EP2456739A1 - Verfahren und vorrichtung zur dehydrierung von alkanen mit einer vergleichmässigung der produktzusammensetzung - Google Patents

Verfahren und vorrichtung zur dehydrierung von alkanen mit einer vergleichmässigung der produktzusammensetzung

Info

Publication number
EP2456739A1
EP2456739A1 EP10754857A EP10754857A EP2456739A1 EP 2456739 A1 EP2456739 A1 EP 2456739A1 EP 10754857 A EP10754857 A EP 10754857A EP 10754857 A EP10754857 A EP 10754857A EP 2456739 A1 EP2456739 A1 EP 2456739A1
Authority
EP
European Patent Office
Prior art keywords
dehydrogenation
alkanes
reactors
homogenization
product composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10754857A
Other languages
English (en)
French (fr)
Inventor
Helmut Gehrke
Rolf SCHWA
Max Heinritz-Adrian
Oliver Noll
Sascha Wenzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Industrial Solutions AG
Original Assignee
ThyssenKrupp Uhde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Uhde GmbH filed Critical ThyssenKrupp Uhde GmbH
Publication of EP2456739A1 publication Critical patent/EP2456739A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/373Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation
    • C07C5/393Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation with cyclisation to an aromatic six-membered ring, e.g. dehydrogenation of n-hexane to benzene
    • C07C5/41Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/373Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation
    • C07C5/393Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen with simultaneous isomerisation with cyclisation to an aromatic six-membered ring, e.g. dehydrogenation of n-hexane to benzene
    • C07C5/41Catalytic processes
    • C07C5/415Catalytic processes with metals

