WO2007017475A1 - Organischer photodetektor mit erhöhter empfindlichkeit, sowie verwendung eines triarylmin-fluoren-polymers als zwischenschicht in einem photodetektor - Google Patents

Organischer photodetektor mit erhöhter empfindlichkeit, sowie verwendung eines triarylmin-fluoren-polymers als zwischenschicht in einem photodetektor Download PDF

Info

Publication number
WO2007017475A1
WO2007017475A1 PCT/EP2006/065081 EP2006065081W WO2007017475A1 WO 2007017475 A1 WO2007017475 A1 WO 2007017475A1 EP 2006065081 W EP2006065081 W EP 2006065081W WO 2007017475 A1 WO2007017475 A1 WO 2007017475A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
homo
photodetector
anode
electron
Prior art date
Application number
PCT/EP2006/065081
Other languages
English (en)
French (fr)
Inventor
Jens FÜRST
Debora Henseler
Hagen Klausmann
Sandro Francesco Tedde
Edgar Zaus
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2007017475A1 publication Critical patent/WO2007017475A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/36Devices specially adapted for detecting X-ray radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to an organic photodetector with reduced dark current, that is with increased sensitivity, in particular for low light intensities.
  • US Pat. No. 5,319,206 discloses inorganic photodetectors, that is to say, for example, X-ray flat detectors based on amorphous silicon, in which additional layers are present which block the transition of charge carriers in one direction. This suppresses the phenomenon of dark current, which reduces the sensitivity of the device to low light intensities.
  • an optoelectronic photosensitive organic element such as an organic solar cell or a visible light photodetector having an exciton-blocking layer.
  • the blocking of the excitons at the boundary between the photoactive layer and the electrode serves to prevent quenching within the semiconductor molecules of the active layer.
  • This intermediate layer serves in accordance with the increase in quantum efficiency.
  • the dark current is significantly higher than inorganic detectors, so for example at a bias voltage of -5V, the typical dark currents are in the range of 10 "2 to 10 " 3 rtiA / cm 2 .
  • a low dark current is particularly important when, as e.g. in X-ray detectors a high dynamic range is covered, i. although very low light intensities above the noise level must be detected. Although a dark current contribution can basically be subtracted from the signal, it always leads to a noise contribution, which limits the dynamic range in measurements with low x-ray doses.
  • the subject matter of the invention is therefore an organic-based photosensitive optoelectronic component comprising an upper and a lower electrode with at least one photoconductive layer therebetween, characterized in that an electron blocker layer is arranged between the photoactive layer and the anode, the HOMO of which level is adapted to the anode, a HOMO / LUMO bandgap of at least 2.5 eV and a hole mobility of at least 10 -6 cm 2 / Vs.
  • the invention furthermore relates to the use of a copolymer of at least one component containing triarylamine units and a component containing fluorene and / or a component containing spiro-fluorine in an electron blocker layer of a photodetector, which is arranged between the anode and the photoactive layer.
  • the electron blocking layer according to the invention Increase in quantum efficiency irrelevant, because it is important here only that in a certain work area (eg between -5V and -2V) high quantum efficiency is achieved.
  • the improvement of the invention specifically relates to the properties of a photodetector operated with negative bias voltage.
  • the energetic position of the HOMO of the electron blocker layer deviates in a range of +0.5 eV to -0.5 eV from the ideal position of the HOMO in the energetic center of the HOMO / LUMO band gap of the anode.
  • the organic photodiodes usually consist of a vertical layer system with a lower electrode (anode) (for example gold, indium tin oxide (ITO), palladium, platinum) above a photoactive layer, for example of a layer of a blend such as the P3HT PCBM Blend or multiple layers in which one or more additional layers, such as hole transporter layers (for example PANIrPSS or PEDOTrPSS) are applied between the blend and anode and a transparent or at least semitransparent cathode, for example a Ca, Ba, Mg, LiF with a thin layer Cover layer of silver and / or aluminum.
