EP2319957B1 - Schwarzpassivierung von Zink- und Zinkeisenschichten - Google Patents

Schwarzpassivierung von Zink- und Zinkeisenschichten Download PDF

Info

Publication number
EP2319957B1
EP2319957B1 EP10175959.5A EP10175959A EP2319957B1 EP 2319957 B1 EP2319957 B1 EP 2319957B1 EP 10175959 A EP10175959 A EP 10175959A EP 2319957 B1 EP2319957 B1 EP 2319957B1
Authority
EP
European Patent Office
Prior art keywords
zinc
solution
passivation
ions
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10175959.5A
Other languages
English (en)
French (fr)
Other versions
EP2319957A1 (de
Inventor
Dr. Manfred Jordan
Dr. Roland Pfiz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Ing Max Schloetter GmbH and Co KG
Original Assignee
Dr Ing Max Schloetter GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Ing Max Schloetter GmbH and Co KG filed Critical Dr Ing Max Schloetter GmbH and Co KG
Priority to SI201031381A priority Critical patent/SI2319957T1/sl
Publication of EP2319957A1 publication Critical patent/EP2319957A1/de
Application granted granted Critical
Publication of EP2319957B1 publication Critical patent/EP2319957B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/10Use of solutions containing trivalent chromium but free of hexavalent chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc

Definitions

  • the invention relates to an acidic, aqueous reaction solution for producing a black passivation layer on zinc and zinc iron layers, to a method in which this reaction solution is used, and to the black passivation layer obtainable by this method.
  • the galvanic coating of components made of iron or steel with zinc or zinc alloys is carried out on a large scale and has a high economic importance.
  • the deposited layers protect the base material against corrosion and thus lead to a high increase in the value of the components.
  • the corrosion protection of iron or steel by zinc or zinc alloys is based on the anodic protection mechanism. Zinc or zinc alloys are less electrochemical than the base material. The corrosion attack therefore begins on the coating and the base material remains protected against corrosion as long as a closed zinc or zinc alloy surface is present.
  • the applied less noble zinc or Zinc alloy coatings are therefore also known as Called "sacrificial layers".
  • a zinc nickel layer with> 16% nickel is the nobler component compared to iron or steel and therefore can no longer provide anodic corrosion protection. The deposition of such a layer on iron or steel would therefore lead to preferred base material corrosion inhomogeneities of the coating (pitting corrosion).
  • the color of the chromating layers can be varied by composition of the solutions and by the working parameters in the treatment. You can create blue, yellow or olive colored surfaces. In this order, the layer thickness of the conversion layers and thus the corrosion protection increases.
  • black chromating layers Furthermore, it is also possible to produce black chromating layers.
  • the black chromations for pure zinc coatings were often added silver salts in very low concentrations. By reaction with the zinc surface, the Silver ions reduced to metallic silver. This resulting in very finely divided form silver is incorporated into the forming chromate layer and acts there as a black pigment.
  • Black chromations can produce deep black, uniform surfaces that can be used for decorative purposes.
  • the incorporation of small amounts of silver in the layer can have a detrimental effect on the corrosion protection, since silver is a very noble metal and therefore corrosion can lead to local element formation and thereby deterioration of the corrosion protection.
  • the alloying partners iron, cobalt or nickel can be converted into their oxides by suitable composition of the chromating solutions. These then act as black pigments in the chromating layer. Addition of silver salts to produce black pigments is not required in these cases.
  • the problem of the decomposition of these sulfur compounds also remains, if one does not use the free acids, but their salts.
  • the acids underlying the salts are weaker acids than e.g. Nitric acid or sulfuric acid used to adjust the pH of passivation solutions. The dissociation of the corresponding salts is thereby shifted to the side of the free acids, which then in turn uses the decomposition of the compounds.
  • WO 2005/068684 A1 The formation of the black passivation layer leads to the formation of iron-sulfur pigments. Although the method should also be suitable for the black passivation of pure zinc coatings, this hardly seems possible because they contain no iron and thus no iron-sulfur pigments can be formed.
  • a black corrosion resistant coating on zinc alloys and a method for its production is disclosed in US Pat EP 1 409 157 B1 described.
  • the layers are generated in a two-step process. First, a passivation layer is formed in a passivation solution based on trivalent chromium compounds. This layer does not have a black appearance yet. In a second process step is then in a sealing solution, the Contains black pigments, submerged. Although it is possible to achieve layers with the desired black appearance, such a two-step process is undesirable in practice. The application of a seal based on organic compounds is not permitted in all applications. It is therefore more advantageous if the black optic can already be achieved by the passivation layer and not only by the additional step of sealing.
  • EP 1 484 432 A1 claims a treatment solution and method for depositing black passivation layers on zinc or zinc alloy layers.
  • a disadvantage of this method is the relatively complicated composition of the treatment solution.
  • the deposition of black passivation layers requires a very close ratio of nitrate to chromium.
  • the ratio NO - 3 / Cr 3+ should be less than 0.5 / 1.
  • the chromium concentration is preferably 0.5 to 10 g / l, corresponding to 0.001 to 0.19 mol / l. This results in a resulting nitrate concentration of not more than 0.0005 to 0.095 mol / l or 0.03 to 5.9 g / l.
  • the analysis of such low nitrate concentrations is very difficult with the analytical methods that are commonly available in a galvanic plant operation laboratory. Furthermore, the formation of the passivation layer continuously consumes chromium, which shifts the ratio NO - 3 / Cr 3+ . The operation of the solution, which requires a tight NO - 3 / Cr 3+ ratio, thereby becomes unstable.
  • the solution also contains complexing agents from the group of monocarboxylic acids, dicarboxylic acids, tricarboxylic acids, hydroxycarboxylic acids or aminocarboxylic acids. These form partially stable complexes with the metal ions contained in the solution. These cause difficulties in wastewater treatment and are therefore undesirable.
  • EP 1 571 238 A1 describes a Cr (III) -containing passivating solution containing Cr (III) ions and at least two types of ions selected from sulfate ions, nitrate ions, chloride ions, oxyacid ions of chlorine and boron, oxyacid ions of phosphorus and fluoride ions.
  • this solution may also contain a sulfur compound.
  • Such a solution is used to make a coating for aluminum components.
  • WO 2010/035819 A1 relates to a passivation solution and the use of this black passivation solution.
  • the passivating solution is an aqueous solution containing a Cr (III) -containing substance, a cobalt-containing substance, a sulfur compound, an organophosphonic acid compound and, if necessary, a nickel-containing substance, the passivating solution being substantially free of Cr (VI ).
  • the present invention relates to the above-described acidic aqueous passivating solution containing Cr (III) ions, fluoride ions, nitrate ions and dithiodiglycolic acid, or a salt thereof, and a method for producing black passivation layers on zinc or zinc iron alloy layers, in which a workpiece provided with a zinc or zinc iron alloy layer is brought into contact with the passivation solution of the present invention. Moreover, the present invention relates to a black passivation layer obtainable by the method according to this invention.
  • the passivation solution contains a dithiodiglycolic acid (HOOC-CH 2 -SS-CH 2 -COOH) or a salt of this acid.
  • a dithiodiglycolic acid HOOC-CH 2 -SS-CH 2 -COOH
  • Any salts of dithiodiglycolic acid can be used. Examples of these are the sodium or disodium salt, the potassium or dipotassium salt and the ammonium or diammonium salt. Particularly preferred is the use of the diammonium salt of dithiodiglycolic acid.
  • the passivation solution according to the invention contains the dithiodiglycolic acid or a salt of this acid in a concentration, based on the free acid, of preferably 2-10 g / l of passivating solution, more preferably 4-6 g / l of passivating solution.
  • Cr (III) ions all soluble chromium (III) compounds can be used. Examples which may be mentioned are chromium (III) chloride, CrCl 3 .H 2 O, basic chromium (III) sulfate, CrOHSO 4 , potassium chromium sulfate, KCr (SO 4 ) 2 .6H 2 O and chromium nitrate, Cr (NO 3 ). 3 x 9H 2 O. Preferred is chromium nitrate, Cr (NO 3 ) 3 .9H 2 O.
  • the Cr (III) ions are present in the passivation solution in an amount of 1-10 g / l passivating solution, more preferably 4-5 g / l passivating solution.
  • the passivating solution according to this invention contains fluoride ions.
  • the fluoride ions are present in the passivation solution in an amount of 0.3-3 g / l passivating solution, more preferably 1-1.5 g / l passivating solution.
  • fluoride ions all soluble fluoride compounds can be used. Preferred are sodium fluoride, NaF, potassium fluoride, KF, ammonium fluoride, NH 4 F, sodium bifluoride, NaF ⁇ HF, potassium bifluoride, KF ⁇ HF, ammonium bifluoride, NH 4 F ⁇ HF. Very particularly preferred is the use of sodium fluoride, NaF.
  • the passivation solution according to the present invention also contains nitrate ions.
  • the amount of nitrate ion is 3-35 g / l passivating solution, more preferably 15-25 g / l.
  • the nitrate ions can be added to the passivating solution in any form of soluble nitrate salt. It is also possible to use a combination of several different soluble nitrate salts.
  • the nitrate ions may be added together with the Cr (III) ions as the chromium nitrate, Cr (NO 3 ) 3 .9H 2 O.
  • Another suitable nitrate salt is, for example, sodium nitrate.
  • the nitrate ion addition is in the form of sodium nitrate, it should be considered in terms of the preferred total nitrate concentration in which form the addition of the chromium compound occurs.
  • a passivating solution which comprises Cr (III) ions in an amount of 1-10 g / l passivating solution, fluoride ions in an amount of 0.3-3 g / l passivating solution, nitrate ions in an amount of 3 - 35 g / l passivation solution and dithiodiglycolic acid or a salt thereof in an amount, based on dithiodiglycolic acid, of g / l.
  • an acidic, aqueous passivating solution containing the following constituents is very particularly preferred: Cr (III) ions in an amount of 4-5 g / l passivating solution, fluoride ions in an amount of 1-1.5 g / Passivation solution, nitrate ions in an amount of 15-25 g / l passivating solution and dithiodiglycolic acid or a salt thereof in an amount, based on dithiodiglycolic acid, of 4-6 g / l.
  • the passivation solution of the present invention may contain cobalt ions.
  • the incorporation of cobalt ions in passivations based on trivalent chromium compounds is known and serves to further improve the corrosion resistance.
  • the concentration of cobalt ions in the passivating solution is preferably 0.1-10 g / l passivating solution, more preferably 0.5-5 g / l.
  • the addition of the cobalt ions can be carried out in any form of water-soluble cobalt salts. Preference is given to cobalt sulfate, cobalt chloride or cobalt nitrate.
  • the pH of the passivating solution of the present invention is suitably adjusted to a preferred range of 1.8 to 2.2, more preferably 1.9 to 2.1.
  • the present invention further provides a process for producing black passivation layers on zinc and zinc iron layers using the passivation solution described above.
  • a workpiece provided with a zinc or zinc iron layer is brought into contact with the passivating solution.
  • the contacting may be spraying, swelling or dipping.
  • dipping is used in the art.
  • the reaction temperature is preferably 10 to 70 ° C. Particularly preferred is a temperature range of 15-50 ° C, more preferably 20-50 ° C.
  • the workpieces are with the Passivation for a period of preferably 60- 90 seconds, more preferably 75 seconds, brought into contact. That is, when the workpieces are dipped in the passivation solution, the dipping time is preferably 60-90 seconds.
  • the black passivation layer may be formed on a zinc or zinc iron alloy layer.
  • a sealing layer a so-called “topcoat”
  • a sealing layer is known and improves corrosion resistance.
  • the workpiece is brought into contact with a sealing solution.
  • a sealing solution It is an aqueous solution containing organic, water-soluble or dispersible polymers.
  • organic, water-soluble or dispersible polymers For example, copolymers of acrylic acid or methacrylic acid with ethylene, commercially available under the name Lugalavan DC Fa. BASF, are used.
  • Inorganic sealant solutions contain colloidal silicic acids. It is also possible to prepare mixtures of aqueous solutions with organic polymers and aqueous solutions with colloidal silicas and to use these as a sealing solution.
  • the present invention also provides a black passivation layer obtainable by the method described above.
  • the black passivation layer is formed on a pure zinc layer.
  • the mixture is heated to 65 ° C for 30 minutes, then cooled to room temperature. It is then made up to 1 liter with deionized water.
  • the volume was made up to approximately 1 liter with deionized water, then the pH was reduced with conc. Nitric acid (53 wt.%) Adjusted to 1.8 to 1.9 and made up to the final volume of 1 liter.
  • test sheet was rinsed in deionized water, immersed in dilute nitric acid solution (10 ml / l HNO 3 53% by weight) for 5 seconds and then in the above immersed in the following conditions: Temperature: 25 ° C PH value: 1.8 - 1.9 Dive time: 60 seconds
  • test sheet was then rinsed with deionized water and dried in a drying oven at 80 ° C for 15 minutes. The appearance of the test sheet was then deep black with slightly brownish iridescent spots.
  • Example 1 was repeated as described. After passivation and rinsing, it was immersed in a sealing solution (SLOTOFIN 70 from Dr.-Ing. Max Schlötter, aqueous dispersion of a copolymer of acrylic acid and ethylene).
  • SLOTOFIN 70 from Dr.-Ing. Max Schlötter, aqueous dispersion of a copolymer of acrylic acid and ethylene.
  • test sheet was dried without rinsing at 80 ° C for 15 minutes in a drying oven.
  • the sealed test sheet had a uniform deep black, semi-glossy appearance.
  • Test panels which were prepared according to Examples 1 and 2, were tested in a corrosion test in the neutral salt spray test according to DIN EN ISO 9227. Following DIN 50 979, 1 sample was tested without additional heat treatment and 1 sample was annealed at 120 ° C. for 24 hours. corrosion protection without heat treatment with heat treatment (120 ° C / 24h) example 1 72 h 72 h Example 2 > 240 h > 240 h
  • the volume was made up to approximately 1 liter with deionized water, then the pH was reduced with conc. Nitric acid (53 wt.%) Adjusted to 1.8 to 1.9 and made up to the final volume of 1 liter.
  • a passivation solution was prepared as in Comparative Example 1, but thiodiglycolic acid was replaced by 4 g of cystine. The passivation reaction did not result in blackening.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