Definitions

  • the invention relates to a process for the dehydrogenation of alkanes with homogenization of the product composition, wherein an alkane is passed over a suitable catalyst, whereby a gas stream is formed, which is an alkene, hydrogen and contains an unreacted alkane. Since the dehydrogenation of alkanes belongs to the group of reversible equilibrium reactions, the chemical equilibrium sets in under ideal catalyst conditions during the reaction after a certain residence time. The homogenization of the product composition or a constant proportion of alkene, alkane and hydrogen in the product gas is achieved by influencing the chemical equilibrium by means of process parameters in the desired direction. The dehydrogenation of alkanes takes place on a suitable catalyst. Over time, the activity of the catalyst decreases under the same reaction conditions. This causes the product composition at the reactor outlet to change permanently over a production cycle if the process parameters remain unchanged. Due to the constantly changing product composition, there may be disruptions in subsequent system components. For example, the rectification columns are sensitive to concentration variations in the feedstream.
  • US 5243122 A describes a process for an allothermal reformer for the dehydrogenation of light alkanes, wherein the temperature of the catalyst bed is controlled during the reaction and slowly raised so that the composition of the reactor effluent remains the same during the reaction. By doing so, the slowing down of the activity of the catalyst is retarded, so that the composition of the product stream and in particular the alkene / alkane ratio contained therein remain the same during operation.
  • the thermal control of the reaction is controlled by a special valve control of the fuel gas supply.
  • the reformers are arranged in parallel, except the temperature, the other factors were not treated.
  • BESTATIGUNGSKOPIE can be passed over the catalyst. This gas oxidizes the carbonaceous deposits so that the catalyst is exposed and the reaction can begin anew.
  • the invention is therefore based on the problem of developing a process for the dehydrogenation of alkanes, with which the product composition at the reactor outlet remains constant over the entire operating time.
  • a gaseous alkane-containing stream is passed in a continuous mode through a catalyst bed in several reactors of adiabatic, allothermic or isothermal type or combinations thereof, thereby creating a gas stream, which is an alkene, hydrogen and unreacted Contains alkane, and that
  • At least one of the process parameters temperature, pressure or steam-hydrocarbon ratio is detected at one or more points on at least one of the reactors in the form of measured values
  • At least one of the process parameters is specifically influenced, so that the composition of the product gas at the output of at least one reactor remains constant over the service life.
  • Measured values of temperature, pressure or steam / hydrocarbon ratio can be determined at one or more points of a reactor, then the process parameters can be purposefully controlled and influenced by means of control devices so that the composition of the product gas at the end of the reactor system can be monitored. remains constant over the service life.
  • the process parameters temperature, pressure and steam-hydrocarbon ratio can be influenced in a targeted manner.
  • the temperature in at least one of the reactors can be regulated.
  • the pressure in the reactor via the removal of the product gas can be controlled by means of a control valve.
  • the steam Hydrocarbon ratio in the reactor is determined by the addition amounts of steam and gaseous hydrocarbon, this action being preferred in the first of the reactors.
  • an analyzer for measuring the composition of the product gas is used.
  • the analyzer may be, for example, a gas chromatograph.
  • the composition of the product gas is determined with the aid of the analyzer.
  • the process parameters both individually and in combination, can be influenced in such a way that the desired homogenization of the composition of the product gas can be achieved.
  • the same can also be obtained by specifying a time-varying function, for example a ramp function, by a process control system.
  • the use of the inventive method for the production of alkenes from alkanes is claimed, in particular the use of the method for the dehydrogenation of propane to propene, of n-butane to / i-butenes and butadiene, from / so Butane to / so-butene, or mixtures thereof and the dehydrocyclization of alkanes to aromatics.
  • any alkane or hydrocarbon that is dehydrogenatable by a prior art dehydrogenation process can be dehydrogenated.
  • an allothermal reactor for the dehydrogenation of propane to propene is considered as an embodiment in order to represent the process according to the invention.
  • the reactor is operated with the following process-technical values: inlet temperature: 510 ° C., temperature difference between inlet and outlet ⁇ T: 75K, outlet pressure p: 6.0 bar, molar steam-hydrocarbon ratio STHC: 3.5.
  • Example 1 As shown in Fig. 1, the yield of propene decreases from 26.7% to 26.1% without adjusting the process parameters.
  • Example 2 As shown in Fig. 2, by raising the temperature difference ⁇ T over the cycle, the yield of propene is kept constant at 26.7%. All other parameters remain unchanged compared to example 1.
  • Example 3 As shown in Fig. 3, by lowering the discharge pressure p over the cycle, the yield of propene is kept constant at 26.7%. All other parameters remain unchanged compared to example 1.
  • Example 4 As shown in Fig. 4, by raising the steam-hydrocarbon ratio (STHC) over the cycle, the yield of propene is kept constant at 26.7%. All other parameters remain unchanged compared to example 1.
  • STHC steam-hydrocarbon ratio
  • Example 5 As shown in FIG. 5, in this example the pressure is lowered constantly over the cycle time by 0.05 bar / h, and at the same time the temperature difference ⁇ T is slightly increased in order to obtain a uniform yield of propene.
  • a one-sided reduction of the outlet pressure p over time (as in example 3) is often not possible at will, because the subsequent process step e.g. Raw gas compression requires a certain inlet pressure. Therefore, it makes sense to simultaneously influence several process parameters in order to achieve the desired homogenization of the composition of the product gas.
  • Fig. 6 A device with allothermic and adiabatic reactor connected in series with a temperature control system.
  • Fig. 7 A device with allothermal and adiabatic reactor connected in series with a temperature control system and a pressure control system.
  • Fig. 8 A device with adiabatic reactors connected in series with temperature and pressure control system by means of a process control system.
  • FIG. 6 shows a device comprising two reactors connected in series almuth (1) and adiabatic (2) with oxygen supply (3).
  • the reaction gas (4) is fed into the allothermal reactor (1).
  • the heating takes place via the burners (5) which are operated with a fuel gas (6) and an oxygen-containing gas (7).
  • a closed pipe system (8) is provided, in which a catalyst is located and the reaction takes place.
  • a temperature measuring device (10) and an analyzer (11) are connected.
  • the fuel gas supply is controlled via the temperature measuring device (10) and the electrical control lines (10a) so that the measured values on the analyzer (11) always indicate the desired same proportion of alkene in the product gas (9).
  • the product gas (9) from the reactor system (1) is then mixed with an oxygen-containing gas (3) and fed into the adiabatic reactor (2).
  • this reactor there is also a closed dehydrogenation and hydrogen oxidation (12) piping system which contains a catalyst and where the hydrogen oxidation and further dehydrogenation takes place.
  • a temperature measuring device (13) and an analyzer (14) At the output of the second reactor is also a temperature measuring device (13) and an analyzer (14).
  • the oxygen supply is controlled via the temperature measuring device (13) and the electrical control lines (13a) so that the measured values on the analyzer (14) always indicate the desired same proportion of alkene in the product gas (15).
  • Fig. 7 shows a device which also consists of a first allothermally operated reactor (1) and a second adiabatically operated reactor (2) with oxygen supply (3).
  • the temperature is measured at the outlet of the first reaction system (9) by a temperature measuring device (10), and controlled in dependence on the fuel gas and oxygen supply (6,7) via electrical measuring signals (10a). In this way, a constant temperature can be set in the first reaction system.
  • the product composition is controlled only at the outlet of the second reaction system (15). This is done via an analyzer (17) at the output of the second reaction system, which measures the pressure via a pressure-holding valve (16) on the reactor of the second reaction system (2) and forwards them via electrical control lines (16a, 17a) to a process control system (18).
  • the temperature of the reactor (2) is controlled via the electrical control line (13a) and the oxygen addition (3).
  • the process control system (18) calculates the required settings for the pressure and regulates via the electrical measuring signals (17a) and the pressure-maintaining valve (16) at the outlet of the reactor system so that always the same composition of the product gas (15) at the outlet of the second reactor (2) is obtained.
  • Fig. 8 shows an apparatus of 3 series-connected adiabatic reactors (19, 2a, 2b) with oxygen supply (3a, 3b).
  • the reaction in the first reactor (19) is adiabatic, so as to obtain a constantly changing product composition at the outlet of the reaction system (9).
  • a selective hydrogen oxidation is carried out.
  • a temperature measuring device (20) is mounted, this controls the reactor (2a) via the electrical measuring lines (20a) and the oxygen addition (3a).
  • the electrical control lines (18a) the measured values of the temperature measuring device (20) are forwarded to a process control system (18).
  • a homogenization of the composition of the product gas takes place at the outlet of the reactor (2a).
  • a temperature measuring device (21) is likewise arranged, which regulates the attached reactor via the electrical control lines (21b) and the oxygen addition (3a).
  • the temperature device (21) transmits the measured values to the process control system (18) via the electrical control line (21a). This results in a desired uniform composition of the product gas at the outlet of the third reaction system (22).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Die Erfindung betrifft Verfahren zur Dehydrierung von Alkanen. In mehreren Reaktoren von adiabatem, allothermem oder isothermem Typ oder Kombinationen daraus wird ein gasförmiger alkanhaltiger Stoffstrom in kontinuierlicher Fahrweise durch ein Katalysatorbett geleitet, wodurch ein Gasstrom entsteht, welcher ein Alken, Wasserstoff und ein nicht umgesetztes Alkan enthält. Um eine Vergleichmäßigung der Produktzusammensetzung zu erreichen, wird mindestens einer der Prozess-Parameter Temperatur, Druck oder Dampf- Kohlenwasserstoff-Verhältnis an einem oder mehreren Punkten an mindestens einem der Reaktoren in Form von Messwerten erfasst, wo mindestens einer der Prozess-Parameter gezielt kontrolliert und beeinflusst wird, so dass die Zusammensetzung des Produktgases am Ausgang eines Reaktors über die Betriebsdauer konstant bleibt.