  • anode for example gold, indium tin oxide (ITO), palladium, platinum
  • ITO indium tin oxide
  • platinum palladium, platinum
  • a photoactive layer for example of a layer of a blend such as the P3HT PCBM Blend or multiple layers in which one or more additional layers, such as hole transporter layers (for example PANIrPSS or PEDOTrPS
  • poly-3-hexylthiophene P3HT absorber and hole transport component
  • phenyl-C61-butyric acid methyl ester PCBM electron acceptor and transport component
  • Bulk heterojunction ie the separation of the charge carriers occurs at the interfaces of the two materials that form within the entire layer volume.
  • Other hole transport components are other polythiophenes such as differently substituted poly-3-alkylthiophene or polyphenylene vinylenes.
  • the electron blocker layer of a copolymer or a blend (ie, a mixture) of at least two polymers may be advantageous if one component of the copolymer or of the polymer blend is an arylamine component, in particular a triaryl component or an aryl-substituted diamine.
  • a component is a fluorene or spiro-fluoro component.
  • a component is a fluorene or spiro-fluoro component.
  • Particularly preferred is the class of materials of poly (9, 9 'dioctylfluorenes-co-bis-N, N' - (4, butylphenyl) -bis-N, N'-phenyl-1, 4-phenylenediamines) or PFB of American Dye Source, (www.adsdyes.com) which is available there under the name ADS250BE. This material is also available in Nano Letters 2004, Vol. 12 on pages 2503 to 2507 described.
  • the dark current caused by the negative charge carriers is efficiently reduced.
  • FIG. 1 shows a standard layer system of an organic
  • FIG. 2 outlines the associated potential level diagram, in the case of a negative bias voltage. Since the active layer consists of a blend of two materials, the HOMO and LUMO levels of the two components are drawn in parallel.
  • FIG. 3 shows a similar potential level diagram, but for the device according to the invention.
  • Figure 4 shows the structure of a preferred material for the electron blocker layer
  • Figure 5 shows characteristics of organic photodiodes with and without ADS250BE electron blocker layer in the dark and with illumination.
  • FIG. 6 shows integrally read charge signals of a
  • FIG. 1 shows the typical structure of an organic photodetector.
  • the substrate 1 thereon the anode 2, for example made of gold, on it the photoactive layer 3, for example a blend, ie a mixture of organic components, which forms a so-called bulk-hetero-junction.
  • the cathode 4 for example a calcium / aluminum cathode. Shown finally is still the contact 5, via which the line from the cathode to the supply line takes place.
  • Figure 2 shows a potential level diagram in the case of a negative bias voltage.
  • the active layer includes fullerene and polythiophene whose homo-lumo levels are drawn in parallel because the materials are mixed.
  • the energy is drawn vertically; only the position of the cathode and the anode are plotted on absolute values.
  • the lower energy levels correspond to the respective HOMOs of the component and the Upper energy levels reflect the LUMOs.
  • FIG. 3 shows a very similar image again showing the position of the electrode bands and the position of the electrodes
  • the HOMO / LUMO position of the electron blocker layer is shown in FIG. 3, here for example pretty well meet the ideal position of the HOMO energy level, but the position of the HOMO can be increased from this ideal position by up to 0.5 eV in a positive or negative voltage direction, without damaging the effectiveness of the overall system.
  • the HOMO level of the electron blocker layer is close to the HOMO level of the hole transport component and at the same time close to the energy level of the anode material, so that no additional barrier to hole extraction arises.
  • the HOMO-LUMO distance is at the same time so high (> 2.5 eV) that the LUMO level represents a barrier for the negative charge carriers. Shown with arrows are the two unwanted processes, electron injection at the anode and hole injection at the cathode, both of which can contribute to the dark current and of which the first is substantially reduced by the additional electron blocking layer.
