maßgebend. ß Lasterhöhungsfaktor für horizontal unverschieblich gelagerte Deckensysteme nach DIN 1045-1 , Bild 44 oder nach Heft 525 des DAfStb, Abschnitt 10.5.3.
VEd die auf das Bauteil wirkenden Designwerte der Einwirkungen VRd,maχ= αBiech VRd,ct wobei αBiech der Faktor zur Berücksichtigung der Tragfähigkeitserhöhung durch die Bleche ist.
VRd ct wird wie nachstehend für Innen-, Rand- und Eckstützen ermittelt:
Im kritischen Rundschnitt beträgt die Querkrafttragfähigkeit VRd,ct der Platte zur
Ermittlung der maximalen Tragfähigkeit:
vRd,ct = [θM - κ - (ioo - Pr fck y ] - d
K der Maßstabsfaktor nach Gleichung (106) in DIN 1045-1 ,
Pi mittlerer Längsbewehrungsgrad innerhalb des betrachteten Rundschnitts d statische Bauteilhöhe
Weiterhin ist es vorteilhaft, wenn die Querkraftbewehrung aus derart vielen L-förmigen Blechteilen aus Baustahl mit daran befestigten Bügeln gebildet ist, dass die Gleichung ß - yEd≤^W erfüllt ist.
Dabei entspricht: ß nach DIN 1045-1 , Bild 44 oder nach DAfStb Heft 525, Abschnitt 10.5.3
VRd,Sy,ι_ dem Durchstanzwiderstand der L-Bleche
VRd,Sy,l_ = k1 VRd:Ct U| + 2 nßugel ' k2 AS, Bügel ' fyd ' rißleche k1 = 1 ,70 für den Rundschnitt im Abstand 0,5 d vom Stützenrand
k1 = 1 ,35 für den Rundschnitt im Abstand 1 ,25 d vom Stützenrand
k1 = 1 ,00 für Rundschnitte im Abstand≥ 2,0 d vom Stützenrand ui Umfang des Rundschnitts im betrachteten Nachweisschnitt riBugei Anzahl der Bügel je Stahlblech (1 oder 2) k2 Verbund beiwert k2 = 0,8 für t = 5 mm und 2 0 12 mm
k2 = 0,7 für t = 5 mm und 2 0 10 mm und für t = 3 mm und 2 0 12 mm
k2 = 0,5 für t = 3 mm und 2 0 10 mm
As, Bugei Querschnittsfläche eines Bügelschenkels fyd Bemessungswert der Bügelspannung riBieche Anzahl der Stahlbleche im betrachteten Rundschnitt
Ein so ausgestaltetes Stahlbetonbauteil weist ein stärkeres Durchstanzverhalten auf als alle vergleichbaren bekannten Lösungen im Stand der Technik.
Weiterhin ist es vorteilhaft, wenn die Abstände der Bleche in Richtung von der belasteten Fläche (Stütze) ausgehenden Radien sr (radiale Richtung) folgende Werte nicht überschreiten:
- Der Abstand eines Blechs zum vorherigen oder nächsten Rundschnitt darf 0,75 d nicht überschreiten.
- Der kleinste Abstand zweier Bleche darf 3 cm nicht unterschreiten.
Zudem sind die Abstände der Bleche untereinander in Richtung des Verlaufs der Rundschnitte st (tangentiale Richtung) vorteilhaft innerhalb der folgenden Werte: st < 0,75 x d x 0,8 x i < 3,5 x d i Nummer des Rundschnitts
d statische Bauteilhöhe
So werden erfindungsgemäß die größten Tragfähigkeiten erreicht. Bei einem erfindungsgemäßen Verfahren zur Herstellung eines Stahlbetonbauteils, ist vorgesehen, dass zuerst die L-förmigen Blechteile auf die unterste Lage der Längsbewertung eingefädelt werden. Die Blechteile stehen anschließend nach oben, da sie die Ausnehmung der Längsbewehrung formschlüssig umschließen und ein Umkippen verhindern. Dabei ragen die Blechteile über die untere Längsbewehrungslage hinaus, berühren aber noch nicht den Bereich der oberen Längsbewehrungslage. Anschließend werden die Bügel in die Längsausnehmung der Blechteile eingehängt und liegen mit ihren Schultern auf der obersten Lage der Längsbewehrung auf. Anschließend wird die Bewehrung in einer Charge mit Beton vergossen. Nach dem Aushärten des Betons ist das Stahlbetonbauteil fertig und belastbar.