Description

Verfahren und Vorrichtung zur Dehydrierung von Alkanen mit einer Vergleichmäßigung der Produktzusammensetzung [0001] Die Erfindung betrifft ein Verfahren zur Dehydrierung von Alkanen mit Vergleichmäßigung der Produktzusammensetzung, wobei ein Alkan über einen geeigneten Katalysator geleitet wird, wodurch ein Gasstrom entsteht, welcher ein Alken, Wasserstoff und ein nicht umgesetztes Alkan enthält. Da die Dehydrierung von Alkanen zur Gruppe der reversiblen Gleichgewichtsreaktionen gehört, stellt sich unter idealen Katalysatorbedingungen im Verlauf der Reaktion nach einer bestimmten Verweilzeit das chemische Gleichgewicht ein. Die Vergleichmäßigung der Produktzusammensetzung bzw. ein gleichbleibender Anteil an Alken, Alkan und Wasserstoff im Produktgas wird erreicht, in dem man das chemische Gleichgewicht mittels Prozess-Parametem in die gewünschte Richtung beeinflusst. [0002] Die Dehydrierung von Alkanen findet an einen geeigneten Katalysator statt. Mit der Zeit sinkt die Aktivität des Katalysators bei gleichen Reaktionsbedingungen ab. Dies führt dazu, dass sich die Produktzusammensetzung am Reaktoraustritt über einen Produktionszyklus permanent ändert, wenn die Prozess-Parameter unverändert bleiben. Aufgrund der ständig ändernden Produktzusammensetzung kann es in nachfolgenden Anlagenteilen zu Störungen kommen. Beispielsweise reagieren die Rektifizierkolonnen empfindlich auf Konzentrationsschwankungen des Einsatzstoffstroms.
[0003] Die US 5243122 A beschreibt einen Prozess für einen allothermen Reformer zur Dehydrierung von leichten Alkanen, wobei die Temperatur des Katalysatorbettes während der Reaktion kontrolliert und langsam angehoben wird, so dass die Zusammensetzung des Reaktorausflusses während der Reaktion gleich bleibt. Durch diese Vorgehensweise wird das Nachlassen der Aktivität des Katalysators verzögert, so dass die Zusammensetzung des Produktstromes und insbesondere das darin enthaltene Alken-/Alkan-Verhältnis während des Betriebes gleich bleiben. Die thermische Kontrolle der Reaktion wird durch eine spezielle Ventilsteuerung der Heizgaszuführung geregelt. Allerdings sind die Reformer parallel angeordnet, außer der Temperatur wurden die anderen Einflussfaktoren nicht behandelt.
[0004] Während der Reaktion bilden sich nach einiger Zeit auf dem Katalysator in der Regel kohlenstoffhaltige Beläge, wodurch der Alkan-Umsatz drastisch abnimmt. Aus diesem Grund wird die Reaktion zyklisch durchgeführt. Nach einer bestimmten Reaktionszeit wird die Reaktion gestoppt, und ein sauerstoffhaltiges Gas, welches auch Wasserdampf enthalten
BESTATIGUNGSKOPIE kann, wird über den Katalysator geleitet. Durch dieses Gas werden die kohlenstoffhaltigen Beläge oxidiert, so dass der Katalysator freigelegt wird und die Reaktion von Neuem beginnen kann. [0005] Der Erfindung liegt daher das Problem zugrunde, ein Verfahren zur Dehydrierung von Alkanen zu entwickeln, mit dem die Produktzusammensetzung am Reaktoraustritt über die gesamte Betriebsdauer konstant bleibt.
[0006] Die Aufgabe wird dadurch gelöst, indem in mehreren Reaktoren von adiabatem, allothermem oder isothermem Typ oder Kombinationen daraus ein gasförmiger alkanhaltiger Stoffstrom in kontinuierlicher Fahrweise durch ein Katalysatorbett geleitet wird, dadurch ein Gasstrom entsteht, welcher ein Alken, Wasserstoff und ein nicht umgesetztes Alkan enthält, und dass
• mindestens einer der Prozess-Parameter Temperatur, Druck oder Dampf- Kohlenwasserstoff-Verhältnis an einem oder mehreren Punkten an mindestens einem der Reaktoren in Form von Messwerten erfasst wird,
• mindestens einer der Prozess-Parameter gezielt beeinflusst wird, so dass die Zusammensetzung des Produktgases am Ausgang mindestens eines Reaktors über die Betriebsdauer konstant bleibt.
[0007] An einem oder mehreren Punkten eines Reaktors können Messwerte von Temperatur, Druck oder Dampf-Kohlenwasserstoff-Verhältnis ermittelt werden, anschließend können mittels Steuerungsgeräte die Prozess-Parameter gezielt kontrolliert und beeinflusst werden, damit die Zusammensetzung des Produktgases am Ende des Reaktorensystem ü- ber die Betriebsdauer konstant bleibt.
