EP2415880A1 - Koks- und titanhaltiger Zuschlagsstoff und dessen Verwendung zur Reparatur der Auskleidung von metallurgischen Gefäßen - Google Patents
Koks- und titanhaltiger Zuschlagsstoff und dessen Verwendung zur Reparatur der Auskleidung von metallurgischen Gefäßen Download PDFInfo
- Publication number
- EP2415880A1 EP2415880A1 EP11151418A EP11151418A EP2415880A1 EP 2415880 A1 EP2415880 A1 EP 2415880A1 EP 11151418 A EP11151418 A EP 11151418A EP 11151418 A EP11151418 A EP 11151418A EP 2415880 A1 EP2415880 A1 EP 2415880A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- titanium
- coke
- aggregate according
- containing aggregate
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000010936 titanium Substances 0.000 title claims abstract description 95
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 94
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 85
- 239000000571 coke Substances 0.000 title claims abstract description 62
- 239000000654 additive Substances 0.000 title claims description 9
- 230000000996 additive effect Effects 0.000 title claims description 7
- 238000005253 cladding Methods 0.000 title 1
- 239000000463 material Substances 0.000 claims abstract description 57
- 238000000034 method Methods 0.000 claims abstract description 23
- 239000002245 particle Substances 0.000 claims abstract description 18
- 238000006243 chemical reaction Methods 0.000 claims abstract description 13
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 12
- -1 titanium carbides Chemical class 0.000 claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 9
- 239000000126 substance Substances 0.000 claims abstract description 4
- 229910000000 metal hydroxide Inorganic materials 0.000 claims abstract description 3
- 150000004692 metal hydroxides Chemical class 0.000 claims abstract description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 3
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 3
- 239000000203 mixture Substances 0.000 claims description 34
- 150000001875 compounds Chemical class 0.000 claims description 25
- 239000003245 coal Substances 0.000 claims description 12
- 238000002347 injection Methods 0.000 claims description 8
- 239000007924 injection Substances 0.000 claims description 8
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 4
- 238000007664 blowing Methods 0.000 claims description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 2
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 2
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 2
- 235000013980 iron oxide Nutrition 0.000 claims description 2
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 claims description 2
- 239000002006 petroleum coke Substances 0.000 claims description 2
- 238000000197 pyrolysis Methods 0.000 claims description 2
- 239000011363 dried mixture Substances 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- 238000007669 thermal treatment Methods 0.000 claims 1
- 150000003609 titanium compounds Chemical class 0.000 description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000002893 slag Substances 0.000 description 8
- 229910010413 TiO 2 Inorganic materials 0.000 description 7
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 6
- 238000004939 coking Methods 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 238000009997 thermal pre-treatment Methods 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000011269 tar Substances 0.000 description 3
- 239000003039 volatile agent Substances 0.000 description 3
- 229910000805 Pig iron Inorganic materials 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 238000000071 blow moulding Methods 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- YDZQQRWRVYGNER-UHFFFAOYSA-N iron;titanium;trihydrate Chemical compound O.O.O.[Ti].[Fe] YDZQQRWRVYGNER-UHFFFAOYSA-N 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 1
- 239000003830 anthracite Substances 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- CVSVTCORWBXHQV-UHFFFAOYSA-N creatine Chemical compound NC(=[NH2+])N(C)CC([O-])=O CVSVTCORWBXHQV-UHFFFAOYSA-N 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000003077 lignite Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000010310 metallurgical process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/001—Injecting additional fuel or reducing agents
- C21B5/003—Injection of pulverulent coal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/16—Making or repairing linings increasing the durability of linings or breaking away linings
- F27D1/1636—Repairing linings by projecting or spraying refractory materials on the lining
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/007—Conditions of the cokes or characterised by the cokes used
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
- C21B7/04—Blast furnaces with special refractories
- C21B7/06—Linings for furnaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/16—Making or repairing linings increasing the durability of linings or breaking away linings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/16—Making or repairing linings increasing the durability of linings or breaking away linings
- F27D1/1678—Increasing the durability of linings; Means for protecting
Definitions
- the invention relates to a coke- and titanium-containing aggregate, to a process for its production and its use for repairing the lining of metallurgical vessels, and to a process for accelerating the formation of highly refractory titanium compounds by direct reduction in metallurgical processes with its use.
- the goal is to produce titanium-containing aggregates to form titanium-containing, high-refractory / wear-resistant compounds, such as titanium dioxide.
- titanium-containing, high-refractory / wear-resistant compounds such as titanium dioxide.
- TiC, TiN, TiCN, etc. which then precipitate in further steps partially in the endangered by wear processes areas of the respective refractory lining and selbige protect and / or repair.
- Carbonaceous raw materials are usually used for the production of PCI coal, which are ground in a special grinding process fine grained, as well as dried in a mostly parallel drying process at low temperatures.
- the carbonaceous raw materials in some cases fine-grained titanium carriers are added and then blown into the blast furnace to then form titanium carbides or titanium carbonitrides in the reaction chamber of the blast furnace.
- a disadvantage of the carbonaceous materials used so far is that these carbonaceous materials usually contain complicated mixtures of hydrocarbons of various kinds and further numerous impurities by ash formers.
- the desired formation of wear-resistant titanium compounds is reduced, on the other hand, undesirable hindrances of the desired reaction kinetics occur, which hinder or significantly reduce the formation of wear-resistant titanium compounds.
- the object of the invention is to increase the yield of highly refractory titanium compounds formed in relation to the titanium-containing materials used in the metallurgical vessel.
- the inventors of the present invention have found that the reaction kinetics in front of the blow molds or in the respective liquid phases such as pig iron and slag can be accelerated by a very significant effect.
- the object can be achieved by providing the method according to the invention and the mixture / additive according to the invention from coke-containing materials and titanium-containing compounds.
- the invention thus also relates to a mixture according to the invention of coke-containing material or mixtures of several different coke-containing materials and titanium-containing compounds for introduction into a metallurgical vessel.
- cok-containing material is also understood as meaning a carbon-containing material, such as coal, or mixtures of several different coke-containing materials, which only contain a small proportion of less than 25% by weight. preferably contains less than 10 wt .-% of volatiles at elevated temperatures, such as hydrocarbons, gases, etc.
- the carbonaceous material may be subjected to a thermal pretreatment in which the volatiles are expelled and thus no longer interfere with the intimate contact between coke-containing material and titanium-containing compounds in the metallurgical vessel.
- the material is usually dried in the first phase, if a water content is present.
- the inventive additive may contain up to 60% by weight of water, preferably up to 35% by weight of water. As a rule and depending on the application, partial or drying is then necessary as a thermal pretreatment for such water contents.