Besonders vorteilhaft ist das Vergießen in zwei Schritten. Dabei kann beispielsweise nach Einfädeln der Blechteile auf die unterste Längsbewehrung die untere Längsbewehrung mit den Blechteilen vergossen werden. Dies kann in einem Fertigteilwerk geschehen. Nach dem Aushärten können diese so hergestellten Platten auf die Baustelle transportiert werden. Hier erfolgt der Einbau der oberen Längsbewehrungslage sowie das Einhängen der Bügel in die Ausnehmungen des Blechteils. Anschließend wird die obere Bewehrungslage soweit verfüllt, bis die gewünschte Deckendicke erreicht ist. Nach dem Aushärten des Betons ist das erfindungsgemäße Stahlbetonbauteil fertig.
Besonders vorteilhaft werden die Bügel in den Ausnehmungen vor dem vollständigen Vergießen mit Beton verrastet, damit während des Betoniervorgangs keine Lageänderungen der Bügel relativ zum Blechteil erfolgen kann.
Weitere Merkmale, Einzelheiten und Vorteile der Erfindung ergeben sich aus dem Wortlaut der Ansprüche sowie aus der folgenden Beschreibung von Ausführungsbeispielen anhand der Zeichnungen. Es zeigen:
Fig. 1 Ausschnitt eines erfindungsgemäßen Stahlbetonbauteils
Fig. 2a L-förmiges Blechteil in Seitenansicht
Fig. 2b L-förmiges Blechteil in Aufsicht ohne eingesetzten Bügel
Fig. 2c L-förmiges Blechteil mit eingesetztem Bügel in Frontansicht
Fig. 3a L-förmiges Blechteil mit eingesetztem Bügel in Seitenansicht
Fig. 3b L-förmiges Blechteil mit zwei eingesetzten Bügeln in Seitenansicht
Fig. 4 Bewehrungsanordnung eines erfindungsgemäßen Stahlbetonbauteils Figur 1 zeigt einen Ausschnitt eines Stahlbetonbauteils 10 mit mindestens einer oberen Längsbewehrungslage Bo und mindestens einer unteren Längsbewehrungslage Bu, und einer Querkraftbewehrung Q, wobei diese in ihrer Ausdehnung L über die oberste Längsbewehrung Boo und die unterste Längsbewehrung Buu geführt ist, wobei die Querkraftbewehrung Q aus freifallenden Blechteilen 20 mit daran befestigten Bügeln 30 gebildet ist. Dabei weist jedes Blechteil 20 eine Abkantung 40 auf. Die Abkantung 40 ist dabei an der bügelabgewandten Seite des Blechteils 20 angeordnet. Jedes Blechteil 20 weist bevorzugt eine Dicke von 3 oder 5 mm auf. Die Stahlbetonbauteildicke h verläuft über den gesamten Querschnitt. Die obere Betonüberdeckung c0 ist vom oberen Bauteilende bis zum Beginn des Bügels 30 ausgebildet, die untere Betonüberdeckung cu verläuft vom Ende des Blechs 20 bis zum unteren Bauteilende.
Zudem zeigt Figur 1 , dass die Blechteile 20 parallel zueinander angeordnet sind. Die Bügel 30 sind dabei in eine Längsausnehmung 22 des Blechteils 20 eingehängt. Das Clipblechteil 24 sorgt für die sichere Befestigung des Bügels 30 in der Längsausnehmung 22 des Blechteils 20. Das Clipblechteil 24 fungiert dabei als Rastnase, die ein versehentliches Herausrutschen des Bügels 30 aus der Längsausnehmung 22 des Blechteils 20 verhindert.
Die Bügel 30 liegen mit ihrer dem Blechteil 20 abgewandten Seite über eine annähernd rechtwinklig ausgebildete Biegung auf der obersten Lage Boo der Längsbewegung Bo auf. Erfindungsgemäß sind zudem die Bügel 30 annähernd T-förmig ausgebildet und werden durch eine Biegetechnik hergestellt.