[0008] In Ausgestaltungen der Erfindung ist vorgesehen, dass zwei bis zehn gleiche o- der verschiedene Reaktortypen im Verbund zum Einsatz kommen. Allerdings sind zwei bis vier Reaktoren angesichts der Wirtschaftlichkeit bevorzugt. Die Reaktoren können von den unterschiedlichen Typen allotherm, adiabatisch oder isotherm sein. Natürlich können die Reaktoren mit verschiedenen Typen auch unterschiedlich kombiniert werden, um eine entsprechende Effektivität und Wirtschaftlichkeit zu erhalten. Um eine Vergleichmäßigung der Produktzusammensetzung zu erreichen, können die Prozess-Parameter Temperatur, Druck und Dampf-Kohlenwasserstoff-Verhältnis gezielt beeinflusst werden. Über die Zufuhr des Heiz- gases / Sauerstoffs und einen geeigneten Temperatursensor kann die Temperatur in mindestens einem der Reaktoren geregelt werden. Ebenso kann der Druck im Reaktor über die Abfuhr des Produktgases mittels eines Regelventils kontrolliert werden. Das Dampf- Kohlenwasserstoff-Verhältnis im Reaktor wird durch die Zugabemengen von Dampf und gasförmigem Kohlenwasserstoff bestimmt, wobei diese Handlung im ersten der Reaktoren bevorzugt wird. [0009] In weiteren Ausgestaltungen der Erfindung kommt ein Analysengerät zur Messung der Zusammensetzung des Produktgases zum Einsatz. Das Analysegerät kann beispielweise ein Gaschromatograph sein. Bei dem vorgegebenen Sollwert von Temperatur, Druck oder Dampf-Kohlenwasserstoff-Verhältnis wird die Zusammensetzung des Produktgases mit Hilfe des Analysegerätes ermittelt. Dadurch können die Prozess-Parameter sowohl einzelner als auch in Kombination so beeinflusst werden, dass die gewünschte Vergleichmäßigung der Zusammensetzung des Produktgases erreicht werden kann. Das Gleiche kann auch mittels Vorgabe einer zeitlich veränderlichen Funktion, beispielsweise einer Rampenfunktion, durch ein Prozessleitsystem erlangt werden. [0010] In weiteren Ausgestaltungen der Erfindung wird auch die Verwendung des erfindungsgemäßen Verfahrens zur Herstellung von Alkenen aus Alkanen beansprucht, insbesondere die Verwendung des Verfahrens zur Dehydrierung von Propan zu Propen, von n- Butan zu /i-Butenen und Butadien, von /so-Butan zu /so-Buten, oder Mischungen daraus und zur Dehydrozyklisierung von Alkanen zu Aromaten. Dehydriert werden kann jedoch jedes Al- kan oder jeder Kohlenwasserstoff, der durch ein Dehydrierungsverfahren nach dem Stand der Technik dehydrierbar ist.
[0011] Die Erfindung wird anhand einiger Beispiele erläutert. Hierzu wird ein allothermer Reaktor zur Dehydrierung von Propan zu Propen als Ausführungsform betrachtet, um das er- findungsgemäße Verfahren darzustellen. Dabei ist der Reaktor mit folgenden verfahrenstechnischen Werten betrieben: Eintrittstemperatur: 5100C, Temperaturdifferenz zwischen Eintritt und Austritt ΔT: 75K, Austrittsdruck p: 6,0 bar, molares Dampf-Kohlenwasserstoff- Verhältnis STHC: 3,5. [0012] Beispiel 1 : Wie in Fig. 1 gezeigt, sinkt ohne Anpassung der verfahrenstechnischen Parameter die Ausbeute an Propen von zunächst 26,7% auf 26,1 % ab.
[0013] Beispiel 2: Wie in Fig. 2 gezeigt, wird durch Anheben der Temperaturdifferenz ΔT über den Zyklus die Ausbeute an Propen konstant bei 26,7% gehalten. Alle anderen Para- meter bleiben gegenüber dem Beispiel 1 unverändert. [0014] Beispiel 3: Wie in Fig. 3 gezeigt, wird durch Absenken des Austrittsdrucks p über den Zyklus die Ausbeute an Propen konstant bei 26,7% gehalten. Alle anderen Parameter bleiben gegenüber dem Beispiel 1 unverändert. [0015] Beispiel 4: Wie in Fig. 4 gezeigt, wird durch Anheben des Dampf- Kohlenwasserstoff-Verhältnisses (STHC) über den Zyklus die Ausbeute an Propen konstant bei 26,7% gehalten. Alle anderen Parameter bleiben gegenüber dem Beispiel 1 unverändert.
[0016] Beispiel 5: Wie in Fig. 5 gezeigt, wird in diesem Beispiel der Druck über die Zyk- luszeit konstant um 0.05 bar/h abgesenkt, und gleichzeitig die Temperaturdifferenz ΔT leicht erhöht, um eine gleichmäßige Ausbeute an Propen zu erhalten. In der Praxis ist eine einseitige Absenkung des Austrittsdrucks p über die Zeit (wie im Beispiel 3) häufig nicht beliebig machbar, denn der anschließende Prozessschritt z.B. Rohgaskompression verlangt einen gewissen Eintrittsdruck. Daher ist es sinnvoll, auch mehrere Prozess-Parameter simultan zu beeinflussen, um die gewünschte Vergleichmäßigung der Zusammensetzung des Produktgases zu erzielen.
[0017] In der Tabelle 1 wurden die Beispiele zusammengefasst. Durch die Beispiele sind die Effekte des Einflusses der Prozess-Parameter auf die Zusammensetzung des Produktgases offensichtlich.
Tabelle 1 : Übersicht der Parametereinstellung
- STHC: molares Dampf-Kohlenwasserstoff-Verhältnis [0018] Die Erfindung wird nachfolgend anhand der Zeichnungen erklärt.
Fig. 6: Eine Vorrichtung mit allothermem und adiabatischem Reaktor nacheinander geschaltet mit einem Temperatur-Kontrolle-System. Fig. 7: Eine Vorrichtung mit allothermem und adiabatischem Reaktor nacheinander geschaltet mit einem Temperatur-Kontrolle-System und einem Druck-Kontrolle-System.
Fig. 8: Eine Vorrichtung mit adiabatischen Reaktoren nacheinander geschaltet mit Temperatur- und Druck-Kontrolle-System mittels einem Prozessleitsystem.