  • a suitable material for the electron blocker layer with which successful tests have been carried out is the copolymer shown in FIG. 4 manufactured by American Dye
  • Source is available under the name ADS250BE. With a 30 nm intermediate layer of this material dark currents of organic photodetector pixels of 2 ⁇ 10 -3 rtiA / cm 2 were reduced to 9 x 10 ⁇ 5 rtiA / cm 2 (each at -5V bias voltage).
  • this material is the good coordination of the HOMO and LUMO energies with the electrode and blend materials as well as the good hole transport properties. Property due to the triarylamine component of this copolymer.
  • Other suitable materials which can be used according to the invention as electron blocking layer in organic photodetector components are in general copolymers with triarylamine components and fluorene components as well as copolymers with triarylamine components and spirobifluorene components or copolymers with triarylamine components and poly-phenylene-vinylene. components.
  • this class of materials are a high HOMO / LUMO gap, a well-matched HOMO level, and good hole mobility, so that the materials act as electron blockers, but at the same time exhibit steady high quantum efficiency, at least when operated with an applied reverse voltage ,
  • Figure 4 shows the chemical structural formula of the material with the two triarylamine units.
  • FIGs 5 and 6 show the results obtained with the material ADS250BE shown in Figure 4 for the following photodetector construction:
  • the substrate is glass, there is a 100 nm Au layer as an anode, then a 30 nm electron blocker layer of the material ADS250BE thereon the photoactive layer with a layer thickness of 250 nm here from a blend of P3HT: PCBM in the ratio of 1: 0.75 Finally, the cathode of a 3 nm Ca layer and then a 10 nm thick cover layer of silver.
  • FIG. 5 shows the dark and light characteristic curves of correspondingly constructed components with a diode area of 2 ⁇ 2 mm.
  • the range of negative voltages between -5 V and -1 V is of particular interest here. In this area, a high contrast between light and dark be achieved signal, ie the lowest possible dark current at the highest possible luminous flux. Furthermore, for a good signal linearity as constant a luminous flux level in this voltage range is important (ie a flat as possible light curve).
  • the curves in Fig. 1 show that the incorporation of the electron blocker layer ADS250BE achieved a reduction of the dark current by a factor of more than 5.
  • the efficiency (ie the luminous flux yield) in the voltage range -5 V to -IV is not influenced by this electron blocker layer: it lies with and without this layer close to the theoretical optimum of 100% internal quantum efficiency.
  • the improvement relates (unlike already known intermediate layers) specifically the properties of a photodetector, which is operated with negative bias voltage.
  • a reduction of the dark current by a factor of 5 means at the same time an improvement of the sensitivity of the sensor (and thus of the dynamic range) by a factor of 5.
  • FIG. 6 shows the influence of the electron blocker layer on smaller organic diode pixels, as used in pixelated flat-plate detectors.
  • the current densities of these pixels were determined in the present example indirectly via the read charge quantities of a pixelated TFT-driven active-matrix detector panel.
  • the layer structure was analogous to that described above for the larger diodes, except that the pure glass substrate was replaced by a glass substrate with an a-Si TFT matrix.
  • FIG. 6 shows the corresponding integrated charge signals for pixels with and without electrodes. As a reference for a TFT panel without the organic photodiode.
  • the signals were measured after an integration time of 20 ms without illumination.
  • the panel made without the electron blocking layer shows after this time a significant dark current signal of 12.5 pC above the reference value, resulting in a current density during the 20 ms integration time of about 4 x 10 -3 mA / cm 2 .
  • the charge signal has the shape expected for the diode dark current with a time constant of 23 ⁇ s given by the product of diode capacitance and ON resistance of the transistor.
  • the reference signal b shows a different, much shorter time constant since charge-reversal effects due to other capacitances and resistances are effective here.
  • the detector panel made with an electron blocking layer now shows a charge signal which is almost identical in shape and height to the reference signal of the panel without an organic photodiode.