Figur 2a zeigt ein Blechteil 20 mit einer Längsausnehmung 22 sowie einem daran befestigten Clipblechteil 24. Im unteren Bereich des Blechteils 20 ist eine Abkantung 40 ausgebildet. An die Abkantung 40 schließen kreisförmige Ausnehmungen 50 an.
Figur 2b zeigt ein Blechteil 20, wo in der Abkantung 40 Aussparungen 52 angeordnet sind, die den Verbund des Blechteils 20 im Beton deutlich erhöhen.
Figur 2c zeigt ein L-förmiges Blechteil 20 mit eingesetztem Bügel 30 in Frontansicht, vor dem Vergießen mit Beton. Das Blechteil 20 ist dabei über die unterste Längsbewehrungslage Buu geführt, wobei die Abkantung 40 den unteren Längsbewehrungsstab S umgreift. Je zwei Längsbewehrungsstäbe S sind durch die Ausnehmungen 50 hindurchgeführt und sorgen somit für sicheren Verbund zwischen Blechteil 20 und unterer Längsbewehrungslage Buu. Das Clipblechteil 24 hält den Bügel 30 in der Längsausnehmung 22 des Blechteils 20. Der Bügel 30 hat zwei Schultern 32, die auf der obersten Lage Boo der oberen Längsbewehrung Bo aufliegen.
Figur 3a zeigt dieselbe Einbausituation wie Figur 2c, allerdings in der Seitenansicht. Der Bügel 30 ist bezüglich eines Winkels α zur vertikalen Achse beliebig einbaubar. Dadurch ist ein aufwendiges Ausrichten des Bügels 30 relativ zum Blechteil 20 unnötig.
Der Bügel 30 wird in der Längsausnehmung 22 durch das Clipblechteil 24 in einem Befestigungsbereich BF gehalten. Zudem zeigt Figur 3a, dass die unterste Bewehrungslage Buu der Längsbewehrung Bu durch die Ausnehmungen 50 geführt ist. Die Abkantung 40 ist vorteilhafterweise nahe den Ausnehmungen 50 angeordnet. Das Blechteil 20 sowie der Bügel 30 bilden so erfindungsgemäß die Querkraftbewehrung Q für ein erfindungsgemäßes Stahlbetonbauteil 10.
Figur 3b zeigt exemplarisch, dass auch zwei Bügel 30 je Blechteil 20 verwendet werden können. Hier sind beide Bügel 30 in einem Befestigungsbereich BF durch das Clipblechteil 24 sicher in Position gehalten. Die jeweiligen Schultern 32 liegen auf der obersten Längsbewehrungslage Boo auf. Die Bügel 30 bilden somit in Verbindung mit dem Blechteil 20 die Querkraftbewehrung Q.
Figur 4 zeigt eine Bewehrungsanordnung BA unter Verwendung mindestens 20 L- förmiger, freifallend hergestellter Blechteile 20 aus Baustahl mit daran befestigten Bügeln 30. Man erkennt, dass die Blechteile 20 konzentrisch um einen Kernbereich K angeordnet sind. Die Blechteile 20 stehen dabei mit ein oder zwei Bügeln 30 in Korrespondenz und bilden somit in ihrer Gemeinsamkeit die Querkraftbewehrung Q.
Die Erfindung ist nicht auf eine der vorgeschriebenen Ausführungsformen beschränkt, sondern in vielfältiger Weise abwandelbar.
Sämtliche aus den Ansprüchen, der Beschreibung und der Zeichnung hervorgehenden Merkmale und Vorteile, einschließlich konstruktiver Einzelheiten, räumlicher Anordnungen und Verfahrensschritten, können sowohl für sich als auch in den verschiedensten Kombinationen erfindungswesentlich sein. Bezugszei chen l iste
BA Bewehrungsanordnung
BF Befestigungsbereich
K Kernbereich
Bu untere Längsbewehrungslage
Buu unterste Längsbewehrungslage
Bo obere Längsbewehrungslage
Boo oberste Längsbewehrungslage
L Ausdehnung
S Bewehrungsstab
Q Querkraftbewehrungslage
h Bauteildicke
H6 Bügellänge
10 Stahlbetonbauteil
20 Blechteile
22 Längsausnehmung
24 Clipblechteil
30 Bügel
32 Schulter
40 Abkantung
50 Ausnehmungen
52 Aussparungen

