EP2427639B1 - Ausfallsicherer drehsteller für einen kühlmittelkreislauf - Google Patents

Ausfallsicherer drehsteller für einen kühlmittelkreislauf Download PDF

Info

Publication number
EP2427639B1
EP2427639B1 EP10724688A EP10724688A EP2427639B1 EP 2427639 B1 EP2427639 B1 EP 2427639B1 EP 10724688 A EP10724688 A EP 10724688A EP 10724688 A EP10724688 A EP 10724688A EP 2427639 B1 EP2427639 B1 EP 2427639B1
Authority
EP
European Patent Office
Prior art keywords
coolant
valve
rotary
fail
slide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10724688A
Other languages
English (en)
French (fr)
Other versions
EP2427639A2 (de
Inventor
Steffen Triebe
Michael Staiger
Lars Helling
Dieter Lachner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Audi AG
Original Assignee
Audi AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42740341&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2427639(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Audi AG filed Critical Audi AG
Publication of EP2427639A2 publication Critical patent/EP2427639A2/de
Application granted granted Critical
Publication of EP2427639B1 publication Critical patent/EP2427639B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/161Controlling of coolant flow the coolant being liquid by thermostatic control by bypassing pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0005Control, e.g. regulation, of pumps, pumping installations or systems by using valves
    • F04D15/0022Control, e.g. regulation, of pumps, pumping installations or systems by using valves throttling valves or valves varying the pump inlet opening or the outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2031/00Fail safe
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops

Definitions

  • Fail-safe turntable for a coolant circuit to avoid damage to an internal combustion engine due to insufficient cooling capacity in case of failure of the turntable.
  • Such fail-safe turntables are preferably used to provide an emergency operation of thedemiftelnikanks an internal combustion engine when the controlled by the turntable coolant is no longer sufficient for proper cooling of the engine due to a malfunction of the turntable.
  • the DE 102 43 778 A1 shows an actuating device with an electromotive rotary drive through which an adjusting element, in particular a rotary valve of a rotary valve, about a rotational axis between a first end position and a second end position is rotatably driven and acted upon by a spring from the first end position out.
  • the electromotive rotary drive is designed as a reversing drive and the Federbeauschlagung of the actuating element is effective only between the first end position and an intermediate position, wherein the intermediate position between the first end position and the second end position.
  • control element embodied as a rotary slide valve is a control valve in a coolant circuit of an internal combustion engine, cooling of the internal combustion engine in emergency operation is maintained by the rotation of the actuating element resulting from the spring action of the control element in the event of failure of the electromotive rotary drive.
  • a disadvantage of the adjusting device shown, however, is that the emergency operation is initiated immediately after failure of the rotary drive due to the constant presence of spring action of the actuating element. As a result, the cooling medium, depending on the ambient temperature, engine load and driving speed, no longer heat up to the operating temperature, resulting in a loss of efficiency of the internal combustion engine during emergency operation results.
  • the object of the present invention is therefore to provide a fail-safe turntable for a coolant circuit, which can initiate an emergency operation for the coolant circuit as required.
  • a fail-safe turntable for a coolant circuit in particular for a multiple partial circuits having coolant circuit of an internal combustion engine, a coolant pump for circulation of the coolant within the coolant circuit, and a plurality of housing fürströmö réelleen exhibiting rotary valve housing in which at least one rotary valve with at least one rotary valve flow-through rotatably mounted is, wherein the housing flow openings are fluidly connected to at least one partial circuit and can be brought by a rotational movement of the rotary valve in at least partially overlap with the rotary valve flow and wherein a thermostatic valve when exceeding a temperature limit of the coolant parallel to the rotary valve guided flow path of a the partial circuits to the coolant supply pump opens.
  • a temperature-dependent switchable thermostatic valve is arranged parallel to the rotary valve, in a failure of the rotary valve control an emergency operation can be ensured by the fact that the thermostatic valve for the coolant an alternative flow path to the coolant pump opens. Due to the temperature-dependent circuit of the thermostatic valve, this flow path is switched only when the temperature of the coolant has reached a critical for the operation of the internal combustion engine limit temperature. As a result, the engine is not prevented from reaching the operating temperature despite a malfunction of the turntable, which contributes to a reduction in fuel consumption and emissions.
  • the turntable is very robust, since no components required for emergency operation attack directly on the rotary valve, which allows easy movement of the rotary valve and low component wear. Also, the thermostatic valve has a very low wear, since it has to be operated very rarely.
  • a radiator feed directs coolant from the engine to a heat exchanger and a radiator return directs the coolant exiting the heat exchanger to the rotary valve.
  • the heated by the internal combustion engine coolant is passed through the radiator flow to the heat exchanger, in which it can cool.
  • the exiting from the heat exchanger, cooled coolant is passed through the radiator return to the corresponding housing flow opening of the rotary valve.
  • From the radiator flow can also branch off a bypass and direct heated coolant to another housing flow-through.
  • the temperature of the coolant in the radiator feed is compared with the limit temperature of the coolant for switching the thermostatic valve.
  • the temperature of the heated coolant in the radiator feed for comparison with the specific limit temperature can be responded to a critical increase in the coolant temperature of the internal coolant in the engine faster.
  • the temperature measurement is independent of the currently achieved cooling rate of the downstream heat exchanger, which can vary considerably during operation.
  • the thermostatic valve to a check valve which is mounted in a valve seat and is pressed by a spring sealingly against this, and arranged on the shut-off valve push rod which is actuated by an expansion element, which deals with the coolant of the radiator expands in conjunction with the expansion element when the coolant reaches its limit temperature and lifts the shut-off valve out of the valve seat against the pressure of the spring via the push rod.
  • the thermostatic valve has an expansion element, preferably in the form of a wax capsule, which is in contact with the coolant from the radiator feed, compliance with the limit temperature can be monitored without additional electronics.
  • the limit temperature is determined by the material properties of the wax used, which expands upon reaching the limit temperature and thus exerts a force on the push rod arranged thereon.
  • the shut-off valve mounted at the other end of the push rod which is preferably designed as a poppet valve, is pressed by a spring sealingly against a complementary valve seat. When the expansion element now exerts a force on the push rod, the shut-off valve can lift off the valve seat, which opens a guided parallel to the rotary valve flow path.
  • the thermostatic valve on both sides of the shut-off valve arranged and acted upon with coolant chambers, wherein a first chamber with coolant from the radiator return can be acted upon and a second chamber has a fluidic connection to the suction port of the coolant pump.
  • the chambers are preferably designed as cages, so that the coolant as easily as possible can flow in and out.
  • the first chamber is always filled with coolant from the radiator return, while the second chamber usually contains coolant from the rotary valve.
  • a gap is formed between the rotary valve and the rotary valve housing, through which the coolant from the second chamber of the thermostatic valve can flow to the suction port of the coolant pump.
  • the coolant can reach regardless of the current position of the rotary valve through the annular gap formed to the suction port of the coolant pump. Additional radial passage openings in the rotary valve can facilitate the passage of the coolant from the second chamber of the thermostatic valve in the rotary valve.
  • the coolant delivery pump conveys the coolant sucked from the rotary valve into a heating circuit and / or an internal combustion engine intake.
  • a heating heat exchanger and / or a heating feed pump and / or a Schuungsabsperrventil are arranged in the heating circuit.
  • the heating conveyor pump is preferably operated electrically and can thus promote the coolant through the cooling circuit in addition to the coolant supply pump if necessary.
  • the Schuungsabsperrventil can be closed when not required heating power, which causes a faster heating of the refrigerant in the other sub-circuits in normal operation.
  • a further shut-off valve in particular a further rotary valve, is arranged in the internal combustion engine intake.
  • a further shut-off valve in particular a further rotary valve, is arranged in the internal combustion engine intake.
  • the coolant flow to the internal combustion engine can be interrupted and redirected in a targeted manner into the heating circuit.
  • the further shut-off valve is designed as a rotary valve, a rotational movement in dependence on each other can be carried out by a direct or indirect connection with the other rotary valve.
  • the Schuungsabsperrventil when the limit temperature of the coolant is exceeded, the Schuungsabsperrventil is opened, so that the coolant from the coolant supply pump can be promoted via the heater core in the engine. This is particularly necessary if the designed as a rotary valve further shut-off valve in the engine inlet due to a malfunction can no longer pass coolant. In this case, it is necessary to direct a coolant flow from the rotary actuator via the heating circuit back into the internal combustion engine.
  • Fig. 1 is an internal combustion engine 2 with coolant from several sub-circuits, in particular a main cooling circuit 3 and a heating circuit 4, applied.
  • the internal combustion engine 2 consists essentially of a cylinder head and a cylinder crankcase, which are flushed by a located in a water jacket coolant, wherein the resulting heat of combustion of the fuel at least partially passes to the coolant.
  • a fail-safe turntable 1 is arranged, through which the coolant flows of the respective subcircuits 3 and 4 can be controlled as needed.
  • the turntable 1 consists of at least one rotary valve 9 which are rotatably mounted in a rotary valve housing 8.
  • the rotary valve housing has a plurality of housing flow-through openings, which can be brought into at least partial overlap with the corresponding rotary valve flow-through openings 11 of the rotary valve 9 by a rotational movement.
  • a coolant supply pump 5 is arranged, the suction mouth can be acted upon with coolant from the rotary valve 9 and this feeds into the heating circuit 4, and engine inlet 25.
  • the delivery rate of the coolant delivery pump 5 and the distribution of the coolant volume flows in the individual sub-circuits 3 and 4 can be regulated by a rotation of the rotary valve 9 in conjunction with an actuation of the shut-off valve 10 arranged in the engine inlet 25.
  • the shut-off valve 10 can also be designed as a further rotary valve and coupled to the movement of the rotary valve 9.
  • the main cooling circuit 3 passes coolant from the internal combustion engine 2 via the radiator feed 16 to a heat exchanger 14 and a housing throughflow opening of the bypass 30.
  • the coolant exiting from the heat exchanger 14 passes via the radiator return 15 to the housing throughflow opening of the radiator return line 15
  • Position of the first rotary valve 9 with respect to the rotary valve housing 8, the incoming coolant from the bypass 30 and the radiator return 15 with variable flow rate can flow into the rotary valve 9 or is prevented from flowing. This may be the case, for example, in the event of a failure of the rotary valve drive and would lead to inadequate cooling of the connected internal combustion engine 2 to lead.
  • the rotary valve 9 is associated with a thermostatic valve 13, which opens a parallel flow path, bypassing the rotary valve 9, if necessary, especially when exceeding the limit temperature of the coolant in the radiator feed 16.
  • the coolant delivery pump 5 conveys the coolant into the engine inlet 25 and the heating circuit 4, wherein the heating circuit 4 consists of a Schuungsabsperrventil 27, a Schuungs fundamentalpumpe 29 and a heater core 26.
  • the Schuungsabsperrventil 27 is preferably open in emergency mode and the electrically driven heating conveyor pump 29 may provide additional capacity at 5 too low flow rate of the coolant supply pump.
  • Fig. 2 includes a fail-safe turntable 1 for a coolant circuit a rotary valve housing 8, in which a rotary valve 9 is rotatably mounted.
  • the rotary valve housing 8 has a plurality of housing through-flow openings 6 and 7, in particular a housing throughflow opening 6, which can be acted upon by coolant from the radiator return 15, and a housing throughflow opening 7, which can be acted upon with coolant from the bypass 30, wherein the bypass 30th branches off from the radiator feed 16.
  • the rotary valve 9 has a plurality of rotary valve flow-through openings 11 and 12, in particular a rotary valve flow passage 11, which is associated with the housing flow passage of the radiator return 15, and a rotary valve flow passage 12 which is associated with the housing flow-through opening of the bypass 30, wherein a rotary movement of the rotary valve 9, the rotary valve flow openings 11 and / or 12 are brought into at least partially overlap with the housing flow openings 6 and / or 7 can.
  • a thermostatic valve 13 is arranged, which is designed as a wax capsule expansion element 21 is disposed in the radiator feed 16 and expands when a specific limit temperature of the coolant is exceeded.
  • a push rod 20 is arranged, which carries a terminal shut-off valve 17 which is pressed by a spring 19 sealingly against a valve seat 18.
  • a first chamber 22 below the check valve 17 fluidly communicates with the radiator return 15 and a second chamber 23 above the check valve 17, regardless of the current position of the rotary valve 9, with the suction mouth 24 a coolant supply pump 5 is fluidically connected.
  • Fig. 3 has a fail-safe turntable for a coolant circuit a rotary valve housing 8, in which a rotary valve 9 is rotatably mounted.
  • the rotary valve housing 8 has a plurality of housing through-flow openings 6 and 7, in particular a housing flow-through opening 6, which can be acted upon by coolant from the radiator return 15, and a housing flow-through opening 7, which can be acted upon by coolant from the bypass 30.
  • the rotary valve 9 has a plurality of rotary valve flow-through openings 11 and 12, in particular a rotary valve flow-through opening 11 for the radiator return 15 and a rotary valve flow passage 12 for the bypass 30, wherein by a rotation of the rotary valve 9, the rotary valve flow openings 11 and / or 12 in at least partially overlap with the housing flow openings 6 and / or 7 can be brought.
  • Overlaps as in Fig. 3a illustrated at least one rotary valve flow-through opening 11 or 12 with at least one housing flow-through opening 6 or 7, so coolant can penetrate into the rotary valve 9 and sucked from the suction port 24 of the coolant supply pump 5. Overlaps as in Fig.
  • a thermostatic valve 13 is arranged on the rotary valve 9, which opens or closes depending on the temperature of the coolant present in a radiator inlet, in particular closes at a temperature below a limit temperature ( Fig. 3a ) and at a temperature above a limit temperature opens ( Fig. 3b ).
  • a shut-off valve 17 is pressed by a spring 19 sealingly against the valve seat 18.
  • an expansion element presses the shut-off valve 17 out of the valve seat 18 via a push rod 20, resulting in an alternative flow path for the coolant.
  • the coolant from the radiator return 15 from the first chamber 22 into the second chamber 23 of the thermostatic valve 13 and pass from there through the gap between the rotary valve 9 and rotary valve housing 8 to the suction port 24 of the coolant supply pump 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Temperature-Responsive Valves (AREA)
  • Multiple-Way Valves (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