- the mixture according to the invention of coke-containing material and titanium-containing compounds can thus contain particles of the coke-containing material and of the titanium-containing compounds next to one another as a powder mixture whose particle size is matched to the desired intended use.
- particle sizes of less than 200 ⁇ m, preferably less than 100 ⁇ m, are used for injection of a powder mixture, while larger particle sizes of up to 200 mm are permissible by other means when introduced into the metallurgical vessel.
- the grain size can be determined from the blast furnace coke grades HK 1 (> 80 mm), HK 2 (> 60 mm), HK 3 (> 40 mm) and HK 4 (> 20 or 25 mm). can be selected, the smaller sizes are preferred. Therefore, a coarser coke can be further crushed or ground until an advantageous grain size of less than 10mm results. The use of coke breeze with a grain size of up to 10 mm is also an advantage.
- a carbonaceous material can be used which has no or only small amounts of less than 25% by weight, preferably less than 10% by weight, based on the carbonaceous material
- Material containing at the temperatures given at the reaction site in the metallurgical vessel volatile, in particular organic substances such as hydrocarbons.
- organic substances such as hydrocarbons.
- the titanium-containing compounds in the desired amount can be added to the coal upon coking so that coke formation occurs in the presence of the titanium-containing materials and a lumpy material is formed containing coke and titanium-containing materials "side by side".
- This lumpy material can then be brought by sieving, grinding, etc. to the desired grain size. So it is also possible, this lumpy material containing coke and titanium-containing materials "side by side” to supply the blast furnace from above the filling.
- the lumpy material can also be advantageously ground to a particle size that is suitable for injection.
- the particles of the mixture according to the invention of coke-containing material and titanium compounds can have a grain size of from 0 to 200, preferably up to 150 mm.
- the mixture of coked material according to the invention and titanium-containing compounds advantageously has a fineness of 90%, preferably 100%, less than 100 mm, preferably less than 10 mm, more preferably less than 1 mm and most preferably less than 0.5 mm.
- the mixture according to the invention is characterized by such finely divided coke-containing and titanium-containing additive whose particles have 90% of a diameter of at most 100 micrometers.
- the invention also provides a coke- and titanium-containing aggregate whose particles have at least 95% a diameter of at most 150 microns and a water content of 0.1 to 60%, and a method for producing the mixture according to procedures described above, thus also a method for preparing the mixture by mixing the carbonaceous fine particulate coke with the finely divided titanium compounds.
- the invention also provides a coke-containing and titanium-containing aggregate having a particle size of 10 to 150 mm and a water content of 0.1 to 15% by weight.
- This coke and titanium-containing additive can also be advantageously prepared by mixing the coke-containing material with the titanium-containing compounds and ground together depending on the application and thus to achieve the desired grain size and intimate mixing of the preferably finely divided components.
- the material used to make the coke as a coke-forming agent such as charcoal, e.g. Coal, lignite, pitch, tar and similar carbonaceous materials are pyrolyzed together with the titanium-containing aggregate by exposure to heat in a coking step and then, if desired, the resulting lumpy pyrolysate of coke-containing material and titanium-containing material broken depending on the application to the desired particle size or be ground.
- charcoal e.g. Coal, lignite, pitch, tar and similar carbonaceous materials
- the volatile constituents which impair intimate contact between cok-containing material and titanium-containing material in the blast furnace are expelled.
- the titanium-containing additives used with the coke-containing material can already partially or completely react to TiOC, TiC, TiCN and similar highly refractory compounds.
- the mixture according to the invention of coke-containing material and titanium-containing compounds contains 10 to 98% by weight, preferably 25 to 95% by weight, particularly preferably 35 to 90% by weight, very particularly preferably 45 to 80% by weight of coke-containing material, in particular coke, calculated from the total carbon content and based on preferably dried at 105 ° C material.
- the mixture of titanium-containing compounds and carbonaceous material according to the invention preferably contains 10 to 65% by weight of titanium-containing material / compounds and an amount of 35 to 90% by weight of coke-containing material, preferably an amount of 20 to 55% by weight, titanium-containing material / compounds and an amount of 45 to 80% by weight of coke-containing material. All information in the description in% by weight to solids content refers to a dried at 105 ° C material.
- the titanium-containing materials used to produce the aggregate according to the invention generally contain 5 to 60, preferably 10 to 60 wt .-% Ti, usually as TiO 2 or with other metals than titanates.
- synthetic titania-containing materials those from the production of titanium dioxide, by the sulfate or chloride method, as intermediates or co-products or residuals from the ongoing TiO 2 production can be used. It is also possible that residues or wastes from the chemical industry or paper industry or from titanium extraction are used as synthetic titanium-containing materials.
- the typical TiO 2 residues are TiO 2 residues from the TiO 2 production after the sulphate process. It is also advantageous to use titanium-containing catalysts consumed in the context of the invention, for example DENOX catalysts or Claus catalysts.
- materials such as natural titanium support such.
- B ilmenite, ilmenite sand, rutile sand and / or titanium-containing slags (eg slag) which are capable of forming refractory titanium carbonitrides under reaction conditions in the blast furnace.
- the above synthetic ones and natural titanium-containing carriers can be used singly or in mixtures for the production of coke-containing titanium compounds.
- the mixture according to the invention of coke-containing material and titanium-containing compounds may contain other constituents of metal oxides and / or metal hydroxides such as Al 2 O 3 , iron oxides, CaO, MgO, SiO 2 , ZrO 2 , Al (OH) 3, Ca (OH) 2, Mg (OH) 2 or mixed oxides thereof and mixtures of several components thereof and further ingredients such as slag formers in an amount of preferably up to 50 wt .-% of the total amount.
- metal oxides and / or metal hydroxides such as Al 2 O 3 , iron oxides, CaO, MgO, SiO 2 , ZrO 2 , Al (OH) 3, Ca (OH) 2, Mg (OH) 2 or mixed oxides thereof and mixtures of several components thereof and further ingredients such as slag formers in an amount of preferably up to 50 wt .-% of the total amount.
- the mixture of cok-containing material and titanium-containing compounds according to the invention can also be blown directly into damaged areas in the region of the frame.
- the finely divided coke-containing titanium compounds may preferably have a water content of 0.1 to 15 wt .-%.
- the addition of the mixture / aggregate of coke-containing material and titanium-containing compounds according to the invention during the processing of finely divided injection coal for the injection into the blast furnace can take place.
- the mixture according to the invention of coke-containing material and titanium-containing compounds can already be added to the carbonaceous raw materials.
- the amount of mixture of coked material and titanium-containing compounds according to the invention can be from 0.5 to 100% by weight, preferably from 0.5 to 80% by weight, preferably from 1 to 50% by weight and more particularly from 2 to 40 Wt .-% of the injected material lie.