  • Devices on respective electron blocking layer dark current densities were detected cm2 of less than 8 x 10 -5 mA /.
  • dark current enhancement is achieved by at least a factor of 50 without reducing the quantum efficiency of the detector.
  • very weak light signals can also be detected with the structure described above, as occur, for example, in an X-ray flat detector in which a scintillator layer converts the X-ray radiation into visible light and then measures it spatially resolved by means of highly sensitive pixelated photodiodes becomes.
  • the invention relates to an organic photodetector with reduced dark current, that is with increased sensitivity, in particular for low light intensities.
  • An electron blocking layer in a photodetector makes it possible for the first time to effectively reduce the dark current of photodetectors.
  • an electron blocker layer is arranged between the anode and the photoactive layer, the HOMO is adapted to the energy level of the anode material whose HOMO / LUMO band gap is at least 2.5 eV and which shows good hole mobility within the layer.

Abstract

Die Erfindung betrifft einen organischen Photodetektor mit reduziertem Dunkelstrom, also mit erhöhter Empfindlichkeit insbesondere für niedrige Lichtintensitäten. Durch eine Elektronenblockerschicht in einem Photodetektor wird es erstmals ermöglicht, den Dunkelstrom von Photodetektoren wirksam zu reduzieren. Dazu wird zwischen der Anode und der photoaktiven Schicht eine Elektronenblockerschicht angeordnet, deren HOMO an das Energieniveau des Anodenmaterials angepasst ist, deren HOMO/LUMO Bandabstand zumindest 2,5 eV beträgt und die eine gute Lochmobilität innerhalb der Schicht zeigt.

Description

Beschreibung
Organischer Photodetektor mit erhöhter Empfindlichkeit, sowie Verwendung eines Triarylmin-Fluoren-Polymers als Zwischen- schicht in einem Photodetektor
Die Erfindung betrifft einen organischen Photodetektor mit reduziertem Dunkelstrom, also mit erhöhter Empfindlichkeit insbesondere für niedrige Lichtintensitäten.
Bekannt sind, beispielsweise aus der US 5,319,206 anorganische Photodetektoren, also beispielsweise Röntgen-Flach- detektoren auf der Basis von amorphem Silizium, bei denen zusätzliche Schichten vorhanden sind, die den Übergang von La- dungsträgern in eine Richtung sperren. Dadurch wird das Phänomen des Dunkelstroms, das die Sensibilität des Gerätes gegenüber geringen Lichtintensitäten herabsetzt, unterdrückt.
Derzeit sind diese Detektoren auf Basis von amorphem Silizium marktbeherrschend, weil sie bei einer Biasspannung von -5V
Dunkelströme unterhalb von 10~5 mA/cm2 und damit eine sehr hohe Empfindlichkeit für niedrige Lichtintensitäten haben. Nachteilig an den genannten Deeen ist, dass sie in der Herstellung teuer und großflächige Bildschirme nicht machbar sind.
Bekannt ist außerdem aus der US 6,692 820 B2 ein optoelektronisches photosensitives organisches Element, wie eine organische Solarzelle oder ein Photodetektor für sichtbares Licht, das eine Exziton-blockierende Schicht hat. Die Blockierung der Exzitonen an der Grenze zwischen der photoaktiven Schicht und der Elektrode dient dazu, dass ein Quenchen innerhalb der Halbleitermoleküle der aktiven Schicht unterbunden wird. Diese Zwischenschicht dient entsprechend der Er- höhung der Quanteneffizienz.
Bei organischen Photodioden mit großflächigen, unstrukturierten organischen Halbleiterschichten mit polymeren Lochtrans- port-Komponenten wie beispielsweise P3HT (Poly-3-hexyl- thiophene) ist der Dunkelstrom deutlich höher als bei anorganischen Detektoren, also beispielsweise bei einer Bias- Spannung von -5V liegen die typischen Dunkelströme im Bereich von 10"2 bis 10"3 rtιA/cm2.