  • Ausfallsicherer Drehsteller für einen Kühlmittelkreislauf zur Vermeidung von Schäden an einer Brennkraftmaschine infolge unzureichender Kühlleistung bei einem Ausfall des Drehstellers.
  • Derartige ausfallsichere Drehsteller werden vorzugsweise zur Bereitstellung eines Notlaufbetriebs des Kühlmiftelkreislaufs einer Brennkraftmaschine eingesetzt, wenn das durch den Drehsteller gesteuerte Kühlmittel aufgrund einer Fehlfunktion des Drehstellers nicht mehr zur ordnungsgemäßen Kühlung der Brennkraftmaschine ausreicht.
  • Die DE 102 43 778 A1 zeigt eine Stelleinrichtung mit einem elektromotorischen Drehantrieb, durch den ein Stellelement, insbesondere ein Drehschieber eines Drehschieberventils, um eine Drehachse zwischen einer ersten Endstellung und einer zweiten Endstellung drehbar antreibbar und von einer Feder aus der ersten Endstellung heraus beaufschlagbar ist. Der elektromotorische Drehantrieb ist dabei als Reversierantrieb ausgebildet und die Federbeauschlagung des Stellelements ist nur zwischen der ersten Endstellung und einer Zwischenstellung wirksam, wobei die Zwischenstellung zwischen der ersten Endstellung und der zweiten Endstellung liegt. Ist das als Drehschieberventil ausgebildete Stellelement ein Regelventil in einem Kühlmittelkreislauf eines Verbrennungsmotors, so wird durch die aus der Federbeaufschlagung des Stellelements resultierende Verdrehung des Stellelements bei Ausfall des elektromotorischen Drehantriebs, eine Kühlung des Verbrennungsmotors im Notlaufbetrieb aufrechterhalten.
  • Nachteilig an der gezeigten Stelleinrichtung ist jedoch, dass der Notlaufbetrieb aufgrund der ständig vorhandenen Federbeaufschlagung des Stellelements unmittelbar nach Ausfall des Drehantriebs eingeleitet wird. Dadurch kann sich das Kühlmedium, je nach Umgebungstemperatur, Motorlast und Fahrgeschwindigkeit, nicht mehr bis zur Betriebstemperatur aufheizen, woraus ein Wirkungsgradverlust des Verbrennungsmotors während des Notlaufbetriebs resultiert.
  • Aufgabe der vorliegenden Erfindung ist es daher einen ausfallsicheren Drehsteller für einen Kühlmittelkreislauf bereitzustellen, der bedarfsgesteuert einen Notlaufbetrieb für den Kühlmittelkreislauf einleiten kann.
  • Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst.
  • Ein ausfallsicherer Drehsteller für einen Kühlmittelkreislauf, insbesondere für einen mehrere Teilkreisläufe aufweisenden Kühlmittelkreislauf einer Brennkraftmaschine, hat eine Kühlmittelförderpumpe zur Umwälzung des Kühlmittels innerhalb des Kühlmittelkreislaufs, sowie ein mehrere Gehäuse-Durchströmöffnungen aufweisendes Drehschiebergehäuse, in dem mindestens ein Drehschieber mit wenigstens einer Drehschieber-Durchströmöffnung drehbeweglich gelagert ist, wobei die Gehäuse-Durchströmöffnungen mit wenigstens einem Teilkreislauf strömungstechnisch verbunden sind und durch eine Drehbewegung des Drehschiebers in zumindest teilweise Überschneidung mit den Drehschieber-Durchströmöffnungen gebracht werden können und wobei ein Thermostatventil bei Überschreiten einer Grenztemperatur des Kühlmittels einen parallel zum Drehschieber geführten Strömungspfad von einem der Teilkreisläufe zu der Kühlmittelförderpumpe öffnet.
  • Indem parallel zum Drehschieber ein temperaturabhängig schaltbares Thermostatventil angeordnet ist, kann bei einem Ausfall der Drehschiebersteuerung ein Notlaufbetrieb dadurch gewährleistet werden, dass das Thermostatventil für das Kühlmittel einen alternativen Strömungspfad zur Kühlmittelförderpumpe öffnet. Durch die temperaturabhängige Schaltung des Thermostatventils wird dieser Strömungspfad nur geschaltet, wenn die Temperatur des Kühlmittels eine für den Betrieb der Brennkraftmaschine kritische Grenztemperatur erreicht hat. Dadurch wird die Brennkraftmaschine trotz einer Funktionsstörung des Drehstellers nicht am Erreichen der Betriebstemperatur gehindert, was zu einer Reduzierung des Kraftstoffverbrauchs und der Emissionen beiträgt. Darüber hinaus ist der Drehsteller sehr robust, da keine für den Notlaufbetrieb benötigten Bauteile direkt an dem Drehschieber angreifen, was eine leichte Beweglichkeit des Drehschiebers und einen geringen Bauteilverschleiß ermöglicht. Auch das Thermostatventil weist einen sehr geringen Verschleiß auf, da es nur sehr selten betätigt werden muss.
  • In einer bevorzugten Ausführung leitet ein Kühlervorlauf Kühlmittel aus der Brennkraftmaschine zu einem Wärmetauscher und ein Kühlerrücklauf leitet das aus dem Wärmetauscher austretende Kühlmittel zu dem Drehschieber. Das von der Brennkraftmaschine erwärmte Kühlmittel wird durch den Kühlervorlauf an den Wärmetauscher geleitet, in welchem es sich abkühlen kann. Das aus dem Wärmetauscher austretende, abgekühlte Kühlmittel wird über den Kühlerrücklauf an die entsprechende Gehäuse-Durchströmöffnung des Drehschiebers geleitet. Von dem Kühlervorlauf kann auch ein Bypass abzweigen und erwärmtes Kühlmittel zu einer weiteren Gehäuse-Durchströmöffnung leiten. Durch eine Verdrehung des Drehschiebers können dessen Drehschieber-Durchströmöffnungen mit den entsprechenden Gehäuse-Durchströmöffnungen in zumindest teilweise Überschneidung gebracht werden. Somit ist es möglich den Anteil des in den Drehschieber einströmenden Kühlmittels aus dem Bypass und dem Kühlerrücklauf genau einzuregeln.
  • In einer bevorzugten Ausführung wird zur Schaltung des Thermostatventils die Temperatur des Kühlmittels im Kühlervorlauf mit der Grenztemperatur des Kühlmittels verglichen. Indem die Temperatur des erwärmten Kühlmittels im Kühlervorlauf zum Vergleich mit der spezifischen Grenztemperatur herangezogen wird, kann schneller auf eine kritische Erhöhung der Kühlmitteltemperatur des in der Brennkraftmaschine befindlichen Kühlmittels reagiert werden. Weiterhin ist die Temperaturmessung dadurch unabhängig von der momentan erzielten Abkühlrate des nachgeschalteten Wärmetauschers, die im Betrieb erheblich variieren kann.
  • In einer bevorzugten Ausführung weist das Thermostatventil ein Absperrventil auf, das in einem Ventilsitz gelagert ist und von einer Feder dichtend gegen diesen gedrückt wird, sowie eine an dem Absperrventil angeordnete Schubstange, die von einem Dehnelement betätigbar ist, wobei sich das mit dem Kühlmittel des Kühlervorlaufs in Verbindung stehende Dehnelement bei Erreichen der Grenztemperatur des Kühlmittels ausdehnt und über die Schubstange das Absperrventil gegen den Druck der Feder aus dem Ventilsitz hebt. Indem das Thermostatventil ein Dehnelement, vorzugsweise in Form einer Wachskapsel, aufweist, welches in Kontakt mit dem Kühlmittel aus dem Kühlervorlauf steht, kann ohne zusätzliche Elektronik die Einhaltung der Grenztemperatur überwacht werden. Die Grenztemperatur wird vielmehr durch die Materialeigenschaften des verwendeten Wachses bestimmt, welches sich bei Erreichen der Grenztemperatur ausdehnt und somit eine Kraft auf die daran angeordnete Schubstange ausübt. Das am anderen Ende der Schubstange montierte Absperrventil, welches vorzugsweise als Tellerventil ausgebildet ist, wird von einer Feder dichtend gegen einen komplementären Ventilsitz gedrückt. Wenn das Dehnelement nun eine Kraft auf die Schubstange ausübt, kann sich das Absperrventil aus dem Ventilsitz abheben, was einen parallel zum Drehschieber geführten Strömungspfad eröffnet.