    Technisches Gebiet
  • Die Erfindung betrifft eine saure, wässrige Reaktionslösung zur Erzeugung einer schwarzen Passivierungsschicht auf Zink- und Zinkeisenschichten, ein Verfahren, bei dem diese Reaktionslösung verwendet wird, sowie die durch dieses Verfahren erhältliche schwarze Passivierungsschicht.
  • Stand der Technik
  • Die galvanische Beschichtung von Bauteilen aus Eisen oder Stahl mit Zink- oder Zinklegierungen wird in großem Umfang durchgeführt und hat eine hohe wirtschaftliche Bedeutung. Die abgeschiedenen Schichten schützen das Grundmaterial vor Korrosion und führen dadurch zu einer hohen Wertsteigerung der Bauteile. Der Korrosionsschutz für Eisen oder Stahl durch Zink- oder Zinklegierungen beruht auf dem anodischen Schutzmechanismus. Zink- oder Zinklegierungen sind elektrochemisch unedler als das Grundmaterial. Der Korrosionsangriff beginnt daher am Überzug, und das Grundmaterial bleibt vor Korrosion geschützt, solange eine geschlossene Zink- oder Zinklegierungsoberfläche vorliegt.
    Die aufgebrachten unedleren Zink- bzw.
    Zinklegierungsschichten werden daher auch als
    "Opferschichten" bezeichnet.
  • Bei Anwendung einer Zinklegierung, z.B. Zink-Nickel, muss darauf geachtet werden, dass das elektrochemische Potential der Legierung noch unedel in Bezug auf das Grundmaterial bleibt. Eine Zinknickelschicht mit > 16 % Nickel ist gegenüber Eisen oder Stahl die edlere Komponente und kann daher keinen anodischen Korrosionsschutz mehr liefern. Die Abscheidung einer solchen Schicht auf Eisen oder Stahl würde daher zur bevorzugten Grundmaterialkorrosion an Inhomogenitäten des Überzuges führen (Lochfraßkorrosion).
  • Um den Korrosionsangriff auf die Opferschichten aus Zink oder einer Zinklegierung noch hinaus zu zögern und damit den Korrosionsschutz insgesamt zu verbessern, ist es im Stand der Technik bekannt, auf die Zink- oder Zinklegierungsschichten noch eine zusätzliche Konversionsschicht aufzubringen. Hier war es in der Vergangenheit üblich, solche Konversionsschichten durch Behandlung der Bauteile in sauren, chromathaltigen Lösungen zu erzeugen. Nachteilig ist bei diesen Schichten, dass darin auch sechswertige Chromverbindungen eingelagert werden. Diese sind teilweise wasserlöslich und können dadurch aus den Schichten ausgelaugt werden. Wegen der hohen Giftigkeit der Chrom(VI) -verbindungen stellen solche Schichten eine Gefahr für Mensch und Umwelt dar. Die Verfahren auf Basis sechswertiger Chromverbindungen werden daher zunehmend durch Verfahren auf Basis ungiftiger Chrom(III)-verbindungen ersetzt.
  • Die Farbe der Chromatierungsschichten kann durch Zusammensetzung der Lösungen und durch die Arbeitsparameter bei der Behandlung variiert werden. Es können blaue, gelbe oder olivfarbene Oberflächen erzeugt werden. In dieser Reihenfolge nimmt auch die Schichtdicke der Konversionsschichten und somit der Korrosionsschutz zu.
  • Weiterhin ist es auch möglich, schwarze Chromatierungsschichten zu erzeugen. Den Schwarzchromatierungen für Reinzinkschichten wurden dabei häufig Silbersalze in sehr geringen Konzentrationen zugesetzt. Durch Reaktion mit der Zinkoberfläche werden die Silberionen zu metallischem Silber reduziert. Dieses in sehr fein verteilter Form anfallende Silber wird in die sich bildende Chromatschicht eingebaut und wirkt dort als Schwarzpigment. Durch Schwarzchromatierungen können tiefschwarze, gleichmäßige Oberflächen erzeugt werden, die zu dekoraktiven Zwecken eingesetzt werden können. Der Einbau geringer Mengen an Silber in die Schicht kann sich jedoch nachteilig auf den Korrosionsschutz auswirken, da Silber ein sehr edles Metall ist und es bei der Korrosion daher zu Lokalelementbildung und dadurch Verschlechterung des Korrosionsschutzes kommen kann.
  • Bei Zinklegierungsschichten wie Zink-Eisen, Zink-Cobalt oder Zink-Nickel können durch geeignete Zusammensetzung der Chromatierungslösungen die Legierungspartner Eisen, Cobalt oder Nickel in ihre Oxide überführt werden. Diese wirken dann als Schwarzpigmente in der Chromatierungsschicht. Ein Zusatz von Silbersalzen zur Erzeugung von Schwarzpigmenten ist in diesen Fällen nicht erforderlich.
  • Auf dem Gebiet der Verfahren zur Ausbildung von Passivierungsschichten aus Lösungen auf der Basis von dreiwertigen Chromverbindungen besteht jedoch Bedarf an weitere Verfahren für die Schwarzpassivierung von Zinkschichten.
  • Ein Verfahren zur Schwarzpassivierung von Zink- oder Zinklegierungsschichten ist in WO 2005/068684 A1 offenbart. Es wird dort beschrieben, zu Passivierungslösungen auf Basis dreiwertiger Chromverbindungen anorganische und/oder organische Schwefelverbindungen zuzusetzen. Als geeignete Schwefelverbindungen werden speziell genannt:
    • Hyposchwefelige Säure (H2SO2)
    • Schwefelige Säure (H2SO3)
    • Schwefelwasserstoffsäure (H2S)
    • Thioschwefelsäure (H2S2O3) und
    • Dischweflige Säure (H2S2O5)
  • Es handelt sich bei allen diesen genannten Verbindungen um solche, die im sauren Bereich um pH 2, bei dem üblicherweise gearbeitet wird, nicht stabil sind. Im sauren Bereich werden in einigen Fällen toxische Gase freigesetzt (SO2, H2S). Zum einen führt die Zersetzung der Schwefelverbindung zu unstabilen Prozessen und zum anderen bedingt die Freisetzung der toxischen Gase eine Gefährdung des Bedienungspersonales an solchen Anlagen.
  • Das Problem der Zersetzung dieser Schwefelverbindungen bleibt natürlich auch bestehen, wenn man nicht die freien Säuren, sondern deren Salze einsetzt. Die den Salzen zugrundeliegenden Säuren sind schwächere Säuren als z.B. Salpetersäure oder Schwefelsäure, die zum Einstellen des pH-Wertes von Passivierungslösungen verwendet werden. Die Dissoziation der entsprechenden Salze wird dadurch auf die Seite der freien Säuren verschoben, wodurch dann wiederum die Zersetzung der Verbindungen einsetzt.
  • WO 2005/068684 A1 führt die Bildung der schwarzen Passivierungsschicht auf die Bildung von Eisen-Schwefel-Pigmenten zurück. Obwohl das Verfahren auch für die Schwarzpassivierung von Reinzinkschichten geeignet sein soll, so erscheint dies schwerlich möglich, weil diese kein Eisen enthalten und somit keine Eisen-Schwefel-Pigmente gebildet werden können.
  • Ein schwarzer korrosionsbeständiger Überzug auf Zinklegierungen und ein Verfahren zu seiner Herstellung wird in EP 1 409 157 B1 beschrieben. Die Schichten werden dabei in einem zweistufigen Verfahren erzeugt. Es wird zunächst eine Passivierungsschicht in einer Passivierungslösung auf Basis von dreiwertigen Chromverbindungen gebildet. Diese Schicht hat noch kein schwarzes Aussehen. In einem zweiten Verfahrensschritt wird dann in einer Versiegelungslösung, die Schwarzpigmente enthält, nachgetaucht. Obwohl sich damit Schichten mit der gewünschten schwarzen Optik erzielen lassen, ist ein solches zweistufiges Verfahren in der Praxis unerwünscht. Die Aufbringung einer Versiegelung auf Basis organischer Verbindungen ist nicht bei allen Anwendungen zulässig. Es ist daher vorteilhafter, wenn die schwarze Optik bereits durch die Passivierungsschicht erreicht werden kann und nicht erst durch den zusätzlichen Schritt einer Versieglung.