- the mixture of coke-containing material and titanium-containing compounds according to the invention can be added to a carbonaceous material such as oil, heavy oil, tar, pitch and / or natural gas and then blown into the metallurgical vessel via the blow molds.
- a carbonaceous material such as oil, heavy oil, tar, pitch and / or natural gas
- the coke- and titanium-containing aggregate is characterized by the fact that the time-consuming and costly coking processes occurring only in the blast furnace can be saved and the feedstocks can be used free of volatile constituents and other impurities.
- the use of the aggregate is thus "energy neutral" since the blast furnace will not be deprived of energy to volatilize volatiles and char to coke and will not use coke supplied to the blast furnace for iron production.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
- Coke Industry (AREA)
- Blast Furnaces (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
- Die Erfindung betrifft einen koks- und titanhaltigen Zuschlagsstoff, Verfahren zu dessen Herstellung und dessen Verwendung zur Reparatur der Auskleidung von metallurgischen Gefäßen sowie ein Verfahren zur Beschleunigung der Bildung von hochfeuerfesten Titanverbindungen durch Direktreduktion bei metallurgischen Prozessen unter dessen Verwendung.
- Die Verwendung titanhaltiger Zuschlagstoffe zur Reparatur der Auskleidung von metallurgischen Gefäßen wie z.B. Hochöfen ist seit langem bekannt.
- In den meisten Bereichen ist das Ziel, titanhaltige Zuschlagstoffe unter Bildung von titanhaltigen, hochfeuerfesten/verschleißfesten Verbindungen wie z.B. TiC, TiN, TiCN usw. umzusetzen, welche dann in weiteren Schritten teilweise sich in den durch Verschleißprozesse gefährdeten Bereichen der jeweiligen feuerfesten Auskleidung niederschlagen und selbige schützen und/oder reparieren sollen.
- Es gehört zum Stand der Technik, titanhaltige Materialien in Mischungen mit kohlenstoffhaltigen Materialien in metallurgischen Gefäßen einzusetzen.
- Es ist ferner Stand der Technik, durch die Blasformen der Hochöfen Kohle (pulverized coal injection - im Folgenden PCI genannt) Öl/Erdgas und/oder Teer, Pech, als Energieträger und Reduktionsmittel für den Verhüttungsprozess einzublasen. Außerdem wird Koks als Brennstoff und als Reduktionsmittel bei der Eisenproduktion z. B. in Hochöfen eingesetzt. Die Herstellung von Koks erfolgt durch Pyrolyse der Fettkohle. Bei der Verhüttung wird Koks mit einer Körnung zwischen 20 bis 150 mm verarbeitet.
- Für die Herstellung der PCI-Kohle werden dabei in der Regel kohlehaltige Rohstoffe eingesetzt, welche in einem speziellen Mahlprozess feinkörnig gemahlen werden, als auch in einem meist parallel geschalteten Trocknungsprozess bei niedrigen Temperaturen getrocknet werden.
- So werden den kohlehaltigen Rohstoffen in einigen Fällen feinkörnige Titanträger zugemischt und anschließend in den Hochofen eingeblasen, um dann in dem Reaktionsraum des Hochofens Titancarbide bzw. Titancarbonitride zu bilden. Im Bereich der Hochofentechnologie kommt es dabei darauf an, möglichst schnell im Bereich des Gasraumes um die Blasformen herum und in den jeweiligen Flüssigphasen wie Roheisen und Schlacke die gewünschten verschleißfesten Titancarbide zu erzeugen und diese verschleißfesten Titancarbide dann im zweiten Schritt auf den jeweils zu reparierenden/zu schützenden feuerfesten Ausmauerungen mit möglichst hoher Ausbeute abzulagern.
- Ein Nachteil der bisher eingesetzten kohlenhaltigen Materialien ist, dass diese kohlenhaltigen Materialien in der Regel komplizierte Gemische von Kohlenwasserstoffen diverser Art und weitere zahlreiche Verunreinigungen durch Aschebildner enthalten. Dadurch wird einerseits die gewünschte Bildung von verschleißfesten Titanverbindungen reduziert, andererseits kommt es zu unerwünschten Behinderungen der gewünschten Reaktionskinetik, welche die Bildung von verschleißfesten Titanverbindungen behindert, bzw. deutlich reduziert. Dadurch wird die Menge von verschleißfesten Titanverbindungen (z.B. TiCN) reduziert, und die Folge ist, dass der Hauptteil des eingesetzten Titans dem System durch die Verschlackung ungenutzt entzogen wird.
- Aufgabe der Erfindung ist, die Ausbeute an gebildeten hochfeuerfesten Titanverbindungen im Verhältnis zu den eingesetzten titanhaltigen Materialien zur Anwendung im metallurgischen Gefäß zu steigern.
- In diesem Zusammenhang haben die Erfinder der vorliegenden Erfindung herausgefunden, dass die Reaktionskinetik vor den Blasformen bzw. im Bereich jeweiligen Flüssigphasen wie Roheisen und Schlacke durch einen sehr bedeutsamen Effekt beschleunigt werden kann.
- Gemäß den Untersuchungen der Erfinder treffen beim Einblasen von PCI-Gemischen zusammen mit Titanverbindungen mit hoher Geschwindigkeit die jeweiligen Teilchen statistisch nur selten aufeinander. Wenn die Teilchen dann irgendwann aufeinandertreffen, werden die Titanverbindungen von den vergasten bzw. freigesetzten Kohlenwasserstoffen der Injektionskohle wieder zurückgestoßen, so dass zu diesem Zeitpunkt trotz eines Teilchenkontaktes keine Titancarbide gebildet werden. Erst bei einem weiteren Aufeinandertreffen im zweiten, dritten usw. Anlauf, wenn die flüchtigen Kohlenwasserstoffe ihren abweisenden Einfluss nicht mehr ausüben können, da der Großteil von ihnen vergast ist, ist die Reaktion von "quasi reinem" Kohlenstoff und den jeweiligen Titanverbindungen zu Titankarbiden möglich.
- Die Aufgabe kann mit der Bereitstellung des erfindungsgemäßen Verfahrens und der erfindungsgemäßen Mischung/Zuschlagstoff aus kokshaltigen Materialien und titanhaltigen Verbindungen gelöst werden.
- Mit dem erfindungsgemäßen Verfahren ist es so möglich, insbesondere die Menge der pro Zeiteinheit gebildeten hochfeuerfesten Titanverbindungen zu erhöhen und gleichzeitig das metallurgische Ausbringen der dem System zugeführten Titanverbindungen zu verbessern.
- Die Erfindung betrifft somit auch eine erfindungsgemäße Mischung aus kokshaltigem Material oder Mischungen mehrerer unterschiedlicher kokshaltiger Materialien und titanhaltigen Verbindungen für die Einbringung in ein metallurgisches Gefäß.
