EP2440593A1 - Neue lösungsmittel in der herstellung von polyurethandispersionen - Google Patents

Neue lösungsmittel in der herstellung von polyurethandispersionen

Info

Publication number
EP2440593A1
EP2440593A1 EP10724780A EP10724780A EP2440593A1 EP 2440593 A1 EP2440593 A1 EP 2440593A1 EP 10724780 A EP10724780 A EP 10724780A EP 10724780 A EP10724780 A EP 10724780A EP 2440593 A1 EP2440593 A1 EP 2440593A1
Authority
EP
European Patent Office
Prior art keywords
polyurethane
cyclo
groups
substituted
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10724780A
Other languages
English (en)
French (fr)
Inventor
Gerd BÜLOW
Manfred Dargatz
Karl Häberle
Maria Teresa Hechavarria Fonseca
Karl Ott
Juan Salgado-Valle
Tobias Wabnitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP10724780A priority Critical patent/EP2440593A1/de
Publication of EP2440593A1 publication Critical patent/EP2440593A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4205Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups
    • C08G18/4208Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups
    • C08G18/4211Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols
    • C08G18/4216Polycondensates having carboxylic or carbonic ester groups in the main chain containing cyclic groups containing aromatic groups derived from aromatic dicarboxylic acids and dialcohols from mixtures or combinations of aromatic dicarboxylic acids and aliphatic dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6659Compounds of group C08G18/42 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6692Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Definitions