  • EP 1 484 432 A1 beansprucht eine Behandlungslösung und ein Verfahren zur Abscheidung von schwarzen Passivierungsschichten auf Zink oder Zinklegierungsschichten. Nachteilig bei diesem Verfahren ist die relativ komplizierte Zusammensetzung der Behandlungslösung. Für die Abscheidung schwarzer Passivierungsschichten ist ein sehr enges Verhältnis von Nitrat zu Chrom erforderlich. Das Verhältnis NO- 3/Cr3+ soll weniger als 0,5/1 betragen. Die Chromkonzentration beträgt vorzugsweise 0,5 bis 10 g/l, entsprechend 0,001 bis 0,19 mol/l. Daraus ergibt sich eine resultierende Nitratkonzentration von maximal 0,0005 bis 0,095 mol/l oder 0,03 bis 5,9 g/l. Die Analyse derart niedriger Nitratkonzentrationen ist mit den Analysenmethoden, die üblicherweise in einem Betriebslabor von Galvanobetrieben zur Verfügung stehen, sehr schwierig. Ferner wird durch die Ausbildung der Passivierungsschicht kontinuierlich Chrom verbraucht, wodurch sich das Verhältnis NO- 3/Cr3+ verschiebt. Die Arbeitsweise der Lösung, für die ein enges NO- 3/Cr3+-Verhältnis erforderlich ist, wird dadurch unstabil. Die Lösung enthält weiterhin Komplexbildner aus der Gruppe der Monocarbonsäuren, Dicarbonsäuren, Tricarbonsäuren, Hydroxycarbonsäuren oder Aminocarbonsäuren. Diese bilden mit den in der Lösung enthaltenen Metallionen z.T. stabile Komplexe. Diese bereiten bei der Abwasserbehandlung Schwierigkeiten und sind daher unerwünscht.
  • Ferner wird in der EP 1 571 238 A1 eine Cr(III)-haltige Passivierungslösung beschrieben, die Cr(III)-Ionen und mindestens zwei Ionentypen ausgewählt aus Sulfationen, Nitrationen, Chloridionen, Oxysäure-Ionen von Chlor und Bor, Oxysäure-Ionen von Phosphor und Fluoridionen enthält. Fakultativ kann diese Lösung auch eine Schwefel-Verbindung enthalten. Gemäß der Lehre der EP 1 571 238 8 A1 wird eine solche Lösung zur Herstellung eines Überzugs für Aluminiumbauteile verwendet.
  • US 2007/196632 A1 beschreibt eine Passivierungslösung zur Schwarzfärbung von Zink oder Zinklegierungen, wobei diese Lösung zur Schwarzfärbung Thioglykolsäure enthält.
  • WO 2010/035819 A1 betrifft eine Passivierungslösung und die Verwendung dieser Lösung zur Schwarzpassivierung. Die Passivierungslösung ist eine wässrige Lösung enthaltend eine Cr(III)-haltige Substanz, eine Cobalt-haltige Substanz, eine Schwefelverbindung, eine Organophosphonsäure-Verbindung und, wenn notwendig, eine Nickel-haltige Substanz, wobei die Passivierungslösung im Wesentlichen frei von Cr(VI) ist.
  • In EP 1 484 432 A1 wird ferner ein Verfahren zur Abscheidung schwarzer Konversionsschichten beschrieben, die aus einer Lösung erhalten werden, bestehend aus Nitrationen und dreiwertigen Chromionen in einem Molverhältnis NO- 3/Cr3+ von weniger als 0,5/1. Zusätzlich enthält die Lösung noch Phosphationen. Bei der Schichtbildungsreaktion kommt es an der Substratoberfläche zu pH-Verschiebungen. Dadurch werden unlösliche Phosphorverbindung aus den in der Lösung befindlichen Metallionen (z.B. zn2+, Cr3+, Ni2+ oder CO2+) gebildet. Nachteilig ist bei solchen phosphathaltigen Lösungen, dass sie nur eine geringe Standzeit haben. Bereits nach kurzer Einsatzdauer kommt es zur Ausbildung bräunlich bis grünlich irisierender Schichten, der gewünschte tiefschwarze Farbton ist schwierig zu erreichen.
  • Das Problem der unzureichenden Schwarzfärbung soll durch ein Verfahren entsprechend der EP 1 995 348 A1 gelöst werden. Dort wird eine Lösung beansprucht, welche Zinkionen, dreiwertige Chromionen, Komplexbildner, die mit den dreiwertigen Chromionen wasserlösliche Komplexe bilden, Schwefelverbindungen und Phosphit-ionen enthält. Die einzelnen Komponenten müssen dabei in einem bestimmten Verhältnis zueinander stehen. Abweichungen davon führen entweder zu ungenügender Schwarzfärbung der Schichten oder zu einer geringen Korrosionsbeständigkeit. Bei einer Passivierungslösung reichert sich im laufenden Betrieb Zink an, gleichzeitig wird durch die Ausbildung der Konversionsschicht Chrom verbraucht. Dadurch verändert sich das Verhältnis Zink : Chrom in der Lösung ständig. Die Überwachung einer solchen Passivierungslösung ist daher sehr aufwendig.
  • Es besteht daher Bedarf an stabilen Passivierungslösungen, die in einem einfachen und sicheren Verfahren im laufenden Dauerbetrieb die Abscheidung tiefschwarzer Passivierungsschichten auf Zink- oder Zinklegierungsschichten mit guten Korrosionsbeständigkeiten ermöglichen.
  • Zusammenfassung der Erfindung
  • Überraschenderweise wurde gefunden, dass die Zugabe von Dithiodiglykolsäure oder eines Salzes dieser Säure zu einer sauren, wässrigen Passivierungslösung, die Cr(III)-Ionen, Fluoridionen und Nitrationen enthält, zu tiefschwarzen Konversionsschichten auf Zink- und Zinkeisenlegierungsschichten führt, die bereits ohne eine anschließende Versiegelung ausgezeichnete Beständigkeiten im Salzsprühtest nach DIN EN ISO 9227 erreichen. Mit anschließender Versiegelung wird eine Beständigkeit von > 240 Stunden erreicht.
  • Daher betrifft die vorliegende Erfindung die oben beschriebene saure, wässrige Passivierungslösung, die Cr(III)-Ionen, Fluoridionen, Nitrationen und Dithiodiglykolsäure, oder ein Salz dieser Säure enthält, sowie ein Verfahren zur Erzeugung von schwarzen Passivierungsschichten auf Zink- oder Zinkeisenlegierungsschichten, bei dem ein Werkstück, das mit einer Zink- oder Zinkeisenlegierungsschicht versehen ist, mit der erfindungsgemäßen Passivierungslösung in Kontakt gebracht wird. Außerdem betrifft die vorliegende Erfindung eine schwarze Passivierungsschicht, die durch das Verfahren gemäß dieser Erfindung erhältlich ist.
  • Detaillierte Beschreibung der Erfindung
  • Für Schwarzpassivierungen auf Zink gibt es z.Z. noch keine genormten Anforderungen. Für die Praxis sollten aber mindestens die Werte erreicht werden, die bereits im Stand der Technik für Schwarzpassivierungsschichten auf Zinkeisenlegierungen erreicht werden. Für solche Schichten betragen die Anforderungen nach DIN 50 979 bei Anwendung von zusätzlichen Versiegelungen für Gestellware mindestens 168 Stunden Beständigkeit im Salzsprühtest nach DIN EN ISO 9227. Mit dem erfindungsgemäßen Verfahren wird diese Anforderung bereits von Reinzinkschichten erreicht. Die erfindungsgemäße Reaktionslösung eignet sich zur Ausbildung von schwarzen Konversionsschichten auf sowohl Reinzinkschichten als auch Zinkeisenschichten. Die Anwendung von Reinzinkschichten ist jedoch bevorzugt, weil ein wesentlich größerer Vorteil darin besteht, wenn Reinzinkschichten direkt schwarzpassiviert werden können.
