EP2291861A1 - Photodetektor und verfahren zur herstellung dazu - Google Patents
Photodetektor und verfahren zur herstellung dazuInfo
- Publication number
- EP2291861A1 EP2291861A1 EP09769268A EP09769268A EP2291861A1 EP 2291861 A1 EP2291861 A1 EP 2291861A1 EP 09769268 A EP09769268 A EP 09769268A EP 09769268 A EP09769268 A EP 09769268A EP 2291861 A1 EP2291861 A1 EP 2291861A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- nanoparticles
- organic
- photodetector
- photodetector according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000002105 nanoparticle Substances 0.000 claims abstract description 33
- 239000012044 organic layer Substances 0.000 claims abstract description 6
- 239000010410 layer Substances 0.000 claims description 61
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 239000002159 nanocrystal Substances 0.000 claims description 14
- 239000004065 semiconductor Substances 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 8
- 239000011159 matrix material Substances 0.000 claims description 6
- 238000005507 spraying Methods 0.000 claims description 6
- 238000010345 tape casting Methods 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 4
- 238000007639 printing Methods 0.000 claims description 3
- 238000004528 spin coating Methods 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- XCAUINMIESBTBL-UHFFFAOYSA-N lead(ii) sulfide Chemical compound [Pb]=S XCAUINMIESBTBL-UHFFFAOYSA-N 0.000 claims description 2
- VCEXCCILEWFFBG-UHFFFAOYSA-N mercury telluride Chemical compound [Hg]=[Te] VCEXCCILEWFFBG-UHFFFAOYSA-N 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 238000005096 rolling process Methods 0.000 claims description 2
- YQMLDSWXEQOSPP-UHFFFAOYSA-N selanylidenemercury Chemical compound [Hg]=[Se] YQMLDSWXEQOSPP-UHFFFAOYSA-N 0.000 claims description 2
- QXKXDIKCIPXUPL-UHFFFAOYSA-N sulfanylidenemercury Chemical compound [Hg]=S QXKXDIKCIPXUPL-UHFFFAOYSA-N 0.000 claims description 2
- 238000003786 synthesis reaction Methods 0.000 claims description 2
- YBNMDCCMCLUHBL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) 4-pyren-1-ylbutanoate Chemical compound C=1C=C(C2=C34)C=CC3=CC=CC4=CC=C2C=1CCCC(=O)ON1C(=O)CCC1=O YBNMDCCMCLUHBL-UHFFFAOYSA-N 0.000 claims 1
- 230000005855 radiation Effects 0.000 abstract description 3
- 239000006096 absorbing agent Substances 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000002800 charge carrier Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000005525 hole transport Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 2
- MCEWYIDBDVPMES-UHFFFAOYSA-N [60]pcbm Chemical compound C123C(C4=C5C6=C7C8=C9C%10=C%11C%12=C%13C%14=C%15C%16=C%17C%18=C(C=%19C=%20C%18=C%18C%16=C%13C%13=C%11C9=C9C7=C(C=%20C9=C%13%18)C(C7=%19)=C96)C6=C%11C%17=C%15C%13=C%15C%14=C%12C%12=C%10C%10=C85)=C9C7=C6C2=C%11C%13=C2C%15=C%12C%10=C4C23C1(CCCC(=O)OC)C1=CC=CC=C1 MCEWYIDBDVPMES-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002096 quantum dot Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- KOECRLKKXSXCPB-UHFFFAOYSA-K triiodobismuthane Chemical compound I[Bi](I)I KOECRLKKXSXCPB-UHFFFAOYSA-K 0.000 description 2
- 238000007704 wet chemistry method Methods 0.000 description 2
- QZVHYFUVMQIGGM-UHFFFAOYSA-N 2-Hexylthiophene Chemical compound CCCCCCC1=CC=CS1 QZVHYFUVMQIGGM-UHFFFAOYSA-N 0.000 description 1
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UJOBWOGCFQCDNV-UHFFFAOYSA-N Carbazole Natural products C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 229910004611 CdZnTe Inorganic materials 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- QWUZMTJBRUASOW-UHFFFAOYSA-N cadmium tellanylidenezinc Chemical compound [Zn].[Cd].[Te] QWUZMTJBRUASOW-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 238000012993 chemical processing Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002496 iodine Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 229920001088 polycarbazole Polymers 0.000 description 1
- 238000013139 quantization Methods 0.000 description 1
- GGYFMLJDMAMTAB-UHFFFAOYSA-N selanylidenelead Chemical compound [Pb]=[Se] GGYFMLJDMAMTAB-UHFFFAOYSA-N 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K39/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
- H10K39/30—Devices controlled by radiation
- H10K39/36—Devices specially adapted for detecting X-ray radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/24—Measuring radiation intensity with semiconductor detectors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/10—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
- H10K30/35—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
Definitions
- the invention relates to a photodetector for X-radiation in which X-radiation is converted into electrical charge.