- Es wurde überraschenderweise gefunden, dass durch Einblasen einer solchen Mischung aus kokshaltigem Material und titanhaltigen Materialien/Verbindungen die Umsetzung der Reaktionspartner zur Bildung von hochfeuerfesten Titancarbonitriden deutlich verbessert wird und die Ausbeute von Titancarbonitriden dadurch stark erhöht wird.
- Unter kokshaltigem Material wird erfindungsgemäß auch ein kohlenstoffhaltiges Material wie Kohle, oder Mischungen mehrerer unterschiedlicher kokshaltiger Materialien, verstanden, das nur einen geringen Anteil von weniger als 25 Gew.-% bevorzugt weniger als 10 Gew.-% an bei den erhöhten Temperaturen flüchtigen Substanzen wie Kohlenwasserstoffe, Gase etc. enthält. Um dies zu erreichen, kann das kohlenstoffhaltige Material einer thermischen Vorbehandlung unterzogen werden, bei der die flüchtigen Substanzen ausgetrieben werden und so bei der Verwendung den innigen Kontakt zwischen kokshaltigem Material und titanhaltigen Verbindungen im metallurgischen Gefäß nicht mehr beeinträchtigen. Bei einer solchen thermischen Vorbehandlung wird in der Regel in der ersten Phase das Material getrocknet, falls ein Wassergehalt vorhanden ist. Der erfindungsgemäße Zuschlagsstoff kann bis zu 60 Gew.-% Wasser, bevorzugt bis zu 35 Gew.-% Wasser enthalten. In der Regel und je nach Anwendung ist bei solchen Wassergehalten dann eine Teil- bzw. Trocknung als thermische Vorbehandlung notwendig.
- Die erfindungsgemäße Mischung aus kokshaltigem Material und titanhaltigen Verbindungen kann somit Teilchen des kokshaltigen Materials und der titanhaltigen Verbindungen nebeneinander als Pulvermischung enthalten, deren Korngröße auf den angestrebten Verwendungszweck abgestimmt ist. So werden für die Einblasung einer Pulvermischung Korngrößen von weniger als 200mµ bevorzugt weniger als 100µm eingesetzt, während bei einer Einbringung in das metallurgische Gefäß auf anderem Wege auch größere Korngrößen von bis zu 200mm zulässig sind.
- Wenn beispielsweise Koks in der Mischung eingesetzt werden soll, kann die Korngröße aus den Hochofenkokssorten HK 1 (> 80 mm), HK 2 (> 60 mm), HK 3 (> 40 mm) sowie HK 4 (> 20 bzw. 25 mm) ausgewählt werden, wobei die kleineren Größen bevorzugt sind. Daher kann auch ein gröberer Koks weiter gebrochen oder gemahlen werden, bis sich eine vorteilhafte Körnung von unter 10mm ergibt. Auch die Verwendung von Koksgrus mit einer Körnung von bis zu 10 mm bietet sich vorteilhaft an.
- Anstelle oder zusammen mit Kohle kann erfindungsgemäß ein kohlenstoffhaltiges Material verwendet werden, das keine oder nur geringe Mengen von weniger als 25 Gew.-%, bevorzugt weniger als 10 Gew.-% bezogen auf das kohlenstoffhaltige Material, an bei den am Reaktionsort im metallurgischen Gefäß gegebenen Temperaturen flüchtigen, insbesondere organischen Substanzen wie Kohlenwasserstoffen enthält. Beispielhaft ist hier Petrolkoks, Koksgruß, Aktivkohle oder verbrauchte Aktivkohle sowie Magerkohle und Anthrazit vorzugsweise mit einem geringen flüchtigen Anteil von weniger als 10 Gew.-% genannt.
- Es ist ebenso möglich, der Kohle bei der Verkokung die titanhaltigen Verbindungen in der gewünschten Menge zuzugeben, so dass die Koksbildung in Gegenwart der titanhaltigen Materialien abläuft und ein stückiges Material gebildet wird, das Koks und titanhaltige Materialien "nebeneinander" enthält. Dieses stückige Material kann dann durch Sieben, Mahlen etc. auf die gewünschte Körnung gebracht werden. So ist es auch möglich, dieses stückige Material, das Koks und titanhaltige Materialien "nebeneinander" enthält, dem Hochofen von oben über die Befüllung zuzuführen. Das stückige Material lässt sich aber auch vorteilhaft zu einer Korngröße vermahlen, die für die Einblasung geeignet ist.
- Somit können die Teilchen der erfindungsgemäßen Mischung aus kokshaltigem Material und Titanverbindungen (koks- und titanhaltiger Zuschlagsstoff) eine Körnung von 0 bis 200, bevorzugt bis 150 mm haben. Die erfindungsgemäße Mischung aus kokshaltigem Material und titanhaltigen Verbindungen weist vorteilhaft eine Feinheit von 90%, bevorzugt 100 %, kleiner als 100 mm, bevorzugt kleiner als 10 mm, besonders bevorzugt kleiner 1 mm und ganz besonders bevorzugt von kleiner als 0,5 mm auf. In einer anderen vorteilhaften Ausführungsform ist die erfindungsgemäße Mischung charakterisiert durch einen solchen feinteiligen koks- und titanhaltigen Zuschlagstoff, dessen Teilchen zu 90 % einen Durchmesser von höchstens 100 Mikrometer aufweisen.
- Gegenstand der Erfindung ist auch ein koks- und titanhaltiger Zuschlagsstoff, dessen Teilchen zu mindestens 95 % einen Durchmesser von höchstens 150 µm und einen Wassergehalt von 0,1 bis 60 % aufweisen, sowie ein Verfahren zur Herstellung der Mischung gemäß oben beschriebenen Verfahrensweisen, somit auch ein Verfahren zur Herstellung der Mischung durch Vermischen des kohlenstoffhaltigen feinteiligen Kokses mit den feinteiligen Titanverbindungen. Gegenstand der Erfindung ist auch ein koks- und titanhaltiger Zuschlagsstoff mit einer Körnung von 10 bis 150 mm und einem Wassergehalt von 0,1 bis 15 Gew%.
- Dieser koks- und titanhaltige Zuschlagstoff kann auch dadurch vorteilhaft hergestellt werden, das kokshaltige Material mit den titanhaltigen Verbindungen zu vermengen und je nach Anwendungsgebiet gemeinsam zu vermahlen und so die gewünschte Körnung und innige Vermischung der bevorzugt feinteiligen Komponenten zu erzielen.
