EP2370493B1 - Compositions de revêtement de poudre pour le durcissement à basse température et haut débit - Google Patents

Compositions de revêtement de poudre pour le durcissement à basse température et haut débit Download PDF

Info

Publication number
EP2370493B1
EP2370493B1 EP09775113.5A EP09775113A EP2370493B1 EP 2370493 B1 EP2370493 B1 EP 2370493B1 EP 09775113 A EP09775113 A EP 09775113A EP 2370493 B1 EP2370493 B1 EP 2370493B1
Authority
EP
European Patent Office
Prior art keywords
weight percent
acid
powder coating
coating composition
polyester resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09775113.5A
Other languages
German (de)
English (en)
Other versions
EP2370493A1 (fr
Inventor
Damiano Beccaria
Lmir Bejko
Andrea Capra
Irene Panero
Alessandro Munari
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hexion Research Belgium SA
Original Assignee
Hexion Research Belgium SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hexion Research Belgium SA filed Critical Hexion Research Belgium SA
Priority to PL09775113T priority Critical patent/PL2370493T3/pl
Priority to EP09775113.5A priority patent/EP2370493B1/fr
Publication of EP2370493A1 publication Critical patent/EP2370493A1/fr
Application granted granted Critical
Publication of EP2370493B1 publication Critical patent/EP2370493B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/46Polyesters chemically modified by esterification
    • C08G63/48Polyesters chemically modified by esterification by unsaturated higher fatty oils or their acids; by resin acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/08Polyesters modified with higher fatty oils or their acids, or with natural resins or resin acids