- the indirect method In the detection of X-rays, there is the direct and indirect conversion of the X-radiation into electrical charge, the indirect method has at least the disadvantage that initially the photon from the X-radiation interacts in a scintillator with a material that finally shows emission, the Scattered light produced. Due to the scattered light, the resolution of the indirect method is worse than with the direct method.
- organic photodiodes as known, for example, from WO 2007/017470, is only known in connection with indirect conversion. Otherwise, the technology of conversion of X-rays by photodetectors has so far only used inorganic photodetectors.
- organic compounds Compared to inorganic photodetectors, however, organic compounds have the decisive advantage that they can be produced over a large area.
- the object of the present invention is therefore to overcome the disadvantages of the prior art and to enable the direct conversion by means of organic photodetectors.
- the object of the invention and solution of the object is an organic photodetector for the direct conversion of X-radiation, on an electrode substrate, at least one active organic layer and on top of an upper electrode, incorporated in the active layer in a semiconductive organic matrix semiconducting nanoparticles are that allow the direct conversion of X-rays into electrical charges.
- the invention provides a process for producing a photodetector in which at least the organic active layer is prepared from solution ("wet-chemical").
- the organic photodetector according to the invention is characterized in that the conversion of the X-radiation takes place in the same layer as the generation of the charges. This ensures that a high resolution can be achieved for X-ray images. So far, this has only been possible with elaborate inorganic photodetectors. In general, various semiconducting nanoparticles or mixtures of different nanoparticles, for example in the form of crystals, can be used.
- semiconducting nanocrystals are incorporated into the semiconducting layer, which in turn are preferably prepared by chemical synthesis.
- Typical nanoparticles are Group II-VI or Group III-V compound semiconductors. It is also possible to use group IV semiconductors. Ideal nanoparticles show high X-ray absorption properties, such as lead sulfide (PbS), lead selenium (PbSe), mercury sulfide (HgS), mercury selenide (HgSe), mercury telluride (HgTe). Leading nanoparticles or nanocrystals in which quantization of the energy levels impinges (quantum dots) comprise diameters of 1 to typically 20 nm, preferably 1 to 15 nm and particularly preferably 1 to 10 nm.
- the starting material of the organic active layer of the photodetector is dissolved or as a suspension in a solvent and is produced by wet-chemical process steps (spin coating, knife coating, printing, doctor blading, spray coating,
- rollers, etc. are applied to a lower layer such as a charge-coupled device (CCD) or a thin film transistor (TFT) panel.
- a lower layer such as a charge-coupled device (CCD) or a thin film transistor (TFT) panel.
- the layer thicknesses are in the nanometer or micrometer range. Only a top electrode without structuring is necessary.
- the embedding of the quantum dots in the semiconducting organic, in particular polymeric, matrix can also be carried out with a multiple spray coating method. Such a method is described for example in the still unpublished 10 2008 015 290 DE as Multiples Spray Coating System for the production of polymer-based electronic components.
- Layers with thicknesses> 100 ⁇ m for direct conversion These layers can be produced at once by means of the abovementioned wet-chemical methods or by multilayer layers with a regular sequence of a semiconductor layer and an intermediate layer for constructing the overall layer.