  • the present invention relates to substituted N- (cyclo) alkylpyrrolidones as solvents for use in processes for the preparation of polyurethane dispersions.
  • Polyurethane dispersions are frequently produced industrially by the so-called "prepolymer mixing process". Therein, polyurethanes are first prepared in an organic solvent, often N-methylpyrrolidone, and the resulting solution of the polyurethane is subsequently dispersed in water. During and / or after their dispersion in water, the molecular weight of the polyurethane can then be further increased by means of a chain extension.
  • the solvent also remains in a distillative separation to more or less large proportions in the dispersion and then affects there the properties of the polyurethane dispersion.
  • WO 2005/090 430 A1 teaches the use of N- (cyclo) alkylpyrrolidones with (cyclo) alkyl radicals having 2 to 6 C atoms for this purpose. Other than N-substituted pyrrolidones are not disclosed. However, there are indications that it might be suspected that N- (cyclo) alkylpyrrolidones, in particular N-ethylpyrrolidone, could lead to adverse toxicological effects, especially if it were taken by oral route. There is therefore a further need for solvents for the synthesis of polyurethane dispersions.
  • the object of the present invention was to provide solvents for the preparation of polyurethane dispersions by means of the "prepolymer mixing process" which positively influence the properties of the resulting polyurethane dispersion.
  • This object according to the invention is achieved by a process for the preparation of polyurethane dispersions, in which the polyurethane before dispersion in the presence of a substituted N- (cyclo) alkylpyrrolidone (SCAP) according to formula 1
  • SCAP substituted N- (cyclo) alkylpyrrolidone
  • R 1 is a (cyclo) alkyl radical having 1 to 18 C atoms and R 2 , R 2 ', R 3 , R 3 ', R 4 and R 4 'are each a hydrogen atom or a (cyclo) alkyl radical having 1 to 18 C With the proviso that at least one of R 2 , R 2 ', R 3 , R 3 ', R 4 and R 4 'is other than an H atom.
  • N- (cyclo) alkylpyrrolidones which are suitable according to the invention are those having an aliphatic (open-chain) or cycloaliphatic (alicyclic, ring-shaped), preferably open-chain, branched or unbranched, hydrocarbon radical R 1 having 1 to 6 carbon atoms, preferably 1 to 4, particularly preferably 1 to 3, in particular 1 to 2 and especially 1 carbon atom and with at least one, for example one to six, preferably one to three, more preferably one to two and most preferably exactly one aliphatic or cycloaliphatic, preferably aliphatic hydrocarbon radical as R 2 , R radicals 2 ', R 3 , R 3 ', R 4 and R 4 '.
  • R 1 having 1 to 6 carbon atoms, preferably 1 to 4, particularly preferably 1 to 3, in particular 1 to 2 and especially 1 carbon atom and with at least one, for example one to six, preferably one to three, more preferably one to two and most preferably exactly one aliphatic or cycl
  • a "(cyclo) alkyl radical having 1 to 18 C atoms” is understood in the context of this document to mean an aliphatic, open-chain, branched or unbranched hydrocarbon radical having 1 to 18 carbon atoms or a cycloaliphatic hydrocarbon radical having 3 to 18 carbon atoms.
  • Suitable cycloalkyl radicals are cyclopentyl, cyclohexyl, cyclooctyl or cyclododecyl.
  • alkyl radicals examples include methyl, ethyl, isopropyl, n-propyl, n-butyl, isobutyl, sec-butyl, tert-butyl and n-hexyl.
  • Preferred radicals are cyclohexyl, methyl, ethyl, isopropyl, n-propyl, n-butyl, iso-
  • butyl, sec-butyl and tert-butyl, particularly preferred are methyl, ethyl and n-butyl and very particularly preferred are methyl or ethyl, especially methyl.
  • Preferred radicals R 1 are methyl, ethyl and cyclohexyl, more preferably methyl and ethyl, and most preferably methyl.
  • R 2 , R 2 ', R 3 , R 3 ', R 4 and R 4 ' are hydrogen, methyl, ethyl, iso-propyl and cyclohexyl, particular preference is given to hydrogen, methyl, ethyl and isobutyl.
  • Propyl very particularly preferably hydrogen, methyl and ethyl and especially hydrogen and methyl.
  • At least one of the radicals R 2 , R 2 ', R 3 , R 3 ', R 4 and R 4 ' is preferably hydrogen, more preferably one to three, very preferably one to two and in particular exactly one.
  • Preferred compounds of formula 1 are N-methyl-3-methylpyrrolidone, N-methyl-4-methylpyrrolidone, N-ethyl-3-methylpyrrolidone and N-ethyl-4-methylpyrrolidone, more preferably N-methyl-3-methylpyrrolidone and N-methyl-4-methylpyrrolidone and mixtures thereof.
  • mixtures are mixtures of up to four different substituted N- (cyclo) alkylpyrrolidones, preferably up to three and particularly preferably two.
  • the two substituted N- (cyclo) alkylpyrrolidones are generally in a weight ratio of 10: 1 to 1:10, preferably 5: 1 to 1: 5, more preferably 3: 1 to 1: 3 and most preferably 2 : 1 to 1: 2 before.
  • the amount of the substituted N- (cyclo) alkylpyrrolidones based on the polyurethane is generally 1 to 100% by weight, preferably 10 to 100% by weight.
  • substituted N- (cyclo) alkylpyrrolidone employed according to the invention can be used alone, mixed with one another or else mixed with one or more other suitable solvents.
  • solvents are, for example, open-chain or preferably cyclic carbonates, lactones, di (cyclo) alkyl dipropylene glycol ethers and N- (cyclo) alkylcaprolactams.
  • Carbonates are described, for example, in EP 697424 A1, there in particular from page 4, lines 4 to 29, to which reference is expressly made.
  • Preferred are 1,2-ethylene carbonate, 1,2-propylene carbonate and 1,3-propylene carbonate, more preferably 1,2-ethylene carbonate and 1,2-propylene carbonate.
  • Preferred lactones are beta-propiolactone, gamma-butyrolactone, epsilon-caprolactone and epsilon-methylcaprolactone.
  • Di (cyclo) alkyl dipropylene glycol ethers are, for example, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol di-n-propyl ether and dipropylene glycol di-n-butyl ether, preference being given to dipropylene glycol dimethyl ether.
  • the di (cyclo) alkyl dipropylene glycol ether and especially dipropylene glycol dimethyl ether are generally mixtures of the position isomers and diastereomers. The exact composition of the isomer mixtures does not play any role according to the invention. As a rule, this is the major isomer
  • R is the (cyclo) alkyl radical.
  • Dipropylene glycol dimethyl ether is commercially available as such a mixture of isomers and is usually denoted by the CAS No. 11 11 109-77-4.
  • Dipropylene glycol dimethyl ether is commercially available in high purity, usually more than 99% by weight, for example under the trade name Proglyde® DMM from The Dow Chemical Company, Midland, Michigan 48674, USA or from Clariant GmbH, 65840 Sulzbach am Taunus, Germany.
  • N- (Cyclo) alkylcaprolactams are those having an aliphatic (open-chain) or cycloaliphatic (alicyclic, ring-shaped), preferably open-chain, branched or unbranched, hydrocarbon radical having 1 to 6 carbon atoms, preferably 1 to 5, particularly preferably 1 to 4, in particular 1 to 3 and especially 1 or 2 carbon atoms.
  • N- (cyclo) alkylcaprolactams are, for example, N-methylcaprolactam, N-ethylcaprolactam, Nn-propylcaprolactam, N-isopropylpropylcaprolactam, Nn-butylcaprolactam, N-isobutylcaprolactam, N-sec-butylcaprolactam, N-tert-butylcaprolactam, N Cyclopentylcaprolactam or N-cyclohexylcaprolactam, preferably N-methylcaprolactam or N-ethylcaprolactam.
  • substituted N- (cyclo) alkylpyrrolidone can also be added to a finished polyurethane dispersion, ie after the dispersion of the polyurethane, for example to influence its flow and drying behavior.
  • preference is given to the addition of the substituted N- (cyclo) alkylpyrrolidone before the dispersion.
  • the aqueous polyurethane dispersions are prepared by
  • Suitable monomers in (a) are the polyisocyanates customarily used in polyurethane chemistry, for example aliphatic, aromatic and cycloaliphatic di- and polyisocyanates, where the aliphatic hydrocarbon radicals have, for example, 4 to 12 carbon atoms, and the cycloaliphatic or aromatic hydrocarbon radicals, for example 6 up to 15 carbon atoms or the araliphatic see hydrocarbon radicals having, for example, 7 to 15 carbon atoms, with an NCO functionality of at least 1, 8, preferably 1, 8 to 5 and particularly preferably 2 to 4 in question, and their isocyanurates, biurets, allophanates and uretdiones.
  • the diisocyanates are preferably isocyanates having 4 to 20 C atoms.
  • Examples of customary diisocyanates are aliphatic diisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate (1,6-diisocyanatohexane), octamethylene diisocyanate, decamethylene diisocyanate, dodecamethylene diisocyanate, tetradecamethylene diisocyanate, esters of lysine diisocyanate, tetramethylxylylene diisocyanate, trimethylhexane diisocyanate or tetramethylhexane diisocyanate, cycloaliphatic diisocyanates such as 1, 4, 1, 3 or 1, 2-diisocyanatocyclohexane, trans / trans, the cis / cis and the cis / trans isomers of 4,4'- or 2,4'-di (is
  • aliphatic and cycloaliphatic diisocyanates Preference is given to aliphatic and cycloaliphatic diisocyanates, particular preference being given to isophorone diisocyanate, hexamethylene diisocyanate, meta-tetramethylxylylene diisocyanate (m-TMXDI) and 4,4'-di (isocyanatocyclohexyl) methane (H12MDI).
  • Suitable polyisocyanates are polyisocyanates having isocyanurate groups, uretdione diisocyanates, polyisocyanates containing biuret groups, polyisocyanates containing urethane or allophanate groups, polyisocyanates containing oxadiazinetrione groups, uretonimine-modified polyisocyanates of straight-chain or branched C 4 -C 20 -alkylene diisocyanates, cycloaliphatic diisocyanates having a total of from 6 to 20 ° C. -Atomen or aromatic diisocyanates having a total of 8 to 20 carbon atoms or mixtures thereof.
  • isocyanurate polyisocyanates of aromatic, aliphatic and / or cycloaliphatic diisocyanates Particular preference is given here to the corresponding aliphatic and / or cycloaliphatic isocyanato-isocyanurates and in particular those based on hexamethylene diisocyanate and isophorone diisocyanate.
  • the isocyanurates present are, in particular, trisisocyanatoalkyl or trisisocyanatocycloalkyl isocyanurates, which are cyclic trimers of the diisocyanates, or mixtures with their higher homologs having more than one isocyanurate ring.
  • the isocyanato-isocyanurates generally have an NCO content of from 10 to 30% by weight, in particular from 15 to 25% by weight, and an average NCO functionality of from 3 to 4.5.
  • uretdione diisocyanates having aromatic, aliphatic and / or cycloaliphatic bound isocyanate groups, preferably aliphatically and / or cycloaliphatically bonded and in particular those derived from hexamethylene diisocyanate or isophorone diisocyanate.
  • Uretdione diisocyanates are cyclic dimerization products of diisocyanates.
  • the uretdione diisocyanates can be used in the preparations as the sole component or in a mixture with other polyisocyanates, in particular those mentioned under 1).
  • Isocyanate groups in particular tris (6-isocyanatohexyl) biuret or mixtures thereof with its higher homologs.
  • These biuret polyisocyanates generally have an NCO content of 18 to 22 wt .-% and an average NCO functionality of 3 to 4.5. 4) containing urethane and / or allophanate polyisocyanates having aromatically, aliphatically or cycloaliphatically bonded, preferably aliphatically or cycloaliphatically bound isocyanate groups, as for example by reaction of excess amounts of hexamethylene diisocyanate or
  • Isophorone diisocyanate with polyhydric alcohols e.g. Trimethylolpropane, neopentyl glycol, pentaerythritol, 1, 4-butanediol, 1, 6-hexanediol, 1, 3-propanediol, ethylene glycol, diethylene glycol, glycerol, 1, 2-dihydroxypropane or mixtures thereof can be obtained.
  • These urethane and / or allophanate-containing polyisocyanates generally have an NCO content of 12 to 20 wt .-% and an average NCO functionality of 2.5 to 3.
  • oxadiazinetrione-containing polyisocyanates preferably derived from hexamethylene diisocyanate or isophorone diisocyanate.
  • oxadiazinitrione-containing polyisocyanates can be prepared from diisocyanate and carbon dioxide.
  • the polyisocyanates 1) to 6) can be used in a mixture, if appropriate also in a mixture with diisocyanates.
  • mixtures of these isocyanates are the mixtures of the respective structural isomers of diisocyanatotoluene and diisocyanato-diphenylmethane, in particular the mixture of 20 mol% 2,4 diisocyanatotoluene and 80 mol%
  • 2,6-diisocyanatotoluene suitable.
  • the mixtures of aromatic isocyanates such as 2,4-diisocyanatotoluene and / or 2,6-diisocyanatotoluene with aliphatic or cycloaliphatic isocyanates such as hexamethylene diisocyanate or IPDI are particularly advantageous, the preferred mixing ratio of the aliphatic to aromatic isocyanates 4: 1 to 1 : 4.
  • isocyanates which, in addition to the free isocyanate groups, contain further blocked isocyanate groups, eg uretdione or urethane groups. bear.
  • isocyanates which carry only one isocyanate group. In general, their proportion is at most 10 mol%, based on the total molar amount of the monomers.
  • the monoisocyanates usually carry further functional groups such as olefinic groups or carbonyl groups and serve to introduce functional groups into the polyurethane, which make possible the dispersion or crosslinking or further polymer-analogous reaction of the polyurethane.
  • Suitable monomers for this are, for example, isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate (TMI).
  • Preferred diols (b) are relatively high molecular weight diols (b1) which have a molecular weight of about 500 to 5,000, preferably about 100 to 3,000, g / mol.
  • the diols (b1) are, in particular, polyesterpolyols which are known, for example, from Ullmanns Encyklopadie der ischen Chemie, 4th Edition, Volume 19, pages 62 to 65. Preference is given to using polyesterpolyols which are obtained by reacting dihydric alcohols with dibasic carboxylic acids. Instead of the free polycarboxylic acids, it is also possible to use the corresponding polycarboxylic acid anhydrides or corresponding polycarboxylic acid esters of lower alcohols or mixtures thereof to prepare the polyesterpolyols.
  • the polycarboxylic acids may be aliphatic, cycloaliphatic, araliphatic, aromatic or heterocyclic and may optionally be substituted, for example by halogen atoms, and / or unsaturated. Examples which may be mentioned are: suberic acid, azelaic acid, phthalic acid, isophthalic acid, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, tetrachlorophthalic anhydride, endomethylenetetrahydrophthalic anhydride, glutaric anhydride, maleic acid, maleic anhydride, fumaric acid, dimer fatty acids.
  • dicarboxylic acids of the general formula HOOC- (CH 2) y - COOH, where y is a number from 1 to 20, preferably an even number from 2 to 20, for example succinic acid, adipic acid, dodecanedicarboxylic acid and sebacic acid.
  • Suitable polyhydric alcohols are, for example, ethylene glycol, propane-1,2-diol, propane-1,3-diol, butane-1,3-diol, butene-1,4-diol, butyne-1,4-diol, pentane-1 , 5-diol, neopentyl glycol, bis (hydroxymethyl) cyclohexanes such as 1, 4-bis (hydroxymethyl) cyclohexane, 2-methyl-propane-1, 3-diol, furthermore diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, dipropylene glycol , Polypropylene glycol, dibutylene glycol and polybutylene glycols into consideration.
  • examples of these are ethylene glycol, butane-1, 4-diol, hexane-1, 6-diol, octane-1, 8-diol and dodecane-1, 12-diol.
  • polycarbonate diols as can be obtained, for example, by reacting phosgene with an excess of the low molecular weight alcohols mentioned as synthesis components for the polyesterpolyols.
  • lactone-based polyesterdiols which are homopolymers or copolymers of lactones, preferably terminal hydroxyl-containing addition products of lactones onto suitable difunctional starter molecules.
  • Preferred lactones are those derived from hydroxycarboxylic acids of the general formula HO- (CH 2) ⁇ -COOH, where z is a number from 1 to 20, preferably an odd number from 3 to 19, e.g. ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -butyrolactone and / or methyl- ⁇ -caprolactone and mixtures thereof.
  • Suitable starter components are e.g. the low molecular weight dihydric alcohols mentioned above as the synthesis component for the polyesterpolyols.
  • the corresponding polymers of ⁇ -caprolactone are particularly preferred.
  • Lower polyester diols or polyether diols can also be used as starters for the preparation of the lactone polymers.
  • the polymers of lactones it is also possible to use the corresponding, chemically equivalent polycondensates of the hydroxycarboxylic acids corresponding to the lactones.
  • suitable monomers (b1) are polyether diols.
  • they are by polymerization of ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, styrene oxide or epichlorohydrin with themselves, e.g. in the presence of BF3 or by addition of these compounds, optionally in admixture or sequentially, to starting components having reactive hydrogen atoms, such as alcohols or amines, e.g. Water, ethylene glycol, propane-1, 2-diol, propane-1, 3-diol, 2,2-bis (4-hydroxy-diphenyl) propane or aniline available.
  • Particularly preferred is polytetrahydrofuran having a molecular weight of 500 to 5000 g / mol, and especially 1000 to 4500 g / mol.
  • polyester diols and polyether diols can also be used as mixtures in a ratio of 0.1: 1 to 1: 9.
  • diols (b) it is possible, in addition to the diols (b1), to use low molecular weight diols (b2) having a molecular weight of about 50 to 500, preferably from 60 to 200, g / mol.
  • the monomers (b2) used are in particular the synthesis components of the short-chain alkanediols mentioned for the preparation of polyester polyols, preference being given to the unbranched diols having 2 to 12 carbon atoms and an even number of carbon atoms and pentanediol-1, 5 and neopentyl glycol ,
  • the proportion of the diols (b1), based on the total amount of the diols (b), is preferably 10 to 100 mol% and the proportion of the diols (b2) is 0 to 90 mol%, based on the total amount of the diols (b).
  • the ratio of the diols (b1) to the diols (b2) is particularly preferably from 0.2: 1 to 5: 1, particularly preferably from 0.5: 1 to 2: 1.
  • the monomers (c) other than the diols (b) generally serve for crosslinking or chain extension. They are generally more than divalent non-aromatic alcohols, amines having 2 or more primary and / or secondary amino groups, and compounds which carry one or more primary and / or secondary amino groups in addition to one or more alcoholic hydroxyl groups.
  • Alcohols of a higher valence than 2, which may serve to establish a certain degree of branching or crosslinking, are known, for example.
  • Sorbitol Sorbitol, mannitol, diglycerol, threitol, erythritol, adonite (ribitol), arabitol (lyxite), xyNt, dulcitol (galactitol), maltitol or isomalt, or sugar.
  • monoalcohols which, in addition to the hydroxyl group, carry a further isocyanate-reactive group, such as monoalcohols having one or more primary and / or secondary amino groups, e.g. Monoethanolamine.