Definitions

  • the present invention relates to powder coating compositions and to components and ingredients for incorporation therein, suitable for low temperature curing schedule, with excellent flow of the coating, good flexibility, no blooming phenomenon and resistance to outside aging.
  • thermoset powder coating decoration is that the powder coating is formulated by dispersing coloring agents or pigments within a matrix of cross-linkable material, grinding the material to a powder, applying the powder to a surface to be coated and then heating or baking to cause the powder particles to coalesce to form a layer on the surface to be decorated and thereafter causing or allowing curing or crosslinking to take place to form a thermoset layer. Based on these principles the skilled artisan is always searching the best compromise between cure / production cost and appearance of the thermoset coating. Recently, the industry has showed an interest in lower curing temperature for environmental and economical reasons.
  • One of the essential requirements of a powder coating is that it should be curable/cross-linkable. In the majority of cases this means the incorporation of a cross-linking agent and the increase of the melt viscosity over the bake period. It is desirable that the baking should be as efficient as possible to minimize energy costs.
  • the flow of the coating is determined by the viscosity build-up of the thermosetting composition during the curing, if the increase of viscosity occurs at a too early stage in the baking process, it will have as result that the powder particles will not have fully coalesced and "leveled". This will result in the production of an article with an unacceptable finish, usually characterized by "orange peel".
  • thermosetting powder coating with outstanding properties for exterior end applications is typically based on a polyester resin.
  • Polyester powder coatings are typically formulated with polyepoxide or beta hydroxyalkyl amide type cross-linking compounds.
  • the technology surrounding these materials is generally well known and has been discussed and considered in a number of articles and prior patent specifications.
  • Patent EP 0 322 834 describes thermosetting powder compositions essentially containing a polyester bearing carboxyl groups and a beta-hydroxyalkylamide, which is applied to a substrate and is then crosslinked at a temperature of 160 to 200° C.
  • benzoin as additive in these compositions, which is added as degassing agent, the bubbles of water and air remain trapped in the hardened coating after it has melted and crosslinked, especially if the coating is relatively thick.
  • the flow of the powder when it melts is not optimal.
  • Patent application WO 91/14745 describes thermosetting powder compositions containing an amorphous polyester containing carboxyl groups, a semi-crystalline polyester containing carboxyl groups and a crosslinking agent. 10 to 40% by weight of the semi-crystalline polyester is preferably used relative to the polyesters as a whole, and the crosslinking agent can be a beta-hydroxyalkylamide.
  • the presence of the semi-crystalline polyester in these compositions improves the mechanical properties of the coatings they provide.
  • the presence of these semi-crystalline polyesters also increases the rate of hardening of these compositions, which could be a factor which disfavors the satisfactory flowing and degassing of these compositions when they melt, leading to surface defects in the coatings.
  • Patent application EP 0 668 895 also describes thermosetting powder compositions containing a polyester bearing carboxyl groups and a beta-hydroxyalkylamide.
  • the polyesters of that patent application have a functionality of carboxyl groups of less than 2, obtained by adding monofunctional acids or alcohols during the synthesis of the polyester. By virtue of this reduced functionality, the polyester is less reactive, which makes the powder flow better when it melts and allows the bubbles of air and of water vapor to escape from the coating before it hardens, unlike the compositions in patent applications EP 0 322 834 and WO 91/14745 .
  • the polyester contains chain ends which do not bear a reactive group, these ends do not participate in the formation of the three-dimensional network during the crosslinking of the powder, thus reducing the resistance to solvents and the flexibility of the coatings thus obtained.
  • the EP 1 054 917 claims to solve the above drawbacks of using a beta-hydroxyalkylamide as crosslinker by incorporation of tertiary carboxyl groups as reactive groups in the polyester resins.
  • the said compositions provide coatings with excellent surface appearance, good flexibility and good resistance to poor weather conditions due to the lower reactivity and which induces a longer cure schedule.
  • the US 4001153 is about the use of unsaturated polyester resin and combined with solid vinyl or allyl compounds, to allowed the cure of the unsaturations.
  • the formulations are difficult to be proceeded, and therefore not be used over the years.
  • the EP1873183 is about the use of branched polyester structure which is further react with a monofunctional acid in order to adjust the reactivity of the multifunctional polyester resin.
  • the US 20040211678 is about a powder coating system that provide a good cathodic corrosion protection and which is based on epoxy-amine or epoxy-phenolic resins and cured at about 205°C, and to achieve the requested performance the formulations contain mandatory zinc borate in a weight percentage of 0.5 to 4.75.
  • thermosetting powder composition which by itself combines all the qualities which it would be desired to find therein, such as good stability in storage, good flowing when melting in order to give it a smooth, and glossy appearance which has no orange-peel skin or bubbles, good flexibility, at the same time as good resistance to solvents, to aggressive weather exposure and all of this at a low temperature curing.