  • In einer bevorzugten Ausführung weist das Thermostatventil beiderseitig des Absperrventils angeordnete und mit Kühlmittel beaufschlagbare Kammern auf, wobei eine erste Kammer mit Kühlmittel aus dem Kühlerrücklauf beaufschlagbar ist und eine zweite Kammer eine strömungstechnische Verbindung zum Saugmund der Kühlmittelförderpumpe aufweist. Die Kammern sind vorzugsweise als Käfige ausgebildet, so dass das Kühlmittel möglichst leicht ein- und ausströmen kann. Die erste Kammer ist dabei stets mit Kühlmittel aus dem Kühlerrücklauf befüllt, während die zweite Kammer meist Kühlmittel aus dem Drehschieber enthält.
  • In einer bevorzugten Ausführung ist zwischen dem Drehschieber und dem Drehschiebergehäuse ein Spalt ausgebildet, durch den das Kühlmittel aus der zweiten Kammer des Thermostatventils zum Saugmund der Kühlmittelförderpumpe strömen kann. Das Kühlmittel kann dabei unabhängig von der momentanen Stellung des Drehschiebers durch den gebildeten Ringspalt zum Saugmund der Kühlmittelförderpumpe gelangen. Zusätzliche radiale Durchgangsöffnungen im Drehschieber können den Übertritt des Kühlmittels aus der zweiten Kammer des Thermostatventils in den Drehschieber erleichtern.
  • In einer bevorzugten Ausführung fördert die Kühlmittelförderpumpe das aus dem Drehschieber angesaugte Kühlmittel in einen Heizungskreislauf und/oder einen Brennkraftmaschinen-Zulauf.
  • In einer bevorzugten Ausführung sind in dem Heizungskreislauf ein Heizungswärmetauscher und/oder eine Heizungsförderpumpe und/oder ein Heizungsabsperrventil angeordnet. Indem das Kühlmittel zusätzlich zu dem Wärmetauscher auch noch den Heizungswärmetauscher durchströmt, vergrößert sich die verfügbare Kühlfläche. Die Heizungsförderpumpe ist vorzugsweise elektrisch betrieben und kann somit im Bedarfsfall zusätzlich zur Kühlmittelförderpumpe das Kühlmittel durch den Kühlkreislauf fördern. Das Heizungsabsperrventil kann bei nicht benötigter Heizleistung geschlossen werden, was im normalen Betrieb ein schnelleres Aufheizen des Kühlmittels in den übrigen Teilkreisläufen bewirkt.
  • In einer bevorzugten Ausführung ist in dem Brennkraftmaschinen-Zulauf ein weiteres Absperrventil, insbesondere ein weiterer Drehschieber, angeordnet. Durch die Anordnung eines weiteren Absperrventils im Brennkraftmaschinen-Zulauf kann der Kühlmittelstrom zur Brennkraftmaschine im Bedarfsfall unterbrochen und gezielt in den Heizkreislauf umgeleitet werden. Indem das weitere Absperrventil als Drehschieber ausgebildet ist, kann durch eine direkte oder indirekte Verbindung mit dem anderen Drehschieber eine Drehbewegung in Abhängigkeit voneinander ausgeführt werden.
  • In einer bevorzugten Ausführung wird bei Überschreiten der Grenztemperatur des Kühlmittels das Heizungsabsperrventil geöffnet, so dass das Kühlmittel aus der Kühlmittelförderpumpe über den Heizungswärmetauscher in die Brennkraftmaschine gefördert werden kann. Dies ist insbesondere dann nötig, wenn das als Drehschieber ausgebildete weitere Absperrventil im Brennkraftmaschinen-Zulauf aufgrund einer Fehlfunktion kein Kühlmittel mehr durchleiten kann. In diesem Fall ist es nötig einen Kühlmittelstrom aus dem Drehsteller über den Heizkreislauf zurück in die Brennkraftmaschine zu leiten.
  • Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachstehenden Beschreibung eines bevorzugten Ausführungsbeispiels unter Bezugnahme auf die Zeichnungen.
  • Darin zeigen:
    • Fig. 1 eine schematische Darstellung der Anordnung eines ausfallsicheren Drehstellers in dem Kühlmittelkreislauf;
    • Fig. 2 eine Schnittansicht eines ausfallsicheren Drehstellers;
    • Fig. 3 eine Schnittansicht eines ausfallsicheren Drehstellers mit geschlossenem (Fig. 3a) und geöffnetem (Fig. 3b) Thermostatventil;
  • Gemäß Fig. 1 wird eine Brennkraftmaschine 2 mit Kühlmittel aus mehreren Teilkreisläufen, insbesondere einem Hauptkühlkreislauf 3 und einem Heizkreislauf 4, beaufschlagt. Die Brennkraftmaschine 2 besteht im Wesentlichen aus einem Zylinderkopf und einem Zylinderkurbelgehäuse, die von einem in einem Wassermantel befindlichen Kühlmittel durchspült werden, wobei die bei der Verbrennung des Kraftstoffs entstehende Wärmemenge zumindest teilweise auf das Kühlmittel übergeht. In dem Kühlkreislauf ist ein ausfallsicherer Drehsteller 1 angeordnet, durch den die Kühlmittelströme der jeweiligen Teilkreisläufe 3 bzw. 4 bedarfsgerecht gesteuert werden können. Der Drehsteller 1 besteht aus mindestens einem Drehschieber 9 der in einem Drehschiebergehäuse 8 drehbar gelagert sind. Das Drehschiebergehäuse weist eine Vielzahl von Gehäuse-Durchströmöffnungen auf, die mit den entsprechenden Drehschieber-Durchströmöffnungen 11 des Drehschiebers 9 durch eine Drehbewegung in zumindest teilweise Überschneidung gebracht werden können. In dem Drehsteller 1 ist eine Kühlmittelförderpumpe 5 angeordnet, deren Saugmund mit Kühlmittel aus dem Drehschieber 9 beaufschlagt werden kann und dieses in den Heizungskreislauf 4, sowie Brennkraftmaschinen-Zulauf 25 einspeist. Die Förderleistung der Kühlmittelförderpumpe 5 und die Verteilung der Kühlmittelvolumenströme in den einzelnen Teilkreisläufen 3 und 4 sind durch eine Verdrehung des Drehschiebers 9 in Verbindung mit einer Betätigung des im Brennkraftmaschinen-Zulauf 25 angeordneten Absperrventils 10 regulierbar. Das Absperrventil 10 kann dabei ebenso als weiterer Drehschieber ausgebildet und an die Bewegung des Drehschiebers 9 gekoppelt sein. Der Hauptkühlkreislauf 3 leitet Kühlmittel aus der Brennkraftmaschine 2 über den Kühlervorlauf 16 an einen Wärmetauscher 14 und eine Gehäuse-Durchströmöffnung des Bypasses 30. Das aus dem Wärmetauscher 14 austretende Kühlmittel gelangt über den Kühlerrücklauf 15 zu der Gehäuse-Durchströmöffnung des Kühlerrücklaufs 15. In Abhängigkeit der Stellung des ersten Drehschiebers 9 bezüglich des Drehschiebergehäuses 8 kann das ankommende Kühlmittel aus dem Bypass 30 und dem Kühlerrücklauf 15 mit variabler Durchflussrate in den Drehschieber 9 einströmen oder wird am einströmen gehindert. Dies kann beispielsweise bei einem Ausfall des Drehschieberantriebs der Fall sein und würde zu einer nicht ausreichenden Kühlung der angeschlossenen Brennkraftmaschine 