- the semiconductor layer is in each case applied wet-chemically, for example by spin coating, knife coating, printing, doctor blading, rolling, etc.
- the intermediate layer preferably has good electron and hole transportability and prevents dissolution of underlying organic semiconductor layers during application of the upper layers.
- FIG. 3 shows the schematic structure of such a multilayer structure.
- Multilayer coatings can also be achieved, for example, by means of stacked photodiodes or photoconductors, as shown in FIG.
- the volume fraction of nanoparticles, such. As PbS, in the absorber layer is according to an embodiment of the invention very high (typically> 50%, preferably> 55% or more preferably> 60%) in order to ensure a correspondingly high absorption of the X-ray radiation.
- a metal layer is applied to the diodes, preferably over the encapsulation.
- FIG. 1 shows the typical structure of an organic photodiode
- FIG. 2 shows a pixelated photodetector with nanoparticles embedded in the active organic layer
- FIG. 3 shows a multilayer structure for achieving thicker layers and
- FIG. 4 schematically shows the structure of a stacked diode.
- FIG. 1 shows an organic photodiode 1. It comprises on a substrate 2 a lower, preferably transparent electrode 3, optionally a hole-conducting layer 4, preferably a PEDOT / PSS layer and above this an organic photoconductive layer 5 in the form of a bulk heterojunction with one above it
- the organic-based photodiodes have a vertical layer system, wherein between a lower indium-tin-oxide electrode (ITO electrode) and an upper, for example, calcium and silver electrode comprising a PEDOT layer with a P3HT PCBM blend.
- ITO electrode indium-tin-oxide electrode
- an upper, for example, calcium and silver electrode comprising a PEDOT layer with a P3HT PCBM blend.
- the blend of the two components P3HT (poly (hexylthiophene) -2-5-diyl) as absorber and / or hole transport component and PCBM phenyl-C61 as electron acceptor and / or electron donor acts as a so-called "bulk heterojunction", ie Separation of the charge carriers takes place at the interfaces of the two materials, which form within the entire layer volume.
- the solution can be modified by replacing or adding further materials.
- the organic photodiode 1 is operated in the reverse direction and has low dark current.
- nanoparticles are added to the active organic semiconductive layer.
- nanocrystals are used as nanoparticles.
- the suitability of the nanoparticle-modified X-ray conversion layer is achieved by the energy gap in semiconductor crystals, which can also be quantized as in the case of very small nanocrystals. If photons or high-energy X-ray quanta are absorbed with an energy greater than the energy gap of the semiconductor crystal, excitons (electron-hole pairs) are generated.
- the size of the nanocrystal When the size of the nanocrystal is reduced in all three dimensions, the number of energy levels is reduced, and the size of the energy gap between the quantized valence and conduction bands becomes dependent on the diameter of the crystal and thus their absorption or emission behavior changes.
- the energy gap of PbS of approx. 0.42 eV (corresponding to a light wavelength of approx. 3 ⁇ m) in nanocrystals with a size of approx. 10 nm can be increased to IeV (corresponding to a light wavelength of 1240 nm).
- X-rays which are absorbed by nanoparticles or nanocrystals, generate excitons.
- the resulting electron-hole pairs in the organic semiconductor are separated in the electric field or at the interfaces of organic semiconductors and nanocrystals and can flow through percolation paths to the corresponding electrodes as a "photocurrent".
- Figure 2 shows a schematic structure of a pixelated flat-panel photodetector with nanoparticles 7 embedded in the organic active layer 5.
- the conversion of the X-ray takes place directly in the organic photodiode.
- the BuIk heterojunction described above acts as electron acceptor or electron donor with embedded semiconducting nanoparticles or nanocrystals.
- the photodiode with glass substrate 2 which has a structured passivation layer 12 with vias 9 to the drain electrode 13 of the lower electrode layer 3, here are the nanoparticles 7 in the organic active layer 5 clearly visible (in sum me Frontplane).