- Wie oben beschrieben, kann das zur Herstellung des Kokses als Koksbildner eingesetzte Material wie Fettkohle, z.B. Steinkohle, Braunkohle, Pech, Teer und ähnliche kohlenstoffhaltigen Materialien gemeinsam mit dem titanhaltigen Zuschlagsstoff durch Wärmeeinwirkung unter Sauerstoffabschluss in einer Verkokungsstufe pyrolysiert werden und, falls gewünscht, das erhaltene stückige Pyrolysat aus kokshaltigem Material und titanhaltigem Material je nach Anwendungsgebiet auf die gewünschte Korngröße gebrochen bzw. vermahlen werden.
- Auf diese Weise ist durch eine thermische Vorbehandlung wie eine Verkokung zuverlässig gewährleistet, dass während der Verkokung die flüchtigen Bestandteile, die einen innigen Kontakt zwischen kokshaltigem Material und titanhaltigem Material Im Hochofen beeinträchtigen, ausgetrieben werden. Bei dieser Verfahrensweise können die eingesetzten titanhaltigen Zuschlagsstoffe mit dem kokshaltigem Material schon teilweise oder vollständig zu TiOC, TiC, TiCN und ähnlichen hochfeuerfesten Verbindungen reagieren. So kann das Gemisch, bzw. die teilweise stofflich miteinander verbundenen Materialien (kokshaltiges Material und titanhaltiges Material), das auch als erfindungsgemäßer koks- und titanhaltigen Zuschlagsstoff verstanden wird, am Reaktionsort im Hochofen oder dem metallurgischen Gefäß unmittelbar und ohne störende "Verdampfungsreaktionen" der flüchtigen Bestandteile zu den Titancarbonitriden reagieren.
- Die erfindungsgemäße Mischung aus kokshaltigem Material und titanhaltigen Verbindungen enthält 10 bis 98 Gew.-%, bevorzugt 25 bis 95 Gew.-%, besonders bevorzugt 35 bis 90 Gew.-%, ganz besonders bevorzugt 45 bis 80 Gew.-% kokshaltiges Material, insbesondere Koks, berechnet aus dem Gesamtkohlenstoffgehalt und bezogen auf bei vorzugsweise 105°C getrocknetes Material.
- Die erfindungsgemäße Mischung aus titanhaltigen Verbindungen und kohlenstoffhaltigem Material enthält bevorzugt 10 bis 65 Gew.-% an titanhaltigem Material/Verbindungen und eine Menge von 35 bis 90 Gew.-% an kokshaltigem Material, bevorzugt eine Menge von 20 bis 55 Gew.-%, an titanhaltigem Material/ Verbindungen und eine Menge von 45 bis 80 Gew.-% an kokshaltigem Material. Alle Angaben der Beschreibung in Gew.-% zu Feststoffgehalten beziehen sich auf ein bei 105°C getrocknetes Material.
- Die zur Herstellung des erfindungsgemäßen Zuschlagsstoffes verwendeten titanhaltigen Materialien enthalten in der Regel 5 bis 60, bevorzugt 10 bis 60 Gew.-% Ti, zumeist als TiO2 oder mit anderen Metallen als Titanate. Als synthetische titandioxidhaltige Materialien können solche aus der Produktion von Titandioxid, nach dem Sulfat- oder Chloridverfahren, als Zwischen- oder Kuppelprodukte oder Reststoffe aus der laufenden TiO2-Produktion verwendet werden. Es ist ebenfalls möglich, dass als synthetische titanhaltigen Materialien Rückstände oder Abfälle aus Chemischen Industrie oder Papierindustrie bzw. aus Titangewinnung verwendet werden. Die typischen TiO2-Rückstände sind TiO2-Rückstände aus der TiO2-Produktion nach dem Sulfatverfahren. Ebenfalls können vorteilhaft im Rahmen der Erfindung verbrauchte titanhaltige Katalysatoren z.B. DENOX-Katalysatoren oder Claus-Katalysatoren Verwendung finden. Ferner können dazu Materialien wie natürliche Titanträger wie z. B Ilmenit, Ilmenitsand, Rutilsand und/oder titanhaltige Schlacken ( z. B.Sorelschlacke), die dazu in der Lage sind, unter den Bedingungen am Reaktionsort im Hochofen feuerfeste Titancarbonitride zu bilden, verwendet werden. Die oben genannten synthetischen und natürlichen titanhaltigen Träger können einzeln oder in Mischungen zur Herstellung von kokshaltigen Titanverbindungen verwendet werden.
- Die erfindungsgemäße Mischung aus kokshaltigem Material und titanhaltigen Verbindungen kann neben Kohlenstoff und TiO2 (berechnet aus Gesamt-Titan) noch andere Bestandteile aus Metalloxiden und/oder Metallhydroxiden wie z.B. Al2O3, Eisenoxide, CaO, MgO, SiO2, Zr02, Al(OH)3, Ca(OH)2, Mg(OH)2 oder Mischoxide davon sowie Gemische von mehreren Komponenten davon sowie weiterhin Bestandteile wie Schlackebildner in einer Menge von vorzugsweise bis zu 50 Gew.-% der Gesamtmenge enthalten.
- Je nach Anwendung kann die erfindungsgemäße Mischung aus kokshaltigem Material und titanhaltigen Verbindungen auch im Bereich des Gestells unmittelbar an schadhaften Stellen eingeblasen werden. In diesem Falle können die feinteiligen kokshaltigen Titanverbindungen bevorzugt einen Wassergehalt von 0,1 bis 15 Gew.-% aufweisen.
- Alternativ kann die Zugabe der erfindungsgemäßen Mischung/Zuschlagsstoff aus kokshaltigem Material und titanhaltigen Verbindungen im Laufe der Aufbereitung der feinteiligen Injektionskohle für die Einblasung in den Hochofen erfolgen. Dabei kann die erfindungsgemäße Mischung aus kokshaltigem Material und titanhaltigen Verbindungen bereits den kohlenstoffhaltigen Rohstoffen zugegeben werden. Die Zugabemenge an erfindungsgemäßer Mischung aus kokshaltigem Material und titanhaltigen Verbindungen kann bei 0,5 bis 100 Gew.-%, bevorzugt 0,5 bis 80 Gew.-%, vorzugsweise bei 1 bis 50 Gew.-% und ganz besonders bei 2 bis 40 Gew.-% des eingeblasenen Materials liegen.
- Alternativ kann die erfindungsgemäße Mischung aus kokshaltigem Material und titanhaltigen Verbindungen einem kohlenstoffhaltigem Material wie Öl, Schweröl, Teer, Pech und oder Erdgas hinzugeführt werden und anschließend über die Blasformen in das metallurgische Gefäß eingeblasen werden.