2 führen. Daher ist dem Drehschieber 9 ein Thermostatventil 13 zugeordnet, welches bei Bedarf, insbesondere bei einer Überschreitung der Grenztemperatur des Kühlmittels im Kühlervorlauf 16, einen parallelen Strömungspfad unter Umgehung des Drehschiebers 9 öffnet. Bei einem geöffneten Thermostatventil 13 kann das Kühlmittel aus dem Kühlerrücklauf 15 unter Umgehung des Drehschiebers 9 zum Saugmund 24 der Kühlmittelförderpumpe 5 gelangen. Die Kühlmittelförderpumpe 5 fördert das Kühlmittel in den Brennkraftmaschinen-Zulauf 25 und den Heizungskreislauf 4, wobei der Heizungskreislauf 4 aus einem Heizungsabsperrventil 27, einer Heizungsförderpumpe 29 und einem Heizungswärmetauscher 26 besteht. Das Heizungsabsperrventil 27 ist vorzugsweise im Notlaufbetrieb geöffnet und die elektrisch antreibbare Heizungsförderpumpe 29 kann bei einer zu geringen Förderleistung der Kühlmittelförderpumpe 5 zusätzliche Förderleistung bereitstellen. Somit kann unabhängig von der momentanen Stellung des Drehschiebers 9 und des Absperrventils 10 ein Kühlmittelstrom durch den Wärmetauscher 14 und/oder den Heizungswärmetauscher 26 aufrecht erhalten werden.
  • Gemäß Fig. 2 umfasst ein ausfallsicherer Drehsteller 1 für einen Kühlmittelkreislauf ein Drehschiebergehäuse 8, in dem ein Drehschieber 9 drehbeweglich gelagert ist. Das Drehschiebergehäuse 8 hat mehrere Gehäuse-Durchströmöffnungen 6 und 7, insbesondere eine Gehäuse-Durchströmöffnung 6, die mit Kühlmittel aus dem Kühlerrücklauf 15 beaufschlagbar ist, und eine Gehäuse-Durchströmöffnung 7, die mit Kühlmittel aus dem Bypass 30 beaufschlagbar ist, wobei der Bypass 30 von dem Kühlervorlauf 16 abzweigt. Der Drehschieber 9 hat mehrere Drehschieber-Durchströmöffnungen 11 und 12, insbesondere eine Drehschieber-Durchströmöffnung 11, die der Gehäuse-Durchströmöffnung des Kühlerrücklaufs 15 zugeordnet ist, und eine Drehschieber-Durchströmöffnung 12, die der Gehäuse-Durchströmöffnung des Bypasses 30 zugeordnet ist, wobei durch eine Drehbewegung des Drehschiebers 9 die Drehschieber-Durchströmöffnungen 11 und/oder 12 in zumindest teilweise Überschneidung mit den Gehäuse-Durchströmöffnungen 6 und/oder 7 gebracht werden können. An dem Drehschieber 9 ist ein Thermostatventil 13 angeordnet, dessen als Wachskapsel ausgebildetes Dehnelement 21 in dem Kühlervorlauf 16 angeordnet ist und sich bei Überschreiten einer spezifischen Grenztemperatur des Kühlmittels ausdehnt. An das Dehnelement 21 ist eine Schubstange 20 angeordnet, die ein endständiges Absperrventil 17 trägt, welches von einer Feder 19 dichtend gegen einen Ventilsitz 18 gedrückt wird. Beiderseits des Absperrventils 17 sind Kammern 22 und 23 ausgebildet, wobei eine erste Kammer 22 unterhalb des Absperrventils 17 strömungstechnisch mit dem Kühlerrücklauf 15 in Verbindung steht und eine zweite Kammer 23 oberhalb des Absperrventils 17, unabhängig von der momentanen Stellung des Drehschiebers 9, mit dem Saugmund 24 einer Kühlmittelförderpumpe 5 strömungstechnisch in Verbindung steht.
  • Gemäß Fig. 3 hat ein ausfallsicherer Drehsteller für einen Kühlmittelkreislauf ein Drehschiebergehäuse 8, in dem ein Drehschieber 9 drehbeweglich gelagert ist. Das Drehschiebergehäuse 8 hat mehrere Gehäuse-Durchströmöffnungen 6 und 7, insbesondere eine Gehäuse-Durchströmöffnung 6, die mit Kühlmittel aus dem Kühlerrücklauf 15 beaufschlagbar ist, und eine Gehäuse-Durchströmöffnung 7, die mit Kühlmittel aus dem Bypass 30 beaufschlagbar ist. Der Drehschieber 9 hat mehrere Drehschieber-Durchströmöffnungen 11 und 12, insbesondere eine Drehschieber-Durchströmöffnung 11 für den Kühlerrücklauf 15 und eine Drehschieber-Durchströmöffnung 12 für den Bypass 30, wobei durch eine Verdrehung des Drehschiebers 9 die Drehschieber-Durchströmöffnungen 11 und/oder 12 in zumindest teilweise Überschneidung mit den Gehäuse-Durchströmöffnungen 6 und/oder 7 gebracht werden können. Überschneidet sich wie in Fig. 3a dargestellt zumindest eine Drehschieber-Durchströmöffnung 11 oder 12 mit zumindest einer Gehäuse-Durchströmöffnung 6 oder 7, so kann Kühlmittel in den Drehschieber 9 eindringen und vom Saugmund 24 der Kühlmittelförderpumpe 5 angesaugt werden. Überschneidet sich wie in Fig. 3b keine der Drehschieber-Durchströmöffnungen 11 oder 12 mit einer Gehäuse-Durchströmöffnung 6 oder 7, so kann kein Kühlmittel in den Drehschieber 9 und somit auch nicht zum Saugmund 24 der Kühlmittelförderpumpe 5 gelangen. Dies kann beispielsweise bei einem Ausfall des Drehschieberantriebs der Fall sein und würde zu einer nicht ausreichenden Kühlung der angeschlossenen Brennkraftmaschine führen. Daher ist an dem Drehschieber 9 ein Thermostatventil 13 angeordnet, welches in Abhängigkeit der Temperatur des in einem Kühlervorlauf befindlichen Kühlmittels öffnet oder schließt, insbesondere bei einer Temperatur unterhalb einer Grenztemperatur schließt ( Fig. 3a ) und bei einer Temperatur oberhalb einer Grenztemperatur öffnet ( Fig. 3b ). Dazu wird ein Absperrventil 17 von einer Feder 19 dichtend gegen den Ventilsitz 18 gedrückt. Bei Überschreiten der Grenztemperatur drückt ein Dehnelement über eine Schubstange 20 das Absperrventil 17 aus dem Ventilsitz 18, wodurch sich ein alternativer Strömungspfad für das Kühlmittel ergibt. In diesem Fall kann das Kühlmittel aus dem Kühlerrücklauf 15 von der ersten Kammer 22 in die zweite Kammer 23 des Thermostatventils 13 übertreten und von dort über den Spalt zwischen Drehschieber 9 und Drehschiebergehäuse 8 zu dem Saugmund 24 der Kühlmittelförderpumpe 5 strömen. Alternativ ist es möglich den Drehschieber 9 in diesem Bereich mit weiteren radial verteilten Durchströmöffnungen zu versehen, durch die das Kühlmittel aus der zweiten Kammer leichter in den Drehschieber 9 eindringen kann, was eine bessere Förderleistung der Kühlmittelförderpumpe 5 im Notlaufbetrieb ermöglicht.
  • Liste der Bezugszeichen:
  • 1
    Drehsteller
    2
    Brennkraftmaschine
    3
    Hauptkühlkreislauf
    4
    Heizungskreislauf
    5
    Kühlmittelförderpumpe
    6
    Gehäuse-Durchströmöffnung Kühlerrücklauf
    7
    Gehäuse-Durchströmöffnung Bypass
    8
    Drehschiebergehäuse
    9
    Drehschieber
    10
    Drehschieber im Brennkraftmaschinen-Zulauf
    11
    Drehschieber-Durchströmöffnung Kühlerrücklauf
    12
    Drehschieber-Durchströmöffnung Bypass
    13
    Thermostatventil
    14
    Wärmetauscher
    15
    Kühlerrücklauf
    16
    Kühlervorlauf
    17
    Absperrventil
    18
    Ventilsitz
    19
    Feder
    20
    Schubstange
    21
    Dehnelement
    22
    erste Kammer
    23
    zweite Kammer
    24
    Saugmund
    25
    Brennkraftmaschinen-Zulauf
    26
    Heizungswärmetauscher
    27
    Heizungsabsperrventil
    29
    Heizungsförderpumpe
    30
    Bypass