- the glass substrate comprises, for example, an inorganic transistor array with a-Si TFT, that is, amorphous silicon thin-film transistors (backplane), which are commercially available.
- Passivation layers 12 and 8 serve to either encapsulate the photodiodes (eg, glass encapsulation) or to inhibit conductivity between individual a-Si TFT pixels.
- the optional hole transport layer 4 on which, in turn, the organic active layer 5 is located, which for example has a thickness in the range from 100 to 1500 ⁇ m, preferably approximately 500 ⁇ m.
- the upper structure is analogous to that known from FIG.
- An X-ray beam 14 striking a nanoparticle 7 is absorbed there and an exciton (not shown) is released therefrom.
- the result is a charge carrier pair, as shown, an electron 15 and a hole 16 comprising.
- FIG. 2 also shows that the substrate 2 and the lower passivation layer 12 together with the lower structured electrode 3 form the commercially available backplane 10, whereas the upper part of the device with the active organic layer 5 represent the front tarpaulins 11
- FIG. 3 shows a multilayer structure, which makes it possible to build up thicker layers by means of conventional wet-chemical methods.
- FIG. 4 shows a schematic structure of a stacked diode 1. Any thicknesses can be generated with n stacked diodes.
- the lower electrode 3, the optional hole transport layer 4, the organic active layer 5 with the nanoparticles 7, the cathode 6 and the upper intermediate layer 17 are only schematically visible.
- Nanoparticles or nanocrystals with defined diameters lead to reproducible absorbers with lower charge carrier trapping compared to mechanically comminuted and therefore poorly defined nanoparticles.
- diode fabrication on TFT panels for direct conversion of X-rays can be performed without the use of vacuum technology and classical semiconductor process technology.
- This invention involves the cost-effective production of a direct X-ray converter based on a composite of organic semiconductors and semiconducting nanoparticles which can be applied over a large area as organic photodiodes or photoconductors on flatbed scanners by wet-chemical processes.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- High Energy & Nuclear Physics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Molecular Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Light Receiving Elements (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008029782A DE102008029782A1 (de) | 2008-06-25 | 2008-06-25 | Photodetektor und Verfahren zur Herstellung dazu |
PCT/EP2009/057864 WO2009156419A1 (de) | 2008-06-25 | 2009-06-24 | Photodetektor und verfahren zur herstellung dazu |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2291861A1 true EP2291861A1 (de) | 2011-03-09 |
Family
ID=40957584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09769268A Withdrawn EP2291861A1 (de) | 2008-06-25 | 2009-06-24 | Photodetektor und verfahren zur herstellung dazu |
Country Status (6)
Country | Link |
---|---|
US (1) | US20110095266A1 (zh) |
EP (1) | EP2291861A1 (zh) |
JP (1) | JP5460706B2 (zh) |
CN (1) | CN102077352B (zh) |
DE (1) | DE102008029782A1 (zh) |
WO (1) | WO2009156419A1 (zh) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008039337A1 (de) | 2008-03-20 | 2009-09-24 | Siemens Aktiengesellschaft | Vorrichtung zum Besprühen, Verfahren dazu sowie organisches elektronisches Bauelement |