- In entsprechender Weise kann eine gemeinsame Einblasung der erfindungsgemäßen Mischung aus kokshaltigem Material und titanhaltigen Verbindungen mit Einblasstoffen wie Kunststoffen, in einer Menge bis zu 50 Gew.-% bezogen auf die Gesamtmenge an eingeblasenem Stoff über die Blasformen in das metallurgische Gefäß erfolgen.
- Der koks- und titanhaltige Zuschlagstoff zeichnet sich dadurch aus, dass die zeitraubenden und kostspieligen erst im Hochofen ablaufenden Verkokungsprozesse eingespart werden können und die Einsatzstoffe frei von flüchtigen Bestandteilen und sonstigen Verunreinigungen eingesetzt werden können. Die Verwendung des Zuschlagstoffes ist somit "energieneutral", da dem Hochofen keine Energie zur Verdampfung flüchtiger Bestandteile und zur Verkokung der Kohle entzogen werden sowie kein dem Hochofen zur Eisenerzeugung zugeführter Koks dafür verwendet wird.
- Wenn man die feinkörnigen Koksteilchen (ohne flüchtige Inhaltsstoffe) mit den hochreaktiven Titanteilchen zusammenbringt, erfolgt die Bildung von Titankarbiden deutlich schneller als bei der Einblasung von üblicherweise verwendeten pulverisierten Kohleteilchen. Durch die Einbringung des koks- und titanhaltigen Zuschlagstoffe in einen Ofen erfolgt aufgrund der örtlichen Nähe der beiden Reaktionspartner in situ die Bildung von hochverschleißfesten Titanverbindungen, ohne dass die Reaktion im Wesentlichen durch flüchtige Bestandteile behindert wird. Hierdurch werden pro Zeiteinheit deutlich mehr hochfeuerfeste Titanverbindungen gebildet, welche sich dann anschließend an den zu schützenden feuerfesten Ausmauerungen ablagert.
- Beim Einbringen von kokshaltigem Titanträger für die Bildung und Ablagerung von verschleißfesten Titanverbindungen wird somit eine Direktreduktion ausgelöst. Durch diesen Effekt der Direktreduktion werden geringere Mengen an Einsatzmengen an titanhaltigen Einsatzstoffen benötigt als bei Verwendung der titanhaltigen Träger gemäß dem Stand der Technik. Somit wird der Einsatz teuren titanhaltigen Träger reduziert und die Wirtschaftlichkeit des Prozesses erhöht. Die geringeren Einsatzmengen und der höhere Umsetzungsgrad zu Ti(C,N)-Verbindungen führt dann zu verbesserter Schlackenqualität durch niedrigere TiO2-Gehalte und somit zur erleichterten Verwertung des Hüttensandes.
Claims (15)
- Koks- und titanhaltiger Zuschlagsstoff zur Eingabe in metallurgische Gefäße zur Erhöhung der Haltbarkeit und Reparatur der feuerfesten Ausmauerung.
- Koks- und titanhaltiger Zuschlagsstoff gemäß Anspruch 1, mit 10 bis 98, bevorzugt 25 bis 95, besonders bevorzugt 35 bis 85, ganz besonders bevorzugt 45 bis 80 Gew.-% kohlenstoffhaltigem Koks,
- Koks- und titanhaltiger Zuschlagsstoff gemäß Anspruch 1, mit 10 bis 98, bevorzugt 25 bis 95, besonders bevorzugt 35 bis 85, ganz besonders bevorzugt 45 bis 80 Gew.-% kohlenstoffhaltiges Material, das keine oder nur geringe Mengen von weniger als 25 Gew.-%, bevorzugt weniger als 10 Gew.-% bezogen auf das kohlenstoffhaltige Material, an bei den am Reaktionsort gegebenen Temperaturen flüchtigen, insbesondere organischen Substanzen enthält.
- Koks- und titanhaltiger Zuschlagsstoff gemäß einem der vorhergehenden Ansprüche, mit 10 bis 65, bevorzugt von 20 bis 55 Gew.-%, an titanhaltigem Material.
- Koks- und titanhaltiger Zuschlagsstoff gemäß einem der vorhergehenden Ansprüche, mit einem Gehalt an weiteren Metalloxiden und/oder Metallhydroxiden ausgewählt vorzugsweise aus Al2O3, Eisenoxiden, CaO, MgO, SiO2, Zr02, Mischoxiden sowie Gemischen davon in einer Menge von bis zu 50 Gew.-%,
- Koks- und titanhaltiger Zuschlagsstoff gemäß einem der vorhergehenden Ansprüche, mit einem Wassergehalt von bis zu 60 Gew.-%, vorzugsweise bis zu 30 Gew.-%.
- Koks- und titanhaltiger Zuschlagsstoff gemäß einem der vorhergehenden Ansprüche, mit einer Teilchengröße von 90%, bevorzugt 100 %, kleiner als 100 mm, bevorzugt kleiner als 10 mm, besonders bevorzugt kleiner 1 mm und ganz besonders bevorzugt von kleiner als 0,5 mm.
- Koks- und titanhaltiger Zuschlagsstoff gemäß einem der vorhergehenden Ansprüche, mit einer Teilchengröße von 90%, bevorzugt 100 %, von weniger als 200µp, bevorzugt weniger als 100µm.
- Verfahren zur Beschleunigung der Bildung von hochfeuerfesten Titankarbiden, dadurch gekennzeichnet, dass man einen bevorzugt feinkörnigen koks- und titanhaltiger Zuschlagsstoff nach einem der Ansprüche 1 bis 8, bevorzugt durch Einblasen, in ein metallurgisches Gefäß einbringt.
- Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass man den koks-und titanhaltigen Zuschlagsstoff gemäß einem der Ansprüche 1 bis 8 der PCI-Kohle für die Einblasung in den Hochofen hinzufügt und dann dieses Gemisch über die Blasformen einbläst.
- Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Zugabe an koks- und titanhaltigem Zuschlagsstoff zu der PCI-Kohle bei 0,5 bis 80, vorzugsweise bei 1 bis 50 und ganz besonders bei 2 bis 40 Gew.-% der Gesamtmenge an eingeblasener Mischung liegt.
- Verwendung eines koks- und titanhaltigen Zuschlagsstoffes gemäß einem der Ansprüche 1 bis 8 zur Einbringung, zur vorzugsweise direkten Einblasung in einen metallurgisches Gefäß, dadurch gekennzeichnet, dass der Zuschlagstoff insbesondere einen Wassergehalt von 0,1 bis 15 Gew.-% haben.
- Verfahren zur Herstellung eines koks- und titanhaltigen Zuschlagsstoffes gemäß einem der Ansprüche 1 bis 8 dadurch gekennzeichnet, dass titanhaltige Verbindungen mit einem Koksbildner vermischt werden und die so erhaltene Mischung einer thermischen Behandlung, insbesondere einer Pyrolyse bevorzugt in einem Koksofen oder Wirbelschichtofen, unterworfen wird.