  • Erfindungsgemäß enthält die Passivierungslösung eine Dithiodiglykolsäure (HOOC-CH2-S-S-CH2-COOH) oder ein Salz dieser Säure. Es können jegliche Salze der Dithiodiglykolsäure verwendet werden. Beispiele dafür sind das Natrium- bzw. Dinatriumsalz, das Kalium- bzw. Dikaliumsalz und das Ammonium- bzw. Diammoniumsalz. Besonders bevorzugt ist die Verwendung des Diammoniumsalzes der Dithiodiglykolsäure.
  • In der erfindungsgemäßen Passivierungslösung ist die Dithiodiglykolsäure, oder ein Salz dieser Säure in einer Konzentration, bezogen auf die freie Säure, von vorzugsweise 2 - 10 g/l Passivierungslösung, besonders bevorzugt 4 - 6 g/l Passivierungslösung, enthalten.
  • Für die Cr(III)-Ionen können alle löslichen Chrom(III)-Verbindungen eingesetzt werden. Als Beispiele können genannt werden Chrom(III)-chlorid, CrCl3·H2O, basisches Chrom(III)-sulfat, CrOHSO4, Kaliumchromsulfat, KCr(SO4)2·6H2O und Chromnitrat, Cr(NO3)3·9H2O. Bevorzugt ist Chromnitrat, Cr(NO3)3·9H2O.
  • Die Cr(III)-Ionen sind in der Passivierungslösung in einer Menge von 1 - 10 g/l Passivierungslösung, besonders bevorzugt 4 - 5 g/l Passivierungslösung, vorhanden.
  • Ferner enthält die Passivierungslösung gemäß dieser Erfindung Fluoridionen. Die Fluoridionen liegen in der Passivierungslösung in einer Menge von 0,3 - 3 g/l Passivierungslösung, besonders bevorzugt 1 - 1,5 g/l Passivierungslösung vor.
  • Als Fluoridionen können alle löslichen Fluoridverbindungen eingesetzt werden. Bevorzugt verwendet werden Natriumfluorid, NaF, Kaliumfluorid, KF, Ammoniumfluorid, NH4F, Natriumbifluorid, NaF·HF, Kaliumbifluorid, KF·HF, Ammoniumbifluorid, NH4F·HF. Ganz besonders bevorzugt ist die Verwendung von Natriumfluorid, NaF.
  • Die Passivierungslösung gemäß der vorliegenden Erfindung enthält außerdem Nitrationen. Die Menge an Nitrationen beträgt 3 - 35 g/l Passivierungslösung, besonders bevorzugt 15 - 25 g/l. Die Nitrationen können der Passivierungslösung in jeglicher Form eines löslichen Nitratsalzes zugegeben werden. Es kann auch eine Kombination aus mehreren unterschiedlichen löslichen Nitratsalzen verwendet werden. Beispielsweise können die Nitrationen zusammen mit den Cr(III)-Ionen als Chromnitrat, Cr(NO3)3·9H2O, zugefügt werden. Ein weiteres geeignetes Nitratsalz ist z.B. Natriumnitrat. Wenn die Zugabe der Nitrationen in Form von Natriumnitrat erfolgt, ist im Hinblick auf die bevorzugte Gesamtnitratkonzentration zu berücksichtigen, in welcher Form die Zugabe der Chromverbindung erfolgt.
  • Nach der Erfindung in Anspruch 1 wird beansprucht eine Passivierungslösung, die Cr(III)-Ionen in einer Menge von 1 - 10 g/l Passivierungslösung, Fluoridionen in einer Menge von 0,3 - 3 g/l Passivierungslösung, Nitrationen in einer Menge von 3 - 35 g/l Passivierungslösung und Dithiodiglykolsäure oder ein Salz davon in einer Menge, bezogen auf Dithiodiglykolsäure, von g/l enthält.
  • Gemäß der vorliegenden Erfindung ist eine saure, wässrige Passivierungslösung, die folgende Bestandteile enthält, ganz besonders bevorzugt: Cr(III)-Ionen in einer Menge von 4 - 5 g/l Passivierungslösung, Fluoridionen in einer Menge von 1 - 1,5 g/l Passivierungslösung, Nitrationen in einer Menge von 15 - 25 g/l Passivierungslösung und Dithiodiglykolsäure oder ein Salz davon in einer Menge, bezogen auf Dithiodiglykolsäure, von 4 - 6 g/l.
  • Außerdem kann die Passivierungslösung der vorliegenden Erfindung Cobaltionen enthalten. Der Einbau von Cobaltionen in Passivierungen auf Basis dreiwertiger Chromverbindungen ist bekannt und dient einer weiteren Verbesserung der Korrosionsbeständigkeit. Die Konzentration an Cobaltionen in der Passivierungslösung ist bevorzugt 0,1 - 10 g/l Passivierungslösung, besonders bevorzugt 0,5 - 5 g/l. Die Zugabe der Cobaltionen kann in jeglicher Form von wasserlöslichen Cobaltsalzen erfolgen. Bevorzugt sind Cobaltsulfat, Cobaltchlorid oder Cobaltnitrat.
  • Der pH-Wert der Passivierungslösung der vorliegenden Erfindung wird geeignet eingestellt auf einen bevorzugten Bereich von 1,8 bis 2,2, besonders bevorzugt 1,9 bis 2,1.
  • Mit der vorliegenden Erfindung wird weiterhin ein Verfahren zur Erzeugung von schwarzen Passivierungsschichten auf Zink- und Zinkeisenschichten unter Verwendung der oben beschriebenen Passivierungslösung zur Verfügung gestellt. In dem Verfahren der vorliegenden Erfindung wird dazu ein Werkstück, das mit einer Zink- oder Zinkeisenschicht versehen ist, mit der Passivierungslösung in Kontakt gebracht. Das Inkontaktbringen kann ein Sprühen, Schwallen oder Tauchen sein. Bevorzugt wird in der Technik das Tauchen eingesetzt. Die Reaktionstemperatur ist vorzugsweise 10 - 70 °C. Besonders bevorzugt ist ein Temperaturbereich von 15 - 50 °C, noch bevorzugter 20 - 50 °C. Die Werkstücke werden mit der Passivierungslösung für eine Dauer von vorzugsweise 60 - 90 Sekunden, besonders bevorzugt 75 Sekunden, in Kontakt gebracht. D.h., wenn die Werkstücke in die Passivierungslösung eingetaucht werden, beträgt die Tauchzeit vorzugsweise 60 - 90 Sekunden. Besonders bevorzugt ist eine Tauchzeit von 75 Sekunden. Gemäß der vorliegenden Erfindung kann die schwarze Passivierungsschicht auf einer Zink- oder Zinkeisenlegierungsschicht gebildet werden. Bevorzugt ist jedoch die Anwendung des erfindungsgemäßen Verfahrens auf Reinzinkschichten. Dadurch entfällt die aufwendige Prozesskontrolle, die verfahrensbedingt bei jedem Elektrolyten zur Abscheidung einer Legierung anfällt.
  • Nachdem die Werkstücke mit der sauren, wässrigen Passivierungslösung der vorliegenden Erfindung in Kontakt gebracht und so die schwarze Passivierungsschicht erzeugt wurde, kann auf die schwarze Passivierungsschicht zusätzlich eine Versiegelungsschicht, ein sogenannter "Topcoat", aufgebracht werden. Solch eine Versiegelungsschicht ist bekannt und verbessert die Korrosionsbeständigkeit. Dazu wird das Werkstück mit einer Versiegelungslösung in Kontakt gebracht. Dabei handelt es sich um eine wässrige Lösung, die organische, wasserlösliche oder dispergierbare Polymere enthält. Beispielsweise werden Copolymere von Acrylsäure oder Methacrylsäure mit Ethylen, kommerziell erhältlich unter der Bezeichnung Lugalavan DC der Fa. BASF, eingesetzt. Anorganische Versiegelungslösungen enthalten kolloidale Kieselsäuren. Es ist weiterhin möglich, Mischungen aus wässrigen Lösungen mit organischen Polymeren und wässrigen Lösungen mit kolloidalen Kieselsäuren herzustellen und diese als Versiegelungslösung einzusetzen.
  • Schließlich wird durch die vorliegende Erfindung auch eine schwarze Passivierungsschicht bereitgestellt, die durch das oben beschriebene Verfahren erhältlich ist. Vorzugsweise ist die schwarze Passivierungsschicht auf einer Reinzinkschicht gebildet.
  • Beispiele Beispiel 1
  • Zunächst wird eine Lösung aus Cr(III) und Fluoridionen mit folgender Zusammensetzung hergestellt:
    • 233 g Chromnitrat