Trotz der bekannten Zwischenschichten ist das Problem des Dunkelstroms, das bisher eine Markteinführung der organischen Flachbildschirme verhindert, nicht gelöst. Ein niedriger Dun- kelstrom ist insbesondere dann wichtig, wenn, wie z.B. bei Röntgendetektoren ein hoher Dynamikbereich abgedeckt wird, d.h. wenn auch sehr geringe Lichtintensitäten über dem Rauschlevel detektiert werden müssen. Ein Dunkelstrombeitrag kann zwar grundsätzlich vom Signal substrahiert werden, führt aber immer zu einem Rauschbeitrag, der bei Messungen mit niedrigen Röntgendosen den Dynamikbereich limitiert.
Aufgabe der vorliegenden Erfindung ist es daher, einen Photodetektor auf organischer Basis zur Verfügung zu stellen, des- sen Dunkelstrom reduziert ist.
Gegenstand der Erfindung ist daher ein photosensitives optoelektronisches Bauelement auf organischer Basis, eine obere und eine untere Elektrode mit dazwischen zumindest einer pho- toaktiven Schicht umfassend, dadurch gekennzeichnet, dass zwischen der photoaktiven Schicht und der Anode eine Elektro- nenblockerschicht angeordnet ist, deren HOMO-Niveau an die Anode angepasst ist, die einen HOMO/LUMO Bandabstand von mindestens 2,5 eV und eine Lochmobilität von zumindest 10~6 cm2/Vs hat. Außerdem ist Gegenstand der Erfindung die Anwendung eines Copolymers aus mindestens einer Triarylamin- Einheiten enthaltenden Komponente und einer Fluoren und/oder einer Spirofluoren enthaltenden Komponente in einer Elektro- nenblockerschicht eines Photodetektors, die zwischen der Ano- de und der photoaktiven Schicht angeordnet ist.
Im Vergleich zu den bekannten Exziton blockierenden Schichten ist für die Elektronenblockerschicht nach der Erfindung die Erhöhung der Quanteneffizienz irrelevant, weil es hier nur darauf ankommt, dass in einem gewissen Arbeitsbereich (z.B. zwischen -5V und -2V) eine hohe Quanteneffizienz erzielt wird. Die Verbesserung nach der Erfindung betrifft spezifisch die Eigenschaften eines Photodetektors, der mit negativer Bi- as-Spannung betrieben wird.
Insbesondere wird nach der Erfindung kein negativer Einfluss für die Anwendung als integrierender Röntgendetektor beobach- tet, selbst wenn die Vorwärtsströme durch die Elektronenblo- ckerschicht stark reduziert werden und die Strom-Spannungskennlinien keine ausgeprägte Diodenform mehr zeigen.
Nach einer Ausführungsform der Erfindung weicht die energeti- sehe Lage des HOMO der Elektronenblockerschicht in einem Bereich von +0,5 eV bis -0,5 eV von der Idealposition des HOMOs in der energetischen Mitte des HOMO/LUMO-Bandabstandes der Anode ab .