[0019] Fig. 6 zeigt eine Vorrichtung aus zwei hintereinander geschalteten Reaktoren al- lothermer (1) und adiabatischer (2) Bauart mit Sauerstoffzufuhr (3). Das Reaktionsgas (4) wird in den allothermen Reaktor (1) geführt. Die Beheizung erfolgt über die Brenner (5), die mit einem Brenngas (6) und einem sauerstoffhaltigen Gas (7) betrieben werden. In dem Re- aktor (1) ist ein geschlossenes Rohrsystem (8) vorgesehen, in dem sich ein Katalysator befindet und die Reaktion stattfindet. Am Ausgang des ersten Reaktionssystems (1) sind ein Temperaturmessgerät (10) und ein Analysengerät (11) angeschlossen. Die Brenngaszufuhr wird über das Temperaturmessgerät (10) und die elektrische Steuerleitungen (10a) so geregelt, dass die Messwerte am Analysengerät (11) stets den gewünschten gleichen Anteil an Alken im Produktgas (9) anzeigen. Das Produktgas (9) aus dem Reaktorsystem (1) wird dann mit einem sauerstoffhaltigen Gas (3) versetzt und in den adiabatischen Reaktor (2) geführt. In diesem Reaktor befindet sich ebenfalls ein geschlossenes Rohrsystem zur Dehydrierung und Wasserstoffoxidation (12), welches einen Katalysator enthält und wo die Was- serstoffoxidation und weitere Dehydrierung stattfindet. Am Ausgang des zweiten Reaktors befindet sich ebenfalls ein Temperaturmessgerät (13) und ein Analysengerät (14). Die Sauerstoffzufuhr wird über das Temperaturmessgerät (13) und die elektrischen Steuerleitungen (13a) so gesteuert, dass die Messwerte am Analysengerät (14) stets den gewünschten gleichen Anteil an Alken im Produktgas (15) anzeigen. [0020] Fig. 7 zeigt eine Vorrichtung, die ebenfalls aus einem ersten allotherm betriebenen Reaktor (1) und einem zweiten adiabatisch betriebenen Reaktor (2) mit Sauerstoffzufuhr (3) besteht. Die Temperatur wird am Ausgang des ersten Reaktionssystems (9) durch ein Temperaturmessgerät (10) gemessen, und in Abhängigkeit von der Brenngas- und Sauerstoffzufuhr (6,7) über elektrische Messsignale (10a) geregelt. Auf diese Weise lässt sich im ersten Reaktionssystem eine konstante Temperatur einstellen. In dieser Vorrichtung wird die Produktzusammensetzung nur am Ausgang des zweiten Reaktionssystems (15) kontrolliert. Dies geschieht über ein Analysengeräte (17) am Ausgang des zweiten Reaktionssystems, die den Druck über ein Druckhalteventil (16) am Reaktor des zweiten Reaktionssystems (2) misst und diese über elektrische Steuerleitungen (16a, 17a) an ein Prozessleitsystem (18) weitergibt. Die Temperatur des Reaktors (2) wird über die elektrische Steuerleitung (13a) und die Sauerstoffzugabe (3) geregelt. Das Prozessleitsystem (18) errechnet die erforderli- chen Einstellungen für den Druck und regelt über die elektrische Messsignale (17a) und das Druckhalteventil (16) am Austritt des Reaktorsystems so, dass stets die gleiche Zusammensetzung des Produktgases (15) am Ausgang des zweiten Reaktors (2) erhalten wird.
[0021] Fig. 8 zeigt eine Vorrichtung aus 3 hintereinander geschalteten adiabatischen Reaktoren (19, 2a, 2b) mit Sauerstoffzufuhr (3a, 3b). Die Reaktion im ersten Reaktor (19) verläuft adiabatisch, so dass man eine stets wechselnde Produktzusammensetzung am Ausgang des Reaktionssystems (9) erhält. In den Reaktoren (2a, 2b) wird eine selektive Wasserstoffoxidation durchgeführt. Am Ausgang des zweiten Reaktors (2a) ist ein Temperaturmessgerät (20) angebracht, dieses steuert den Reaktor (2a) über die elektrische Messlei- tungen (20a) und die Sauerstoffzugabe (3a). Über die elektrische Steuerleitungen (18a) werden die Messwerte des Temperaturmessgerätes (20) an ein Prozessleitsystem (18) weitergegeben. Dadurch findet eine Vergleichmäßigung der Zusammensetzung des Produktgases am Ausgang des Reaktors (2a) statt. Am Ausgang des dritten Reaktors (2b) ist ebenfalls ein Temperaturmessgerät (21) angeordnet, das über die elektrische Steuerleitungen (21b) und die Sauerstoffzugabe (3a) den angehängten Reaktor regelt. Das Temperaturgerät (21) gibt die Messwerte über die elektrische Steuerleitung (21a) an das Prozessleitsystem (18) weiter. Dadurch erhält man am Ausgang des dritten Reaktionssystems (22) eine gewünschte gleichmäßige Zusammensetzung des Produktgases.
[0022] Bezugszeichenliste
1 Allotherm beheizter Reaktor
2 Adiabatisch betriebener Reaktor
3 Sauerstoffzufuhr
3a Sauerstoffzufuhr
3b Sauerstoffzufuhr
4 Reaktionsgas
5 Brenner
6 Brenngas
7 Sauerstoffhaltiges Gas
8 Geschlossenes Rohrsystem für Dehydrierungsreaktion
9 Produktgas aus erstem Reaktionsteil
10 Temperaturmessgerät
10a Elektrische Steuerleitung
11 Analysengerät zur Feststellung der Produktgaszusammensetzung
12 Geschlossenes Rohrsystem zur Dehydrierung und zur Wasserstoffoxidation
13 Temperaturmessgerät
13a Elektrische Steuerleitung
14 Analysengerät zur Feststellung des Alkenanteils im Produktgas
15 Produktgas
16 Druckhalteventil
16a Elektrische Steuerleitung
17 Analysegerät
17a Elektrische Steuerleitung
18 Prozessleitsystem
18a Elektrische Steuerleitung
19 Adiabatisch betriebener Reaktor
20 Temperaturmessgerät
20a Elektrische Steuerleitung
21 Temperaturmessgerät
21a Elektrische Steuerleitung
21 b Elektrische Steuerleitung
22 Produktgas

