EP2291861A1 - Photodetektor und verfahren zur herstellung dazu - Google Patents

Photodetektor und verfahren zur herstellung dazu

Info

Publication number
EP2291861A1
EP2291861A1 EP09769268A EP09769268A EP2291861A1 EP 2291861 A1 EP2291861 A1 EP 2291861A1 EP 09769268 A EP09769268 A EP 09769268A EP 09769268 A EP09769268 A EP 09769268A EP 2291861 A1 EP2291861 A1 EP 2291861A1
Authority
EP
European Patent Office
Prior art keywords
layer
nanoparticles
organic
photodetector
photodetector according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09769268A
Other languages
German (de)
English (en)
French (fr)
Inventor
Oliver Hayden
Sandro Francesco Tedde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Healthcare GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2291861A1 publication Critical patent/EP2291861A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/36Devices specially adapted for detecting X-ray radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene

Definitions

  • the invention relates to a photodetector for X-radiation in which X-radiation is converted into electrical charge.
  • the indirect method In the detection of X-rays, there is the direct and indirect conversion of the X-radiation into electrical charge, the indirect method has at least the disadvantage that initially the photon from the X-radiation interacts in a scintillator with a material that finally shows emission, the Scattered light produced. Due to the scattered light, the resolution of the indirect method is worse than with the direct method.
  • organic photodiodes as known, for example, from WO 2007/017470, is only known in connection with indirect conversion. Otherwise, the technology of conversion of X-rays by photodetectors has so far only used inorganic photodetectors.
  • organic compounds Compared to inorganic photodetectors, however, organic compounds have the decisive advantage that they can be produced over a large area.
  • the object of the present invention is therefore to overcome the disadvantages of the prior art and to enable the direct conversion by means of organic photodetectors.
  • the object of the invention and solution of the object is an organic photodetector for the direct conversion of X-radiation, on an electrode substrate, at least one active organic layer and on top of an upper electrode, incorporated in the active layer in a semiconductive organic matrix semiconducting nanoparticles are that allow the direct conversion of X-rays into electrical charges.
  • the invention provides a process for producing a photodetector in which at least the organic active layer is prepared from solution ("wet-chemical").
  • the organic photodetector according to the invention is characterized in that the conversion of the X-radiation takes place in the same layer as the generation of the charges. This ensures that a high resolution can be achieved for X-ray images. So far, this has only been possible with elaborate inorganic photodetectors. In general, various semiconducting nanoparticles or mixtures of different nanoparticles, for example in the form of crystals, can be used.
  • semiconducting nanocrystals are incorporated into the semiconducting layer, which in turn are preferably prepared by chemical synthesis.
  • Typical nanoparticles are Group II-VI or Group III-V compound semiconductors. It is also possible to use group IV semiconductors. Ideal nanoparticles show high X-ray absorption properties, such as lead sulfide (PbS), lead selenium (PbSe), mercury sulfide (HgS), mercury selenide (HgSe), mercury telluride (HgTe). Leading nanoparticles or nanocrystals in which quantization of the energy levels impinges (quantum dots) comprise diameters of 1 to typically 20 nm, preferably 1 to 15 nm and particularly preferably 1 to 10 nm.
  • the starting material of the organic active layer of the photodetector is dissolved or as a suspension in a solvent and is produced by wet-chemical process steps (spin coating, knife coating, printing, doctor blading, spray coating,
  • rollers, etc. are applied to a lower layer such as a charge-coupled device (CCD) or a thin film transistor (TFT) panel.
  • a lower layer such as a charge-coupled device (CCD) or a thin film transistor (TFT) panel.
  • the layer thicknesses are in the nanometer or micrometer range. Only a top electrode without structuring is necessary.
  • the embedding of the quantum dots in the semiconducting organic, in particular polymeric, matrix can also be carried out with a multiple spray coating method. Such a method is described for example in the still unpublished 10 2008 015 290 DE as Multiples Spray Coating System for the production of polymer-based electronic components.
  • Layers with thicknesses> 100 ⁇ m for direct conversion These layers can be produced at once by means of the abovementioned wet-chemical methods or by multilayer layers with a regular sequence of a semiconductor layer and an intermediate layer for constructing the overall layer.
  • the semiconductor layer is in each case applied wet-chemically, for example by spin coating, knife coating, printing, doctor blading, rolling, etc.
  • the intermediate layer preferably has good electron and hole transportability and prevents dissolution of underlying organic semiconductor layers during application of the upper layers.
  • FIG. 3 shows the schematic structure of such a multilayer structure.
  • Multilayer coatings can also be achieved, for example, by means of stacked photodiodes or photoconductors, as shown in FIG.
  • the volume fraction of nanoparticles, such. As PbS, in the absorber layer is according to an embodiment of the invention very high (typically> 50%, preferably> 55% or more preferably> 60%) in order to ensure a correspondingly high absorption of the X-ray radiation.
  • a metal layer is applied to the diodes, preferably over the encapsulation.
  • FIG. 1 shows the typical structure of an organic photodiode
  • FIG. 2 shows a pixelated photodetector with nanoparticles embedded in the active organic layer