  • Polyamines having 2 or more primary and / or secondary amino groups can be used in the prepolymer mixing process, especially when chain extension or crosslinking is to take place in the presence of water (step III), since amines are generally faster than alcohols or Water react with isocyanates. This is often required when aqueous dispersions of high molecular weight crosslinked polyurethanes or polyurethanes are desired. In such cases, prepolymers having isocyanate groups are prepared, these are rapidly dispersed in water and then chain-extended or crosslinked by addition of compounds having a plurality of isocyanate-reactive amino groups.
  • Amines suitable for this purpose are generally polyfunctional amines of the molecular weight range from 32 to 500 g / mol, preferably from 60 to 300 g / mol, which contain at least two primary, two secondary or one primary and one secondary amino group.
  • diamines such as diaminoethane, diaminopropanes, diaminobutanes, diaminohexanes, piperazine, 2,5-dimethylpiperazine, amino-3-aminomethyl-3,5,5-trimethyl-cyclohexane (isophoronediamine, IPDA), 4,4'-diaminodicyclohexylmethane .
  • the amines may also be in blocked form, e.g. in the form of the corresponding ketimines (see, for example, CA-1 129 128), ketazines (see, for example, US-A 4,269,748) or amine salts (see US-A 4,292,226).
  • Oxazolidines as used for example in US Pat. No. 4,192,937, also represent blocked polyamines which can be used for the preparation of the polyurethanes for chain extension of the prepolymers. When using such capped polyamines they are generally mixed with the prepolymers in the absence of water and this mixture is then mixed with the dispersion water or a portion of the dispersion water, so that the corresponding polyamines are hydrolytically released.
  • the proportion of polyamines can be up to 10, preferably up to 8 mol% and particularly preferably up to 5 mol%, based on the total amount of components (b) and (c).
  • the polyurethane prepared in step I can generally have up to 10% by weight, preferably up to 5% by weight, of unreacted NCO groups.
  • the molar ratio of NCO groups in the polyurethane prepared in step I to the sum of primary and secondary amino groups in the polyamine is generally selected in step III to be between 3: 1 and 1: 3, preferably 2: 1 and 1 : 2, more preferably 1, 5: 1 and 1: 1.5; most preferably at 1: 1.
  • monohydric alcohols are used. They serve mainly to limit the molecular weight of the polyurethane. Examples are methanol, ethanol, isopropanol, n-propanol, n-butanol, isobutanol, sec-butanol, tert-butanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, 1,3-propanediol monomethyl ether, n-hexanol, n-heptanol, n-octanol, n-decanol, n-dodecanol (lauryl alcohol) and 2-ethylhexanol.
  • the polyurethanes in addition to components (a), (b) and (c), are monomers (d) which are different from components (a), (b) and (c) and have at least one isocyanate group or at least a group which is reactive toward isocyanate groups and moreover has at least one hydrophilic group or a group which can be converted into hydrophilic groups.
  • hydrophilic groups or potentially hydrophilic groups is abbreviated to "(potentially) hydrophilic groups”. The (potentially) hydrophilic groups react much more slowly with isocyanates than the functional groups of the monomers which serve to build up the polymer main chain.
  • the (potentially) hydrophilic groups may be nonionic or, preferably, ionic, ie cationic or anionic, hydrophilic groups, or potentially ionic hydrophilic groups, and more preferably anionic hydrophilic groups, or potentially anionic hydrophilic groups.
  • the proportion of components with (potentially) hydrophilic groups in the total amount of components (a), (b), (c) and (d) is generally such that the molar amount of (potentially) hydrophilic groups, based on the amount by weight of all monomers (a) to (b), 30 to 1000, preferably 50 to 500 and particularly preferably 80 to 300 mmol / kg.
  • Suitable nonionic hydrophilic groups are, for example, mixed or pure polyethylene glycol ethers of preferably 5 to 100, preferably 10 to 80, repeating units of ethylene oxide.
  • the polyethylene glycol ethers may also contain propylene oxide units. If this is the case, the content of propylene oxide units should not exceed 50% by weight, preferably 30% by weight, based on the mixed polyethylene glycol ether.
  • the content of polyethylene oxide units is generally 0 to 10, preferably 0 to 6 wt .-%, based on the amount by weight of all monomers (a) to (d).
  • Preferred monomers with nonionic hydrophilic groups are the polyethylene glycol and diisocyanates which carry a terminally etherified polyethylene glycol radical. Such diisocyanates and processes for their preparation are disclosed in US Pat. Nos. 3,905,929 and 3,920,598.
  • Ionic hydrophilic groups are especially anionic groups such as the sulfonate, the carboxylate and the phosphate group in the form of their alkali metal or ammonium salts and cationic groups such as ammonium groups, in particular protonated tertiary amino groups or quaternary ammonium groups.
  • Suitable monomers with potentially anionic groups are usually aliphatic, cycloaliphatic, araliphatic or aromatic mono- and dihydroxycarboxylic acids which carry at least one alcoholic hydroxyl group or one primary or secondary amino group.
  • Such compounds are exemplified by the general formula
  • RG is at least one isocyanate-reactive group
  • DG is at least one dispersive group
  • R 4 is an aliphatic, cycloaliphatic or aromatic radical containing 1 to 20 carbon atoms.
  • RG examples include -OH, -SH, -NH 2 or -NHR 5 , wherein R 5 is methyl, ethyl, iso-propyl, n-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, cyclopentyl or cyclohexyl.
  • such components are e.g. mercaptoacetic acid, mercaptopropionic acid, thiolactic acid, mercaptosuccinic acid, glycine, iminodiacetic acid, sarcosine, alanine, ⁇ -alanine, leucine, isoleucine, aminobutyric acid, hydroxyacetic acid, hydroxypivalic acid, lactic acid, hydroxysuccinic acid, hydroxydecanoic acid, dimethylolpropionic acid, dimethylolbutyric acid, ethylenediaminetriacetic acid , Hydroxydodecanoic acid, hydroxyhexadecanoic acid, 12-hydroxystearic acid, aminonaphthalenecarboxylic acid, hydroxethanesulfonic acid, hydroxypropanesulfonic acid, mercaptoethanesulfonic acid, mercaptopropanesulfonic acid, aminomethanesulfonic acid, taurine, aminopropa
  • R 1 and R 2 is a C 1 -C 4 -alkanediyl unit and R 3 is a C 1 -C 4 -alkyl unit.
  • dimethylol butyric acid and especially dimethylolpropionic acid (DMPA) are preferred.
  • corresponding dihydroxysulfonic acids and dihydroxyphosphonic acids such as 2,3-dihydroxypropanephosphonic acid
  • the corresponding acids in which at least one hydroxyl group has been replaced by an amino group for example example, those of the formula
  • R 1 , R 2 and R 3 may have the same meanings as stated above.
  • dihydroxy compounds having a molecular weight above 500 to 10,000 g / mol with at least 2 carboxylate groups, which are known from DE-A 4,140,486. They are obtainable by reacting dihydroxyl compounds with tetracarboxylic acid dianhydrides such as pyromellitic dianhydride or cyclopentanetetracarboxylic dianhydride in a molar ratio of 2: 1 to 1:05 in a polyaddition reaction. Particularly suitable dihydroxy compounds are the monomers (b2) listed as chain extenders and the diols (b1).
  • Potentially ionic hydrophilic groups are, above all, those which can be converted by simple neutralization, hydrolysis or quaternization reactions into the above-mentioned ionic hydrophilic groups, e.g. Acid groups, anhydride groups or tertiary amino groups.
  • Ionic monomers (d) or potentially ionic monomers (d) are e.g. in Ullmann's Encyklopadie der ischen Chemie, 4th edition, volume 19, pp. 311-313 and for example in DE-A 1 495 745.
  • Monomers having tertiary amino groups are of particular practical importance as potential cationic monomers (d), for example tris (hydroxyalkyl) amines, N, N'-bis (hydroxyalkyl) alkylamines, N-hydroxyalkyl dialkylamines, tris (aminoalkyl) -amines, N, N'-bis (aminoalkyl) -alkylamines, N-aminoalkyl-dialkylamines, wherein the alkyl radicals and alkanediyl moieties of these tertiary amines independently of one another consist of 2 to 6 carbon atoms.
  • polyethers having tertiary nitrogen atoms and having preferably two terminal hydroxyl groups are used. by the alkoxylation of two amines attached to Am in nitrogen-bonded hydrogen atoms, e.g. Methylamine, aniline, or N, N'-dimethylhydrazine, in a conventional manner are accessible, into consideration.
  • Such polyethers generally have a molecular weight between 500 and 6000 g / mol.
  • tertiary amines are either with acids, preferably strong mineral acids such as phosphoric acid, sulfuric acid or hydrohalic acids, strong organic acids such as formic, acetic or lactic acid, or by reaction with suitable quaternizing such as C 1 to C 6 alkyl halides, eg bromides or chlorides , or di-Cr to C ⁇ -alkyl sulfates or di-Cr to C ⁇ -alkyl carbonates in the ammonium salts.
  • acids preferably strong mineral acids such as phosphoric acid, sulfuric acid or hydrohalic acids, strong organic acids such as formic, acetic or lactic acid
  • suitable quaternizing such as C 1 to C 6 alkyl halides, eg bromides or chlorides , or di-Cr to C ⁇ -alkyl sulfates or di-Cr to C ⁇ -alkyl carbonates in the ammonium salts.
  • Suitable monomers (d) with isocyanate-reactive amino groups are amino carboxylic acids such as lysine, ⁇ -alanine, the adducts of aliphatic diprimary diamines mentioned in DE-A2034479 to ⁇ , ⁇ -unsaturated carboxylic acids such as N- (2-aminoethyl ) -2-aminoethanecarboxylic acid and the corresponding N-aminoalkylamino-alkylcarboxylic acids, wherein the alkanediyl units consist of 2 to 6 carbon atoms, into consideration.
  • amino carboxylic acids such as lysine, ⁇ -alanine, the adducts of aliphatic diprimary diamines mentioned in DE-A2034479 to ⁇
  • ⁇ -unsaturated carboxylic acids such as N- (2-aminoethyl ) -2-aminoethanecarboxylic acid and the corresponding N-amino
  • the anionic hydrophilic groups are particularly preferably in the form of their salts with an alkali ion or an ammonium ion as the counterion.
  • Hydroxycarboxylic acids are preferred among these compounds, with particular preference being given to dihydroxyalkylcarboxylic acids, very particular preference to ⁇ , ⁇ -bis (hydroxymethyl) carboxylic acids, in particular dimethylolbutyric acid and dimethylolpropionic acid, and especially dimethylolpropionic acid.
  • the polyurethanes may contain both nonionic hydrophilic and ionic hydrophilic groups, preferably simultaneously nonionic hydrophilic and anionic hydrophilic groups.
  • monomers having only one reactive group are generally added in amounts of up to 15 mol%, preferably up to 8 mol%, based on the total amount of the components (a), (b), (c) and (d) used.
  • the polyaddition of components (a) to (d) is generally carried out at reaction temperatures of 20 to 18O 0 C, preferably 50 to 15O 0 C under atmospheric pressure.
  • reaction times can range from a few minutes to a few hours. It is known in the field of polyurethane chemistry how the reaction time is affected by a variety of parameters such as temperature, concentration of monomers, reactivity of the monomers.
  • the conventional catalysts can be used.
  • all catalysts customarily used in polyurethane chemistry are suitable.
  • organic amines in particular tertiary aliphatic, cycloaliphatic or aromatic amines, and / or Lewis-acidic organic metal compounds.
  • Lewis acidic organic metal compounds e.g. Tin compounds, such as tin (II) salts of organic carboxylic acids, e.g.
  • organic carboxylic acids eg dimethyltin diacetate, dibutyltin diacetate, Dibutyltin dibutyrate, dibutyltin bis (2-ethylhexanoate), dibutyltin dilaurate, dibutyltin maleate, dioctyltin dilaurate and dioctyl
  • Metal complexes such as acetylacetonates of iron, titanium, aluminum, zirconium, manganese, nickel and cobalt are also possible.
  • Other metal catalysts are described by Blank et al. in Progress in Organic Coatings, 1999, Vol. 35, pages 19-29.
  • Preferred Lewis-acidic organic metal compounds are dimethyltin diacetate, dibutyltin dibutyrate, dibutyltin bis (2-ethylhexanoate), dibutyltin dilaurate, diocytotin dilaurate, zirconium acetylacetonate and zirconium 2,2,6,6-tetramethyl-3, 5-heptanedionate.
  • Suitable cesium salts include those compounds come into consideration, in which the following anions are used: F, Ch, CIO, "CIO3-, CI (V, Br, J, IO3-, CN, OCN, NO 2 -, NO 3 -, HCO 3 -, CO 3 2 " , S 2" , SH “ , HSO 3 -, SO 3 2" , HSO 4 " , SO 4 2” , S 2 O 2 2 " , S 2 O 4 2” , S 2 O 5 2 -, S 2 O 6 2 " , S 2 O 7 2" , S 2 O 8 2 " , H 2 PO 2 -, H 2 PO 4 -, HPO 4 2” , PO 4 3 " , P 2 O 7 4 " , (OC n H 2n + -I) -, (C n H 2n _i0 2 ) -, (C n H 2n H 2n _i0 2 ) -, (C n H 2n ,
  • Cesium carboxylates in which the anion conforms to the formulas (C n H 2n _iO 2 ) - as well as (C n + iH 2n _ 2 O 4 ) 2 - where n is 1 to 20, are preferred.
  • Especially preferred te cesium salts have monocarboxylate anions of the general formula (C n H2n-i ⁇ 2) ", where n stands for the numbers 1 to 20. Of these, particular mention formate, acetate, propionate, hexanoate, and 2-ethylhexanoate.
  • Rlickkessel come into consideration as polymerization, especially when provided by the concomitant use of solvents for a low viscosity and good heat dissipation.
  • extruders in particular self-cleaning multi-screw extruders, are particularly suitable because of the usually high viscosities and the usually short reaction times.
  • a prepolymer which carries isocyanate groups.
  • the components (a) to (d) are in this case selected so that the ratio A: B is greater than 1, 0 to 3, preferably 1, 05 to 1, 5.
  • the prepolymer is first dispersed in water and simultaneously and / or chain-extended by reaction of the isocyanate groups with amines carrying more than 2 isocyanate-reactive amino groups, or with amines containing 2 isocyanate-reactive amino groups, chain extended. Chain extension also occurs when no amine is added. In this case, isocyanate groups are hydrolyzed to amine groups, which react with remaining isocyanate groups of the prepolymers with chain extension.
  • the average particle size (z- middle I value), measured by dynamic light scattering with the Malvern® Autosizer 2 C, the dispersions according to the invention is not essential to the invention and is generally ⁇ 1000 nm, preferably ⁇ 500 nm, more preferably ⁇ 200 nm and completely more preferably between 20 and below 200 nm.
  • the dispersions generally have a solids content of 10 to 75, preferably from 20 to 65 wt .-% and a viscosity of 10 to 500 m Pas (measured at a temperature of 2O 0 C and a shear rate of 250 S " 1 .
  • dispersions may be adjusted to another, preferably a lower, solids content, for example by dilution.
  • dispersions prepared according to the invention can be mixed with other components typical of the applications mentioned, for example surfactants, detergents, dyes, pigments, dye transfer inhibitors and optical brighteners.
  • the dispersions may be subjected to physical deodorization after preparation, if desired.
  • a physical deodorization may consist in that the dispersion with water vapor, an oxygen-containing gas, preferably air, nitrogen or supercritical carbon dioxide, for example in a stirred tank, as described in DE-AS 12 48 943, or in a countercurrent column, as in DE-A 196 21 027 described, is stripped.
  • an oxygen-containing gas preferably air, nitrogen or supercritical carbon dioxide
  • the amount of the substituted N- (cyclo) alkylpyrrolidone according to the invention in the preparation of the polyurethane is generally chosen so that the proportion in the finished dispersion does not exceed 30% by weight, preferably not more than 25, particularly preferably not more than 20 and most preferably not more than 15% by weight.
  • the proportion of substituted N- (cyclo) alkylpyrrolidone in the finished dispersion is generally at least 0.01% by weight, preferably at least 0.1, particularly preferably at least 0.2, very particularly preferably at least 0.5 and in particular at least 1% by weight %.
  • aqueous polyurethane preparations according to the invention are advantageously suitable for coating and bonding substrates.
  • Suitable substrates are wood, wood veneer, paper, cardboard, textile, leather, fleece, plastic surfaces, glass, ceramics, mineral building materials, metals or coated metals. They are used, for example, in the production of films or foils, for impregnating textiles or leather, as dispersants, as pigment driers, as primers, as adhesion promoters, as water repellents, as detergent additive or as additive in cosmetic preparations or for the production of moldings or hydrogels.
  • the polyurethane dispersions can be used in particular as primers, fillers, pigmented topcoats and clearcoats in the field of car repair or large vehicle painting.
  • the coating compositions are particularly suitable for applications in which particularly high application safety, outdoor weathering resistance, appearance, solvent resistance, chemical resistance and water resistance are required, such as in car repair and large vehicle painting.
  • the prepolymer solutions have a lower viscosity. "The rheological behavior of the polyurethane dispersions is improved, the wetting behavior of substrates or additives is improved, less yellowing under light and / or heat influence, higher frost resistance of the dispersions.
  • N-alkylpyrrolidones While the subsequent addition of N-alkylpyrrolidones, as known in the art, is only for adjusting physical parameters of the finished dispersion, the preparation according to the invention of polyurethanes in the presence of substituted N- (cyclo) alkylpyrrolidone leads to advantages the production of polyurethanes, which would not be achieved by subsequent addition. The reason for this could be assumed that the polyurethanes produced according to the invention absorb the substituted N- (cyclo) alkylpyrrolidone, for example, by swelling in the entire cross section, whereas at a later addition at best a superficial absorption can take place.
  • Another object of the present invention are coating compositions comprising at least one inventive polymer dispersion and coated articles therewith.
  • Example A1 was repeated but with 80 g of NMP instead of the DMP.
  • the NCO content was determined to be 1.44% by weight (calculated: 1.43%).
  • a finely divided PUD with a solids content of 36.7% was obtained.
  • Example A1 was repeated but with 80 g NEP instead of the DMP.
  • the NCO content was determined to be 1.42% by weight (calculated: 1.43%).
  • a finely divided PUD with a solids content of 36.7% was obtained.
  • the examples were tested as a varnish on wood with the following results:
  • Example B1 was repeated but with 79 g of NMP instead of the DMP.
  • the NCO content was determined to be 2.19% by weight (calculated: 2.26%) to obtain a finely divided PUD having a solids content of 30%.
  • Example B2 was repeated but with 40 g of NMP instead of the DMP.
  • the NCO content was determined to be 4.50% by weight (calculated: 4.72%) to give a finely divided PUD with 30% solids content.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Die vorliegende Erfindung betrifft substituierte N-(Cyclo)Alkylpyrrolidone als Lösungsmittel zur Anwendung in Verfahren zur Herstellung von Polyurethandispersionen.