              (Cr(NO3) x 9H2O)

      20 g Natriumfluorid (NaF)
    • 250 g Wasser
  • Der Ansatz wird 30 Minuten auf 65 °C erwärmt, anschließend auf Raumtemperatur abgekühlt. Danach wird mit entionisiertem Wasser auf 1 Liter aufgefüllt.
  • Zur Herstellung der Passivierungslösung wird die oben erhaltene Lösung mit folgenden Bestandteilen umgesetzt:
    • 130 ml der oben erhaltenen Lösung aus Cr-nitrat und NaF
    • 8 g Cobaltsulfat (CoSO4 x 7H2O)
    • 10 g Natriumnitrat (NaNO3)
    • 12 g Diammoniumdithiodiglykolatlösung (48 Gew.%)
  • Das Volumen wurde mit entionisiertem Wasser auf annähernd 1 Liter aufgefüllt, anschließend wurde der pH-Wert mit konz. Salpetersäure (53 Gew.%) auf 1,8 - 1,9 eingestellt und zum Endvolumen von 1 Liter aufgefüllt.
  • In einem alkalischen Zinkbad (ZINCASLOT 50 der Fa. Dr.-Ing. Max Schlötter) wurden Stahlbleche nach üblicher Vorbehandlung bei einer Stromdichte von 2 A/dm2 bei einer Dauer von 30 Minuten verzinkt. Die Schichtdicke betrug 8 µm. Nach der Abscheidung wurde das Testblech in entionisiertem Wasser gespült, 5 Sekunden in einer verdünnten Salpetersäurelösung (10 ml/l HNO3 53 Gew.%) getaucht und anschließend in der oben angegebenen Passivierungslösung bei folgenden Bedingungen getaucht:
    Temperatur: 25 °C
    pH-Wert: 1,8 - 1,9
    Tauchzeit: 60 Sekunden
  • Das Testblech wurde anschließend mit entionisiertem Wasser gespült und in einem Trockenschrank bei 80 °C für 15 Minuten getrocknet. Das Aussehen des Testbleches war danach tiefschwarz mit geringfügig bräunlich irisierenden Stellen.
  • Beispiel 2
  • Das Beispiel 1 wurde wie beschrieben wiederholt. Nach dem Passivieren und Spülen wurde in eine Versiegelungslösung getaucht (SLOTOFIN 70 der Fa. Dr.-Ing. Max Schlötter, wässrige Dispersion eines Copolymers aus Acrylsäure und Ethylen).
  • Bedingungen:
  • 300 ml/l Versiegelungskonzentrat SLOTOFIN 71
    Tauchzeit: 30 Sekunden
    Abtropfzeit: 60 Sekunden
    Temperatur: 25 °C
  • Nach dem Versiegeln wurde das Testblech ohne Spülen bei 80 °C für 15 Minuten in einem Trockenschrank getrocknet.
  • Das versiegelte Testblech hatte ein gleichmäßig tiefschwarzes, halbglänzendes Aussehen.
  • Korrosionsprüfungen
  • Testbleche, die entsprechend den Beispielen 1 und 2 hergestellt wurden, wurden in einer Korrosionsprüfung im neutralen Salzsprühtest nach DIN EN ISO 9227 geprüft. In Anlehnung an DIN 50 979 wurde 1 Probe ohne zusätzliche Wärmebehandlung geprüft und 1 Probe wurde 24 Stunden bei 120 °C getempert.
    Korrosionsschutz
    ohne Wärmebehandlung mit Wärmebehandlung (120 °C/24h)
    Beispiel 1 72 h 72 h
    Beispiel 2 > 240 h > 240 h
  • Vergleichsbeispiel 1
  • Entsprechend Beispiel 1 wurde zunächst eine Lösung aus Chromnitrat und Natriumfluorid hergestellt. Anschließend wurde eine Lösung mit folgender Zusammensetzung hergestellt.
    • 130 ml der Lösung aus Cr-nitrat und NaF gemäß Beispiel 1
    • 8 g Cobaltsulfat