Claims

Patentansprüche
1. Stahlbetonbauteil (10) mit mindestens einer oberen (Bo) und mindestens einer unteren Längsbewehrungslage (Bu) , und einer Querkraftbewehrung (Q), wobei diese in ihrer Ausdehnung (L) über die oberste (Boo) und die unterste Längsbewehrung (Buu) geführt ist, dadurch gekennzeichnet, dass die Querkraftbewehrung (Q) aus mindestens 20 L-förmigen Blechteilen (20) aus Baustahl mit daran befestigten Bügeln (30) gebildet ist.
2. Stahlbetonbauteil (10) nach Anspruch 1 , dadurch gekennzeichnet, dass bevorzugt die Querkraftbewehrung (Q) aus mindestens 50 L-förmigen Blechteilen (20) mit daran befestigten Bügeln (30) gebildet ist.
3. Stahlbetonbauteil (10) nach Anspruch 1 , dadurch gekennzeichnet, dass besonders bevorzugt die Querkraftbewehrung (Q) aus mindestens 70 L-förmigen Blechteilen (20) mit daran befestigten Bügeln (30) gebildet ist.
4. Stahlbetonbauteil (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jedes Blechteil (20) eine Abkantung (40) aufweist.
5. Stahlbetonbauteil (10) nach Anspruch 4, dadurch gekennzeichnet, dass die Abkantung (40) an der bügelabgewandten Seite des Blechteils (20) angeordnet ist.
6. Stahlbetonbauteil (10) nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass je Blechteil (20) zwei kreisförmige Ausnehmungen (50) an der Abkantung (40) ausgebildet sind.
7. Stahlbetonbauteil (10) nach Anspruch 6, dadurch gekennzeichnet, dass durch jede Ausnehmung (50) ein Längsbewehrungsstab (S) geführt ist.
8. Stahlbetonbauteil (10) nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Abkantungen (40) mit zusätzlichen Aussparungen (52) ausgebildet sind.
9. Stahlbetonbauteil (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das jedes Blechteil (20) eine Dicke von 3 oder 5 mm aufweist.
10. Stahlbetonbauteil (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Blechteile (20) gleichmäßig um einen Bereich (BA) angeordnet sind.
11. Stahlbetonbauteil (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Blechteile (20) parallel zueinander angeordnet sind.
12. Stahlbetonbauteil (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Bügel (30) in eine Längsausnehmung (22) des Blechteils (20) eingehängt ist.
13. Stahlbetonbauteil (10) nach Anspruch 12, dadurch gekennzeichnet, dass die Längsausnehmung (22) eine Lagesicherung für den Bügel (30) aufweist.
14. Stahlbetonbauteil (10) nach Anspruch 13, dadurch gekennzeichnet, dass die Lagesicherung als Rastung ausgebildet ist.
15. Stahlbetonbauteil (10) nach Anspruch 14, dadurch gekennzeichnet, dass die Rastung als Clipblechteil (24) ausgebildet ist.