Claims (10)

  1. Ausfallsicherer Drehsteller (1) für einen Kühlmittelkreislauf, insbesondere für einen mehrere Teilkreisläufe (3, 4) aufweisenden Kühlmittelkreislauf einer Brennkraftmaschine (2), mit einer Kühlmittelförderpumpe (5) zur Umwälzung des Kühlmittels innerhalb des Kühlmittelkreislaufs, sowie mit einem mehrere Gehäuse-Durchströmöffnungen (6, 7) aufweisenden Drehschiebergehäuse (8), in dem mindestens ein Drehschieber (9) mit wenigstens einer Drehschieber-Durchströmöffnung (11, 12) drehbeweglich gelagert ist, wobei die Gehäuse-Durchströmöffnungen (6, 7) mit wenigstens einem Teilkreislauf (3, 4) strömungstechnisch verbunden sind und durch eine Drehbewegung des Drehschiebers (9) in zumindest teilweise Überschneidung mit den Drehschieber-Durchströmöffnungen (11, 12) gebracht werden können, Dadurch gekennzeichnet, dass ein Thermostatventil (13) bei Überschreiten einer Grenztemperatur des Kühlmittels einen parallel zum Drehschieber (9) geführten Strömungspfad von einem der Teilkreisläufe (3, 4) zu der Kühlmittelförderpumpe (5) öffnet.
  2. Ausfallsicherer Drehsteller für einen Kühlmittelkreislauf nach Anspruch 1, dadurch gekennzeichnet, dass ein Kühlervorlauf (16) Kühlmittel aus der Brennkraftmaschine (2) zu einem Wärmetauscher (14) leitet und ein Kühlerrücklauf (15) das aus dem Wärmetauscher (14) austretende Kühlmittel zu dem Drehschieber (9) leitet.
  3. Ausfallsicherer Drehsteller für einen Kühlmittelkreislauf nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass zur Schaltung des Thermostatventils (13) die Temperatur des Kühlmittels im Kühlervorlauf (16) mit der Grenztemperatur des Kühlmittels verglichen wird.
  4. Ausfallsicherer Drehsteller für einen Kühlmittelkreislauf nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Thermostatventil (13) ein Absperrventil (17) aufweist, das in einem Ventilsitz (18) gelagert ist und von einer Feder (19) dichtend gegen diesen gedrückt wird, sowie eine an dem Absperrventil (17) angeordnete Schubstange (20), die von einem Dehnelement (21) betätigbar ist, wobei sich das mit dem Kühlmittel des Kühlervorlaufs (16) in Verbindung stehende Dehnelement (21) bei Erreichen der Grenztemperatur des Kühlmittels ausdehnt und über die Schubstange (20) das Absperrventil (17) gegen den Druck der Feder (19) aus dem Ventilsitz. (18) hebt.
  5. Ausfallsicherer Drehsteller für einen Kühlmittelkreislauf nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Thermostatventil (13) beiderseitig des Absperrventils (17) angeordnete und mit Kühlmittel beaufschlagbare Kammern (22, 23) aufweist, wobei eine erste Kammer (22) mit Kühlmittel aus dem Kühlerrücklauf (15) beaufschlagbar ist und eine zweite Kammer (23) eine strömungstechnische Verbindung zum Saugmund (24) der Kühlmittelförderpumpe (5) aufweist.
  6. Ausfallsicherer Drehsteller für einen Kühlmittelkreislauf nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zwischen dem Drehschieber (9) und dem Drehschiebergehäuse (8) ein Spalt ausgebildet ist, durch den das Kühlmittel aus der zweiten Kammer (23) des Thermostatventils (13) zum Saugmund (24) der Kühlmittelförderpumpe (5) strömen kann.
  7. Ausfallsicherer Drehsteller für einen Kühlmittelkreislauf nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Kühlmittelförderpumpe (5) das aus dem Drehschieber (9) angesaugte Kühlmittel in einen Heizungskreislauf (4) und/oder einen Brennkraftmaschinen-Zulauf (25) fördert.
  8. Ausfallsicherer Drehsteller für einen Kühlmittelkreislauf nach Anspruch 7, dadurch gekennzeichnet, dass in dem Heizungskreislauf (4) ein Heizungswärmetauscher (26) und/oder eine Heizungsförderpumpe (29) und/oder ein Heizungsabsperrventil (27) angeordnet sind.
  9. Ausfallsicherer Drehsteller für einen Kühlmittelkreislauf nach Anspruch 7, dadurch gekennzeichnet, dass in dem Brennkraftmaschinen-Zulauf (25) ein weiteres Absperrventil (10), insbesondere ein weiterer Drehschieber, angeordnet ist.
  10. Ausfallsicherer Drehsteller für einen Kühlmittelkreislauf nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass bei Überschreiten der Grenztemperatur des Kühlmittels das Heizungsabsperrventil (27) geöffnet wird, so dass das Kühlmittel- aus der Kühlmitielfiörderpumpe (5) über den Heizungswärmetauscher (26) in die Brennkraftmaschine (2) gefördert werden kann.
EP10724688A 2009-05-06 2010-05-04 Ausfallsicherer drehsteller für einen kühlmittelkreislauf Active EP2427639B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009020186A DE102009020186B4 (de) 2009-05-06 2009-05-06 Ausfallsicherer Drehsteller für einen Kühlmittelkreislauf
PCT/EP2010/002715 WO2010127825A2 (de) 2009-05-06 2010-05-04 Ausfallsicherer drehsteller für einen kühlmittelkreislauf