  • the present invention seeks to provide powder coating compositions exhibiting low temperature curing but which fulfill the quality requirement of coating such as flow, flexibility and HSE legislations.
  • polyester resin composition comprises:
  • a polymeric composition suitable for use as a vehicle for a powder coating composition which comprises: a composition in that the acid/ alcohol mole ratio is higher than 1 and with an acid value of higher than 15 mg KOH/g.
  • a polymeric composition suitable for use as a vehicle for a powder coating composition which comprises: a composition of in that the acid/alcohol mole ratio is lower that 1 and with a hydroxyl value of higher than 25 mg KOH/g.
  • the polyester resin comprises:
  • polyester resin comprises
  • the melt viscosity (ICI) at 200°C of the polyester resin is from 1500 to 12000 mPa.s and a Tg of above 35°C but lower than 70°C.
  • the powder formulation based on the above acid functional polyester resin is then combined with a curative selected from a non-isocyanurate polyepoxide or beta-hydroxyalkylamide or triglycidyl-isocyanurate or epoxy resins (glycidyl ethers of Bisphenol A & F or epoxy novolac resins, glycidyl esters and mixtures thereof) in a weight percent (on total polyester resin and curative) of 2.5 to 50
  • the curative is selected from trimer of isophorone diisocyanate, trimer of hexamethylene diisocyanate, caprolactam-blocked polyisocyanate or self blocked uretdiones in a weight percent (on total polyester resin and curative) of 8 to 65.
  • the polymeric vehicle of the invention is formulated to provide a coating binder with desirable hardness, flexibility, solvent resistance, corrosion resistance, weatherability and gloss.
  • the enhancement of these properties depends on the optimization and balancing of factors including monomer composition, T g of the resin, type and amount of crosslinking agent, curing conditions, curing catalysts, and type and amount of pigments, fillers and additives.
  • the reactivity is increased without sacrificing chemical storage stability or causing poor flow of the film.
  • compositions of this invention exhibit remarkable storage stability, smooth surface appearance, high gloss, and excellent mechanical properties which are maintained over time. It will be appreciated by skilled people in the powder coating industry, that an excellent balance among stability and the flow of the cured film and weather-ability and mechanical properties imparted by the use of compositions in accordance with the invention are important factors of commercial importance.
  • the powder coating compositions of the invention are cured at a temperature lower than 180°C and higher than 100°C and preferably between 160°C and 140°C.
  • coating binder is the polymeric portion of a coating film after baking and after crosslinking.
  • Polymeric vehicle means all polymeric and resinous components including crosslinking agents in the formulated coating; i.e. before film formation. Pigments and additives may be mixed with the polymeric vehicle to provide a formulated powder coating composition.
  • Dial is a compound with two hydroxyl groups.
  • Polyol is a compound with two or more hydroxyl groups.
  • Diacid is a compound with two carboxyl groups.
  • Polyacid is a compound with two or more carboxyl groups.
  • polymer means a polymer with repeating monomeric units as defined herein.
  • a "film” is formed by application of the formulated coating composition to a base or substrate, and crosslinked.
  • Acid number or acid value means the number of milligrams of potassium hydroxide required for neutralization of free acids present in 1 g of resin.
  • Hydroxyl number of value that is also called acetyl value is a number that indicates the extent to which a substance may be acetylated; it is the number of milligrams of potassium hydroxide required for neutralization of the acetic acid liberated on saponifying 1 g of acetylated sample.
  • polyesters useful in the practice of the invention are thermosettable carboxyl terminated polymers, suitable for formulation of thermosetting powder coatings with epoxide bearing compounds or beta-hydroxyalkylamide. This implies that the polyesters have a sufficiently high glass transition temperature to resist sintering when in powder form and subjected to normally encountered field conditions.
  • the polyester of the present invention has a glass transition temperature T g greater than or equal to 44°C, when determined by differential scanning calorimetry employing a heat-up rate of 10°C per minute in a nitrogen atmosphere; the value is taken at the second run.
  • the number average molecular weight of the carboxylated polyester and the hydroxyl value of the hydroxyl terminated polyester vary, the number of equivalents of diacid necessary to react with the hydroxyl terminated polyester also will vary.
  • the resulting carboxyl terminated polyester has an acid value in the range of from 14 to 60, and a number average molecular weight in the range of from 2000 to 15000.
  • the polyester and the curing compound and various auxiliary substances conventionally used for the manufacture of powder paints and varnishes are mixed homogeneously.
  • This homogenization is carried out for example by melting the polyester, the polyepoxide compound and the various auxiliary substances at a temperature within the range of from 90 to 100°C, preferably in an extruder, for example a Buss-Ko-Kneader extruder or a twin-screw extruder of the Werner-Pfleiderer or Baker Perkins type.
  • the extrudate is then allowed to cool, and is ground and sieved to obtain a powder, having a particle size of 10 to 120 micrometers.