Claims

Patentansprüche
1. Verfahren zur Dehydrierung von Alkanen mit einer Vergleichmäßigung der Produktzusammensetzung, wobei
• in mehreren Reaktoren von adiabatem, allothermem oder isothermem Typ oder Kombinationen daraus ein gasförmiger alkanhaltiger Stoffstrom in kontinuierlicher Fahrweise durch ein Katalysatorbett geleitet wird, wodurch ein Gasstrom entsteht, welcher ein Alken, Wasserstoff und ein nicht umgesetztes Alkan enthält,
dadurch gekennzeichnet, dass
• mindestens einer der Prozess-Parameter Temperatur, Druck oder Dampf- Kohlenwasserstoff-Verhältnis an einem oder mehreren Punkten an mindestens einem der Reaktoren in Form von Messwerten erfasst wird,
• mindestens einer der Prozess-Parameter gezielt kontrolliert beeinflusst wird, so dass die Zusammensetzung des Produktgases am Ausgang an mindestens einem der Reaktoren über die Betriebsdauer konstant bleibt.
2. Verfahren zur Dehydrierung von Alkanen mit einer Vergleichmäßigung der Produktzusammensetzung nach Anspruch 1 , dadurch gekennzeichnet, dass zwei bis zehn, vorzugsweise zwei bis vier Reaktoren verschiedenen Typen im Verbund zum Einsatz kommen.
3. Verfahren zur Dehydrierung von Alkanen mit einer Vergleichmäßigung der Produktzusammensetzung nach Anspruch 1 , dadurch gekennzeichnet, dass zwei bis zehn, vorzugsweise zwei bis vier Reaktoren gleichen Typen im Verbund zum Einsatz kommen.
4. Verfahren zur Dehydrierung von Alkanen mit einer Vergleichmäßigung der Produktzusammensetzung nach einem der vorangegangenen Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Temperatur in einem der Reaktoren über die Zufuhr des Heizgases und einen Temperatursensor geregelt wird.
5. Verfahren zur Dehydrierung von Alkanen mit einer Vergleichmäßigung der Produktzusammensetzung nach einem der vorangegangenen Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Temperatur in einem der Reaktoren über die Zufuhr des Sauerstoffs und einen Temperatursensor geregelt wird.
6. Verfahren zur Dehydrierung von Alkanen mit einer Vergleichmäßigung der Produktzusammensetzung nach einem der vorangegangenen Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Druck in mindestens einem der Reaktoren über die Abfuhr des Produktgases mittels eines Regelventils geregelt wird.
7. Verfahren zur Dehydrierung von Alkanen mit einer Vergleichmäßigung der Produktzusammensetzung nach einem der vorangegangenen Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Dampf-Kohlenwasserstoff-Verhältnis in mindestens einem der Reaktoren durch die Zugabemengen von Dampf und gasförmigem Kohlenwasserstoff geregelt wird.
8. Verfahren zur Dehydrierung von Alkanen mit einer Vergleichmäßigung der Produktzusammensetzung nach Anspruch 7, dadurch gekennzeichnet, dass das Dampf- Kohlenwasserstoff-Verhältnis vorzugsweise im ersten der Reaktoren durch die Zugabemengen von Dampf und gasförmigem Kohlenwasserstoff geregelt wird.
9. Verfahren zur Dehydrierung von Alkanen mit einer Vergleichmäßigung der Produktzusammensetzung nach einem der vorangegangenen Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Prozess-Parameter in mindestens einem Reaktor beeinflusst werden in Abhängigkeit der von einem Analysengerät ermittelten Messwerte für die Zusammensetzung des Produktgases.
10. Verfahren zur Dehydrierung von Alkanen mit einer Vergleichmäßigung der Produktzusammensetzung nach einem der vorangegangenen Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Prozess-Parameter in mindestens einem Reaktor beeinflusst werden durch Vorgabe einer zeitlich veränderlichem Funktion durch ein Prozessleitsystem.
11. Verfahren zur Dehydrierung von Alkanen mit einer Vergleichmäßigung der Produktzusammensetzung nach einem der vorangegangenen Ansprüche 1 bis 10, dadurch gekennzeichnet, dass mehrere der Prozess-Parameter simultan beeinflusst werden.
12. Verwendung des Verfahrens nach einem der vorangegangenen Ansprüche 1 bis 11 zur Dehydrierung von Propan zu Propen.
13. Verwendung des Verfahrens nach einem der vorangegangenen Ansprüche 1 bis 11 zur Dehydrierung von π-Butan zu n-Butenen und Butadien.
14. Verwendung des Verfahrens nach einem der vorangegangenen Ansprüche 1 bis 11 zur Dehydrierung von /so-Butan zu /so-Buten.
15. Verwendung des Verfahrens nach einem der vorangegangenen Ansprüche 1 bis 11 zur Dehydrozyklisierung von Alkanen zu Aromaten.
EP10754857A 2009-07-22 2010-07-16 Verfahren und vorrichtung zur dehydrierung von alkanen mit einer vergleichmässigung der produktzusammensetzung Withdrawn EP2456739A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009034464A DE102009034464A1 (de) 2009-07-22 2009-07-22 Verfahren und Vorrichtung zur Dehydrierung von Alkanen mit einer Vergleichmäßigung der Produktzusammensetzung
PCT/EP2010/004348 WO2011009570A1 (de) 2009-07-22 2010-07-16 Verfahren und vorrichtung zur dehydrierung von alkanen mit einer vergleichmässigung der produktzusammensetzung