  • FIG. 3 shows a multilayer structure for achieving thicker layers and
  • FIG. 4 schematically shows the structure of a stacked diode.
  • FIG. 1 shows an organic photodiode 1. It comprises on a substrate 2 a lower, preferably transparent electrode 3, optionally a hole-conducting layer 4, preferably a PEDOT / PSS layer and above this an organic photoconductive layer 5 in the form of a bulk heterojunction with one above it
  • the organic-based photodiodes have a vertical layer system, wherein between a lower indium-tin-oxide electrode (ITO electrode) and an upper, for example, calcium and silver electrode comprising a PEDOT layer with a P3HT PCBM blend.
  • ITO electrode indium-tin-oxide electrode
  • an upper, for example, calcium and silver electrode comprising a PEDOT layer with a P3HT PCBM blend.
  • the blend of the two components P3HT (poly (hexylthiophene) -2-5-diyl) as absorber and / or hole transport component and PCBM phenyl-C61 as electron acceptor and / or electron donor acts as a so-called "bulk heterojunction", ie Separation of the charge carriers takes place at the interfaces of the two materials, which form within the entire layer volume.
  • the solution can be modified by replacing or adding further materials.
  • the organic photodiode 1 is operated in the reverse direction and has low dark current.
  • nanoparticles are added to the active organic semiconductive layer.
  • nanocrystals are used as nanoparticles.
  • the suitability of the nanoparticle-modified X-ray conversion layer is achieved by the energy gap in semiconductor crystals, which can also be quantized as in the case of very small nanocrystals. If photons or high-energy X-ray quanta are absorbed with an energy greater than the energy gap of the semiconductor crystal, excitons (electron-hole pairs) are generated.
  • the size of the nanocrystal When the size of the nanocrystal is reduced in all three dimensions, the number of energy levels is reduced, and the size of the energy gap between the quantized valence and conduction bands becomes dependent on the diameter of the crystal and thus their absorption or emission behavior changes.
  • the energy gap of PbS of approx. 0.42 eV (corresponding to a light wavelength of approx. 3 ⁇ m) in nanocrystals with a size of approx. 10 nm can be increased to IeV (corresponding to a light wavelength of 1240 nm).
  • X-rays which are absorbed by nanoparticles or nanocrystals, generate excitons.
  • the resulting electron-hole pairs in the organic semiconductor are separated in the electric field or at the interfaces of organic semiconductors and nanocrystals and can flow through percolation paths to the corresponding electrodes as a "photocurrent".
  • Figure 2 shows a schematic structure of a pixelated flat-panel photodetector with nanoparticles 7 embedded in the organic active layer 5.
  • the conversion of the X-ray takes place directly in the organic photodiode.
  • the BuIk heterojunction described above acts as electron acceptor or electron donor with embedded semiconducting nanoparticles or nanocrystals.
  • the photodiode with glass substrate 2 which has a structured passivation layer 12 with vias 9 to the drain electrode 13 of the lower electrode layer 3, here are the nanoparticles 7 in the organic active layer 5 clearly visible (in sum me Frontplane).
  • the glass substrate comprises, for example, an inorganic transistor array with a-Si TFT, that is, amorphous silicon thin-film transistors (backplane), which are commercially available.
  • Passivation layers 12 and 8 serve to either encapsulate the photodiodes (eg, glass encapsulation) or to inhibit conductivity between individual a-Si TFT pixels.
  • the optional hole transport layer 4 on which, in turn, the organic active layer 5 is located, which for example has a thickness in the range from 100 to 1500 ⁇ m, preferably approximately 500 ⁇ m.
  • the upper structure is analogous to that known from FIG.
  • An X-ray beam 14 striking a nanoparticle 7 is absorbed there and an exciton (not shown) is released therefrom.
  • the result is a charge carrier pair, as shown, an electron 15 and a hole 16 comprising.
  • FIG. 2 also shows that the substrate 2 and the lower passivation layer 12 together with the lower structured electrode 3 form the commercially available backplane 10, whereas the upper part of the device with the active organic layer 5 represent the front tarpaulins 11
  • FIG. 3 shows a multilayer structure, which makes it possible to build up thicker layers by means of conventional wet-chemical methods.
  • FIG. 4 shows a schematic structure of a stacked diode 1. Any thicknesses can be generated with n stacked diodes.
  • the lower electrode 3, the optional hole transport layer 4, the organic active layer 5 with the nanoparticles 7, the cathode 6 and the upper intermediate layer 17 are only schematically visible.
  • Nanoparticles or nanocrystals with defined diameters lead to reproducible absorbers with lower charge carrier trapping compared to mechanically comminuted and therefore poorly defined nanoparticles.
  • diode fabrication on TFT panels for direct conversion of X-rays can be performed without the use of vacuum technology and classical semiconductor process technology.
  • This invention involves the cost-effective production of a direct X-ray converter based on a composite of organic semiconductors and semiconducting nanoparticles which can be applied over a large area as organic photodiodes or photoconductors on flatbed scanners by wet-chemical processes.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)
EP09769268A 2008-06-25 2009-06-24 Photodetektor und verfahren zur herstellung dazu Withdrawn EP2291861A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008029782A DE102008029782A1 (de) 2008-06-25 2008-06-25 Photodetektor und Verfahren zur Herstellung dazu
PCT/EP2009/057864 WO2009156419A1 (de) 2008-06-25 2009-06-24 Photodetektor und verfahren zur herstellung dazu