Description

Neue Lösungsmittel in der Herstellung von Polyurethandispersionen
Beschreibung
Die vorliegende Erfindung betrifft substituierte N-(Cyclo)Alkylpyrrolidone als Lösungsmittel zur Anwendung in Verfahren zur Herstellung von Polyurethandispersionen.
Polyurethandispersionen werden technisch häufig über das sog. "Präpolymer-Mischverfahren" hergestellt. Darin werden Polyurethane zunächst in einem organischen Lö- sungsmittel, häufig N-Methylpyrrolidon, hergestellt und die so erhaltene Lösung des Polyurethans anschließend in Wasser dispergiert. Während und/oder nach deren Dispergierung in Wasser kann dann mittels einer Kettenverlängerung die Molmasse des Polyurethans weiter erhöht werden.
Je nach Siedepunkt des verwendeten Lösungsmittels verbleibt das Lösungsmittel auch bei einer destillativen Abtrennung zu mehr oder minder großen Anteilen in der Dispersion und beeinflußt dort dann die Eigenschaften der Polyurethandispersion.
Da nicht alle Lösungsmittel toxikologisch unbedenklich sind, sollte das verwendete Lösungsmittel möglichst ungiftig sein. Die WO 2005/090 430 A1 lehrt die Verwendung von N-(Cyclo)Alkylpyrrolidonen mit (Cyclo)Alkylresten mit 2 bis 6 C-Atomen für diesen Zweck. Andere als N-substituierte Pyrrolidone werden nicht offenbart. Es existieren jedoch Hinweise, nach denen vermutet werden könnte, dass auch N- (Cyclo)Alkylpyrrolidone, insbesondere N-Ethylpyrrolidon, zu nachteiligen toxikologi- sehen Wirkungen führen könnten, insbesondere wenn es auf oralem Wege aufgenommen würde. Es besteht daher weiterer Bedarf an Lösungsmitteln für die Synthese von Polyurethandispersionen.
Aufgabe der vorliegenden Erfindung war es, Lösungsmittel zur Herstellung von Polyu- rethandispersionen mittels des "Präpolymer-Mischverfahrens" zur Verfügung zu stellen, die die Eigenschaften der entstehenden Polyurethandispersion positiv beeinflussen.
Diese erfindungsgemäße Aufgabe wird gelöst durch ein Verfahren zur Herstellung von Polyurethandispersionen, in dem man das Polyurethan vor der Dispergierung in Gegenwart eines substituierten N-(Cyclo)Alkylpyrrolidons (SCAP) gemäß Formel 1
herstellt,
wobei R1 ein (Cyclo)alkylrest mit 1 bis 18 C-Atomen und R2, R2', R3, R3', R4 und R4' jeweils ein Wasserstoffatom oder ein (Cyclo)alkylrest mit 1 bis 18 C-Atomen sind, mit der Maßgabe, daß mindestens eine der Gruppen R2, R2', R3, R3', R4 und R4' verschieden von einem H-Atom ist.
Erfindungsgemäß geeignete substituierte N-(Cyclo)Alkylpyrrolidone sind solche mit einem aliphatischen (offenkettigen) oder cycloaliphatischen (alicyclischen, ringförmigen), bevorzugt offenkettigen, verzweigten oder unverzweigten Kohlenwasserstoffrest R1, der 1 bis 6 Kohlenstoffatome, bevorzugt 1 bis 4, besonders bevorzugt 1 bis 3, insbesondere 1 bis 2 und speziell 1 Kohlenstoffatom umfaßt sowie mit mindestens einem, beispielsweise ein bis sechs, bevorzugt ein bis drei, besonders bevorzugt ein bis zwei und ganz besonders bevorzugt genau einem aliphatischen oder cycloaliphatischen, bevorzugt aliphatischen Kohlenwasserstoffrest als Reste R2, R2', R3, R3', R4 und R4'.
Unter einem "(Cyclo)alkylrest mit 1 bis 18 C-Atomen" wird im Rahmen dieser Schrift ein aliphatischer, offenkettiger, verzweigter oder unverzweigter Kohlenwasserstoffrest mit 1 bis 18 Kohlenstoffatomen oder ein cycloaliphatischer Kohlenwasserstoffrest mit 3 bis 18 Kohlenstoffatomen verstanden.
Beispiele für geeignete Cycloalkylreste sind Cyclopentyl, Cyclohexyl, Cyclooctyl oder Cyclododecyl.
Beispiele für geeignete Alkylreste sind Methyl, Ethyl, iso-Propyl, n-Propyl, n-Butyl, iso- Butyl, sek-Butyl, tert-Butyl und n-Hexyl.
Bevorzugte Reste sind Cyclohexyl, Methyl, Ethyl, iso-Propyl, n-Propyl, n-Butyl, iso-
Butyl, sek-Butyl und tert-Butyl, besonders bevorzugt sind Methyl, Ethyl und n-Butyl und ganz besonders bevorzugt sind Methyl oder Ethyl, insbesondere Methyl.
Bevorzugte Reste R1 sind Methyl, Ethyl und Cyclohexyl, besonders bevorzugt Methyl und Ethyl und ganz besonders bevorzugt Methyl.
Bevorzugte Reste R2, R2', R3, R3', R4 und R4' sind Wasserstoff, Methyl, Ethyl, iso- Propyl und Cyclohexyl, besonders bevorzugt sind Wasserstoff, Methyl, Ethyl und iso- Propyl, ganz besonders bevorzugt sind Wasserstoff, Methyl und Ethyl und insbesondere Wasserstoff und Methyl.
Bevorzugt ist mindestens einer der Reste R2, R2', R3, R3', R4 und R4' ungleich Wasser- stoff, besonders bevorzugt ein bis drei, ganz besonders bevorzugt ein bis zwei und insbesondere genau einer.
Bevorzugte Verbindungen der Formel 1 sind N-Methyl-3-methylpyrrolidon, N-Methyl-4- methylpyrrolidon, N-Ethyl-3-methylpyrrolidon und N-Ethyl-4-methylpyrrolidon, beson- ders bevorzugt N-Methyl-3-methylpyrrolidon und N-Methyl-4-methylpyrrolidon sowie deren Mischungen.
Werden Mischungen eingesetzt, so handelt es sich bei diesen um Mischungen von bis zu vier verschiedenen substituierten N-(Cyclo)Alkylpyrrolidonen, bevorzugt bis zu drei und besonders bevorzugt zwei.
Im letzteren Fall liegen die beiden substituierten N-(Cyclo)Alkylpyrrolidone in der Regel im Gewichtsverhältnis von 10:1 bis 1 :10, bevorzugt 5:1 bis 1 :5, besonders bevorzugt 3:1 bis 1 :3 und ganz besonders bevorzugt 2:1 bis 1 :2 vor.
Die Menge der substituierten N-(Cyclo)Alkylpyrrolidone bezogen auf das Polyurethan beträgt in der Regel 1 - 100 Gew.-%, bevorzugt 10 - 100 Gew.-%.
Selbstverständlich können die erfindungsgemäß eingesetzten substituierten N- (Cyclo)Alkylpyrrolidon alleine, im Gemisch miteinander oder auch mit einem oder mehreren anderen geeigneten Lösungsmitteln vermischt eingesetzt werden.
Beispiele für geeignete Lösungsmittel sind beispielsweise offenkettige oder bevorzugt cyclische Carbonate, Lactone, Di(cyclo)alkyl dipropylenglykolether und N- (Cyclo)alkylcaprolactame.
Carbonate sind beispielsweise beschrieben in EP 697424 A1 , dort besonders von Seite 4, Zeile 4 bis 29, worauf hiermit ausdrücklich Bezug genommen sei. Bevorzugt genannt seien 1 ,2-Ethylencarbonat, 1 ,2-Propylencarbonat und 1 ,3-Propylencarbonat, besonders bevorzugt 1 ,2-Ethylencarbonat und 1 ,2-Propylencarbonat.
Als Lactone seien bevorzugt beta-Propiolacton, gamma-Butyrolacton, epsilon- Caprolacton und epsilon-Methylcaprolacton genannt.
Di(cyclo)alkyl dipropylenglykolether sind beispielsweise Dipropylenglykoldimethylether, Dipropylenglykoldiethylether, Dipropylenglykoldi-n-propylether und Dipropylenglykoldi- n-butylether, bevorzugt ist Dipropylenglykoldimethylether. Bei dem Di(cyclo)alkyl dipropylenglykolether und besonders bei Dipropylenglykoldi- methylether handelt es sich in der Regel um Gemische der Stellungsisomere und Di- astereomere. Die genaue Zusammensetzung der Isomerengemische spielt keine erfin- dungsgemäße Rolle. In der Regel ist das Hauptisomer
R-OCH2CH(CH3)OCH2CH(CH3)OR,
worin R für den (Cyclo)alkylrest steht.
Dipropylenglykoldimethylether ist als derartiges Isomerengemisch im Handel erhältlich und wird in der Regel durch die CAS-Nr 1 11 109-77-4 bezeichnet. Dipropylenglykoldimethylether ist in hoher Reinheit von meist über 99 Gew% im Handel erhältlich, beispielsweise unter dem Handelsnamen Proglyde® DMM von The Dow Chemical Com- pany, Midland, Michigan 48674, USA oder von der Firma Clariant GmbH, 65840 Sulzbach am Taunus, Deutschland.
N-(Cyclo)Alkylcaprolactame sind solche mit einem aliphatischen (offenkettigen) oder cycloaliphatischen (alicyclischen, ringförmigen), bevorzugt offenkettigen, verzweigten oder unverzweigten Kohlenwasserstoffrest, der 1 bis 6 Kohlenstoffatome, bevorzugt 1 bis 5, besonders bevorzugt 1 bis 4, insbesondere 1 bis 3 und speziell 1 oder 2 Kohlenstoffatome umfaßt.
Einsetzbare N-(Cyclo)Alkylcaprolactame sind beispielsweise N-Methylcaprolactam, N- Ethylcaprolactam, N-n-Propylcaprolactam, N-iso-Propylcaprolactam, N-n- Butylcaprolactam, N-iso-Butylcaprolactam, N-sek-Butylcaprolactam, N-tert- Butylcaprolactam, N-Cyclopentylcaprolactam oder N-Cyclohexylcaprolactam, bevorzugt N-Methylcaprolactam oder N-Ethylcaprolactam.
Weiterhin kann das substituierte N-(Cyclo)Alkylpyrrolidon auch einer fertigen Polyurethandispersion zugesetzt werden, also nach der Dispergierung des Polyurethans, beispielsweise um deren Verlaufs- und Trockenverhalten zu beeinflussen. Bevorzugt ist jedoch die Zugabe des substituierten N-(Cyclo)alkylpyrrolidons vor der Dispergierung.
Erfindungsgemäß stellt man die wäßrigen Polyurethandispersionen her durch
I. Herstellung eines Polyurethans durch Umsetzung von
a) mindestens einem mehrwertigen Isocyanat mit 4 bis 30 C-Atomen, b) Diolen, von denen
b1 ) 10 bis 100 mol-%, bezogen auf die Gesamtmenge der Diole (b), ein
Molekulargewicht von 500 bis 5000 aufweisen, und
b2) 0 bis 90 mol-%, bezogen auf die Gesamtmenge der Diole (b), ein Molekulargewicht von 60 bis 500 g/mol aufweisen,
c) gegebenenfalls weiteren von den Diolen (b) verschiedenen mehrwertigen Verbindungen mit reaktiven Gruppen, bei denen es sich um alkoholische
Hydroxylgruppen oder primäre oder sekundäre Aminogruppen handelt und
d) von den Monomeren (a), (b) und (c) verschiedene Monomere mit wenigstens einer Isocyanatgruppe oder wenigstens einer gegenüber Isocyanat- gruppen reaktiven Gruppe, die darüber hinaus wenigstens eine hydrophile
Gruppen oder eine potentiell hydrophile Gruppe tragen, wodurch die Was- serdispergierbarkeit der Polyurethane bewirkt wird,
zu einem Polyurethan in Gegenwart eines substituierten N- (Cyclo)Alkylpyrrolidons und
II. anschließender Dispergierung des Polyurethans in Wasser,
III. wobei man vor, während und/oder nach Schritt Il gegebenenfalls Polyamine zu- setzen kann.
Als Monomere in (a) kommen die üblicherweise in der Polyurethanchemie eingesetzten Polyisocyanate in Betracht, beispielsweise aliphatische, aromatische und cycloaliphati- sche Di- und Polyisocyanate, wobei die aliphatischen Kohlenwasserstoffreste bei- spielsweise 4 bis 12 Kohlenstoffatome, und die cycloaliphatischen oder aromatischen Kohlenwasserstoffreste beispielsweise 6 bis 15 Kohlenstoffatome oder die araliphati- sehen Kohlenwasserstoffreste beispielsweise 7 bis 15 Kohlenstoffatome aufweisen, mit einer NCO-Funktionalität von mindestens 1 ,8, bevorzugt 1 ,8 bis 5 und besonders bevorzugt 2 bis 4 in Frage, sowie deren Isocyanurate, Biurete, Allophanate und Uretdio- ne.
Bei den Diisocyanaten handelt es sich bevorzugt um Isocyanate mit 4 bis 20 C-Ato- men. Beispiele für übliche Diisocyanate sind aliphatische Diisocyanate wie Tetramethy- lendiisocyanat, Hexamethylendiisocyanat (1 ,6-Diisocyanatohexan), Octamethylendii- soeyanat, Decamethylendiisocyanat, Dodecamethylendiisocyanat, Tetradecamethy- lendiisoeyanat, Ester des Lysindiisocyanates, Tetramethylxylylendiisocyanat, Trime- thylhexandiisocyanat oder Tetramethylhexandiisocyanat, cycloaliphatische Diisocyanate wie 1 ,4-, 1 ,3- oder 1 ,2-Diisocyanatocyclohexan, trans/trans-, das cis/cis- und das cis/trans-lsomere des 4,4'- oder 2,4'-Di(isocyanatocyclohexyl)methan, 1-lsocyanato- 3,3,5- trimethyl-5-(isocyanatomethyl)cyclohexan (Isophorondiisocyanat), 2,2-Bis-(4-iso- cyanatocyclohexyl)-propan, 1 ,3- oder 1 ,4-Bis(isocyanatomethyl)cyclohexan oder 2,4-, oder 2,6-Diisocyanato-1-methylcyclohexan sowie aromatische Diisocyanate wie 2,4- oder 2,6-Toluylendiisocyanat und deren Isomerengemische, m- oder p-Xylylendiiso- cyanat, 2,4'- oder 4,4'-Diisocyanatodiphenylmethan und deren Isomerengemische, 1 ,3- oder 1 ,4-Phenylendiisocyanat, 1-Chlor-2,4-phenylendiisocyanat, 1 ,5-Naphthylen- diisoeyanat, Diphenylen-4,4'-diisocyanat, 4,4'-Diisocyanato-3,3'-dimethyldiphenyl,
3-Methyldiphenylmethan-4,4'-diisocyanat, 1 ,4-Diisocyanatobenzol oder Diphenylether- 4,4'-diisocyanat.
Es können auch Gemische der genannten Diisocyanate vorliegen.
Bevorzugt sind aliphatische und cycloaliphatische Diisocyanate, besonders bevorzugt sind Isophorondiisocyanat, Hexamethylendiisocyanat, meta-Tetramethylxylylendiiso- cyanat (m-TMXDI) und 4,4'-Di(isocyanatocyclohexyl)methan (H12MDI).
Als Polyisocyanate kommen Isocyanuratgruppen aufweisende Polyisocyanate, Uretdi- ondiisoeyanate, Biuretgruppen aufweisende Polyisocyanate, Urethan- oder Allophanat- gruppen aufweisende Polyisocyanate, Oxadiazintriongruppen enthaltende Polyisocyanate, Uretonimin-modifizierte Polyisocyanate von geradlinigen oder verzweigten C4-C2o-Alkylendiisocyanaten, cycloaliphatischen Diisocyanaten mit insgesamt 6 bis 20 C-Atomen oder aromatischen Diisocyanaten mit insgesamt 8 bis 20 C-Atomen oder deren Gemische in Betracht.