  • the auxiliary substances which can be added to the thermosetting compositions according to the invention include ultraviolet light absorbing compounds such as Tinuvin 928 (from CIBA - Specialties Chemicals), light stabilizers based on sterically hindered amines (for example Tinuvin 144 from CIBA - Specialties Chemicals), phenolic antioxidants (for example Irganox 1010 from CIBA - Specialties Chemicals) and stabilizers of the phosphonite or phosphite type (for example Irgafos 168 or P-EPQ from CIBA - Specialties Chemicals) (Tinuvin, Irganox, Irgafos are Trademarks).
  • ultraviolet light absorbing compounds such as Tinuvin 928 (from CIBA - Specialties Chemicals), light stabilizers based on sterically hindered amines (for example Tinuvin 144 from CIBA - Specialties Chemicals), phenolic antioxidants (for example Irganox 1010 from CIBA
  • pigments may also be added to the thermosetting compositions according to the invention.
  • pigments that may be employed in the invention are metal oxides such as titanium dioxide, iron oxide, zinc oxide and the like, metal hydroxides, metal powders, sulfides, sulfates, carbonates, silicates such as aluminum silicate, carbon black, talc, china clays, barytes, iron blues, lead blues, organic reds, organic maroons and the like.
  • Auxiliary substances may also include flow control agents such as Fluidep F 630 (from COMIEL) Resiflow PV88 (from WORLEE), Modaflow (from Cytec), Acronal 4F (from BASF) (Fluidep, Resiflow, Modaflow, Acronal are trademarks) plasticizers such as dicyclohexyl phthalate, triphenyl phosphate, grinding aids, degassing agents such as benzoin and fillers.
  • flow control agents such as Fluidep F 630 (from COMIEL) Resiflow PV88 (from WORLEE), Modaflow (from Cytec), Acronal 4F (from BASF) (Fluidep, Resiflow, Modaflow, Acronal are trademarks) plasticizers such as dicyclohexyl phthalate, triphenyl phosphate, grinding aids, degassing agents such as benzoin and fillers.
  • plasticizers such as dicyclohexyl phthalate, triphenyl
  • the ground powder paint composition may be applied to the substrate by any of the known means of application. After coating, the deposited layer is cured by heating in an oven. While typically curing is effected at a temperature of 180°C in order to obtain sufficient crosslinking to provide the required coating properties, the compositions of the invention may be cured at lower temperature, for example by maintaining a temperature 160°C or even 140°C. The decrease of curing temperature is economically and technically advantageous since it permits to save energy costs and it offers the possibility to work with substrate that are less thermal resistant than steel.
  • Another advantage of the invention is that the coatings prepared from the compositions containing the polyesters according to the invention have a combination of outstanding properties. Improving the appearance of coatings applied as powders to be equivalent to the quality liquid coating finishes is an important consideration, and the present invention provides coatings with excellent appearance. While conventional coatings can be applied as relatively low viscosity liquids to give smooth films after removal of water and/or solvents, applied powder particles must melt, flow, wet the substrate, and coalesce and level to form a continuous film.
  • the polymeric vehicle of the present invention is effective for providing a stable melt viscosity and flow.
  • Tg of a coating powder resin must be above 45°C in order to possess acceptable non sintering characteristics. If the T g of the coating is high enough, sintering can be avoided. However, coalescing and leveling at the lowest possible temperature are promoted by reducing T g . If the stability of the formulated composition is to be maintained in storage without partial curing, then the T g must be maintained at a sufficient level, i.e. greater than 44°C. The present invention optimizes T g in combination with other factors to provide good coalescence and leveling of the coating prior to cure, whilst not sacrificing storage stability of the formulated powder coating.
  • Example a composition according to the invention
  • the polyesters of examples b, c, d, e, f, g and h are prepared (compositions and properties are given in Tables 1 and 2).
  • First stage 36 6 parts of neopentilglycol 90% are placed in a flask under nitrogen and with stirring with 1,9 parts of Trimethylolpropane, 42.6 parts of terephthalic acid, 5,4 parts of isophtalic acid, 0,1 part of MBTO as catalyst and heated to 245°C. The reaction is continued at atmospheric pressure until a prepolymer containing hydroxyl groups is thus obtained which has the following characteristics: acid number mg KOH/g, ICI viscosity at 200°C 605 mPa.s. Second stage 4,8 parts of adipic acid, 8,4 parts of isophthalic and 0.2 parts of trimethylolpropane are added at 220°C to the prepolymer obtained in the first stage.
  • the polyesters of examples L, M, 1, 2, 3, 4 and 5 are prepared (compositions and properties are given in Tables 3 and 4).
  • the examples I, L, M are compositions according the prior art and the examples 1 to 5 are compositions according to the invention.
  • Table 4 Properties of the comparative examples I, L, M, examples 1-5 and examples a, b and c according to the invention PRIMID 93/7 Comparatives PRIMID 93/7 Invention PRIMID 95/5 Invention TGIC Inv.
  • Polyester resin I L M 1 2 3 4 5 a b c Appearance clear clear clear clear clear clear clear clear clear clear clear clear Colour 50%DMF ⁇ 1 ⁇ 1 ⁇ 1 4/5 4 4 2 2 3 9 9 Acid value 49,4 50,7 51,1 49,8 53,2 51,6 50,7 50,2 34,2 33,2 33,2 Viscosity C&P 200°C (mPa.s) 4020 4000 1820 2430 2850 3330 2600 2360 3280 12000 12000 Gel Time 180°C * 1'34" 1'20" 2' 26" 1'40" 1'29" 2'20" 1'55" 2'40" 2'29” n.a n.a Tg (DSC) midpoint (°C) 58 54 51,3 52,4 58,1 62 58,6 53,1 53,4 51 51 Mw 13673 14900 n.d.
  • thermosetting powder compositions in according with the invention have advantageous characteristics compared to those obtained from compositions of the prior art (Comparative examples I, L and M).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Polyesters Or Polycarbonates (AREA)