Die organischen Photodioden bestehen in der Regel aus einem vertikalen Schichtsystem mit einer unteren Elektrode (Anode) (beispielsweise Gold, Indium Tin Oxide (ITO) , Palladium, Platin) darüber eine photoaktive Schicht beispielsweise aus einer Schicht ei- nes Blends wie dem P3HT-PCBM-Blend oder mehreren Schichten bei denen zwischen Blend und Anode noch eine oder mehrere zusätzliche Schichten, beispielsweise Lochtransporterschichten (beispielsweise PANIrPSS oder PEDOTrPSS) aufgebracht sind und einer transparenten oder zumindest semitransparenten Ka- thode, beispielsweise eine Ca, Ba, Mg, LiF mit einer dünnen Deckschicht aus Silber und/oder Aluminium. Der Blend aus den beiden Komponenten Poly-3-Hexylthiophen P3HT (Absorber- und Lochtransportkomponente) und Phenyl-C61-Buttersäure- methylester PCBM (Elektronenakzeptor und -transportkom- ponente) wirkt hierbei als so genannte „Bulk Heterojunction", d.h. die Trennung der Ladungsträger erfolgt an den Grenzflächen der beiden Materialien, die sich innerhalb des gesamten Schichtvolumens ausbilden. Andere Lochtransport-Komponenten sind weitere Polythiophene wie z.B. anders substituierte Poly-3-alkylthiophene oder auch Polyphenylenvinylene . Andere Elektronenakzeptor-Komponenten sind unsubstituierte Fullerene wie reines C60 und C70 sowie andere Fulleren-Derivate wie z.B: C70-PCBM oder C60-TCBM (To- IyI-C61-Buttersäuremethylester)
Nach einer vorteilhaften Ausführungsform der Erfindung ist die Elektronenblockerschicht aus einem Copolymer oder einem Blend (also eine Mischung) zumindest zweier Polymere. Dabei kann es vorteilhaft sein, wenn eine Komponente des Copolymers oder des Polymerblends eine Arylaminkomponente, insbesondere eine Triarylkomponente oder ein arylsubstituiertes Diamin, ist.
Darüber hinaus ist nach einer Ausführungsform eine Komponente eine Fluoren oder eine Spirofluoren-Komponente . Insbesondere bevorzugt ist die Materialklasse der poly (9, 9' -dioctyl- fluorene-co-bis-N,N' - (4,butylphenyl) -bis-N, N' -phenyl-1, 4- phenylene-diamine) oder PFB der Firma American Dye Source, (www.adsdyes.com) die dort unter der Bezeichnung ADS250BE erhältlich ist. Dieses Material ist außerdem in Nano Letters 2004, Vol.4 No. 12 auf den Seiten 2503 bis 2507, beschrieben.
Durch Einbringen der zusätzlichen Elektronenblockerschicht wird der durch die negativen Ladungsträger verursachte Dunkelstrom effizient reduziert.
Im Folgenden wird die Erfindung noch anhand von Figuren näher erläutert .
Figur 1 zeigt ein Standard-Schichtsystem eines organischen
Photodetektors, in
Figur 2 ist das zugehörige Potentialniveau-Diagramm skizziert, für den Fall einer negativen Bias-Spannung. Da die aktive Schicht aus einem Blend von zwei Ma- terialien besteht, sind die HOMO- und LUMO-Niveaus der beiden Komponenten parallel gezeichnet.
Figur 3 zeigt schließlich ein ähnliches Potentialniveau- Diagramm, aber für den erfindungsgemäßen Device-
Aufbau mit einem zusätzlichen Elektronenblocker- Interlayer .
Figur 4 zeigt die Struktur eines bevorzugten Materials für die Elektronenblockerschicht,
Figur 5 zeigt Kennlinien von organischen Photodioden mit und ohne Elektronenblockerschicht ADS250BE im Dunkeln und mit Beleuchtung.
Figur 6 zeigt integriert ausgelesene Ladungssignale eines
TFT-Panels mit (a) und ohne (b) organische Photodiode für eine Delayzeit von 20 ms vor dem Auslesepuls .
In Figur 1 ist der typische Aufbau eines organischen Photodetektors zu erkennen. Unten befindet sich das Substrat 1, darauf die Anode 2, beispielsweise aus Gold, darauf die photoaktive Schicht 3, beispielsweise ein Blend, also eine Mischung organischer Komponenten, das eine so genannte bulk-hetero- junction bildet. Ganz oben auf liegt die Kathode 4, beispielsweise eine Calcium/Aluminium-Kathode . Gezeigt ist schließlich noch der Kontakt 5, über den die Leitung von der Kathode zur Zuleitung erfolgt.