Publications (1)

Publication Number Publication Date
EP2456739A1 true EP2456739A1 (de) 2012-05-30

Family

ID=42830392

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10754857A Withdrawn EP2456739A1 (de) 2009-07-22 2010-07-16 Verfahren und vorrichtung zur dehydrierung von alkanen mit einer vergleichmässigung der produktzusammensetzung

Country Status (16)

Country Link
US (1) US20120197054A1 (de)
EP (1) EP2456739A1 (de)
JP (1) JP2012533583A (de)
KR (1) KR20120099368A (de)
CN (1) CN102471187B (de)
AR (1) AR080272A1 (de)
BR (1) BR112012001215A2 (de)
CA (1) CA2768874A1 (de)
DE (1) DE102009034464A1 (de)
EG (1) EG27148A (de)
IN (1) IN2012DN01598A (de)
MX (1) MX2012000935A (de)
MY (1) MY172617A (de)
RU (1) RU2556010C2 (de)
WO (1) WO2011009570A1 (de)
ZA (1) ZA201201280B (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011009204A1 (de) 2011-01-19 2012-07-19 Thyssenkrupp Uhde Gmbh Schüttungspartikel
CN103772117B (zh) * 2012-10-25 2016-08-03 中国石油化工股份有限公司 丁烯多级绝热氧化脱氢制丁二烯的方法
CN103965002B (zh) * 2013-01-30 2016-08-03 中国石油化工股份有限公司 低碳烃的氧化脱氢方法
EP2874029A1 (de) * 2013-11-15 2015-05-20 Bayer Technology Services GmbH Verfahren zum Betreiben einer zur Durchführung von wenigstens einer chemischen Reaktion eingerichteten Anlage
US20160090337A1 (en) * 2014-09-30 2016-03-31 Uop Llc Paraffin dehydrogenation with oxidative reheat
CN104689764A (zh) * 2015-03-18 2015-06-10 昊华(成都)科技有限公司 一种可控制温度的绝热反应器
DE102015209874A1 (de) * 2015-05-29 2016-12-01 Thyssenkrupp Ag System zur Eindüsung einer reaktiven gashaltigen Komponente in einen Synthesereaktor
US9926242B2 (en) 2015-11-04 2018-03-27 Exxonmobil Chemical Patents Inc. Integrated gas turbine and conversion system process
JP6707129B2 (ja) 2015-11-04 2020-06-10 エクソンモービル ケミカル パテンツ インコーポレイテッド 加熱管変換システム及び方法
JP6640365B2 (ja) * 2015-11-04 2020-02-05 エクソンモービル ケミカル パテンツ インコーポレイテッド 炭化水素をシクロペンタジエンに転化する方法およびシステム
KR102413286B1 (ko) * 2017-11-02 2022-06-28 유오피 엘엘씨 탈수소화 방법
CN110108091B (zh) * 2019-04-10 2020-08-21 大连理工大学 Star丙烷脱氢的氢气分离膜内嵌改进的深冷液化系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3737473A (en) * 1970-07-27 1973-06-05 Phillips Petroleum Co Two-stage dehydrogenation process
US3757143A (en) * 1971-10-22 1973-09-04 Contraves Ag Bistable controllable flip flop circuit bistable controllable flip flop circuit
DE2541831A1 (de) 1975-09-19 1977-03-24 Uop Inc Verfahren zur dehydrierung von kohlenwasserstoffen
JPS5239602A (en) * 1975-09-22 1977-03-28 Uop Inc Method of dehydrogenation by injection of water
US4132529A (en) * 1977-05-05 1979-01-02 Uop Inc. Temperature control in exothermic/endothermic reaction systems
US5243122A (en) 1991-12-30 1993-09-07 Phillips Petroleum Company Dehydrogenation process control
US5527979A (en) * 1993-08-27 1996-06-18 Mobil Oil Corporation Process for the catalytic dehydrogenation of alkanes to alkenes with simultaneous combustion of hydrogen
NO316512B1 (no) * 2000-01-25 2004-02-02 Statoil Asa Fremgangsmate og reaktor for autoterm dehydrogenering av hydrokarboner
DE10229661A1 (de) * 2001-10-09 2003-04-10 Linde Ag Verfahren zur Dehydrierung von Alkanen
DE10237514A1 (de) * 2002-08-16 2004-02-26 Basf Ag Isothermes Verfahren zur Dehydrierung von Alkanen
DE10251135B4 (de) * 2002-10-31 2006-07-27 Uhde Gmbh Verfahren zur katalytischen Dehydrierung von leichten Paraffinen zu Olefinen
DE102006029790A1 (de) * 2006-06-27 2008-01-03 Basf Ag Verfahren der kontinuierlichen heterogen katalysierten partiellen Dehydrierung wenigstens eines zu dehydrierenden Kohlenwasserstoffs