Claims (9)

  1. Une composition de revêtement en poudre qui comprend
    (1) 0,1 à 60 pourcent en poids de mono ou d'acides gras polyfonctionnel saturée ou insaturées de mélanges d'entre eux,
    (2) 30 à 60 pourcent en poids d'un diacide aromatique ou diacide cycloalkyle ou anhydride choisi dans le groupe constitué de l'acide isophtalique (IPA), l'acide téréphtalique (TPA), l'anhydride phtalique (PA), l'anhydride trimellitique (TMA), l'acide furandicarboxylique (FDCA), l'acide cyclohexandicarboxilic (CHDA), l'anhydride hexahydrophtalique (HHPA),
    (3) 20 à 30 pourcent en poids de diol aliphatique,
    (4) 0 à 6 pourcent en poids de triol aliphatique,
    (5) 0 à 10 pour cent en poids d'isosorbide et ses isomères diol ou cycloalkyle,
    (6) 0 à 10 pourcent en poids de C3-C12 diacide aliphatique, avec le pourcentage en poids total des monomères égal à 100, et de 4 à 65 pourcent en poids (sur le totale de la résine polyester et durcisseur) de durcisseur et des additifs.
  2. La composition de revêtement en poudre selon la revendication 1, caractérisé en ce que le rapport molaire acide / alcool est supérieur à 1 et avec un indice d'acide supérieur à 15 mg de KOH / g.
  3. La composition de revêtement en poudre selon la revendication 1, caractérisé en ce que le rapport molaire acide / alcool inférieur à 1 et qui avec un indice d'hydroxyle supérieure à 25 mg de KOH / g.
  4. La composition de revêtement en poudre selon l'une quelconque des revendications précédentes caractérisé en ce que la composition de résine de polyester qui comprend:
    (1) 0,5 à 30 pourcent en poids de mono ou d'acides gras poly-fonctionnel saturée ou insaturées de mélanges d'entre eux,
    (2) 30 à 60 pourcent en poids d'un diacide aromatique ou diacide cycloalkyle ou anhydride, choisi dans le groupe constitué de l'acide isophtalique (IPA), l'acide téréphtalique (TPA), l'anhydride phtalique (PA), l'anhydride trimellitique (TMA), l'acide furandicarboxylique (FDCA), l'acide cyclohexandicarboxilic (CHDA), l'anhydride hexahydrophtalique (HHPA),
    (3) 20 à 30 pourcent en poids de diol aliphatique,
    (4) 0 à 6 pourcent en poids de triol aliphatique,
    (5) 0 à 10 pourcent en poids d'isosorbide et ses isomères diol ou cycloalkyle,
    (6) 0 à 10 pourcent en poids de C3-C12 diacide aliphatique, avec le pourcentage en poids total des monomères égal à 100.
  5. La composition de revêtement en poudre selon l'une quelconque des revendications précédentes, caractérisé en ce que la viscosité de fusion (ICI) à 200 °C de la résine polÿestér est de 1500 à 12000 mPa.s et une Tg supérieure à 44 °C, mais inférieure à 70 °C.
  6. La composition de revêtement en poudre selon la revendication 2, caractérisé en ce que le durcisseur est choisi dans un polyépoxyde non-isocyanurate ou bêta-hydroxyalkylamide ou de triglycidyle isocyanurate ou de résines époxy (les éthers glycidyliques de bisphénol A et F ou les résines époxy-novolaques, les esters glycidyliques et leurs mélanges) dans un pourcent en poids (sur le totale de la résine polyester et durcisseur) de 2,5 à 50.
  7. La composition de revêtement en poudre selon la revendication 3, caractérisé en ce que le durcissement est choisi parmi le trimère du diisocyanate d'isophorone, le trimère de l'hexaméthylène diisocyanate, polyisocyanate bloqué par le caprolactame ou auto bloqué uretdiones à un pourcentage en poids de 10 à 65 sur le totale de la résine polyester et durcisseur.
  8. La composition de revêtement en poudre des revendications 5 à 7 caractérisé en ce que la température de durcissement est inférieure à 180 °C et supérieure à 100 °C et de préférence entre 160 °C et 140 °C.
  9. Un article revêtu comprenant la composition polymère selon la revendication 8 dans un film durci.
EP09775113.5A 2008-12-19 2009-12-14 Compositions de revêtement de poudre pour le durcissement à basse température et haut débit Active EP2370493B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL09775113T PL2370493T3 (pl) 2008-12-19 2009-12-14 Kompozycja do malowania proszkowego do schematu utwardzania niskotemperaturowego i o wysokim płynięciu
EP09775113.5A EP2370493B1 (fr) 2008-12-19 2009-12-14 Compositions de revêtement de poudre pour le durcissement à basse température et haut débit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08075956A EP2199314A1 (fr) 2008-12-19 2008-12-19 Compositions de revêtement de poudre pour le durcissement à basse température et haut débit
EP09775113.5A EP2370493B1 (fr) 2008-12-19 2009-12-14 Compositions de revêtement de poudre pour le durcissement à basse température et haut débit
PCT/EP2009/008928 WO2010069531A1 (fr) 2008-12-19 2009-12-14 Compositions de revêtement en poudre pour durcissement à basse température et fluidité élevée