Figur 2 zeigt ein Potentialniveau-Diagramm für den Fall einer negativen Bias-Spannung. Die aktive Schicht umfasst Fulleren und Polythiophen, deren Homo-Lumo-Niveaus parallel gezeichnet sind, weil die Materialien vermischt sind. Vertikal ist die Energie gezeichnet, an absoluten Werten ist nur die Lage der Kathode und der Anode eingezeichnet. Die unteren Energieniveaus entsprechen den jeweiligen HOMOs der Komponente und die oberen Energieniveaus geben die LUMOs wieder. Rechts ist die Kathode eingezeichnet, links die Anode.
Figur 3 gibt ein sehr ähnliches Bild wieder, zu erkennen sind wieder die Lage der Elektrodenbänder und die Lage der
HOMO/LUMO-Niveaus der organischen Komponenten. Zwischen der Anode und den Energiebändern der organischen photoaktiven Komponenten ist in Figur 3 jedoch noch die HOMO/LUMO Lage der Elektronenblockerschicht eingezeichnet, hier beispielsweise ziemlich genau die Idealposition des HOMO-Energieniveaus treffen, die Lage des HOMOs kann jedoch erfindungsgemäß von dieser Idealposition um bis zu 0,5 eV in positive oder negative Spannungsrichtung abweichen, ohne der Effektivität des Gesamtsystems zu schaden.
Der HOMO-Level der Elektronenblockerschicht liegt dabei nahe dem HOMO-Level der Lochtransport-Komponente und gleichzeitig nahe dem Energieniveau des Anodenmaterials, so dass möglichst keine zusätzliche Barriere zur Loch-Extraktion entsteht. Der HOMO-LUMO-Abstand ist gleichzeitig so hoch (> 2.5 eV) , dass das LUMO-Niveau eine Barriere für die negativen Ladungsträger darstellt. Mit Pfeilen gezeigt sind die beiden unerwünschten Prozesse, Elektroneninjektion an der Anode und Lochinjektion an der Kathode, die beide zum Dunkelstrom beitragen können und von denen der erste durch die zusätzliche Elektronenblockerschicht wesentlich reduziert wird.
Ein geeignetes Material für die Elektronenblockerschicht, mit dem erfolgreiche Tests durchgeführt wurden, ist das in Figur 4 gezeigte Copolymer, das von der Firma American Dye
Source unter dem Namen ADS250BE erhältlich ist. Mit einer 30 nm Zwischenschicht dieses Materials konnten Dunkelströme von organischen Photodetektorpixeln von 2 x 10~3 rtιA/cm2 auf 9 x 10~5 rtiA/cm2 reduziert werden (jeweils bei -5V Biasspannung) .
Die besonderen Eigenschaften dieses Materials liegen in der guten Abstimmung der HOMO- und LUMO-Energien auf die Elektroden- und Blend-Materialien sowie in der guten Lochtransport- Eigenschaft durch die Triarylamin-Komponente dieses Copoly- mers . Andere geeignete Materialien, die erfindungsgemäß als Elektronenblockerschicht in organischen Photodetektor- Bauteilen Verwendung finden können sind allgemein Copolymere mit Triarylamin-Komponenten und Fluoren-Komponenten sowie Copolymere mit Triarylamin-Komponenten und Spirobifluoren- Komponenten oder Copolymere mit Triarylamin-Komponenten und Poly-Phenylen-Vinylen-Komponenten. Die bevorzugten Eigenschaften dieser Materialklasse liegen in einem hohen HOMO/LUMO-Gap, einem gut angepassten HOMO-Level sowie einer guten Lochmobilität, so dass die Materialien als Elektronen- blocker wirken, jedoch gleichzeitig zumindest im Betrieb mit einer angelegten RückwärtsSpannung eine unverändert hohe Quanteneffizienz zeigen.
Figur 4 zeigt die chemische Strukturformel des Materials mit den beiden Triarylamineinheiten.