Publications (2)

Publication Number Publication Date
EP2427639A2 EP2427639A2 (de) 2012-03-14
EP2427639B1 true EP2427639B1 (de) 2013-01-16

Family

ID=42740341

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10724688A Active EP2427639B1 (de) 2009-05-06 2010-05-04 Ausfallsicherer drehsteller für einen kühlmittelkreislauf

Country Status (7)

Country Link
US (1) US9115634B2 (de)
EP (1) EP2427639B1 (de)
JP (1) JP5355723B2 (de)
KR (1) KR101448338B1 (de)
CN (1) CN102414416B (de)
DE (1) DE102009020186B4 (de)
WO (1) WO2010127825A2 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5240403B2 (ja) * 2011-03-18 2013-07-17 トヨタ自動車株式会社 エンジンの冷却システム
DE112013001039B4 (de) 2012-02-20 2021-08-19 Hanon Systems Ventil mit integriertem Motorbypass-Failsafe aus Wachs
JP6013022B2 (ja) * 2012-05-14 2016-10-25 日産自動車株式会社 内燃機関の冷却制御装置及びその冷却制御方法
DE102012220448A1 (de) 2012-11-09 2014-06-12 Bayerische Motoren Werke Aktiengesellschaft Brennkraftmaschine mit einer Vorrichtung zur Temperaturregelung
DE102013008195A1 (de) 2013-05-14 2014-11-20 Volkswagen Aktiengesellschaft Drehschieber
DE112014002468T5 (de) 2013-05-17 2016-02-25 Magna Powertrain Inc. Leichtgängiges Dichtungsverfahren für ein Temperaturregelventil
DE102014212546B4 (de) * 2013-07-04 2017-10-12 Ford Global Technologies, Llc Flüssigkeitsgekühlte Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
JP6287625B2 (ja) 2014-06-25 2018-03-07 アイシン精機株式会社 内燃機関の冷却システム
DE102014216658B4 (de) * 2014-08-21 2022-12-01 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betrieb eines Kühlsystems einer Verbrennungskraftmaschine und Schutzsystem in einem Kühlsystem
JP6350255B2 (ja) * 2014-12-12 2018-07-04 アイシン精機株式会社 冷媒制御バルブ装置
JP6380073B2 (ja) 2014-12-12 2018-08-29 アイシン精機株式会社 冷媒制御バルブ装置
JP6557044B2 (ja) * 2015-04-15 2019-08-07 日立オートモティブシステムズ株式会社 流量制御弁
JP6330768B2 (ja) * 2015-09-16 2018-05-30 トヨタ自動車株式会社 エンジン冷却装置
DE102015218391A1 (de) 2015-09-24 2017-03-30 Mahle International Gmbh Elektrisch angetriebenes Ventil
DE102015119092B4 (de) * 2015-11-06 2019-03-21 Pierburg Gmbh Verfahren zur Regelung einer mechanisch regelbaren Kühlmittelpumpe für eine Verbrennungskraftmaschine
DE102015224448A1 (de) * 2015-12-07 2017-06-08 Mahle International Gmbh Kühlmittelpumpe für einen Motorkühlkreis
DE102016100579B3 (de) 2016-01-14 2017-03-30 BorgWarner Esslingen GmbH Verfahren zum Steuern eines Kühlmittelstroms einer Brennkraftmaschine und Ventilvorrichtung dafür
JP6668780B2 (ja) 2016-01-26 2020-03-18 アイシン精機株式会社 冷媒制御バルブ装置
JP6679324B2 (ja) * 2016-01-29 2020-04-15 日本サーモスタット株式会社 フェールセーフ機構付弁装置
DE102016202100A1 (de) 2016-02-11 2017-08-17 Volkswagen Aktiengesellschaft Thermostatventil und Kühlsystem
CN108699946B (zh) * 2016-03-16 2020-09-08 本田技研工业株式会社 内燃机冷却系统
CN108005774B (zh) * 2016-10-27 2021-04-30 株式会社山田制作所 控制阀
CN108087531B (zh) * 2016-11-21 2021-04-16 浙江三花汽车零部件有限公司 热交换组件
CN108087532B (zh) * 2016-11-21 2021-10-01 浙江三花汽车零部件有限公司 热交换组件
CN108087530B (zh) * 2016-11-21 2022-04-05 浙江三花汽车零部件有限公司 热交换组件
US10227987B2 (en) 2016-12-16 2019-03-12 Borgwarner Emissions Systems Llc Valve assembly integrated into a coolant pump and method for controlling the same
WO2019065601A1 (ja) * 2017-09-26 2019-04-04 株式会社山田製作所 バルブ装置
KR20190073174A (ko) * 2017-12-18 2019-06-26 현대자동차주식회사 차량의 분리 냉각 시스템
KR102451915B1 (ko) * 2018-03-27 2022-10-06 현대자동차 주식회사 차량용 냉각수 펌프 및 이를 포함한 냉각 시스템
DE112018000019B4 (de) * 2018-03-28 2022-07-14 Komatsu Ltd. Motor-Kühlvorrichtung mit Ventilen zum Umschalten von Zirkulationswegen für ein Kühlmittel in Abhängigkeit von der Temperatur des Kühlmittels
JP2019211071A (ja) 2018-05-31 2019-12-12 株式会社デンソー バルブ装置
JP2022175443A (ja) * 2021-05-13 2022-11-25 マツダ株式会社 エンジンの冷却システム