WO2012053398A1 (ja) * | 2010-10-22 | 2012-04-26 | コニカミノルタホールディングス株式会社 | 有機エレクトロルミネッセンス素子 |
DE102010043749A1 (de) * | 2010-11-11 | 2012-05-16 | Siemens Aktiengesellschaft | Hybride organische Fotodiode |
DE102011077961A1 (de) | 2011-06-22 | 2012-12-27 | Siemens Aktiengesellschaft | Schwachlichtdetektion mit organischem fotosensitivem Bauteil |
FR2977719B1 (fr) | 2011-07-04 | 2014-01-31 | Commissariat Energie Atomique | Dispositif de type photodiode contenant une capacite pour la regulation du courant d'obscurite ou de fuite |
TWI461724B (zh) | 2011-08-02 | 2014-11-21 | Vieworks Co Ltd | 用於輻射成像偵知器的組合物及具有該組合物之輻射成像偵知器 |
DE102011083692A1 (de) * | 2011-09-29 | 2013-04-04 | Siemens Aktiengesellschaft | Strahlentherapievorrichtung |
DE102012206179B4 (de) | 2012-04-16 | 2015-07-02 | Siemens Aktiengesellschaft | Strahlungsdetektor und Verfahren zum Herstellen eines Strahlungsdetektors |
DE102012206180B4 (de) | 2012-04-16 | 2014-06-26 | Siemens Aktiengesellschaft | Strahlungsdetektor, Verfahren zum Herstellen eines Strahlungsdetektors und Röntgengerät |
DE102012215564A1 (de) | 2012-09-03 | 2014-03-06 | Siemens Aktiengesellschaft | Strahlungsdetektor und Verfahren zur Herstellung eines Strahlungsdetektors |
DE102013200881A1 (de) | 2013-01-21 | 2014-07-24 | Siemens Aktiengesellschaft | Nanopartikulärer Szintillatoren und Verfahren zur Herstellung nanopartikulärer Szintillatoren |
DE102013226365A1 (de) | 2013-12-18 | 2015-06-18 | Siemens Aktiengesellschaft | Hybrid-organischer Röntgendetektor mit leitfähigen Kanälen |
DE102014212424A1 (de) | 2013-12-18 | 2015-06-18 | Siemens Aktiengesellschaft | Szintillatoren mit organischer Photodetektions-Schale |
DE102014205868A1 (de) | 2014-03-28 | 2015-10-01 | Siemens Aktiengesellschaft | Material für Nanoszintillator sowie Herstellungsverfahren dazu |
FR3020896B1 (fr) | 2014-05-07 | 2016-06-10 | Commissariat Energie Atomique | Dispositif matriciel de detection incorporant un maillage metallique dans une couche de detection et procede de fabrication |
DE102014225543B4 (de) | 2014-12-11 | 2021-02-25 | Siemens Healthcare Gmbh | Perowskit-Partikel mit Beschichtung aus einem Halbleitermaterial, Verfahren zu deren Herstellung, Detektor, umfassend beschichtete Partikel, Verfahren zur Herstellung eines Detektors und Verfahren zur Herstellung einer Schicht umfassend beschichtete Partikel |
DE102014225542A1 (de) | 2014-12-11 | 2016-06-16 | Siemens Healthcare Gmbh | Detektionsschicht umfassend beschichtete anorganische Nanopartikel |
DE102014225541A1 (de) | 2014-12-11 | 2016-06-16 | Siemens Healthcare Gmbh | Detektionsschicht umfassend Perowskitkristalle |
US10890669B2 (en) * | 2015-01-14 | 2021-01-12 | General Electric Company | Flexible X-ray detector and methods for fabricating the same |
EP3101695B1 (en) | 2015-06-04 | 2021-12-01 | Nokia Technologies Oy | Device for direct x-ray detection |
EP3206235B1 (en) | 2016-02-12 | 2021-04-28 | Nokia Technologies Oy | Method of forming an apparatus comprising a two dimensional material |
DE102016205818A1 (de) * | 2016-04-07 | 2017-10-12 | Siemens Healthcare Gmbh | Vorrichtung und Verfahren zum Detektieren von Röntgenstrahlung |
KR102454412B1 (ko) * | 2016-10-27 | 2022-10-14 | 실버레이 리미티드 | 다이렉트 변환 방사선 검출기 |
JP6666285B2 (ja) | 2017-03-03 | 2020-03-13 | 株式会社東芝 | 放射線検出器 |
JP6670785B2 (ja) | 2017-03-21 | 2020-03-25 | 株式会社東芝 | 放射線検出器 |
JP6666291B2 (ja) | 2017-03-21 | 2020-03-13 | 株式会社東芝 | 放射線検出器 |