Publications (1)

Publication Number Publication Date
EP2291861A1 true EP2291861A1 (de) 2011-03-09

Family

ID=40957584

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09769268A Withdrawn EP2291861A1 (de) 2008-06-25 2009-06-24 Photodetektor und verfahren zur herstellung dazu

Country Status (6)

Country Link
US (1) US20110095266A1 (zh)
EP (1) EP2291861A1 (zh)
JP (1) JP5460706B2 (zh)
CN (1) CN102077352B (zh)
DE (1) DE102008029782A1 (zh)
WO (1) WO2009156419A1 (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008039337A1 (de) 2008-03-20 2009-09-24 Siemens Aktiengesellschaft Vorrichtung zum Besprühen, Verfahren dazu sowie organisches elektronisches Bauelement
WO2012053398A1 (ja) * 2010-10-22 2012-04-26 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
DE102010043749A1 (de) * 2010-11-11 2012-05-16 Siemens Aktiengesellschaft Hybride organische Fotodiode
DE102011077961A1 (de) 2011-06-22 2012-12-27 Siemens Aktiengesellschaft Schwachlichtdetektion mit organischem fotosensitivem Bauteil
FR2977719B1 (fr) 2011-07-04 2014-01-31 Commissariat Energie Atomique Dispositif de type photodiode contenant une capacite pour la regulation du courant d'obscurite ou de fuite
TWI461724B (zh) 2011-08-02 2014-11-21 Vieworks Co Ltd 用於輻射成像偵知器的組合物及具有該組合物之輻射成像偵知器
DE102011083692A1 (de) * 2011-09-29 2013-04-04 Siemens Aktiengesellschaft Strahlentherapievorrichtung
DE102012206179B4 (de) 2012-04-16 2015-07-02 Siemens Aktiengesellschaft Strahlungsdetektor und Verfahren zum Herstellen eines Strahlungsdetektors
DE102012206180B4 (de) 2012-04-16 2014-06-26 Siemens Aktiengesellschaft Strahlungsdetektor, Verfahren zum Herstellen eines Strahlungsdetektors und Röntgengerät
DE102012215564A1 (de) 2012-09-03 2014-03-06 Siemens Aktiengesellschaft Strahlungsdetektor und Verfahren zur Herstellung eines Strahlungsdetektors
DE102013200881A1 (de) 2013-01-21 2014-07-24 Siemens Aktiengesellschaft Nanopartikulärer Szintillatoren und Verfahren zur Herstellung nanopartikulärer Szintillatoren
DE102013226365A1 (de) 2013-12-18 2015-06-18 Siemens Aktiengesellschaft Hybrid-organischer Röntgendetektor mit leitfähigen Kanälen
DE102014212424A1 (de) 2013-12-18 2015-06-18 Siemens Aktiengesellschaft Szintillatoren mit organischer Photodetektions-Schale
DE102014205868A1 (de) 2014-03-28 2015-10-01 Siemens Aktiengesellschaft Material für Nanoszintillator sowie Herstellungsverfahren dazu
FR3020896B1 (fr) 2014-05-07 2016-06-10 Commissariat Energie Atomique Dispositif matriciel de detection incorporant un maillage metallique dans une couche de detection et procede de fabrication
DE102014225543B4 (de) 2014-12-11 2021-02-25 Siemens Healthcare Gmbh Perowskit-Partikel mit Beschichtung aus einem Halbleitermaterial, Verfahren zu deren Herstellung, Detektor, umfassend beschichtete Partikel, Verfahren zur Herstellung eines Detektors und Verfahren zur Herstellung einer Schicht umfassend beschichtete Partikel
DE102014225542A1 (de) 2014-12-11 2016-06-16 Siemens Healthcare Gmbh Detektionsschicht umfassend beschichtete anorganische Nanopartikel
DE102014225541A1 (de) 2014-12-11 2016-06-16 Siemens Healthcare Gmbh Detektionsschicht umfassend Perowskitkristalle