              (CoSO4 × 7H2O)

    • 10 g Natriumnitrat

              (NaNO3)

    • 12 g Thiodiglykolsäure
  • Das Volumen wurde mit entionisiertem Wasser auf annähernd 1 Liter aufgefüllt, anschließend wurde der pH-Wert mit konz. Salpetersäure (53 Gew.%) auf 1,8 - 1,9 eingestellt und zum Endvolumen von 1 Liter aufgefüllt.
  • In einem alkalischen Zinkbad verzinkte Stahlbleche wurden, wie in Beispiel 1 angegeben, in der oben angegebenen Passivierungslösung behandelt. Es konnte keine Schwarzfärbung erzielt werden.
  • Vergleichsbeispiel 2
  • Es wurde eine Passivierungslösung wie in Vergleichsbeispiel 1 angesetzt, jedoch wurde Thiodiglykolsäure durch 4 g Cystin ersetzt. Bei der Passivierungsreaktion wurde keine Schwarzfärbung erzielt.

Claims (6)

  1. Saure, wässrige Passivierungslösung zur Erzeugung schwarzer Passivierungsschichten auf Zink- oder Zinkeisenlegierungsschichten enthaltend
    - Cr(III)-Ionen,
    - Fluoridionen und
    - Nitrationen,
    dadurch gekennzeichnet, dass die Passivierungslösung zusätzlich Dithiodiglykolsäure oder ein Salz dieser Säure enthält, und wobei
    - Cr(III)-Ionen in einer Menge von 1 - 10 g/l Passivierungslösung,
    - Fluoridionen in einer Menge von 0,3 - 3 g/l Passivierungslösung,
    - Nitrationen in einer Menge von 3 - 35 g/l Passivierungslösung und
    - Dithiodiglykolsäure oder ein Salz davon in einer Menge, bezogen auf Dithiodiglykolsäure, von 2 - 10 g/l in der Passivierungslösung enthalten sind.
  2. Passivierungslösung gemäß Anspruch 1, wobei die Passivierungslösung einen pH-Wert von 1,8 bis 2,2 aufweist.
  3. Verfahren zur Erzeugung von schwarzen Passivierungsschichten auf einer Zink- oder Zinkeisenlegierungsschicht, dadurch gekennzeichnet, dass ein mit einer Zink- oder Zinkeisenlegierungsschicht beschichtetes Werkstück mit der sauren, wässrigen Passivierungslösung gemäß einem oder mehreren der Ansprüche 1-2 in Kontakt gebracht wird.
  4. Verfahren gemäß Anspruch 3, wobei das Werkstück mit der Passivierungslösung bei einer Reaktionstemperatur von 10 - 70 °C in Kontakt gebracht wird.
  5. Verfahren gemäß Anspruch 3 oder 4, wobei das Werkstück für eine Dauer von 60 - 90 Sekunden mit der Passivierungslösung in Kontakt gebracht wird.
  6. Verfahren gemäß einem oder mehreren der Ansprüche 3-5, wobei die schwarze Passivierungsschicht auf einer Reinzinkschicht gebildet wird.
EP10175959.5A 2009-10-12 2010-09-09 Schwarzpassivierung von Zink- und Zinkeisenschichten Active EP2319957B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201031381A SI2319957T1 (sl) 2009-10-12 2010-09-09 Črna pasivacija cinkovih in cinkovo-železovih plasti

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009045569A DE102009045569A1 (de) 2009-10-12 2009-10-12 Schwarzpassivierung von Zink- und Zinkeisenschichten

Publications (2)

Publication Number Publication Date
EP2319957A1 EP2319957A1 (de) 2011-05-11
EP2319957B1 true EP2319957B1 (de) 2017-01-11

Family

ID=43383565

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10175959.5A Active EP2319957B1 (de) 2009-10-12 2010-09-09 Schwarzpassivierung von Zink- und Zinkeisenschichten

Country Status (4)