16. Stahlbetonbauteil (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwei Bügel (30) je Blechteil (20) befestigt sind.
17. Stahlbetonbauteil (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bügel (30) aus Baustahl mit 6 mm Durchmesser hergestellt sind.
18. Stahlbetonbauteil (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bügel (30) auf der oberen Längsbewehrung (BO) aufliegen.
19. Stahlbetonbauteil (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bügel (30) in einem Winkel (α) relativ zum jeweiligen Blechteil (20) bis maximal 45 Grad verschwenkt eingebaut sind.
20. Stahlbetonbauteil (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bügellänge (HB), bei einer Bauteildicke (h) kleiner 24 cm, dem Wert der Gleichung HB = (h - co - cu - 7,5) * 1,06 beträgt.
21. Stahlbetonbauteil (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bügellänge (HB), bei einer Bauteildicke (h) größer oder gleich 24 cm, dem Wert der Gleichung HB = h - c0 - cu - 6,5 beträgt.
22. Stahlbetonbauteil (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Querkraftbewehrung (Q) aus derart vielen L-förmigen Blechteilen (20) aus Baustahl mit daran befestigten Bügeln (30) gebildet ist, dass die Gleichung -——≤ vRd max erfüllt ist.
ιknt
23. Stahlbetonbauteil (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Querkraftbewehrung (Q) aus derart vielen L-förmigen Blechteilen (20) aus Baustahl mit daran befestigten Bügeln (30) gebildet ist, dass die Gleichung ß -VEd < vRd sy L erfüllt ist.
24. Verfahren zur Herstellung eines erfindungsgemäßen Stahlbetonbauteils (10) gemäß Anspruch 1 umfassend die folgenden Schritte:
• Einfädeln der L-förmigen Blechteile (20) auf die unterste Lage der Längsbewehrung (Buu)
• Einhängen der Bügel (30) in Ausnehmungen (22) der Blechteile (20) wobei die Schultern (32) der Bügel (30) auf der obersten Lage der Längsbewehrung (Boo) liegen
• Vergießen mit Beton
25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, dass die Bügel (30) in den Ausnehmungen (22) der Blechteile, vor dem vollständigen Vergießen mit Beton, verrastet werden.
26. Verfahren nach Anspruch 24 oder 25, dadurch gekennzeichnet, dass das Vergießen mit dem Beton in zwei Schritten erfolgt.
EP10734988.8A 2009-07-31 2010-07-19 Stahlbetonbauteil mit bewehrung aus l-förmigen blechteilen Active EP2459813B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL10734988T PL2459813T3 (pl) 2009-07-31 2010-07-19 Żelbetowy element budowlany ze zbrojeniem z części z blachy w kształcie litery l