Die einsetzbaren Di- und Polyisocyanate haben bevorzugt einen Gehalt an Isocyanat- gruppen (berechnet als NCO, Molekulargewicht = 42) von 10 bis 60 Gew.-% bezogen auf das Di- und Polyisocyanat(gemisch), bevorzugt 15 bis 60 Gew.-% und besonders bevorzugt 20 bis 55 Gew.-%. Bevorzugt sind aliphatische bzw. cycloaliphatische Di- und Polyisocyanate, z.B. die vorstehend genannten aliphatischen bzw. cycloaliphatischen Diisocyanate, oder deren Mischungen.
Weiterhin bevorzugt sind
1 ) Isocyanuratgruppen aufweisende Polyisocyanate von aromatischen, aliphati- schen und/oder cycloaliphatischen Diisocyanaten. Besonders bevorzugt sind hierbei die entsprechenden aliphatischen und/oder cycloaliphatischen Isocyana- to-lsocyanurate und insbesondere die auf Basis von Hexamethylendiisocyanat und Isophorondiisocyanat. Bei den dabei vorliegenden Isocyanuraten handelt es sich insbesondere um Tris-isocyanatoalkyl- bzw. Tris-isocyanatocycloalkyl-lso- cyanurate, welche cyclische Trimere der Diisocyanate darstellen, oder um Gemi- sehe mit ihren höheren, mehr als einen Isocyanuratring aufweisenden Homologen. Die Isocyanato-Isocyanurate haben im allgemeinen einen NCO-Gehalt von 10 bis 30 Gew.-%, insbesondere 15 bis 25 Gew.-% und eine mittlere NCO-Funk- tionalität von 3 bis 4,5.
2) Uretdiondiisocyanate mit aromatisch, aliphatisch und/oder cycloaliphatisch gebundenen Isocyanatgruppen, vorzugsweise aliphatisch und/oder cycloaliphatisch gebundenen und insbesondere die von Hexamethylendiisocyanat oder Isophorondiisocyanat abgeleiteten. Bei Uretdiondiisocyanaten handelt es sich um cyclische Dimerisierungsprodukte von Diisocyanaten. Die Uretdiondiisocyanate können in den Zubereitungen als alleinige Komponente oder im Gemisch mit anderen Polyisocyanaten, insbesondere den unter 1) genannten, eingesetzt werden.
3) Biuretgruppen aufweisende Polyisocyanate mit aromatisch, cycloaliphatisch oder aliphatisch gebundenen, bevorzugt cycloaliphatisch oder aliphatisch gebundenen
Isocyanatgruppen, insbesondere Tris(6-isocyanatohexyl)biuret oder dessen Gemische mit seinen höheren Homologen. Diese Biuretgruppen aufweisenden Polyisocyanate weisen im allgemeinen einen NCO-Gehalt von 18 bis 22 Gew.-% und eine mittlere NCO-Funktionalität von 3 bis 4,5 auf. 4) Urethan- und/oder Allophanatgruppen aufweisende Polyisocyanate mit aromatisch, aliphatisch oder cycloaliphatisch gebundenen, bevorzugt aliphatisch oder cycloaliphatisch gebundenen Isocyanatgruppen, wie sie beispielsweise durch Umsetzung von überschüssigen Mengen an Hexamethylendiisocyanat oder an
Isophorondiisocyanat mit mehrwertigen Alkoholen wie z.B. Trimethylolpropan, Neopentylglykol, Pentaerythrit, 1 ,4-Butandiol, 1 ,6-Hexandiol, 1 ,3-Propandiol, Ethylenglykol, Diethylenglykol, Glycerin, 1 ,2-Dihydroxypropan oder deren Gemischen erhalten werden können. Diese Urethan- und/oder Allophanatgruppen aufweisenden Polyisocyanate haben im allgemeinen einen NCO-Gehalt von 12 bis 20 Gew.-% und eine mittlere NCO-Funktionalität von 2,5 bis 3.
5) Oxadiazintriongruppen enthaltende Polyisocyanate, vorzugsweise von Hexamethylendiisocyanat oder Isophorondiisocyanat abgeleitet. Solche Oxadiazintri- ongruppen enthaltenden Polyisocyanate sind aus Diisocyanat und Kohlendioxid herstellbar.
6) Uretonimin-modifizierte Polyisocyanate.
Die Polyisocyanate 1) bis 6) können im Gemisch, gegebenenfalls auch im Gemisch mit Diisocyanaten, eingesetzt werden.
Als Gemische dieser Isocyanate sind besonders die Mischungen der jeweiligen Strukturisomeren von Diisocyanatotoluol und Diisocyanato-diphenylmethan von Bedeutung, insbesondere ist die Mischung aus 20 mol-% 2,4 Diisocyanatotoluol und 80 mol-%
2,6-Diisocyanatotoluol geeignet. Weiterhin sind die Mischungen von aromatischen Iso- cyanaten wie 2,4 Diisocyanatotoluol und/oder 2,6-Diisocyanatotoluol mit aliphatischen oder cycloaliphatischen Isocyanaten wie Hexamethylendiisocyanat oder IPDI besonders vorteilhaft, wobei das bevorzugte Mischungsverhältnis der aliphatischen zu aro- matischen Isocyanate 4 : 1 bis 1 : 4 beträgt.
Als Verbindungen (a) kann man auch Isocyanate einsetzen, die neben den freien Isocyanatgruppen weitere verkappte Isocyanatgruppen, z.B. Uretdion- oder Urethangrup- pen tragen.
Gegebenenfalls können auch solche Isocyanate mitverwendet werden, die nur eine Isocyanatgruppe tragen. Im allgemeinen beträgt ihr Anteil maximal 10 mol-%, bezogen auf die gesamte Molmenge der Monomere. Die Monoisocyanate tragen üblicherweise weitere funktionelle Gruppen wie olefinische Gruppen oder Carbonylgruppen und dienen zur Einführung von funktionellen Gruppen in das Polyurethan, die die Dispergie- rung bzw. die Vernetzung oder weitere polymeranaloge Umsetzung des Polyurethans ermöglichen. In Betracht kommen hierfür Monomere wie lsopropenyl-α,α-dimethyl- benzylisocyanat (TMI).
Als Diole (b) kommen vornehmlich höhermolekulare Diole (b1) in Betracht, die ein Molekulargewicht von etwa 500 bis 5000, vorzugsweise von etwa 100 bis 3000 g/mol haben.
Bei den Diolen (b1) handelt es sich insbesondere um Polyesterpolyole, die z.B. aus Ullmanns Encyklopädie der technischen Chemie, 4. Auflage, Band 19, S. 62 bis 65 bekannt sind. Bevorzugt werden Polyesterpolyole eingesetzt, die durch Umsetzung von zweiwertigen Alkoholen mit zweiwertigen Carbonsäuren erhalten werden. Anstelle der freien Polycarbonsäuren können auch die entsprechenden Polycarbonsäureanhydride oder entsprechende Polycarbonsäureester von niederen Alkoholen oder deren Gemische zur Herstellung der Polyesterpolyole verwendet werden. Die Polycarbonsäuren können aliphatisch, cycloaliphatisch, araliphatisch, aromatisch oder heterocyclisch sein und gegebenenfalls, z.B. durch Halogenatome, substituiert und/oder ungesättigt sein. Als Beispiele hierfür seien genannt: Korksäure, Azelainsäure, Phthalsäure, Isophthal- säure, Phthalsäureanhydrid, Tetrahydrophthalsäureanhydrid, Hexahydrophthalsäure- anhydrid, Tetrachlorphthalsäureanhydrid, Endomethylentetrahydrophthalsäurean- hydrid, Glutarsäureanhydrid, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, dimere Fettsäuren. Bevorzugt sind Dicarbonsäuren der allgemeinen Formel HOOC- (CH2)y- COOH, wobei y eine Zahl von 1 bis 20, bevorzugt eine gerade Zahl von 2 bis 20 ist, z.B. Bernsteinsäure, Adipinsäure, Dodecandicarbonsäure und Sebacinsäure.
Als mehrwertige Alkohole kommen z.B. Ethylenglykol, Propan-1 ,2-diol, Propan-1 ,3-diol, Butan-1 ,3-diol, Buten-1 ,4-diol, Butin-1 ,4-diol, Pentan-1 ,5-diol, Neopentylglykol, Bis-(hy- droxymethyl)-cyclohexane wie 1 ,4-Bis-(hydroxymethyl)cyclohexan, 2-Methyl-propan- 1 ,3-diol, ferner Diethylenglykol, Triethylenglykol, Tetraethylenglykol, Polyethylenglykol, Dipropylenglykol, Polypropylenglykol, Dibutylenglykol und Polybutylenglykole in Betracht. Bevorzugt sind Neopentylglykol sowie Alkohole der allgemeinen Formel HO-(CH2)x-OH, wobei x eine Zahl von 1 bis 20, bevorzugt eine gerade Zahl von 2 bis 20 ist. Beispiele hierfür sind Ethylenglycol, Butan-1 ,4-diol, Hexan-1 ,6-diol, Octan-1 ,8- diol und Dodecan-1 ,12-diol. Ferner kommen auch Polycarbonat-Diole, wie sie z.B. durch Umsetzung von Phosgen mit einem Überschuß von den als Aufbaukomponenten für die Polyesterpolyole genannten niedermolekularen Alkohole erhalten werden können, in Betracht.
Geeignet sind auch Polyesterdiole auf Lacton-Basis, wobei es sich um Homo- oder Mischpolymerisate von Lactonen, bevorzugt um endständige Hydroxylgruppen aufweisende Anlagerungsprodukte von Lactonen an geeignete difunktionelle Startermoleküle handelt. Als Lactone kommen bevorzugt solche in Betracht, die von Hydroxycarbon- säuren der allgemeinen Formel HO-(CH2)∑-COOH, wobei z eine Zahl von 1 bis 20, be- vorzugt eine ungerade Zahl von 3 bis 19 ist, abgeleitet sind, z.B. ε-Caprolacton, ß-Pro- piolacton, γ-Butyrolacton und/oder Methyl-ε-caprolacton sowie deren Gemische. Geeignete Starterkomponenten sind z.B. die vorstehend als Aufbaukomponente für die Polyesterpolyole genannten niedermolekularen zweiwertigen Alkohole. Die entsprechenden Polymerisate des ε-Caprolactons sind besonders bevorzugt. Auch niedere Polyesterdiole oder Polyetherdiole können als Starter zur Herstellung der Lacton-Poly- merisate eingesetzt sein. Anstelle der Polymerisate von Lactonen können auch die entsprechenden, chemisch äquivalenten Polykondensate der den Lactonen entsprechenden Hydroxycarbonsäuren, eingesetzt werden.
Daneben kommen als Monomere (b1) Polyetherdiole in Betracht. Sie sind insbesondere durch Polymerisation von Ethylenoxid, Propylenoxid, Butylenoxid, Tetrahydrofuran, Styroloxid oder Epichlorhydrin mit sich selbst, z.B. in Gegenwart von BF3 oder durch Anlagerung dieser Verbindungen gegebenenfalls im Gemisch oder nacheinander, an Startkomponenten mit reaktionsfähigen Wasserstoffatomen, wie Alkohole oder Amine, z.B. Wasser, Ethylenglykol, Propan-1 ,2-diol, Propan-1 ,3-diol, 2,2-Bis(4-hydroxy- diphenyl)-propan oder Anilin erhältlich. Besonders bevorzugt ist Polytetrahydrofuran mit einem Molekulargewicht von 500 bis 5000 g/mol, und vor allem 1000 bis 4500 g/mol.
Die Polyesterdiole und Polyetherdiole können auch als Gemische im Verhältnis 0,1 : 1 bis 1 : 9 eingesetzt werden.
Als Diole (b) können neben den Diolen (b1) noch niedermolekulare Diole (b2) mit einem Molekulargewicht von etwa 50 bis 500, vorzugsweise von 60 bis 200 g/mol, ein- gesetzt werden.
Als Monomere (b2) werden vor allem die Aufbaukomponenten der für die Herstellung von Polyesterpolyolen genannten kurzkettigen Alkandiole eingesetzt, wobei die unverzweigten Diole mit 2 bis 12 C-Atomen und einer gradzahligen Anzahl von C-Atomen sowie Pentandiol-1 ,5 und Neopentylglykol bevorzugt werden. Bevorzugt beträgt der Anteil der Diole (b1), bezogen auf die Gesamtmenge der der Diolen (b) 10 bis 100 mol-% und der Anteil der Diole (b2), bezogen auf die Gesamtmenge der Diole (b) 0 bis 90 mol-%. Besonders bevorzugt beträgt das Verhältnis der Diole (b1) zu den Diolen (b2) 0,2 : 1 bis 5 : 1 , besonders bevorzugt 0,5 : 1 bis 2 : 1.
Die Monomere (c), die von den Diolen (b) verschieden sind, dienen im allgemeinen der Vernetzung oder der Kettenverlängerung. Es sind im allgemeinen mehr als zweiwertige nicht-aromatische Alkohole, Amine mit 2 oder mehr primären und/oder sekundären Aminogruppen sowie Verbindungen, die neben einer oder mehreren alkoholischen Hydroxylgruppen eine oder mehrere primäre und/oder sekundäre Aminogruppen tragen.
Alkohole mit einer höheren Wertigkeit als 2, die zur Einstellung eines gewissen Ver- zweigungs- oder Vernetzungsgrades dienen können, sind z.B. Trimethylolbutan, Tri- methylolpropan, Trimethylolethan, Pentaerythrit, Glycerin, Zuckeralkohole, wie z.B.
Sorbit, Mannit, Diglycerol, Threit, Erythrit, Adonit (Ribit), Arabit (Lyxit), XyNt, Dulcit (Ga- lactit), Maltit oder Isomalt, oder Zucker.
Ferner kommen Monoalkohole in Betracht, die neben der Hydroxyl-Gruppe eine weite- re gegenüber Isocyanaten reaktive Gruppe tragen wie Monoalkohole mit einer oder mehreren primären und/oder sekundären Aminogruppen, z.B. Monoethanolamin.
Polyamine mit 2 oder mehr primären und/oder sekundären Aminogruppen können im Präpolymer-Mischverfahren vor allem dann eingesetzt werden, wenn die Kettenverlän- gerung bzw. Vernetzung in Gegenwart von Wasser stattfinden soll (Schritt III), da Amine in der Regel schneller als Alkohole oder Wasser mit Isocyanaten reagieren. Das ist häufig dann erforderlich, wenn wäßrige Dispersionen von vernetzten Polyurethanen oder Polyurethanen mit hohem Molgewicht gewünscht werden. In solchen Fällen geht man so vor, daß man Präpolymere mit Isocyanatgruppen herstellt, diese rasch in Was- ser dispergiert und anschließend durch Zugabe von Verbindungen mit mehreren gegenüber Isocyanaten reaktiven Aminogruppen kettenverlängert oder vernetzt.
Es ist auch möglich, die Kettenverlängerung mit Polyaminen mit 2 primären und/oder sekundären Aminogruppen vor der Dispergierung in Wasser durchzuführen, wie bei- spielsweise in der WO 02/98939 gelehrt wird.
Hierzu geeignete Amine sind im allgemeinen polyfunktionelle Amine des Molgewichtsbereiches von 32 bis 500 g/mol, vorzugsweise von 60 bis 300 g/mol, welche mindestens zwei primäre, zwei sekundäre oder eine primäre und eine sekundäre Aminogrup- pe enthalten. Beispiele hierfür sind Diamine wie Diaminoethan, Diaminopropane, Dia- minobutane, Diaminohexane, Piperazin, 2,5-Dimethylpiperazin, Amino-3-aminomethyl- 3,5,5-trimethyl-cyclohexan (Isophorondiamin, IPDA), 4,4'-Diaminodicyclohexylmethan, 1 ,4-Diaminocyclohexan, Aminoethylethanolamin, Hydrazin, Hydrazinhydrat oder Tria- mine wie Diethylentriamin oder 1 ,8-Diamino-4-aminomethyloctan oder höhere Amine wie Triethylentetramin, Tetraethylenpentamin oder polymere Amine wie Polyethylen- amine, hydrierte Poly-Acrylnitrile oder zumindest teilweise hydrolysierte Poly-N-Vinyl- formamide jeweils mit einem Molgewicht bis zu 2000, bevorzugt bis zu 1000 g/mol.