Publications (2)

Publication Number Publication Date
EP2370493A1 EP2370493A1 (fr) 2011-10-05
EP2370493B1 true EP2370493B1 (fr) 2016-03-23

Family

ID=40599959

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08075956A Withdrawn EP2199314A1 (fr) 2008-12-19 2008-12-19 Compositions de revêtement de poudre pour le durcissement à basse température et haut débit
EP09775113.5A Active EP2370493B1 (fr) 2008-12-19 2009-12-14 Compositions de revêtement de poudre pour le durcissement à basse température et haut débit

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08075956A Withdrawn EP2199314A1 (fr) 2008-12-19 2008-12-19 Compositions de revêtement de poudre pour le durcissement à basse température et haut débit

Country Status (6)

Country Link
US (2) US20110281972A1 (fr)
EP (2) EP2199314A1 (fr)
CN (1) CN102257030B (fr)
ES (1) ES2572161T3 (fr)
PL (1) PL2370493T3 (fr)
WO (1) WO2010069531A1 (fr)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2325229A1 (fr) 2009-11-13 2011-05-25 Cytec Surface Specialties, S.A. Polyesters pour revêtements
EP2591040B1 (fr) * 2010-07-07 2019-08-14 Perstorp AB Résine alkyde
US10800878B2 (en) 2011-10-14 2020-10-13 Eastman Chemical Company Polyester compositions containing furandicarboxylic acid or an ester thereof, cyclobutanediol and ethylene glycol
EP2791199B1 (fr) 2011-12-16 2015-09-16 3M Innovative Properties Company Dérivés de bisanhydrohexitol contenant de l'oxirane et leurs utilisations
FR2986529B1 (fr) 2012-02-02 2015-09-18 A Et A Mader Resine alkyde biosourcee et procede de fabrication d'une telle resine alkyde
FR3009304B1 (fr) 2013-08-05 2016-09-30 A Et A Mader Resine alkyde biosourcee et procede de fabrication d'unte telle resine alkyde
JP6604201B2 (ja) * 2014-04-25 2019-11-13 三菱ケミカル株式会社 ポリエステル樹脂、ポリエステル樹脂の製造方法及びポリエステル樹脂を含む塗料組成物
CN104927594A (zh) * 2015-06-02 2015-09-23 广西柳州高昭贸易有限公司 一种汽车轮毂翻新用涂料的加工工艺
CN104927593A (zh) * 2015-06-02 2015-09-23 广西柳州高昭贸易有限公司 一种汽车轮毂翻新用涂料的调制工艺
CN104927596A (zh) * 2015-06-02 2015-09-23 广西柳州高昭贸易有限公司 一种汽车轮毂翻新用涂料的调制方法
CN104927595A (zh) * 2015-06-02 2015-09-23 广西柳州高昭贸易有限公司 一种汽车轮毂翻新用涂料的加工方法
CN104927598A (zh) * 2015-06-02 2015-09-23 广西柳州高昭贸易有限公司 一种汽车轮毂翻新用涂料的制造工艺
CN105907352B (zh) * 2016-06-24 2019-05-21 江苏景宏新材料科技有限公司 一种碱性干电池标签用热熔压敏胶及其制备方法
EP3478774B1 (fr) * 2016-07-04 2023-08-09 Allnex Netherlands B.V. Compositions de poudre à durcissement à faible température
CN107254035A (zh) * 2017-04-20 2017-10-17 浙江传化天松新材料有限公司 一种β‑羟烷基酰胺固化耐水性好的粉末涂料用聚酯树脂及其制备方法
CN107266665A (zh) * 2017-04-20 2017-10-20 浙江传化天松新材料有限公司 一种tgic固化高韧性、超高耐候性粉末涂料用聚酯树脂及其制备方法
CN107266666A (zh) * 2017-04-20 2017-10-20 浙江传化天松新材料有限公司 一种抗起霜低温羟烷基酰胺固化粉末涂料用聚酯树脂及其制备方法
CN107915898B (zh) * 2017-10-30 2019-12-03 惠州市优恒科三维材料有限公司 可交联、打印速度快、打印精细度高、可同时用于铸造和模型的3d打印成型蜡及其制备方法
CN108264828B (zh) * 2018-01-24 2020-09-22 佛山市三水金恒金属制品有限公司 一种铝型材粉末涂料用的聚酯树脂的制备方法
CN109180922B (zh) * 2018-09-07 2021-06-22 安徽恒隆新材料有限公司 一种低温固化型聚酯树脂及其制备方法与应用
US10544158B1 (en) 2019-03-14 2020-01-28 Covestro Llc Process for producing polycyclic polyether polyols