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009035800 2009-07-31
DE102009056826A DE102009056826A1 (de) 2009-07-31 2009-12-05 Stahlbetonbauteil mit Bewehrung aus L-förmigen Blechteilen
PCT/EP2010/060389 WO2011012483A1 (de) 2009-07-31 2010-07-19 Stahlbetonbauteil mit bewehrung aus l-förmigen blechteilen

Publications (2)

Publication Number Publication Date
EP2459813A1 true EP2459813A1 (de) 2012-06-06
EP2459813B1 EP2459813B1 (de) 2016-01-06

Family

ID=43402773

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10734988.8A Active EP2459813B1 (de) 2009-07-31 2010-07-19 Stahlbetonbauteil mit bewehrung aus l-förmigen blechteilen

Country Status (8)

Country Link
US (1) US8815366B2 (de)
EP (1) EP2459813B1 (de)
JP (1) JP2013501169A (de)
DE (2) DE102009056826A1 (de)
DK (1) DK2459813T3 (de)
ES (1) ES2565334T3 (de)
PL (1) PL2459813T3 (de)
WO (1) WO2011012483A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2236686A1 (de) * 2009-04-03 2010-10-06 F.J. Aschwanden AG Bewehrungselement für die Aufnahme von Kräften von betonierten Platten im Bereich von Stützelementen
DE102012008057A1 (de) * 2012-04-21 2013-10-24 Thomas Friedrich Schubbewehrungselement für eine Tragplatte und Tragplatte mit eingebautem Schubbewehrungselement
ES2880283T3 (es) * 2014-04-30 2021-11-24 Technische Hochshule Mittelhessen Pieza constructiva plana, elemento de armadura de fuerza cortante, así como pieza constructiva de hormigón armado/ hormigón pretensado con una armadura de fuerza cortante compuesta por tales elementos de armadura de fuerza cortante
TWI634255B (zh) * 2017-09-11 2018-09-01 潤弘精密工程事業股份有限公司 施作彼此銜接之複數梁的方法
CN118024394B (zh) * 2022-11-15 2024-10-11 长兴奥宇塑业有限公司 蒸压加气混凝土板网笼的连接组件、组网结构和使用方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1613351A (en) * 1924-05-31 1927-01-04 Buffalo Steel Company Chair for concrete-reenforcing rods
US2911819A (en) 1956-09-04 1959-11-10 John L Austin Support for reenforcing steel for concrete structures
CH412275A (it) 1964-05-22 1966-04-30 Artico In Paulin Luisa Procedimento per la confezione di un telaio per la fabbricazione di travetti leggeri in laterizio misto, e telaio preparato secondo detto procedimento
FR2303133A1 (fr) 1975-03-07 1976-10-01 Laroche Jean Pierre Distancier d'armatures pour constructions en beton arme
DE2727159C3 (de) 1977-06-16 1980-05-08 7000 Stuttgart Schubbewehrung für auf Betonstützen aufgelagerte Flachdecken aus Stahl- oder Spannbeton
DE29812676U1 (de) 1997-09-09 1998-12-03 Deha Ankersysteme Gmbh & Co. Kg, 64521 Gross-Gerau Dübelleiste für Schubbewehrungen
DE19756358A1 (de) * 1997-12-18 1999-07-01 Deha Ankersysteme Schubbewehrung für Flachdecken und Dübelleiste hierfür
EP0928859A1 (de) * 1998-01-13 1999-07-14 Pecon AG Durchstandsarmierung
DE19924418A1 (de) * 1999-05-27 2000-11-30 Schoeck Bauteile Gmbh Bauelement zur Schubbewehrung
CH694375A5 (fr) * 2000-08-08 2004-12-15 Sc Tech Philippe Menetrey Dr Armature flexible de connexion reliant les armatures d'une structure en béton.
DE10327938A1 (de) 2002-06-17 2004-01-08 Krause, Wilfried, Dipl.-Ing. Segmentträger
DE10310715A1 (de) 2003-03-10 2004-10-07 Fachhochschule Gießen-Friedberg Erfindung betreffend Bauteile als Bewehrungselemente sowie daraus hergestellte Betonteile
US20070062144A1 (en) 2003-10-13 2007-03-22 Soo-Chang Moon Fiber reinforced cement board and foam plastic insulated stay in place forms systems with perforated metal stud for cencrete reinforced structure
FI121677B (fi) * 2004-12-08 2011-02-28 Teraespeikko Oy Lävistysraudoite
FI121678B (fi) * 2004-12-09 2011-02-28 Teraespeikko Oy Lävistysraudoite
JP3852784B1 (ja) * 2006-06-12 2006-12-06 株式会社ケイエフ 鉄筋保持スペーサおよびそれを用いた法枠形成工法
US20080209843A1 (en) 2007-02-20 2008-09-04 Sure-Way, Llc Rebar Holding and Positioning Apparatus and Method for Reinforcing Concrete Using Rebar