Die Amine können auch in blockierter Form, z.B. in Form der entsprechenden Ketimine (siehe z.B. CA-1 129 128), Ketazine (vgl. z.B. die US-A 4 269 748) oder Aminsalze (s. US-A 4 292 226) eingesetzt werden. Auch Oxazolidine, wie sie beispielsweise in der US-A 4 192 937 verwendet werden, stellen verkappte Polyamine dar, die für die Herstellung der Polyurethane zur Kettenverlängerung der Präpolymeren eingesetzt werden können. Bei der Verwendung derartiger verkappter Polyamine werden diese im allgemeinen mit den Präpolymeren in Abwesenheit von Wasser vermischt und diese Mischung anschließend mit dem Dispersionswasser oder einem Teil des Dispersions- wassers vermischt, so daß hydrolytisch die entsprechenden Polyamine freigesetzt werden.
Bevorzugt werden Gemische von Di- und Triaminen verwendet, besonders bevorzugt Gemische von Isophorondiamin und Diethylentriamin.
Der Anteil an Polyaminen kann bis zu 10, bevorzugt bis zu 8 mol-% und besonders bevorzugt bis zu 5 mol%, bezogen auf die Gesamtmenge der Komponenten (b) und (c) betragen.
Das im Schritt I hergestellte Polyurethan kann in der Regel bis zu 10 Gew.-%, bevorzugt bis zu 5 Gew.-% nicht abreagierte NCO-Gruppen aufweisen. Das molare Verhältnis von NCO-Gruppen im im Schritt I hergestellten Polyurethan zu der Summe aus primären und sekundären Aminogruppen im Polyamin wird im Schritt III in der Regel so gewählt, daß es zwischen 3 : 1 und 1 : 3, bevorzugt 2 : 1 und 1 : 2, besonders bevorzugt 1 ,5 : 1 und 1 : 1 ,5; ganz besonders bevorzugt bei 1 :1 liegt.
Ferner können zum Kettenabbruch in untergeordneten Mengen, d.h. bevorzugt in Mengen von weniger als 10 mol-%, bezogen auf die Komponenten (b) und (c), Mono- alkohole eingesetzt werden. Sie dienen hauptsächlich zur Begrenzung des Molge- wichts des Polyurethans. Beispiele sind Methanol, Ethanol, iso-Propanol, n-Propanol, n-Butanol, iso-Butanol, sek-Butanol, tert-Butanol, Ethylenglykolmonomethylether, Ethy- lenglykolmonoethylether, 1 ,3-Propandiolmonomethylether, n-Hexanol, n-Heptanol, n-Octanol, n-Decanol, n-Dodecanol (Laurylalkohol) und 2-Ethylhexanol.
Um die Wasserdispergierbarkeit der Polyurethane zu erreichen, sind die Polyurethane neben den Komponenten (a), (b) und (c) aus von den Komponenten (a), (b) und (c) verschiedenen Monomere (d), die wenigstens eine Isocyanatgruppe oder wenigstens eine gegenüber Isocyanatgruppen reaktiven Gruppe und darüberhinaus wenigstens eine hydrophile Gruppe oder eine Gruppe, die sich in hydrophile Gruppen überführen läßt, tragen, aufgebaut. Im folgenden Text wird der Begriff "hydrophile Gruppen oder potentiell hydrophile Gruppen" mit "(potentiell) hydrophile Gruppen" abgekürzt. Die (potentiell) hydrophilen Gruppen reagieren mit Isocyanaten wesentlich langsamer als die funktionellen Gruppen der Monomere, die zum Aufbau der Polymerhauptkette dienen. Bei den (potentiell) hydrophilen Gruppen kann es sich um nichtionische oder bevorzugt um ionische, d.h. kationische oder anionische, hydrophile Gruppen oder um potentiell ionische hydrophile Gruppen und besonders bevorzugt um anionische hydrophile Gruppen oder um potentiell anionische hydrophile Gruppen handeln.
Der Anteil der Komponenten mit (potentiell) hydrophilen Gruppen an der Gesamtmenge der Komponenten (a), (b), (c) und (d) wird im allgemeinen so bemessen, daß die Molmenge der (potentiell) hydrophilen Gruppen, bezogen auf die Gewichtsmenge aller Monomere (a) bis (b), 30 bis 1000, bevorzugt 50 bis 500 und besonders bevorzugt 80 bis 300 mmol/kg beträgt.
Als nichtionische hydrophile Gruppen kommen beispielsweise gemischte oder reine Polyethylenglykolether aus vorzugsweise 5 bis 100, bevorzugt 10 bis 80 Ethylenoxid- Wiederholungseinheiten in Betracht. Die Polyethylenglykolether können auch Propyle- noxid-Einheiten enthalten. Ist dies der Fall, so soll der Gehalt an Propylen-oxid-Ein- heiten 50 Gew.%, bevorzugt 30 Gew.%, bezogen auf den gemischten Polyethylenglykolether, nicht übersteigen.
Der Gehalt an Polyethylenoxid-Einheiten beträgt im allgemeinen 0 bis 10, bevorzugt 0 bis 6 Gew.-%, bezogen auf die Gewichtsmenge aller Monomere (a) bis (d).
Bevorzugte Monomere mit nichtionischen hydrophilen Gruppen sind das Polyethylen- glykol und Diisocyanate, die einen endständig veretherten Polyethylenglykolrest tra- gen. Derartige Diisocyanate sowie Verfahren zu deren Herstellung sind in den Patentschriften US 3 905 929 und US 3 920 598 angegeben.
Ionische hydrophile Gruppen sind vor allem anionische Gruppen wie die Sulfonat-, die Carboxylat- und die Phosphatgruppe in Form ihrer Alkalimetall- oder Ammoniumsalze sowie kationische Gruppen wie Ammonium-Gruppen, insbesondere protonierte tertiäre Aminogruppen oder quartäre Ammoniumgruppen.
Als Monomere mit potentiell anionischen Gruppen werden üblicherweise aliphatische, cycloaliphatische, araliphatische oder aromatische Mono- und Dihydroxycarbonsäuren in Betracht, die mindestens eine alkoholische Hydroxylgruppe oder eine primäre oder sekundäre Aminogruppe tragen. Solche Verbindungen werden beispielsweise durch die allgemeine Formel
RG-R4-DG
dargestellt, worin
RG mindestens eine gegen Isocyanat reaktive Gruppe bedeutet, DG mindestens eine dispergieraktive Gruppe und
R4 einen 1 bis 20 Kohlenstoffatome enthaltenden aliphatischen, cycloaliphatischen oder aromatischen Rest.
Beispiele für RG sind -OH, -SH, -NH2 oder -NHR5, worin R5 Methyl, Ethyl, iso-Propyl, n-Propyl, n-Butyl, iso-Butyl, sek-Butyl, tert-Butyl, Cyclopentyl oder Cyclohexyl sein kann.
Bevorzugt handelt es sich bei solchen Komponente z.B. um Mercaptoessigsäure, Mer- captopropionsäure, Thiomilchsäure, Mercaptobernsteinsäure, Glycin, Iminodiessigsäu- re, Sarkosin, Alanin, ß-Alanin, Leucin, Isoleucin, Aminobuttersäure, Hydroxyessigsäu- re, Hydroxypivalinsäure, Milchsäure, Hydroxybernsteinsäure, Hydroxydecansäure, Di- methylolpropionsäure, Dimethylolbuttersäure, Ethylendiamintriessigsäure, Hydroxydo- decansäure, Hydroxyhexadecansäure, 12-Hydroxystearinsäure, Aminonaphthalincar- bonsäure, Hydroxethansulfonsäure, Hydroxypropansulfonsäure, Mercaptoethansulfon- säure, Mercaptopropansulfonsäure, Aminomethansulfonsäure, Taurin, Aminopropan- sulfonsäure, N-Cyclohexylaminopropansulfonsäure, N-Cyclohexylamino- ethansulfonsäure sowie deren Alkali- Erdalkali- oder Ammoniumsalze und besonders bevorzugt um die genannten Monohydroxycarbon- und -sulfonsäuren sowie Monoami- nocarbon- und -sulfonsäuren.
Ganz besonders bevorzugt sind Dihydroxyalkylcarbonsäuren, vor allem mit 3 bis 10 Kohlenstoffatomen, wie sie auch in der US-A 3 412 054 beschrieben sind. Insbesondere sind Verbindungen der allgemeinen Formel
HO-R1-CR3(COOH)-R2-OH
in welcher R1 und R2 für eine d- bis C4-Alkandiyl-Einheit und R3 für eine d- bis C4-Al- kyl-Einheit steht. Vor allem sind Dimethylolbuttersäure und besonders Dimethylolpropi- onsäure (DMPA) bevorzugt.
Weiterhin eignen sich entsprechende Dihydroxysulfonsäuren und Dihydroxyphospon- säuren wie 2,3-Dihydroxypropanphosphonsäure sowie die entsprechenden Säuren, in denen mindestens eine Hydroxygruppe durch eine Aminogruppe ersetzt ist, beispiels- weise solche der Formel
H2N-R1-CR3(COOH)-R2-NH2
in welcher R1, R2 und R3 die gleichen Bedeutungen haben können, wie oben angeführt.
Ansonsten geeignet sind Dihydroxyverbindungen mit einem Molekulargewicht über 500 bis 10000 g/mol mit mindestens 2 Carboxylatgruppen, die aus der DE-A 4 140 486 bekannt sind. Sie sind durch Umsetzung von Dihydroxylverbindungen mit Tetracarbon- säuredianhydriden wie Pyromellitsäuredianhydrid oder Cyclopentantetracarbonsäure- dianhydrid im Molverhältnis 2 : 1 bis 1 ,05 : 1 in einer Polyadditionsreaktion erhältlich. Als Dihydroxyverbindungen sind insbesondere die als Kettenverlängerer aufgeführten Monomere (b2) sowie die Diole (b1 ) geeignet.
Potentiell ionische hydrophile Gruppen sind vor allem solche, die sich durch einfache Neutralisations-, Hydrolyse- oder Quaternisierungsreaktionen in die oben genannten ionischen hydrophilen Gruppen überführen lassen, also z.B. Säuregruppen, Anhydridgruppen oder tertiäre Aminogruppen.
Ionische Monomere (d) oder potenziell ionische Monomere (d) sind z.B. in Ullmanns Encyklopädie der technischen Chemie, 4. Auflage, Band 19, S.311-313 und beispielsweise in der DE-A 1 495 745 ausführlich beschrieben.
Als potentiell kationische Monomere (d) sind vor allem Monomere mit tertiären Amino- gruppen von besonderer praktischer Bedeutung, beispielsweise: Tris-(hydroxyalkyl)- amine, N,N'-Bis(hydroxyalkyl)-alkylamine, N-Hydroxyalkyl-dialkylamine, Tris-(amino- alkyl)-amine, N,N'-Bis(aminoalkyl)-alkylamine, N-Aminoalkyl-dialkylamine, wobei die Alkylreste und Alkandiyl-Einheiten dieser tertiären Amine unabhängig voneinander aus 2 bis 6 Kohlenstoffatomen bestehen. Weiterhin kommen tertiäre Stickstoffatome auf- weisende Polyether mit vorzugsweise zwei endständigen Hydroxylgruppen, wie sie z.B. durch Alkoxylierung von zwei an Am in Stickstoff gebundene Wasserstoffatome aufweisende Amine, z.B. Methylamin, Anilin, oder N,N'-Dimethylhydrazin, in an sich üblicher Weise zugänglich sind, in Betracht. Derartige Polyether weisen im allgemeinen ein zwischen 500 und 6000 g/mol liegendes Molgewicht auf.
Diese tertiären Amine werden entweder mit Säuren, bevorzugt starken Mineralsäuren wie Phosphorsäure, Schwefelsäure oder Halogenwasserstoffsäuren, starken organischen Säuren, wie beispielsweise Ameisen-, Essig- oder Milchsäure, oder durch Umsetzung mit geeigneten Quaternisierungsmitteln wie d- bis Cβ-Alkylhalogeniden, z.B. Bromiden oder Chloriden, oder Di-Cr bis Cβ-Alkylsulfaten oder Di-Cr bis Cβ-Alkyl- carbonaten in die Ammoniumsalze überführt. Als Monomere (d) mit gegenüber Isocyanaten reaktiven Aminogruppen kommen Ami- nocarbonsäuren wie Lysin, ß-Alanin, die in der DE-A2034479 genannten Addukte von aliphatischen diprimären Diaminen an α,ß-ungesättigte Carbonsäuren wie die N-(2-A- minoethyl)-2-aminoethancarbonsäure sowie die entsprechenden N-Aminoalkyl-amino- alkylcarbonsäuren, wobei die Alkandiyl-Einheiten aus 2 bis 6 Kohlenstoffatome bestehen, in Betracht.
Sofern Monomere mit potentiell ionischen Gruppen eingesetzt werden, kann deren Überführung in die ionische Form vor, während, jedoch vorzugsweise nach der Isocya- nat-Polyaddition erfolgen, da sich die ionischen Monomeren in der Reaktionsmischung häufig nur schwer lösen. Besonders bevorzugt liegen die anionischen hydrophilen Gruppen in Form ihrer Salze mit einem Alkaliion oder einem Ammoniumion als Gegenion vor.
Unter diesen genannten Verbindungen sind Hydroxycarbonsäuren bevorzugt, besonders bevorzugt sind Dihydroxyalkylcarbonsäuren, ganz besonders bevorzugt sind α,α-Bis(hydroxymethyl)carbonsäuren, insbesondere Dimethylolbuttersäure und Di- methylolpropionsäure und speziell Dimethylolpropionsäure.
In einer alternativen Ausführungsform können die Polyurethane sowohl nichtionische hydrophile als auch ionische hydrophile Gruppen, bevorzugt gleichzeitig nichtionische hydrophile und anionische hydrophile Gruppen enthalten.
Auf dem Gebiet der Polyurethanchemie ist allgemein bekannt, wie das Molekularge- wicht der Polyurethane durch Wahl der Anteile der miteinander reaktiven Monomere sowie dem arithmetischen Mittel der Zahl der reaktiven funktionellen Gruppen pro Molekül eingestellt werden kann.
Normalerweise werden die Komponenten (a), (b), (c) und (d) sowie ihre jeweiligen Molmengen so gewählt, daß das Verhältnis A : B mit
A) der Molmenge an Isocyanatgruppen und
B) der Summe aus der Molmenge der Hydroxylgruppen und der Molmenge der funktionellen Gruppen, die mit Isocyanaten in einer Additionsreaktion reagieren können
0,5 : 1 bis 2 : 1 , bevorzugt 0,8 : 1 bis 1 ,5, besonders bevorzugt 0,9 : 1 bis 1 ,2 : 1 beträgt. Ganz besonders bevorzugt liegt das Verhältnis A : B möglichst nahe an 1 : 1. Neben den Komponenten (a), (b), (c) und (d) werden Monomere mit nur einer reaktiven Gruppe im allgemeinen in Mengen bis zu 15 mol-%, bevorzugt bis zu 8 mol-%, bezogen auf die Gesamtmenge der Komponenten (a), (b), (c) und (d) eingesetzt.
Die Polyaddition der Komponenten (a) bis (d) erfolgt im allgemeinen bei Reaktionstemperaturen von 20 bis 18O0C, bevorzugt 50 bis 15O0C unter Normaldruck.