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5217085A (en) * 1992-05-04 1993-06-08 Ford Motor Company Lubrication and cooling system for a powertrain including an electric motor
DE4324749A1 (de) * 1993-07-23 1995-01-26 Freudenberg Carl Fa Regelventil
JPH0791251A (ja) * 1993-09-24 1995-04-04 Honda Motor Co Ltd 内燃機関の冷却装置
US5381952A (en) * 1993-10-15 1995-01-17 Standard-Thomson Corporation Fail-safe thermostat
US5642691A (en) * 1996-01-30 1997-07-01 Brunswick Corporation Thermostat assembly for a marine engine with bypass
US6887046B2 (en) * 1996-02-26 2005-05-03 Flowork Systems Ii Llc Coolant pump, mainly for automotive use
JPH1071841A (ja) * 1996-08-30 1998-03-17 Denso Corp 車両用内燃機関の冷却水回路
JPH1077840A (ja) * 1996-08-30 1998-03-24 Denso Corp 冷却水制御弁および内燃機関の冷却水回路
AT410243B (de) * 1997-07-23 2003-03-25 Tcg Unitech Ag Mehrwegventil
DE19809123B4 (de) * 1998-03-04 2005-12-01 Daimlerchrysler Ag Wasserpumpe für den Kühlkreislauf einer Brennkraftmaschine
DE19816522C2 (de) * 1998-04-14 2003-10-09 Eberspaecher J Gmbh & Co Mehrwegeventil mit insbesondere der Verwendung in einer Kreislauf-Heizleitung mit zwei im Nebenschluß angeschlossenen Wärmetauschern
US5950576A (en) * 1998-06-30 1999-09-14 Siemens Canada Limited Proportional coolant valve
DE19831901A1 (de) * 1998-07-16 2000-01-20 Bosch Gmbh Robert Vorrichtung zum Kühlen eines Motors für ein Kraftfahrzeug
JP2000230425A (ja) 1999-02-08 2000-08-22 Toyota Motor Corp 内燃機関の冷却装置
JP2000303842A (ja) 1999-04-21 2000-10-31 Honda Motor Co Ltd エンジンの冷却制御装置
DE19921421A1 (de) * 1999-05-08 2000-11-09 Behr Gmbh & Co Pumpe für einen Kühl- oder Heizkreislauf in einem Kraftfahrzeug
DE69935923T2 (de) * 1999-08-05 2008-01-10 Nippon Thermostat Co. Ltd., Kiyose Kühlungsregler für eine brennkraftmaschine
FR2801958B1 (fr) * 1999-12-07 2002-03-01 Vernet Sa Dispositif thermostatique motorise a element thermostatique de securite
JP4187131B2 (ja) 2000-04-28 2008-11-26 日本サーモスタット株式会社 サーモスタット装置
DE10037823A1 (de) * 2000-08-03 2002-02-14 Daimler Chrysler Ag Vorrichtung und Verfahren zur Regelung des Kühlwasserkreislaufes in einer Brennkraftmaschine
JP2002054440A (ja) 2000-08-10 2002-02-20 Mitsubishi Motors Corp 内燃機関の冷却制御装置
JP4470334B2 (ja) 2001-03-16 2010-06-02 株式会社デンソー 流量制御弁及び駆動源冷却装置
JP2002276826A (ja) 2001-03-16 2002-09-25 Denso Corp 流体バルブ
US6588442B2 (en) * 2001-10-11 2003-07-08 Eaton Corporation Servo operated rotary valve with emergency bypass and method of making same
DE10155386A1 (de) * 2001-11-10 2003-05-22 Bosch Gmbh Robert Ventil mit Notfunktion
JP4023176B2 (ja) * 2002-02-13 2007-12-19 トヨタ自動車株式会社 内燃機関の冷却装置
DE10206297A1 (de) * 2002-02-15 2003-09-04 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine
DE10226928A1 (de) * 2002-06-17 2004-01-08 Siemens Ag Verfahren zum Betrieb einer flüssigkeitsgekühlten Brennkraftmaschine
DE10243778A1 (de) 2002-09-20 2004-03-25 Siemens Ag Stelleinrichtung
DE10253469A1 (de) * 2002-11-16 2004-05-27 Daimlerchrysler Ag Thermostatventil für ein Kühlsystem einer Brennkraftmaschine
US7100369B2 (en) * 2003-05-06 2006-09-05 Denso Corporation Thermoelectric generating device
US6920845B2 (en) * 2003-08-14 2005-07-26 Visteon Global Technologies, Inc. Engine cooling disc valve
DE10337413A1 (de) * 2003-08-14 2005-03-10 Daimler Chrysler Ag Verfahren zur Regulierung des Kühlmittelflusses mit einem Heizungsabsperrventil
JP2005220772A (ja) * 2004-02-03 2005-08-18 Kuzee:Kk エンジンの冷却装置
JP2006029113A (ja) * 2004-07-12 2006-02-02 Denso Corp 冷却水流量制御弁
ITTO20040893A1 (it) * 2004-12-22 2005-03-22 Gevipi Ag Dispositivo perfezionato per l'esecuzione di docce a temperature alternate
DE102006020951A1 (de) * 2005-07-28 2007-02-01 Audi Ag Kühlsystem für ein Fahrzeug und Verfahren zum Betreiben eines Kühlsystems
US7412948B2 (en) * 2006-04-07 2008-08-19 Emp Advanced Development, Llc Fluid valve
JP2008095918A (ja) * 2006-10-16 2008-04-24 Yamaha Marine Co Ltd サーモエレメント及びこのサーモエレメントを用いたサーモスタット装置
US8430068B2 (en) * 2007-05-31 2013-04-30 James Wallace Harris Cooling system having inlet control and outlet regulation
JP4412368B2 (ja) * 2007-08-28 2010-02-10 トヨタ自動車株式会社 車両の冷却装置
JP4456162B2 (ja) * 2008-04-11 2010-04-28 株式会社山田製作所 エンジンの冷却装置
US8109242B2 (en) * 2008-10-17 2012-02-07 Caterpillar Inc. Multi-thermostat engine cooling system
DE102008059613B4 (de) * 2008-11-28 2010-12-30 Itw Automotive Products Gmbh Kühlsystem für einen Verbrennungsmotor
DE102009020187B4 (de) * 2009-05-06 2012-11-08 Audi Ag Kühlmittelkreislauf
US8430071B2 (en) * 2009-07-10 2013-04-30 GM Global Technology Operations LLC Engine cooling system for a vehicle
US8573163B2 (en) * 2009-10-05 2013-11-05 Toyota Jidosha Kabushiki Kaisha Cooling device for vehicle
WO2011067861A1 (ja) * 2009-12-04 2011-06-09 トヨタ自動車 株式会社 車両の制御装置

Also Published As

Publication number Publication date
US20120055652A1 (en) 2012-03-08
CN102414416A (zh) 2012-04-11
WO2010127825A3 (de) 2011-01-06
KR20120027115A (ko) 2012-03-21
WO2010127825A2 (de) 2010-11-11
CN102414416B (zh) 2013-12-11
JP5355723B2 (ja) 2013-11-27
DE102009020186B4 (de) 2011-07-14
US9115634B2 (en) 2015-08-25
JP2012519800A (ja) 2012-08-30
DE102009020186A1 (de) 2011-01-20
KR101448338B1 (ko) 2014-10-07
EP2427639A2 (de) 2012-03-14

Similar Documents

Publication Publication Date Title
EP2427639B1 (de) Ausfallsicherer drehsteller für einen kühlmittelkreislauf
EP1814009B1 (de) Thermostatventil zum Verbinden eines automatischen Getriebes mit einem Ölkühler
DE102015014830B4 (de) Wärmemanagementeinheit für Fahrzeugantriebsstrang
DE102007018504B4 (de) Kühl- und Schmiermittelversorgungssystem eines Getriebes
DE10061546B4 (de) Kühlanlage für einen mit flüssigem Kühlmittel gekühlten Verbrennungsmotor eines Kraftfahrzeuges
DE19606202B4 (de) Kühlsystem für einen Verbrennungsmotor
DE102016115631A1 (de) Verbrennungsmotorsystem mit kühlmittelsteuerventil
DE102010026368A1 (de) Ausfallsicherer Drehschieber
DE102008030969A1 (de) Durchflusssteuerung
EP0903482B1 (de) Vorrichtung zur Regelung des Kühlwasserkreislaufes für einen Verbrennungsmotor
WO2005088098A1 (de) Kühlkreislauf für eine kühlmittelgekühlte brennkraftmaschine
DE102009003894A1 (de) Flüssigkeitskühlsystem für einen Motor mit innerer Verbrennung
DE102009032647A1 (de) Kühlsystem für eine Verbrennungskraftmaschine
DE4446152C2 (de) Heizsystem, insbesondere für Kraftfahrzeuge
DE102008004161A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102017222068B4 (de) Kühlmittelsteuerventil und Kühlsystem mit Kühlmittelsteuerventil
DE112018002388T5 (de) Kühlwassersteuerventilvorrichtung
EP0718133A1 (de) Heizsystem, insbesondere für Kraftfahrzeuge
DE112009000330T5 (de) Kühlvorrichtung für einen Verbrennungsmotor
DE2841249C2 (de)
DE112018004425T5 (de) Aktives Aufheizsystem und Aufheizverfahren
EP2551569B1 (de) Thermostatventil
DE69725363T2 (de) Kühlungssystem für Verbrennungsmotoren
DE102016124675A1 (de) Thermostatventil für eine Verbrennungskraftmaschine
EP0262598B1 (de) Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111206

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 594032

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010002160

Country of ref document: DE

Effective date: 20130307

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130116

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130516

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130416

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130416

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130516

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

BERE Be: lapsed

Owner name: AUDI A.G.

Effective date: 20130531

26N No opposition filed

Effective date: 20131017

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E017911

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010002160

Country of ref document: DE

Effective date: 20131017

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130504

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130504

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 594032

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150504

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130116

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20190513

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200505

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230529

Year of fee payment: 14

Ref country code: FR

Payment date: 20230523

Year of fee payment: 14

Ref country code: DE

Payment date: 20230531

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230526

Year of fee payment: 14