US11566145B2 (en) 2019-03-14 2023-01-31 Covestro Llc Polyurethane coating compositions and their use as gel coats
US11492498B2 (en) 2019-07-30 2022-11-08 Estron Chemical Isosorbide-based degassing agent
KR102524077B1 (ko) * 2020-12-30 2023-04-20 주식회사 케이씨씨 분체도료 조성물
CN112920684B (zh) * 2021-02-26 2022-05-17 北京碧海云智新材料技术有限公司 一种低温固化粉末涂料及其制备方法和应用
CN113461922B (zh) * 2021-07-28 2022-10-25 安徽永利新材料科技有限公司 一种超低温固化粉末涂料用低酸值聚酯树脂及其制备方法
CN114085363B (zh) * 2021-12-13 2023-01-03 安徽神剑新材料股份有限公司 一种高填充粉末涂料用聚酯树脂及其制备方法、高填充粉末涂料
CN114149575B (zh) * 2021-12-20 2023-02-28 黄山正杰新材料有限公司 一种高流平、持久耐高温型聚酯树脂及其制备方法
CN116441146A (zh) * 2022-12-29 2023-07-18 武汉航空仪表有限责任公司 一种z系列聚酯桔形烘干磁漆的固化方法
CN116875171A (zh) * 2023-08-23 2023-10-13 山东千江粉末科技有限公司 一种低摩擦系数粉末涂料以及制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5090623A (fr) * 1973-12-14 1975-07-19
US4211691A (en) * 1977-02-23 1980-07-08 E. I. Du Pont De Nemours And Company Thermoplastic powder coating systems
US4379895A (en) * 1982-01-28 1983-04-12 The Goodyear Tire & Rubber Company Acid-capped polyester resins
US4801680A (en) 1987-12-30 1989-01-31 Ppg Industries, Inc. Hydroxyalkylamide powder coating curing system
GB9006737D0 (en) 1990-03-26 1990-05-23 Courtaulds Coatings Ltd Coating compositions
NL9201985A (nl) 1992-11-13 1994-06-01 Dsm Nv Poederverf op basis van een polymeer met vrije carbonzuurgroepen als bindmiddel en een beta-hydroxyalkylamidegroepen bevattende verbinding als crosslinker.
BE1011737A3 (fr) 1998-02-09 1999-12-07 Ucb Sa Polyester contenant des groupes carboxyle tertiaires, son procede de preparation et compositions thermodurcissables en poudre le contenant.
US6063464A (en) 1998-04-23 2000-05-16 Hna Holdings, Inc. Isosorbide containing polyesters and methods for making same
AU3390799A (en) 1998-06-24 2000-01-13 Lubrizol Corporation, The Powder coating additive, powder coating composition containing said additive and method for coating a substrate using said powder coating composition
US6342300B1 (en) 1999-02-20 2002-01-29 Celanese Ventures Gmbh Biodegradable polymers based on natural and renewable raw materials especially isosorbite
CN1137204C (zh) * 2001-07-06 2004-02-04 奉化南海药化集团有限公司 固化剂组合物以及含该组合物的粉末涂料
US20040211678A1 (en) * 2003-04-28 2004-10-28 Edmondson Stephen J. Cathodic corrosion protection powder coating composition and method
CN1613935A (zh) * 2004-09-29 2005-05-11 广州擎天实业有限公司 一种低光耐候粉末涂料及其制备方法
CN101035874A (zh) * 2004-10-06 2007-09-12 关西涂料株式会社 热固性粉末涂料组合物
US20060079650A1 (en) * 2004-10-12 2006-04-13 Stevenson Thomas A Flexible, super durable powder coating composition
EP2284215A3 (fr) 2005-03-18 2011-06-15 Battelle Memorial Institute Résine polyuréthan
KR20080040047A (ko) 2005-09-01 2008-05-07 헥시온 스페셜티 케미칼즈 인코퍼레이티드 난-시아누레이트 폴리에폭사이드로 가교결합된 분말 코팅조성물에 대한 개선
EP1873183A1 (fr) * 2006-06-30 2008-01-02 DSMIP Assets B.V. Utilisation de polyester ramifié dans des compositions de revêtement en poudre