- Verfahren zur Herstellung eines koks- und titanhaltigen Zuschlagsstoffes gemäß einem der Ansprüche 1 bis 8 dadurch gekennzeichnet dass titanhaltige Verbindungen mit Koks und /oder Petrolkoks gemischt werden.
- Verfahren zu Herstellung eines koks- und titanhaltigen Zuschlagsstoffes gemäß Anspruch 14 dadurch gekennzeichnet, dass die erhaltene Mischung getrocknet wird, und, falls erforderlich, die getrocknete Mischung anschließend in einer Mühle gemahlen wird.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/813,666 US20130168889A1 (en) | 2010-08-03 | 2011-07-22 | Aggregate Containing Coke and Titanium and Use Thereof to Repair the Lining of Metallurgical Vessels |
ES11761487.5T ES2504980T3 (es) | 2010-08-03 | 2011-07-22 | Fundente que contiene coque y titanio y uso del mismo para reparar el revestimiento de recipientes metalúrgicos |
DE102011079627A DE102011079627A1 (de) | 2010-08-03 | 2011-07-22 | Koks- und titanhaltiger Zuschlagstoff und dessen Verwendung zur Reparatur der Auskleidung von metallurgischen Gefäßen |
BR112013002593A BR112013002593A2 (pt) | 2010-08-03 | 2011-07-22 | agregado contendo coque e titânio, e uso do mesmo para reparo de revestimento de recipientes metalúrgicos |
EP11761487.5A EP2601318B1 (de) | 2010-08-03 | 2011-07-22 | Koks- und titanhaltiger zuschlagstoff und dessen verwendung zur reparatur der auskleidung von metallurgischen gefässen |
PCT/DE2011/075173 WO2012022343A1 (de) | 2010-08-03 | 2011-07-22 | Koks- und titanhaltiger zuschlagstoff und dessen verwendung zur reparatur der auskleidung von metallurgischen gefässen |
JP2013522104A JP5893023B2 (ja) | 2010-08-03 | 2011-07-22 | コークス及びチタンを含有する集合材並びに冶金容器の裏張りを修理するためのその使用 |
KR1020137002744A KR101524237B1 (ko) | 2010-08-03 | 2011-07-22 | 코크스 및 티타늄을 함유하는 응집체 및 야금 용기의 라이닝을 수리하기 위한 이 응집체의 용도 |
PL11761487T PL2601318T3 (pl) | 2010-08-03 | 2011-07-22 | Wypełniacz zawierający koks i tytan i jego zastosowanie do naprawy wyłożenia zbiorników metalurgicznych |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010038831 | 2010-08-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2415880A1 true EP2415880A1 (de) | 2012-02-08 |
Family
ID=44117199
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11151418A Withdrawn EP2415880A1 (de) | 2010-08-03 | 2011-01-19 | Koks- und titanhaltiger Zuschlagsstoff und dessen Verwendung zur Reparatur der Auskleidung von metallurgischen Gefäßen |
EP11761487.5A Not-in-force EP2601318B1 (de) | 2010-08-03 | 2011-07-22 | Koks- und titanhaltiger zuschlagstoff und dessen verwendung zur reparatur der auskleidung von metallurgischen gefässen |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11761487.5A Not-in-force EP2601318B1 (de) | 2010-08-03 | 2011-07-22 | Koks- und titanhaltiger zuschlagstoff und dessen verwendung zur reparatur der auskleidung von metallurgischen gefässen |
Country Status (9)
Country | Link |
---|---|
US (1) | US20130168889A1 (de) |
EP (2) | EP2415880A1 (de) |
JP (1) | JP5893023B2 (de) |
KR (1) | KR101524237B1 (de) |
BR (1) | BR112013002593A2 (de) |
DE (1) | DE102011079627A1 (de) |
ES (1) | ES2504980T3 (de) |
PL (1) | PL2601318T3 (de) |
WO (1) | WO2012022343A1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2634831C2 (ru) * | 2013-01-07 | 2017-11-03 | Захтлебен Хеми Гмбх | Содержащий титан заполнитель, способ его изготовления, и его применение |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19830102C1 (de) * | 1998-07-06 | 1999-07-29 | Metallgesellschaft Ag | Verwendung eines bei der Herstellung von Titandioxid anfallenden feinkörnigen Produkts |
WO2008015259A1 (de) * | 2006-08-02 | 2008-02-07 | Sachtleben Chemie Gmbh | Titanhaltiger zuschlagstoff |
DE102008056809A1 (de) * | 2008-11-11 | 2010-05-27 | Kronos International, Inc. | Titanhaltiger Zuschlagstoff und Verfahren zu seiner Herstellung aus chloridhaltigen Rückständen der Titandioxidherstellung |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2149939A (en) * | 1936-05-08 | 1939-03-07 | Titanium Alloy Mfg Co | Crystalline granular titanium carbide and methods of making same |
US2805120A (en) * | 1954-04-29 | 1957-09-03 | Columbia Southern Chem Corp | Chlorination process |
GB898602A (en) * | 1957-05-01 | 1962-06-14 | British Aluminium Co Ltd | Improvements in or relating to electrolytic cells for the production of metals |
DE1904195A1 (de) * | 1969-01-29 | 1970-08-06 | Bergwerksverband Gmbh | Verwendung von Kokspellets als Kohlungsmittel fuer Eisen-und Stahlbaeder |
US3786133A (en) * | 1970-09-11 | 1974-01-15 | Quebec Iron & Titanium Corp | Titanium carbide preparation |
JPS50120406A (de) * | 1974-03-09 | 1975-09-20 | ||
GB1485332A (en) * | 1975-04-19 | 1977-09-08 | Chviruk V | Graphitic packing material for amalgam decomposers |
US4187117A (en) * | 1976-04-12 | 1980-02-05 | Quebec Iron And Titanium Corporation - Fer Et Titane Du Quebec, Inc. | Titanium slag-coke granules suitable for fluid bed chlorination |
FR2423546B1 (fr) * | 1978-01-21 | 1986-02-07 | Sumitomo Electric Industries | Metaux durs frittes et leur procede de fabrication |
JPS60228611A (ja) * | 1984-04-26 | 1985-11-13 | Nippon Kokan Kk <Nkk> | 高炉の操業方法 |
DE4419816C1 (de) * | 1994-06-07 | 1995-06-29 | Metallgesellschaft Ag | Titanhaltiger Zuschlagstoff und dessen Verwendung zur Erhöhung der Haltbarkeit der feuerfesten Ausmauerung eines Ofens und als Schlackenbildner |