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ZA201201280B (en) 2012-11-28
CN102471187A (zh) 2012-05-23
DE102009034464A1 (de) 2011-08-18
RU2012105068A (ru) 2013-08-27
US20120197054A1 (en) 2012-08-02
EG27148A (en) 2015-08-10
IN2012DN01598A (de) 2015-06-05
JP2012533583A (ja) 2012-12-27
AR080272A1 (es) 2012-03-28
KR20120099368A (ko) 2012-09-10
MY172617A (en) 2019-12-06
RU2556010C2 (ru) 2015-07-10
BR112012001215A2 (pt) 2017-05-30
CN102471187B (zh) 2015-10-07
WO2011009570A1 (de) 2011-01-27
MX2012000935A (es) 2012-06-01
CA2768874A1 (en) 2011-01-27

Similar Documents

Publication Publication Date Title
EP2456739A1 (de) Verfahren und vorrichtung zur dehydrierung von alkanen mit einer vergleichmässigung der produktzusammensetzung
DE1417796C3 (de) Verfahren zur Herstellung eines wasserstoffreichen Gases
EP2906666B1 (de) Verfahren und vorrichtung zur erzeugung eines methanhaltigen erdgassubstituts
DE19517911A1 (de) Verfahren zum Umwandeln von aus Polyacrylnitrilfasern bestehenden mehrdimensionalen flächigen Gebilden in den thermisch stabilisierten Zustand
EP3476471A1 (de) Verfahren und reaktor zur bildung und zur katalytischen umsetzung eines eduktgemischs
WO2009018924A1 (de) Regeneration von katalysatoren zur dehydrierung von alkanen
EP1562879B1 (de) Verfahren zur katalytischen dehydrierung von kohlenwasserstoffen
DE2753567C3 (de) Verfahren zur Herstellung von hochreinen Halbleitermaterialien und Reinstmetallen
DE19858747A1 (de) Verfahren und Katalysatorstation zur Dehydrierung von Alkanen
WO2013017608A1 (de) Kontinuierliches verfahren zur durchführung von autothermen gasphasendehydrierungen
EP2169035B1 (de) Verfahren zur Einstellung des Brennwertes in methanhaltigen Brenngasen
DE10229661A1 (de) Verfahren zur Dehydrierung von Alkanen
DE2022076C3 (de) Verfahren zur katalytischen Wasserdampfreformierung von Kohlenwasserstoffbeschickungen
DE3100641C2 (de) Verfahren zum Betreiben einer Vorrichtung zur Erzeugung von Spaltgas für die Herstellung von NH↓3↓-Synthesegas
DE1945643C3 (de) Regelanordnung zur Konstanthaltung der Qualität des flüssigen Endprodukts eines kontinuierlichen Kohlenwasserstoffumwandlungsverfahrens
EP4178714B1 (de) Vorrichtung und verfahren zur regelbaren durchführung einer chemischen reaktion
EP1670746B1 (de) Verfahren zur regelung der reaktoreintrittstemperatur bei der methylaminherstellung
WO2014044385A1 (de) Verfahren zur herstellung von acetylen oder/und ethylen
EP0179322B1 (de) Verfahren zum Regenerieren eines Katalysators
DE2224637C3 (de) Regelanordnung zur Optimierung einer Produktkenngröße bei einem Verfahren zur Umwandlung von Kohlenwasserstoffen
DE102016221602A1 (de) Reformer und Verfahren zum Betrieb eines Reformers
DE102004055826A1 (de) Verfahren und Vorrichtung zur Vollhydrierung eines Kohlenwasserstoffstromes
DE19621036A1 (de) Reaktionsretorte zur Erzeugung von Endogas
AT254132B (de) Verfahren zur Wasserdamfreformierung von normalerweise flüssigen Kohlenwasserstoffen
DE3335777A1 (de) Verfahren zur erzeugung von olefinen in roehrenpyrolysereaktoren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130311

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG

RIC1 Information provided on ipc code assigned before grant

Ipc: C07C 5/333 20060101ALI20170710BHEP

Ipc: C07C 5/41 20060101AFI20170710BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170915

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WENZEL, SASCHA

Inventor name: SCHWASS, ROLF

Inventor name: GEHRKE, HELMUT

Inventor name: HEINRITZ-ADRIAN, MAX

Inventor name: NOLL, OLIVER

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180126