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011012483A1 *

Also Published As

Publication number Publication date
EP2459813B1 (de) 2016-01-06
DK2459813T3 (en) 2016-03-21
WO2011012483A1 (de) 2011-02-03
US8815366B2 (en) 2014-08-26
DE202009018538U1 (de) 2011-12-16
PL2459813T3 (pl) 2016-06-30
JP2013501169A (ja) 2013-01-10
US20120177873A1 (en) 2012-07-12
DE102009056826A1 (de) 2011-02-03
ES2565334T3 (es) 2016-04-04

Similar Documents

Publication Publication Date Title
DE112010000467T5 (de) Scherverstärkungsmaterial des kragträgertyps mit doppeltenverankerungsfunktionen an oberseite und unterseite
EP2050887B1 (de) Gitterträger
EP2963205B1 (de) Vorrichtung zur schalung
EP2459813B1 (de) Stahlbetonbauteil mit bewehrung aus l-förmigen blechteilen
WO2014026781A1 (de) Punktgestützte element- oder flach-betondecke
EP2075388A1 (de) Bewehrungselemente und damit hergestellte Stahl- oder Spannbetonteile
EP2459812B1 (de) Stahlbetonbauteil mit bewehrung aus z-förmigen blechteilen
EP3225758A1 (de) Anschlussbauteil zur wärmeentkopplung zwischen einem vertikalen und einem horizontalen gebäudeteil
DE202005013048U1 (de) Bauelement zur Schubbewehrung
DE102010025042A1 (de) Stahlträger für Fertigteildecken
DE102007005119B4 (de) Anschlusskorb für vorfabrizierte Doppelwandelemente
EP1972734A1 (de) Fixierkörper für eine Dämmplatte
DE202020100059U1 (de) Schalungselement
DE10259961B4 (de) Vorgefertigtes Bauelement, insbesondere Decken- oder Wandbauelement aus einem ausgehärteten Material
EP2385189A2 (de) Schalungselement
EP3892789A1 (de) Schalungssystem
EP0947640B1 (de) Bewehrung mit hochfestem Verbund
AT522366B1 (de) Bewehrungselement, Betonbauelement und Verfahren zum Herstellen eines Betonbauelements
EP3070225B1 (de) Durchstanzbewehrungselement und bauwerk mit einer platte mit einem durchstanzbewehrungselement
EP1703036A1 (de) Bauelement zur Schub- bzw. Durchstanzbewehrung
LU505051B1 (de) Eine Skelettstruktur mit wechselnden Stahlkombinationen in Betonträge
EP4026958A2 (de) Vorrichtung zum kraftübertragenden verbinden eines ersten tragenden gebäudeteils mit einem zweiten getragenen gebäudeteil
DE102009057074A1 (de) Vorgefertigtes Deckenbauelement
DE202017102195U1 (de) Schalungselement
DE102017206317A1 (de) Schalungselement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150612

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TECHNISCHE HOCHSCHULE MITTELHESSEN

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 768997

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010010890

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20160317

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2565334

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160404

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20160106

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160506

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160506

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010010890

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

26N No opposition filed

Effective date: 20161007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230719

Year of fee payment: 14

Ref country code: LU

Payment date: 20230719

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230717

Year of fee payment: 14

Ref country code: NO

Payment date: 20230721

Year of fee payment: 14

Ref country code: IT

Payment date: 20230724

Year of fee payment: 14

Ref country code: IE

Payment date: 20230719

Year of fee payment: 14

Ref country code: FI

Payment date: 20230719

Year of fee payment: 14

Ref country code: ES

Payment date: 20230926

Year of fee payment: 14

Ref country code: CH

Payment date: 20230801

Year of fee payment: 14

Ref country code: AT

Payment date: 20230720

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230719

Year of fee payment: 14

Ref country code: PL

Payment date: 20230707

Year of fee payment: 14

Ref country code: DK

Payment date: 20230721

Year of fee payment: 14

Ref country code: BE

Payment date: 20230719

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240719

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240723

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240730

Year of fee payment: 15