CN111656224B (zh) * | 2018-01-25 | 2024-06-18 | 深圳帧观德芯科技有限公司 | 具有量子点闪烁器的辐射检测器 |
EP3618115A1 (en) | 2018-08-27 | 2020-03-04 | Rijksuniversiteit Groningen | Imaging device based on colloidal quantum dots |
CN109713134A (zh) * | 2019-01-08 | 2019-05-03 | 长春工业大学 | 一种掺杂PbSe量子点的光敏聚合物有源层薄膜制备方法 |
CN109801951B (zh) * | 2019-02-13 | 2022-07-12 | 京东方科技集团股份有限公司 | 阵列基板、电致发光显示面板及显示装置 |
RU197989U1 (ru) * | 2020-01-16 | 2020-06-10 | Константин Антонович Савин | Фоторезистор на основе композитного материала, состоящего из полимера поли(3-гексилтиофена) и наночастиц кремния p-типа проводимости |
CN111312902A (zh) * | 2020-02-27 | 2020-06-19 | 上海奕瑞光电子科技股份有限公司 | 平板探测器结构及其制备方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6352777B1 (en) * | 1998-08-19 | 2002-03-05 | The Trustees Of Princeton University | Organic photosensitive optoelectronic devices with transparent electrodes |
US6855202B2 (en) * | 2001-11-30 | 2005-02-15 | The Regents Of The University Of California | Shaped nanocrystal particles and methods for making the same |
US7777303B2 (en) * | 2002-03-19 | 2010-08-17 | The Regents Of The University Of California | Semiconductor-nanocrystal/conjugated polymer thin films |
US7956349B2 (en) * | 2001-12-05 | 2011-06-07 | Semiconductor Energy Laboratory Co., Ltd. | Organic semiconductor element |
MY144626A (en) * | 2002-03-19 | 2011-10-14 | Univ California | Semiconductor-nanocrystal/conjugated polymer thin films |
JP2005538573A (ja) * | 2002-09-05 | 2005-12-15 | ナノシス・インク. | ナノ構造及びナノ複合材をベースとする組成物 |
US7857993B2 (en) * | 2004-09-14 | 2010-12-28 | Ut-Battelle, Llc | Composite scintillators for detection of ionizing radiation |
KR100678291B1 (ko) * | 2004-11-11 | 2007-02-02 | 삼성전자주식회사 | 나노입자를 이용한 수광소자 |
US20060255282A1 (en) * | 2005-04-27 | 2006-11-16 | The Regents Of The University Of California | Semiconductor materials matrix for neutron detection |
DE102005037290A1 (de) | 2005-08-08 | 2007-02-22 | Siemens Ag | Flachbilddetektor |
WO2008054845A2 (en) * | 2006-03-23 | 2008-05-08 | Solexant Corporation | Photovoltaic device containing nanoparticle sensitized carbon nanotubes |
WO2008018931A2 (en) * | 2006-06-13 | 2008-02-14 | Plextronics, Inc. | Organic photovoltaic devices comprising fullerenes and derivatives thereof |
US7608829B2 (en) * | 2007-03-26 | 2009-10-27 | General Electric Company | Polymeric composite scintillators and method for making same |
EP2143141A4 (en) * | 2007-04-18 | 2011-04-13 | Invisage Technologies Inc | MATERIAL SYSTEMS AND METHOD FOR OPTOELECTRONIC ARRANGEMENTS |
DE102008039337A1 (de) | 2008-03-20 | 2009-09-24 | Siemens Aktiengesellschaft | Vorrichtung zum Besprühen, Verfahren dazu sowie organisches elektronisches Bauelement |
-
2008
- 2008-06-25 DE DE102008029782A patent/DE102008029782A1/de not_active Ceased
-
2009
- 2009-06-24 JP JP2011515364A patent/JP5460706B2/ja not_active Expired - Fee Related
- 2009-06-24 EP EP09769268A patent/EP2291861A1/de not_active Withdrawn
- 2009-06-24 US US12/737,264 patent/US20110095266A1/en not_active Abandoned
- 2009-06-24 CN CN2009801245499A patent/CN102077352B/zh not_active Expired - Fee Related
- 2009-06-24 WO PCT/EP2009/057864 patent/WO2009156419A1/de active Application Filing
Non-Patent Citations (2)
Title |
---|
None * |
See also references of WO2009156419A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN102077352A (zh) | 2011-05-25 |
DE102008029782A1 (de) | 2012-03-01 |