Die erforderlichen Reaktionszeiten können sich über wenige Minuten bis einige Stunden erstrecken. Es ist auf dem Gebiet der Polyurethanchemie bekannt, wie die Reakti- onszeit durch eine Vielzahl von Parametern wie Temperatur, Konzentration der Monomere, Reaktivität der Monomeren beeinflußt wird.
Zur Beschleunigung der Reaktion der Diisocyanate können die üblichen Katalysatoren mitverwendet werden. Dafür kommen prinzipiell alle in der Polyurethanchemie übli- cherweise verwendeten Katalysatoren in Betracht.
Diese sind beispielsweise organische Amine, insbesondere tertiäre aliphatische, cyclo- aliphatische oder aromatische Amine, und/oder Lewis-saure organische Metallverbindungen. Als Lewis-saure organische Metallverbindungen kommen z.B. Zinnverbindun- gen in Frage, wie beispielsweise Zinn-(ll)-salze von organischen Carbonsäuren, z.B. Zinn(ll)-acetat, Zinn(ll)-octoat, Zinn(ll)-ethylhexoat und Zinn(ll)-Iaurat und die Dialkyl- zinn(IV)-salze von organischen Carbonsäuren, z.B.Dimethylzinn-diacetat, Dibutylzinn- diacetat, Dibutylzinn-dibutyrat, Dibutylzinn-bis(2-ethylhexanoat), Dibutylzinn-dilaurat, Dibutylzinn-maleat, Dioctylzinn-dilaurat und Dioctylzinn-diacetat. Auch Metallkomplexe wie Acetylacetonate des Eisens, Titans, Aluminiums, Zirkons, Mangans, Nickels und Cobalts sind möglich. Weitere Metallkatalysatoren werden von Blank et al. in Progress in Organic Coatings, 1999, Vol. 35, Seiten 19-29 beschrieben.
Bevorzugte Lewis-saure organische Metallverbindungen sind Dimethylzinn-diacetat, Dibutylzinn-dibutyrat, Dibutylzinn-bis(2-ethylhexanoat), Dibutylzinn-dilaurat, Diocytzinn- dilaurat, Zirkon-Acetylacetonat und Zirkon-2,2,6,6-tetramethyl-3,5-heptandionat.
Auch Wismut- und Cobaltkatalysatoren sowie Cäsiumsalze können als Katalysatoren eingesetzt werden. Als Cäsiumsalze kommen dabei solche Verbindungen in Betracht, in denen folgende Anionen eingesetzt werden: F-, Ch, CIO", CIO3-, CI(V, Br, J-, JO3-, CN-, OCN-, NO2-, NO3-, HCO3-, CO3 2", S2", SH", HSO3-, SO3 2", HSO4 ", SO4 2", S2O2 2", S2O4 2", S2O5 2-, S2O6 2", S2O7 2", S2O8 2", H2PO2-, H2PO4-, HPO4 2", PO4 3", P2O7 4", (OCnH2n+-I)-, (CnH2n_i02)-, (CnH2n_3O2)- sowie (Cn+iH2n_2O4)2-, wobei n für die Zahlen 1 bis 20 steht.
Bevorzugt sind dabei Cäsiumcarboxylate, bei denen das Anion den Formeln (CnH2n_i02)- sowie (Cn+iH2n_2O4)2- mit n gleich 1 bis 20, gehorcht. Besonders bevorzug- te Cäsiumsalze weisen als Anionen Monocarboxylate der allgemeinen Formel (CnH2n-iθ2)" auf, wobei n für die Zahlen 1 bis 20 steht. Hierbei sind insbesondere zu erwähnen Formiat, Acetat, Propionat, Hexanoat und 2-Ethylhexanoat.
Als Polymerisationsapparate kommen Rührkessel in Betracht, insbesondere dann, wenn durch Mitverwendung von Lösungsmitteln für eine niedrige Viskosität und eine gute Wärmeabfuhr gesorgt ist.
Wird die Reaktion in Substanz durchgeführt, eignen sich aufgrund der meist hohen Viskositäten und der meist nur kurzen Reaktionszeiten besonders Extruder, insbeson- dere selbstreinigende Mehrschneckenextruder.
Im sogenannten "Präpolymer-Mischverfahren" wird zunächst ein Präpolymer hergestellt wird, das Isocyanat-Gruppen trägt. Die Komponenten (a) bis (d) werden hierbei so gewählt, daß das definitionsgemäße Verhältnis A:B größer 1 ,0 bis 3, bevorzugt 1 ,05 bis 1 ,5 beträgt. Das Präpolymer wird zuerst in Wasser dispergiert und gleichzeitig und/oder anschließend durch Reaktion der Isocyanat-Gruppen mit Aminen, die mehr als 2 gegenüber Isocyanaten reaktive Aminogruppen tragen, vernetzt oder mit Aminen die 2 gegenüber Isocyanaten reaktive Aminogruppen tragen, kettenverlängert. Eine Kettenverlängerung findet auch dann statt, wenn kein Amin zugesetzt wird. In diesem Fall werden Isocyanatgruppen zu Amingruppen hydrolysiert, die mit noch verbliebenen Isocyanatgruppen der Präpolymere unter Kettenverlängerung abreagieren.
Die mittlere Teilchengröße (z- Mitte I wert), gemessen mittels dynamischer Lichtstreuung mit dem Malvern® Autosizer 2 C, der erfindungsgemäß hergestellten Dispersionen ist nicht erfindungswesentlich und beträgt im allgemeinen <1000 nm, bevorzugt <500 nm , besonders bevorzugt < 200 nm und ganz besonders bevorzugt zwischen 20 und unter 200 nm.
Die Dispersionen haben im allgemeinen einen Feststoffgehalt von 10 bis 75, bevorzugt von 20 bis 65 Gew.-% und eine Viskosität von 10 bis 500 m Pas (gemessen bei einer Temperatur von 2O0C und einer Schergeschwindigkeit von 250 S"1.
Für manche Anwendungen kann es sinnvoll sein, die Dispersionen auf einen anderen, bevorzugt einen niedrigeren, Feststoffgehalt einzustellen, beispielsweise durch Ver- dünnung.
Weiterhin können die erfindungsgemäß hergestellten Dispersionen mit anderen für die angeführten Anwendungen typischen Komponenten vermischt werden, beispielsweise Tenside, Detergentien, Farbstoffe, Pigmente, Farbübertragungsinhibitoren und opti- sehe Aufheller. Die Dispersionen können nach der Herstellung, falls gewünscht, einer physikalischen Desodorierung unterworfen werden.
Eine physikalische Desodorierung kann darin bestehen, daß die Dispersion mit Was- serdampf, einem sauerstoffhaltigen Gas, bevorzugt Luft, Stickstoff oder überkritischem Kohlendioxid beispielsweise in einem Rührbehälter, wie in der DE-AS 12 48 943 beschrieben, oder in einer Gegenstromkolonne, wie in der DE-A 196 21 027 beschrieben, gestrippt wird.
Die Menge des erfindungsgemäßen substituierten N-(Cyclo)Alkylpyrrolidons bei der Herstellung des Polyurethans wird in der Regel so gewählt, daß der Anteil in der fertigen Dispersion 30 Gew.-% nicht überschreitet, bevorzugt nicht mehr als 25, besonders bevorzugt nicht mehr als 20 und ganz besonders bevorzugt nicht mehr als 15 Gew.-%.
Der Anteil an substituiertem N-(Cyclo)Alkylpyrrolidon in der fertigen Dispersion beträgt in der Regel mindestens 0,01 Gew%, bevorzugt mindestens 0,1 , besonders bevorzugt mindestens 0,2, ganz besonders bevorzugt mindestens 0,5 und insbesondere mindestens 1 Gew%.
Die erfindungsgemäßen wässrigen Polyurethanzubereitungen eignen sich in vorteilhafter Weise zum Beschichten und Verkleben von Substraten. Geeignete Substrate sind Holz, Holzfurnier, Papier, Pappe, Karton, Textil, Leder, Vlies, Kunststoffoberflächen, Glas, Keramik, mineralische Baustoffe, Metalle oder beschichtete Metalle. Sie finden Anwendung beispielsweise in der Herstellung von Filmen oder Folien, zum Imprägnie- ren von Textilien oder Leder, als Dispergiermittel, als Pigmentanreibemittel, als Primer, als Haftvermittler, als Hydrophobiermittel, als Waschmittelzusatz oder als Zusatz in kosmetischen Zubereitungen oder zur Herstellung von Formkörpern oder Hydrogelen.
Bei einer Verwendung als Beschichtungsmittel können die Polyurethandispersionen insbesondere als Grundierungen, Füller, pigmentierte Decklacke und Klarlacke im Bereich Autoreparatur- oder Großfahrzeuglackierung eingesetzt werden. Besonders geeignet sind die Beschichtungsmittel für Anwendungen, in denen eine besonders hohe Applikationssicherheit, Außenwitterungsbeständigkeit, Optik, Lösemittel-, Chemikalien- und Wasserfestigkeit gefordert werden, wie in der Autoreparatur- und Großfahrzeugla- ckierung.
Die erfindungsgemäße Herstellung der Polyurethane in Gegenwart von substituierten N-(Cyclo)Alkylpyrrolidonen führt zu mindestens einem der folgenden Vorteile:
" Verringerter Bedarf an Lösungsmittel. Die Dispersionen lassen sich leichter verspritzen oder verdüsen, da sich weniger
Verkrustungen oder Verunreinigungen an Spritzwerkzeugen ablagern, geringere Toxizität als beispielsweise N-Methylpyrrolidon. Die Präpolymerlösungen weisen eine geringere Viskosität auf. " Das rheologische Verhalten der Polyurethandispersionen wird verbessert. Das Benetzungsverhalten von Substraten oder Additiven wird verbessert. Geringere Vergilbung unter Licht und/oder Wärmeeinfluß. Höhere Frostbeständigkeit der Dispersionen.
Verbesserte Flexibilität, insbesondere Kälteflexibilität der erhaltenen Filme. " Höherer Glanz der erhaltenen Filme. Verbesserter Verlauf des Films. Verbesserte Filmbildeeigenschaften.
Während die nachträgliche Zugabe von N-Alkylpyrrolidonen, wie sie aus dem Stand der Technik bekannt ist, lediglich dem Einstellen von physikalischen Parametern der fertigen Dispersion gilt, führt die erfindungsgemäße Herstellung von Polyurethanen in Gegenwart von Substituierten N-(Cyclo)Alkylpyrrolidon en zu Vorteilen bei der Herstellung der Polyurethane, die durch nachträgliche Zugabe nicht zu erreichen wären. Als Grund dafür könnte vermutet werden, daß die erfindungsgemäß hergestellten Polyu- rethane das substituierte N-(Cyclo)Alkylpyrrolidon beispielsweise durch Quellen im gesamten Querschnitt aufnehmen, wohingegen bei nachträglicher Zugabe allenfalls eine oberflächliche Aufnahme erfolgen kann.
Ein weiterer Gegenstand der vorliegenden Erfindung sind Beschichtungsmassen, ent- haltend mindestens eine erfindungsgemäße Polymerdispersion sowie damit beschichtete Gegenstände.
In dieser Schrift verwendete ppm- und Prozentangaben beziehen sich, falls nicht anders angegeben, auf Gewichtsprozente und -ppm. Abkürzungen
DETA Diethylentriamin
DMEA Dimethylethanolamin
DMP Gemisch von 1 ,3- und 2:1 )
DMPA Dimethylolpropionsäure
IPDA Isophorondiamin
IPDI Isophorondiisocyanat
NEP N-Ethylpyrrolidon NMP N-Methylpyrrolidon
PUD Polyurethandispersion
TEA Triethylamin
Beispiele
Beispiel A1 mit DMP
In einem Rührkolben mit Rückflusskühler und Thermometer wurden 400 g (0,40 mol) eines Polyesterdiols aus Adipinsäure, Isophthalsäure und Hexandiol-1 ,6 der OH-Zahl 112, 54,0 g (0,40 mol) DMPA und 80 g DMP vorgelegt und bei 500C gerührt. Dazu wurden 233,4 g (1 ,05 mol) IPDI gegeben und bei 900C 80 Minuten lang gerührt. Anschließend wurde mit 700 g Aceton verdünnt und der NCO-Gehalt zu 1 ,40 Gew.% bestimmt (berechnet: 1 ,43%). Hernach wurden 28,5 g (0,32 mol) DMEA zugegeben. Nach Dispergierung mit 1200 g Wasser wurde eine Mischung von 21 ,3 g (0,125 mol) IPDA, 8,6 g (0,083 mol) DETA und 40 g Wasser zugegeben und das Aceton durch Destillation unter vermindertem Druck entfernt. Man erhielt eine feinteilige PUD mit 36,6% Festgehalt.
Vergleichsbeispiel A2 mit NMP
Beispiel A1 wurde wiederholt, jedoch mit 80 g NMP anstelle des DMP. Der NCO- Gehalt wurde zu 1 ,44 Gew.% bestimmt (berechnet: 1 ,43%) Man erhielt eine feinteilige PUD mit 36,7% Festgehalt.
Vergleichsbeispiel A3 mit NEP
Beispiel A1 wurde wiederholt, jedoch mit 80 g NEP anstelle des DMP. Der NCO-Gehalt wurde zu 1 ,42 Gew.% bestimmt (berechnet: 1 ,43%) Man erhielt eine feinteilige PUD mit 36,7% Festgehalt. ie Beispiele wurden als Lack auf Holz mit folgenden Ergebnissen geprüft:
s bedeuten hierbei 1 die beste, 5 die schlechteste Note. Beispiel B1
In einem Rührkolben mit Rückflusskühler und Thermometer wurden 215 g (0,105 mol) eines Polyesterdiols aus Adipinsäure, Neopentylglykol und Hexandiol-1 ,6 der OH-Zahl 55, 12,82 g (0,096 mol) DMPA und 79 g DMP vorgelegt und bei 800C gerührt, bis die DMPA aufgelöst war. Dazu wurden 67,1 g (0,302 mol) IPDI gegeben und bei 95°C 210 Minuten lang gerührt. Anschließend wurde auf 500C gekühlt und der NCO-Gehalt zu 2,15 Gew.% bestimmt (berechnet: 2,26%). Hernach wurden 9,68 g (0,096 mol) TEA zugegeben. Die Prepolymerlösung wurde zu 584 g Wasser gegeben und dispergiert. Dann wurde eine Mischung von 5,46 g (0,091 mol) EDA und 26 g Wasser zugegeben. Man erhielt eine feinteilige PUD mit 30% Festgehalt.
Beispiel B2
In einem Rührkolben mit Rückflusskühler und Thermometer wurden 231 g (0,1 13 mol) eines Polypropylenoxids der OH-Zahl 55, 13,32 g (0,099 mol) DMPA und 40 g DMP vorgelegt und bei 800C gerührt, bis die DMPA aufgelöst war. Dazu wurden 94,5 g (0,426 mol) IPDI gegeben und bei 95°C 120 Minuten lang gerührt. Anschließend wurde auf 40°C gekühlt und der NCO-Gehalt zu 4,50 Gew.% bestimmt (berechnet: 4,72%). Hernach wurden 9,56 g (0,095 mol) TEA zugegeben. Die Prepolymerlösung wurde zu 584 g Wasser gegeben und dispergiert. Dann wurde eine Mischung von 11 ,56 g (0,193 mol) EDA und 25 g Wasser zugegeben.
Man erhielt eine feinteilige PUD mit 30% Festgehalt.
Vergleichsbeispiel B3
Beispiel B1 wurde wiederholt, jedoch mit 79 g NMP anstelle des DMP. Der NCO- Gehalt wurde zu 2,19 Gew.% bestimmt (berechnet: 2,26%) Man erhielt eine feinteilige PUD mit 30% Festgehalt.
Vergleichsbeispiel B4
Beispiel B2 wurde wiederholt, jedoch mit 40 g NMP anstelle des DMP. Der NCO- Gehalt wurde zu 4,50 Gew.% bestimmt (berechnet: 4,72%) Man erhielt eine feinteilige PUD mit 30% Festgehalt.