GB9526516D0 (en) * | 1995-12-23 | 1996-02-28 | Surface Transforms Ltd | Metal containing refrectory products |
DE19935251A1 (de) * | 1999-07-27 | 2001-02-08 | Metallgesellschaft Ag | Anwendung TiO¶2¶-haltiger partikulärer Materialien für feuerfeste Erzeugnisse |
KR100726312B1 (ko) * | 2000-03-30 | 2007-06-08 | 신닛뽄세이테쯔 카부시키카이샤 | 탄소질 내화물 및 그의 제조 방법 |
MY138532A (en) * | 2000-08-31 | 2009-06-30 | Foseco Int | Refractory articles |
DE10343687A1 (de) * | 2003-09-20 | 2005-04-21 | Sachtleben Chemie Gmbh | Verfahren zur Verbesserung der Haltbarkeit von Kohlenstoff- oder Graphitelektroden durch Einsatz von TiO¶2¶-haltigen Produkten |
RU2280657C1 (ru) * | 2004-12-20 | 2006-07-27 | Алтайский государственный университет | Электропроводящий полимерный материал и способ его получения |
DE102005051953B3 (de) * | 2005-10-29 | 2007-06-06 | Tu Bergakademie Freiberg | Verfahren zur Herstellung von feuerfesten Formkörpern oder Massen |
-
2011
- 2011-01-19 EP EP11151418A patent/EP2415880A1/de not_active Withdrawn
- 2011-07-22 DE DE102011079627A patent/DE102011079627A1/de not_active Withdrawn
- 2011-07-22 US US13/813,666 patent/US20130168889A1/en not_active Abandoned
- 2011-07-22 WO PCT/DE2011/075173 patent/WO2012022343A1/de active Application Filing
- 2011-07-22 KR KR1020137002744A patent/KR101524237B1/ko not_active IP Right Cessation
- 2011-07-22 PL PL11761487T patent/PL2601318T3/pl unknown
- 2011-07-22 JP JP2013522104A patent/JP5893023B2/ja not_active Expired - Fee Related
- 2011-07-22 EP EP11761487.5A patent/EP2601318B1/de not_active Not-in-force
- 2011-07-22 ES ES11761487.5T patent/ES2504980T3/es active Active
- 2011-07-22 BR BR112013002593A patent/BR112013002593A2/pt not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19830102C1 (de) * | 1998-07-06 | 1999-07-29 | Metallgesellschaft Ag | Verwendung eines bei der Herstellung von Titandioxid anfallenden feinkörnigen Produkts |
WO2008015259A1 (de) * | 2006-08-02 | 2008-02-07 | Sachtleben Chemie Gmbh | Titanhaltiger zuschlagstoff |
DE102008056809A1 (de) * | 2008-11-11 | 2010-05-27 | Kronos International, Inc. | Titanhaltiger Zuschlagstoff und Verfahren zu seiner Herstellung aus chloridhaltigen Rückständen der Titandioxidherstellung |
Also Published As
Publication number | Publication date |
---|---|
WO2012022343A1 (de) | 2012-02-23 |
ES2504980T3 (es) | 2014-10-09 |
EP2601318B1 (de) | 2014-07-09 |
KR20130098992A (ko) | 2013-09-05 |
US20130168889A1 (en) | 2013-07-04 |
KR101524237B1 (ko) | 2015-05-29 |
PL2601318T3 (pl) | 2014-12-31 |
JP2013539001A (ja) | 2013-10-17 |
BR112013002593A2 (pt) | 2016-06-07 |
EP2601318A1 (de) | 2013-06-12 |
DE102011079627A1 (de) | 2012-02-09 |
JP5893023B2 (ja) | 2016-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102007032419B4 (de) | Verfahren und Anlage zur Reduktion von eisenoxidhaltigen Feststoffen | |
EP2918564A1 (de) | Feuerfeste Materialien enthaltend einen Mischkristall mit Spinell-Struktur | |
EP2596139B1 (de) | Walzenzunderbrikettierung | |
DE3640904A1 (de) | Verfahren zur partialoxidation von aschehaltigen, kohlenstoffhaltigen stoffen | |
DE102023106210A1 (de) | Mechanische Aktivierung von Tonen | |
DE102023106221A1 (de) | Kombinierte mechanische und thermische Aktivierung von Tonen | |
EP1558532A1 (de) | Verfahren zur herstellung einer mineralischen schmelze | |
EP0611740B1 (de) | Titanhaltiger Zuschlagstoff und dessen Verwendung zur Erhöhung der Haltbarkeit der feuerfesten Ausmauerung eines Ofens | |
EP2049451B1 (de) | Titanhaltiger zuschlagstoff | |
EP0897967A2 (de) | Verfahren und Vorrichtung zur Vergasung von Abfallstoffen | |
EP2601318B1 (de) | Koks- und titanhaltiger zuschlagstoff und dessen verwendung zur reparatur der auskleidung von metallurgischen gefässen | |
DE102013114865A1 (de) | Titanhaltiger Zuschlagsstoff, Verfahren zu dessen Herstellung und dessen Verwendung | |
WO2008068350A1 (de) | Titanhaltige formkörper | |
DE2164474C3 (de) | ||
DE102004053676A1 (de) | Verfahren und Anlage zur Herstellung von Titanschlacke aus Ilmenit | |
EP1386013B1 (de) | Verfahren zur verwertung von walzzunderschlämmen und feinkohlen | |
DE19513832B4 (de) | Verfahren zur Verwertung von Rest- und Abfallstoffen durch Kombination einer Wirbelschichtthermolyse mit einer Flugstromvergasung | |
AT398195B (de) | Binde- und plastifizierungsmittel zur herstellung feuerfester, keramischer, kohlenstoffhältiger werkstoffe sowie damit hergestellter werkstoff | |
EP0020957B1 (de) | Verfahren zur Herstellung von Calciumcarbid | |
DE102008061743A1 (de) | Verfahren zur Herstellung von Zement oder Zementersatzstoffen | |
DE102018133225A1 (de) | Verfahren zur Phosphorgewinnung aus mindestens einem phosphorhaltigen Aufbereitungsmaterial | |
DE2151394A1 (de) | Verfahren zur Herstellung kaltgebundener Agglomerate aus partikelfoermigem,mineralischem Konzentrat | |
DE112014006388T5 (de) | Verfahren zur Herstellung von Hochofen-Einblaskohle, Hochofen-Einblaskohle, und deren Verwendung | |
DD281407A5 (de) | Verfahren zur herstellung von pyrolysebriketts aus braunkohlen | |
DD250551A5 (de) | Verfahren zur herstellung von metallurgischen verbundstoffen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120706 |
|
17Q | First examination report despatched |
Effective date: 20140604 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: GSR - GESELLSCHAFT FUER SYNTHETISCHE ROHSTOFFE MBH |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20190801 |