WO2009156419A1 (de) | 2009-12-30 |
CN102077352B (zh) | 2013-06-05 |
JP5460706B2 (ja) | 2014-04-02 |
US20110095266A1 (en) | 2011-04-28 |
JP2011526071A (ja) | 2011-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2291861A1 (de) | Photodetektor und verfahren zur herstellung dazu | |
EP2188855B1 (de) | Organischer photodetektor zur detektion infraroter strahlung, verfahren zur herstellung dazu und verwendung | |
DE102014225543B4 (de) | Perowskit-Partikel mit Beschichtung aus einem Halbleitermaterial, Verfahren zu deren Herstellung, Detektor, umfassend beschichtete Partikel, Verfahren zur Herstellung eines Detektors und Verfahren zur Herstellung einer Schicht umfassend beschichtete Partikel | |
Oosterhout et al. | The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells | |
DE602005004925T2 (de) | Lichtempfindliche organische vorrichtungen | |
WO2007017475A1 (de) | Organischer photodetektor mit erhöhter empfindlichkeit, sowie verwendung eines triarylmin-fluoren-polymers als zwischenschicht in einem photodetektor | |
WO2004083958A2 (de) | Photoaktives bauelement mit organischen schichten | |
WO2011161108A1 (de) | Photoaktives bauelement mit mehreren transportschichtsystemen | |
DE102008063205A1 (de) | Organische Dünnschichtsolarzelle und Verfahren zu ihrer Herstellung | |
DE102010038977B4 (de) | Verfahren zur Herstellung einer flexiblen organischen Dünnfilm-Solarzelle durch Ionenstrahlbehandlung | |
DE112013007458T5 (de) | Photoelektrische Umwandlungselemente und Verfahren zu ihrer Herstellung | |
DE102015225145A1 (de) | Perowskitpartikel für die Herstellung von Röntgendetektoren mittels Abscheidung aus der Trockenphase | |
EP3362820A1 (de) | Detektorelement zur erfassung von einfallender röntgenstrahlung | |
EP3055712A1 (de) | Konversionsfolie zur konversion von ionisierender strahlung, strahlungsdetektor und verfahren zu herstellung | |
DE102006046210B4 (de) | Verfahren zur Herstellung eines organischen Photodetektors | |
DE102009038633B4 (de) | Photoaktives Bauelement mit organischen Doppel- bzw. Mehrfachmischschichten | |
WO2010060421A1 (de) | Solarzelle mit elektrostatischen lokalfeldern im photoaktiven bereich | |
DE102015225134A1 (de) | Hybride Röntgendetektoren realisiert mittels Soft-sintern von zwei oder mehreren durchmischten Pulvern | |
WO2014032874A1 (de) | Strahlungsdetektor und verfahren zur herstellung eines strahlungsdetektors | |
AT503838B1 (de) | Verfahren zum herstellen einer anorganische halbleiterpartikel enthaltenden schicht sowie bauelemente umfassend diese schicht | |
DE102008034256A1 (de) | Photoaktives Bauelement mit organischen Schichten | |
DE102008001528B4 (de) | Photovoltaisches Element, Verfahren zu seiner Herstellung und seine Verwendung | |
WO2009043684A1 (de) | Organisches opto-elektronisches bauteil mit reduziertem dunkelstrom | |
DE102015106372A1 (de) | Organische lichtemittierende elektrochemische Zelle und Verfahren zur Herstellung einer organischen lichtemittierenden elektrochemischen Zelle | |
DE102014225542A1 (de) | Detektionsschicht umfassend beschichtete anorganische Nanopartikel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20101123 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
17Q | First examination report despatched |
Effective date: 20110531 |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS HEALTHCARE GMBH |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20180619 |