Claims

Patentansprüche
1. Wäßrige Polyurethaπdispersioπ, enthaltend mindestens ein substituiertes N-
(Cydo)Alkylpyπrolidon (SCAP) gemäß Formel 1
wobei R1 ein (Cyclo)alkylrest mit 1 bis 18 C-Atomen und R2, R2\ R3, R3', R4 und R4' jeweils ein Wasserstoffatom oder ein (Cyclo)alkytrest mit 1 bis 18 C- Atomen sind, mit der Maßgabe, daß mindestens eine der Gruppen R2, R2', R3,
R3', R4 und R4' verschieden von einem H-Atom ist.
2. Polyurethandispersion gemäß Anspruch 1, dadurch gekennzeichnet, daß der Anteil an substituiertem N-(Cyclo)Alkylpyrrolidon mindestens 0,01 Gew% und bis zu 30 Gew% der Dispersion beträgt.
3. Verfahren zur Herstellung von Polyurethandispersionen, dadurch gekennzeichnet, daß man das Polyurethan vor der Dispergierung in Gegenwart eines substituierten N-(Cyclo)Alkylpyrrolidons (SCAP) gemäß Formel 1
herstellt,
wobei R1 ein (Cyclo)alkylrest mit 1 bis 18 C-Atomen und R2, R2', R3, R* R4 und R4' jeweils ein Wasserstoffatom oder ein (Cydo)alkylrest mit 1 bis 18 C- Atomen sind, mit der Maßgabe, daß mindestens eine der Gruppen R2, R2", R3, R3', R4 und R4' verschieden von einem H-Atom ist.
4. Verfahren gemäß Anspruch 3, umfassend die Schritte
I Herstellung eines Polyurethans in Gegenwart eines substituierten N-
(Cyclo)Alkylpyrrolidons durch Umsetzung von a) mindestens einem mehrwertigen Isocyanat mit 4 bis 30 C-Atomen,
b) Diolen, von denen
b1) 10 bis 100 mol-%, bezogen auf die Gesamtmenge der Diole (b), ein
Molekulargewicht von 500 bis 5000 aufweisen, und
b2) 0 bis 90 mol-%, bezogen auf die Gesamtmenge der Diole (b), ein Molekulargewicht von 60 bis 500 g/mol aufweisen,
c) gegebenenfalls weiteren, von den Diolen (b) verschiedenen, mehrwertigen Verbindungen mit reaktiven Gruppen, bei denen es sich um alkoholische Hydroxylgruppen oder primäre oder sekundäre Aminogruppeπ handelt und
d) von den Monomeren (a), (b) und (c) verschiedene Monomere mit wenigstens einer Isocyanatgruppe oder wenigstens einer gegenüber Isocya- natgruppen reaktiven Gruppe, die darüberhinaus wenigstens eine hydrophile Gruppen oder eine potentiell hydrophile Gruppe tragen, wodurch die Wasser- dispergierbarkeit der Polyurethane bewirkt wird,
zu einem Polyurethan und
II anschließender Dispergieruπg des Polyurethans in Wasser,
III wobei man nach oder während Schritt Il gegebenenfalls Polyamine zusetzen kann.
5. Polyurethandispersion gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß R1 ausgewählt ist aus der Gruppe bestehend aus Methyl, Ethyt und Cyc- lohexyl.
6. Polyurethandispersion gemäß Anspruch 1, 2 oder 5, dadurch gekennzeichnet, daß R2, R2', R3, R3', R4 und R4' ausgewählt sind aus der Gruppe bestehend aus Wasserstoff, Methyl, Ethyl, iso-Propyl und Cyclohexyl.
7. Polyurethandispersion gemäß Anspruch 1, 2, 5 oder 6, dadurch gekennzeichnet, daß das substituierte N-(Cycio)Alkylpyrrolidoπ ausgewählt ist aus mindestens einem Pyrrolidon aus der Gruppe bestehend aus N-Methyl-3- methylpyrrolidon, N-Methyl-4-methylpyrrolidon, N-Ethyl-3-methylpyrrolidon und N-Ethyl-4-methylpyrrolidoπ.
8. Verwendung von Polyυrethaπdispersionen gemäß einem der Ansprüche 1 , 2, 5, 6, oder 7 zum Beschichten und Verkleben von Holz, Holzfurnier, Papier, Pappe, Karton, Textil, Leder, Vlies, Kunststoffoberflächen, Glas, Keramik, mineralischen Baustoffen, Metallen oder beschichtete Metallen.
9. Verwendung von substituierten N-(Cyclo)Alkylpyrrolidonen gemäß Formel 1 in Anspruch 1 in der Herstellung von Polyurethanen.
EP10724780A 2009-06-10 2010-06-07 Neue lösungsmittel in der herstellung von polyurethandispersionen Withdrawn EP2440593A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10724780A EP2440593A1 (de) 2009-06-10 2010-06-07 Neue lösungsmittel in der herstellung von polyurethandispersionen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09162414 2009-06-10
EP10724780A EP2440593A1 (de) 2009-06-10 2010-06-07 Neue lösungsmittel in der herstellung von polyurethandispersionen
PCT/EP2010/057868 WO2010142617A1 (de) 2009-06-10 2010-06-07 Neue lösungsmittel in der herstellung von polyurethandispersionen

Publications (1)

Publication Number Publication Date
EP2440593A1 true EP2440593A1 (de) 2012-04-18

Family

ID=42323355

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10724780A Withdrawn EP2440593A1 (de) 2009-06-10 2010-06-07 Neue lösungsmittel in der herstellung von polyurethandispersionen

Country Status (9)

Country Link
US (1) US8575244B2 (de)
EP (1) EP2440593A1 (de)
JP (1) JP5606524B2 (de)
KR (1) KR20120089429A (de)
CN (1) CN102459383B (de)
BR (1) BRPI1013052A2 (de)
MX (1) MX336160B (de)
RU (1) RU2543894C2 (de)
WO (1) WO2010142617A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2655458T3 (pl) 2010-12-20 2017-08-31 Basf Se Sposób wytwarzania hybrydowych dyspersji poliuretanowo-poliakrylanowych
BE1020269A5 (nl) 2012-01-17 2013-07-02 Taminco Gebruik van vervangende oplosmiddelen voor n-methylpyrrolidon (nmp).
US20160208146A1 (en) * 2013-09-30 2016-07-21 Dic Corporation Polyisocyanate mixture, polyol mixture, adhesive, and laminated film
DE102014204582A1 (de) 2014-03-12 2015-09-17 Basf Se Neue Polymerdispersionen
WO2015189084A1 (de) 2014-06-10 2015-12-17 Basf Se Polymerdispersionen enthaltend acylmorpholine
WO2016162215A1 (de) * 2015-04-07 2016-10-13 Basf Se Polymerdispersionen enthaltend n-acylpyrrolidine
KR102046107B1 (ko) * 2015-05-06 2019-11-18 바스프 코팅스 게엠베하 다층 래커 피니시의 제조 방법
KR102059586B1 (ko) 2015-05-06 2019-12-27 바스프 코팅스 게엠베하 다층 코팅을 플라스틱 기판 상에 제조하는 방법
CN109963909A (zh) * 2016-08-01 2019-07-02 斯塔尔国际有限公司 乙醛释放量降低的聚合物分散体
PL3510070T3 (pl) * 2017-06-26 2023-01-02 Advansix Resins & Chemicals Llc Sposoby i kompozycje dla dyspersji poliuretanowych z użyciem rozpuszczalników pochodzących z kaprolaktamu
CN111902524A (zh) * 2018-03-30 2020-11-06 艾德凡斯化学公司 用于清洁和剥离的组合物和方法
EP3608344A1 (de) 2018-08-06 2020-02-12 Basf Se Wasserlösliche oder in wasser dispergierbare copolymere mit funktionellen oxazolin- und sulfonsäuregruppen
JP7539917B2 (ja) 2019-04-09 2024-08-26 株式会社 資生堂 画像取り込みが改善された局所用剤を作成するためのシステムおよび方法
CN112914174B (zh) * 2021-01-26 2023-06-30 成都中医药大学 一种抗菌除臭口罩及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525045A (ja) * 1991-07-18 1993-02-02 Tanabe Seiyaku Co Ltd 経皮吸収製剤
JP2509870B2 (ja) * 1993-06-30 1996-06-26 千代田株式会社 研磨布
DE19654296A1 (de) * 1996-12-27 1998-07-02 Bollig & Kemper Gmbh & Co Kg Beschichtung für ein elektrisch leitfähiges Substrat
DE10201545A1 (de) * 2002-01-17 2003-07-31 Bayer Ag Stabilisierte wässrige Vernetzerdispersionen
DE10221220A1 (de) * 2002-05-13 2003-11-27 Basf Ag Wässrige Polyurethanzubereitungen
DE102004012751A1 (de) * 2004-03-15 2005-10-06 Basf Ag Verwendung von N-Ethyl-2-pyrrolidon
DE502005006425D1 (de) * 2004-03-15 2009-02-26 Basf Se N-ethylpyrrolidon in der herstellung von polyurethandispersionen
WO2008012231A2 (de) * 2006-07-27 2008-01-31 Basf Se Verwendung von 1,5-dimethylpyrrolidon
KR101701525B1 (ko) * 2008-12-04 2017-02-01 바스프 에스이 1,3- 및 1,4-알킬 메틸피롤리돈의 제조를 위한 이타콘산 또는 이타콘산 유도체와 1급 아민의 혼합물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010142617A1 *

Also Published As

Publication number Publication date
RU2543894C2 (ru) 2015-03-10
KR20120089429A (ko) 2012-08-10
MX336160B (es) 2016-01-11
JP5606524B2 (ja) 2014-10-15
CN102459383A (zh) 2012-05-16
US20120076932A1 (en) 2012-03-29
CN102459383B (zh) 2015-08-26
BRPI1013052A2 (pt) 2016-04-05
JP2012529547A (ja) 2012-11-22
WO2010142617A1 (de) 2010-12-16
MX2011013112A (es) 2012-02-08
US8575244B2 (en) 2013-11-05
RU2011154117A (ru) 2013-07-20

Similar Documents

Publication Publication Date Title
EP1727844B1 (de) N-ethylpyrrolidon in der herstellung von polyurethandispersionen
EP2440593A1 (de) Neue lösungsmittel in der herstellung von polyurethandispersionen
EP2655458B1 (de) Verfahren zur herstellung von polyurethan-polyacrylat-hybrid dispersionen
WO2016071245A1 (de) Neue polyurethandispersionen auf basis nachwachsender rohstoffe
EP3155029A1 (de) Polymerdispersionen enthaltend acylmorpholine
EP1923411A2 (de) Polyurethan-modifizierte Alkydharzdispersionen
DE102005036654A1 (de) Selbstvernetzende PUR-Dispersionen mit Uretdionstruktur
DE102005013767A1 (de) Zubereitung zur Beschichtung von Substratoberflächen
DE102007028890A1 (de) Neue Lösungsmittel in der Herstellung von Polyurethandispersionen
WO2017076786A1 (de) Wässrige basislacke enthaltend vernetzte polyurethan-bindemittel sowie eine spezielle lösemittelzusammensetzung
EP3491064B1 (de) Polymerdispersionen mit verringerter emission von acetaldehyd
WO2004101638A1 (de) Selbstemulgierende wässrige polyurethandispersionen
DE102013108828B4 (de) Wässrige, hydroxylgruppenhaltige Polyurethandispersionen, ein Verfahren zu deren Herstellung und deren Verwendung in Beschichtungsmitteln
WO2009144180A1 (de) Neue polyurethandispersionen
WO2016162215A1 (de) Polymerdispersionen enthaltend n-acylpyrrolidine
DE102004013729A1 (de) Neue Lösungsmittel in der Herstellung von Polyurethandispersionen
DE102014204582A1 (de) Neue Polymerdispersionen
EP4041830B1 (de) Thermisch härtbare zweikomponentige beschichtungsmassen
DE4017525A1 (de) Waessrige polyurethanzubereitungen
DE102011015459A1 (de) Polyurethane, ihre Herstellung und Verwendung
DE10351523A1 (de) Wäßrige Dispersionen mit Duftstoffen
WO2006084881A1 (de) Wässrige polyurethan-dispersionen mit geringem gehalt an cyclischen verbindungen
WO2007028760A1 (de) Polyurethandispersion, enthaltend alkanolamine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160506

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160917