US10890669B2 (en) * 2015-01-14 2021-01-12 General Electric Company Flexible X-ray detector and methods for fabricating the same
EP3101695B1 (en) 2015-06-04 2021-12-01 Nokia Technologies Oy Device for direct x-ray detection
EP3206235B1 (en) 2016-02-12 2021-04-28 Nokia Technologies Oy Method of forming an apparatus comprising a two dimensional material
DE102016205818A1 (de) * 2016-04-07 2017-10-12 Siemens Healthcare Gmbh Vorrichtung und Verfahren zum Detektieren von Röntgenstrahlung
KR102454412B1 (ko) * 2016-10-27 2022-10-14 실버레이 리미티드 다이렉트 변환 방사선 검출기
JP6666285B2 (ja) 2017-03-03 2020-03-13 株式会社東芝 放射線検出器
JP6670785B2 (ja) 2017-03-21 2020-03-25 株式会社東芝 放射線検出器
JP6666291B2 (ja) 2017-03-21 2020-03-13 株式会社東芝 放射線検出器
CN111656224B (zh) * 2018-01-25 2024-06-18 深圳帧观德芯科技有限公司 具有量子点闪烁器的辐射检测器
EP3618115A1 (en) 2018-08-27 2020-03-04 Rijksuniversiteit Groningen Imaging device based on colloidal quantum dots
CN109713134A (zh) * 2019-01-08 2019-05-03 长春工业大学 一种掺杂PbSe量子点的光敏聚合物有源层薄膜制备方法
CN109801951B (zh) * 2019-02-13 2022-07-12 京东方科技集团股份有限公司 阵列基板、电致发光显示面板及显示装置
RU197989U1 (ru) * 2020-01-16 2020-06-10 Константин Антонович Савин Фоторезистор на основе композитного материала, состоящего из полимера поли(3-гексилтиофена) и наночастиц кремния p-типа проводимости
CN111312902A (zh) * 2020-02-27 2020-06-19 上海奕瑞光电子科技股份有限公司 平板探测器结构及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352777B1 (en) * 1998-08-19 2002-03-05 The Trustees Of Princeton University Organic photosensitive optoelectronic devices with transparent electrodes
US6855202B2 (en) * 2001-11-30 2005-02-15 The Regents Of The University Of California Shaped nanocrystal particles and methods for making the same
US7777303B2 (en) * 2002-03-19 2010-08-17 The Regents Of The University Of California Semiconductor-nanocrystal/conjugated polymer thin films
US7956349B2 (en) * 2001-12-05 2011-06-07 Semiconductor Energy Laboratory Co., Ltd. Organic semiconductor element
MY144626A (en) * 2002-03-19 2011-10-14 Univ California Semiconductor-nanocrystal/conjugated polymer thin films
JP2005538573A (ja) * 2002-09-05 2005-12-15 ナノシス・インク. ナノ構造及びナノ複合材をベースとする組成物
US7857993B2 (en) * 2004-09-14 2010-12-28 Ut-Battelle, Llc Composite scintillators for detection of ionizing radiation
KR100678291B1 (ko) * 2004-11-11 2007-02-02 삼성전자주식회사 나노입자를 이용한 수광소자
US20060255282A1 (en) * 2005-04-27 2006-11-16 The Regents Of The University Of California Semiconductor materials matrix for neutron detection
DE102005037290A1 (de) 2005-08-08 2007-02-22 Siemens Ag Flachbilddetektor
WO2008054845A2 (en) * 2006-03-23 2008-05-08 Solexant Corporation Photovoltaic device containing nanoparticle sensitized carbon nanotubes
WO2008018931A2 (en) * 2006-06-13 2008-02-14 Plextronics, Inc. Organic photovoltaic devices comprising fullerenes and derivatives thereof
US7608829B2 (en) * 2007-03-26 2009-10-27 General Electric Company Polymeric composite scintillators and method for making same
EP2143141A4 (en) * 2007-04-18 2011-04-13 Invisage Technologies Inc MATERIAL SYSTEMS AND METHOD FOR OPTOELECTRONIC ARRANGEMENTS
DE102008039337A1 (de) 2008-03-20 2009-09-24 Siemens Aktiengesellschaft Vorrichtung zum Besprühen, Verfahren dazu sowie organisches elektronisches Bauelement