Also Published As

Publication number Publication date
PL2370493T3 (pl) 2016-08-31
EP2370493A1 (fr) 2011-10-05
CN102257030B (zh) 2014-04-02
US20130331513A1 (en) 2013-12-12
US9475956B2 (en) 2016-10-25
WO2010069531A1 (fr) 2010-06-24
ES2572161T3 (es) 2016-05-30
US20110281972A1 (en) 2011-11-17
EP2199314A1 (fr) 2010-06-23
CN102257030A (zh) 2011-11-23

Similar Documents

Publication Publication Date Title
EP2370493B1 (fr) Compositions de revêtement de poudre pour le durcissement à basse température et haut débit
US6863982B2 (en) Curable film-forming composition exhibiting improved yellowing resistance
KR20060052160A (ko) 가요성의 초내구성 분말 코팅 조성물
KR20020079879A (ko) 코팅용의 열경화성 분체 조성물
JPH04103678A (ja) 粉体塗料組成物
JP3604430B2 (ja) 熱硬化性でエポキシド基不含の被覆組成物、該組成物の製造法、該組成物からなる粉末ラッカー、該組成物からなる保護層、および該層の製造法
EP3874001B1 (fr) Résines de revêtement en poudre basse cuisson
KR101783122B1 (ko) 카르복실 폴리에스터 수지 및 이를 포함하는 분체도료 조성물
EP2096140A1 (fr) Compositions en poudre
US20120004373A1 (en) Powder coating compositions cross-linked with non cyanurate polyepoxides
EP2250208B1 (fr) Résine de polyester thermodurcissable modifiée par un polyester semi-cristallin pour des revêtements en poudre
JP3760575B2 (ja) 粉体塗料用樹脂組成物
KR100987188B1 (ko) 내한 칩핑성이 우수한 이소시아네이트 변성 카르복시폴리에스테르 수지와 이를 포함하는 자동차용 분체도료조성물
KR102398321B1 (ko) 초저온 속경화성 에폭시 수지의 제조방법 및 이에 의해 제조된 수지를 포함하는 분체도료용 조성물
EP2630178B1 (fr) Revêtement en poudre ä basse température de réticulation
JPS588430B2 (ja) フンタイトリヨウヨウジユシソセイブツ
JPH02233787A (ja) 塗料用樹脂組成物
JP2003105265A (ja) 粉体塗料及び塗膜形成方法
EP2441787A1 (fr) Composition de revêtement de poudre pour basse température de cuisson
EP2441810A1 (fr) Procédé de revêtement doté d'une composition de revêtement de poudre basse cuisson

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20121004

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HEXION RESEARCH BELGIUM SA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150724

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20151125

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 783086

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009037104

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2572161

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160530

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160623

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160624

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 783086

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602009037104

Country of ref document: DE

Representative=s name: FLEISCHER, ENGELS & PARTNER MBB, PATENTANWAELT, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160723

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160725

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009037104

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602009037104

Country of ref document: DE

Representative=s name: FLEISCHER, ENGELS & PARTNER MBB, PATENTANWAELT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602009037104

Country of ref document: DE

Owner name: SYNTHOMER USA LLC, DOVER, US

Free format text: FORMER OWNER: HEXION RESEARCH BELGIUM SA, OTTIGNIES-LOUVAIN-LA-NEUVE, BE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160623

26N No opposition filed

Effective date: 20170102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161214

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20091214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20201214

Year of fee payment: 12

Ref country code: SE

Payment date: 20201221

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211214

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20221213

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231102

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231110

Year of fee payment: 15

Ref country code: FR

Payment date: 20231122

Year of fee payment: 15

Ref country code: DE

Payment date: 20231031

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231116

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240112

Year of fee payment: 15