Country Link
EP (1) EP2319957B1 (de)
DE (1) DE102009045569A1 (de)
DK (1) DK2319957T3 (de)
SI (1) SI2319957T1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2784188B2 (de) 2013-03-26 2018-04-25 ATOTECH Deutschland GmbH Verfahren zum Korrosionsschutz von eisenhaltigen Materialien
CN103741128B (zh) * 2014-01-06 2016-01-20 哈尔滨三泳金属表面技术有限公司 电镀锌层高耐蚀三价铬彩色钝化剂
DE102016114808B4 (de) * 2016-08-10 2023-06-07 Harting Electric Stiftung & Co. Kg Steckverbinder mit vor Korrosion geschütztem Steckverbindergehäuse

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1532230A (en) * 1975-11-24 1978-11-15 Imasa Ltd Treatment of chromated metal surfaces with sulphur-compounds
FR2812307B1 (fr) 2000-07-25 2003-02-14 Chemetall S A Couche noire anticorrosive sur un alliage de zinc et son procede de preparation
JP3774415B2 (ja) 2002-03-14 2006-05-17 ディップソール株式会社 亜鉛及び亜鉛合金めっき上に黒色の六価クロムフリー化成皮膜を形成するための処理溶液及び亜鉛及び亜鉛合金めっき上に黒色の六価クロムフリー化成皮膜を形成する方法。
JP4508634B2 (ja) * 2003-12-26 2010-07-21 株式会社タイホー 金属表面処理剤、金属表面処理液、これによって形成された耐食性着色皮膜、この耐食性着色皮膜を有する耐食性着色部品、およびこの耐食性着色部品の製造方法
DE102004001945A1 (de) 2004-01-14 2005-08-11 Ina-Schaeffler Kg Schwarzpassivierung von Zink- oder Zinklegierungsoberflächen
JP4628726B2 (ja) * 2004-03-02 2011-02-09 日本表面化学株式会社 アルミニウム部材及びその製造方法と製造用薬剤
EP1995348B1 (de) 2006-02-17 2014-04-02 Dipsol Chemicals Co., Ltd. Behandlungslösung zur bildung einer schwarzen chemischen beschichtung von dreiwertigem chrom auf zink oder zinklegierung und verfahren zur bildung einer schwarzen chemischen beschichtung von dreiwertigem chrom auf zink oder zinklegierung
US7842403B2 (en) * 2006-02-23 2010-11-30 Atotech Deutschland Gmbh Antifriction coatings, methods of producing such coatings and articles including such coatings
EP2336390B1 (de) * 2008-09-29 2014-07-30 Yuken Industry Co., Ltd. Zusammensetzung für eine chemische umwandlungsbehandlung und verfahren zur herstellung eines elements mit schwarzer beschichtung unter verwendung der zusammensetzung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102009045569A1 (de) 2011-04-14
DK2319957T3 (en) 2017-02-27
EP2319957A1 (de) 2011-05-11
SI2319957T1 (sl) 2017-05-31

Similar Documents

Publication Publication Date Title
DE60213124T2 (de) Nachbehandlung für metallbeschichtete substrate
DE69732102T2 (de) Oberflächenbehandelter metallischer korrosionsbeständiger Werkstoff und Mittel zur Oberflächenbehandlung
DE3432118C2 (de)
EP2014793B1 (de) Korrosionsschutzbehandlung für Konversionsschichten
DE69737195T2 (de) Lösung und Verfahren zur Herstellung von Schutzschichten auf Metallen
DE3879099T2 (de) Verfahren und zusammensetzung zur herstellung von zinkphosphatueberzuegen.
DE60226304T2 (de) Behandlungslösung zur Erzeugung einer korrosionsbeständigen Konversionsschicht, die kein hexavalentes Chrom enthält, auf Plattierungsschichten aus Zink oder Zinklegierungen, korrosionsbeständige Konversionsschicht, die kein hexavalentes Chrom enthält und Verfahren zur Herstellung derselben
EP1816234B1 (de) Wässrige Reaktionslösung und Verfahren zur Passivierung von Zink- und Zinklegierungen
EP1254279A2 (de) Korrosionsschutzmittel und korrosionsschutzverfahren für metalloberflächen
DE2921900A1 (de) Galvanisierbad und verfahren zur galvanischen beschichtung mit schwarzem chrom
DE3500443A1 (de) Verfahren zur verbesserung des korrosionsschutzes autophoretisch abgeschiedener harzschichten auf metalloberflaechen
DE2100021A1 (de) Verfahren zum Aufbringen von Phos phatschichten auf Stahl, Eisen und Zinkoberflachen
EP3455392A1 (de) Konversionsschichten für metallische oberflächen
DE3234558A1 (de) Waessrig-saure zinkphosphat-ueberzugsloesungen, solche loesungen verwendende tieftemperatur-verfahren zur bildung chemischer umwandlungsueberzuege auf eisen- und/oder zinkoberflaechen und darin verwendbare ueberzugskonzentrate und titanhaltige metallaktivierende loesungen
DE10131723A1 (de) Korrosionsschutzmittel und Korrosionsschutzverfahren für Metalloberflächen
DE4214954C2 (de) Verfahren zur Herstellung von verbesserten Chromatkonversionsschichten auf Zinkoberflächen und Anwendung des Verfahrens
DE2315180C2 (de) Phosphatierungslösung
EP2319957B1 (de) Schwarzpassivierung von Zink- und Zinkeisenschichten
EP0359296A1 (de) Phosphatierverfahren
DE69912372T2 (de) Clip
WO1992006226A1 (de) Verfahren zur passivierenden nachbehandlung von phosphatierten metalloberflächen
EP0111223B1 (de) Verfahren zur Phosphatierung von Metalloberflächen sowie hierfür geeignete Badlösungen
EP2492371A1 (de) Cobalt-freie Passivierungslösung und Verfahren zur Abscheidung Cobalt-freier Passivierungsschichten auf Zink- und Zinklegierungsoberflächen
DE2546018A1 (de) Verfahren zum faerben von aluminium
DE3780078T2 (de) Korrosionsbestaendige beschichtung.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20110902

17Q First examination report despatched

Effective date: 20150424

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160928

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JORDAN, DR. MANFRED

Inventor name: PFIZ, DR. ROLAND

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 861358

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010013023

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20170220

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170412

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170511

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170511

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170411

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010013023

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

26N No opposition filed

Effective date: 20171012

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170909

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20190805

Year of fee payment: 10

Ref country code: DK

Payment date: 20190923

Year of fee payment: 10

Ref country code: FR

Payment date: 20190923

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20190830

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190913

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170111

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20200930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 861358

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200910

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200909

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20230811

Year of fee payment: 14

Ref country code: CZ

Payment date: 20230810

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230809

Year of fee payment: 14

Ref country code: SE

Payment date: 20230816

Year of fee payment: 14

Ref country code: DE

Payment date: 20230925

Year of fee payment: 14