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2009156419A1 *

Also Published As

Publication number Publication date
CN102077352A (zh) 2011-05-25
DE102008029782A1 (de) 2012-03-01
WO2009156419A1 (de) 2009-12-30
CN102077352B (zh) 2013-06-05
JP5460706B2 (ja) 2014-04-02
US20110095266A1 (en) 2011-04-28
JP2011526071A (ja) 2011-09-29

Similar Documents

Publication Publication Date Title
EP2291861A1 (de) Photodetektor und verfahren zur herstellung dazu
EP2188855B1 (de) Organischer photodetektor zur detektion infraroter strahlung, verfahren zur herstellung dazu und verwendung
DE102014225543B4 (de) Perowskit-Partikel mit Beschichtung aus einem Halbleitermaterial, Verfahren zu deren Herstellung, Detektor, umfassend beschichtete Partikel, Verfahren zur Herstellung eines Detektors und Verfahren zur Herstellung einer Schicht umfassend beschichtete Partikel
Oosterhout et al. The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells
DE602005004925T2 (de) Lichtempfindliche organische vorrichtungen
WO2007017475A1 (de) Organischer photodetektor mit erhöhter empfindlichkeit, sowie verwendung eines triarylmin-fluoren-polymers als zwischenschicht in einem photodetektor
WO2004083958A2 (de) Photoaktives bauelement mit organischen schichten
WO2011161108A1 (de) Photoaktives bauelement mit mehreren transportschichtsystemen
DE102008063205A1 (de) Organische Dünnschichtsolarzelle und Verfahren zu ihrer Herstellung
DE102010038977B4 (de) Verfahren zur Herstellung einer flexiblen organischen Dünnfilm-Solarzelle durch Ionenstrahlbehandlung
DE112013007458T5 (de) Photoelektrische Umwandlungselemente und Verfahren zu ihrer Herstellung
DE102015225145A1 (de) Perowskitpartikel für die Herstellung von Röntgendetektoren mittels Abscheidung aus der Trockenphase
EP3362820A1 (de) Detektorelement zur erfassung von einfallender röntgenstrahlung
EP3055712A1 (de) Konversionsfolie zur konversion von ionisierender strahlung, strahlungsdetektor und verfahren zu herstellung
DE102006046210B4 (de) Verfahren zur Herstellung eines organischen Photodetektors
DE102009038633B4 (de) Photoaktives Bauelement mit organischen Doppel- bzw. Mehrfachmischschichten
WO2010060421A1 (de) Solarzelle mit elektrostatischen lokalfeldern im photoaktiven bereich
DE102015225134A1 (de) Hybride Röntgendetektoren realisiert mittels Soft-sintern von zwei oder mehreren durchmischten Pulvern
WO2014032874A1 (de) Strahlungsdetektor und verfahren zur herstellung eines strahlungsdetektors
AT503838B1 (de) Verfahren zum herstellen einer anorganische halbleiterpartikel enthaltenden schicht sowie bauelemente umfassend diese schicht
DE102008034256A1 (de) Photoaktives Bauelement mit organischen Schichten
DE102008001528B4 (de) Photovoltaisches Element, Verfahren zu seiner Herstellung und seine Verwendung
WO2009043684A1 (de) Organisches opto-elektronisches bauteil mit reduziertem dunkelstrom
DE102015106372A1 (de) Organische lichtemittierende elektrochemische Zelle und Verfahren zur Herstellung einer organischen lichtemittierenden elektrochemischen Zelle
DE102014225542A1 (de) Detektionsschicht umfassend beschichtete anorganische Nanopartikel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17Q First examination report despatched

Effective date: 20110531

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS HEALTHCARE GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180619