Die Figuren 5 und 6 zeigen die mit dem in Figur 4 gezeigten Material ADS250BE erzielten Ergebnisse für den folgenden Photodetektor-Aufbau :
Das Substrat ist Glas, darauf liegt eine 100 nm Au-Schicht als Anode, darauf eine 30 nm-Elektronenblockerschicht aus dem Material ADS250BE darauf die photoaktive Schicht mit einer Schichtdicke von 250 nm hier aus einem Blend von P3HT : PCBM im Verhältnis con 1:0.75 schließlich noch die Kathode aus einer 3 nm Ca-Schicht und darauf eine 10 nm starke Deckschicht aus Silber.
Als Referenzprobe für den Aufbau wurde der identische Aufbau ohne die 30 nm-dicke Elektronenblockerschicht genommen.
Figur 5 zeigt die Dunkel- und Hellkennlinien entsprechend aufgebauter Bauteile mit einer Diodenfläche von 2 x 2 mm. Für die Anwendung in einem organischen Röntgendetektor mit Aktiv- Matrix-Ansteuerung ist hier vor allem der Bereich der negativen Spannungen zwischen -5 V und -1 V interessant. In diesem Bereich soll ein hoher Kontrast zwischen Licht- und Dunkel- signal erreicht werden, d.h. ein möglichst niedriger Dunkelstrom bei möglichst hohem Lichtstrom. Weiterhin ist für eine gute Signal-Linearität ein möglichst konstanter Lichtstromlevel in diesem Spannungsbereich wichtig (d.h. eine möglichst flache Lichtkurve) . Die Kurven in Abb. 1 zeigen, dass durch den Einbau des Elektronenblocker-Layers ADS250BE eine Reduktion des Dunkelstroms um einen Faktor von mehr als 5 erreicht wurde. Gleichzeitig wird die Effizienz (also die Lichtstromausbeute) im Spannungsbereich -5 V bis -IV durch diese Elekt- ronenblockerschicht nicht beeinflusst: Sie liegt mit und ohne diese Schicht nahe dem theoretischen Optimum von 100% interner Quanteneffizienz.
Hervorhebenswert ist die Tatsache, dass die Lichtströme bei OV (und ebenso die Ströme in Vorwärtsrichtung) durch die E- lektronenblockerschicht deutlich reduziert sind. Dies bedeutet, dass eine mit dieser Elektrodenblockerschicht aufgebaute Diode nur sehr schlechte Ergebnisse als Solarzelle aufweisen würden. Die Verbesserung betrifft (im Unterschied zu bereits bekannten Zwischenschichten) spezifisch die Eigenschaften eines Photodetektors, der mit negativer Bias-Spannung betrieben wird. Eine Erniedrigung des Dunkelstrom um den Faktor 5 bedeutet gleichzeitig eine Verbesserung der Empfindlichkeit des Sensors (und damit des Dynamikbereiches) um den Faktor 5.
Figur 6 schließlich zeigt den Einfluss der Elektronenblocker- schicht an kleineren organischen Dioden-Pixeln, wie sie in pixelierten Flachdetektoren zum Einsatz kommen. Die Stromdichten dieser Pixel wurden im vorliegenden Beispiel indirekt über die ausgelesenen Ladungsmengen eines pixelierten TFT- angesteuerten Aktiv-Matrix-Detektorpanels bestimmt. Der Schicht-Aufbau war dabei analog wie oben für die größeren Dioden beschrieben, nur wurde das reine Glassubstrat durch ein Glassubstrat mit einer a-Si TFT-Matrix ersetzt. An den Daten- leitungen befinden sich integrierende Ladungsverstärker, die nach dem Schalten eines Transistors über die Gate-Leitung das entstehende Signal auslesen. Figur 6 zeigt die entsprechenden integrierten Ladungssignale für Pixel mit und ohne Elektro- nenblockerschicht sowie als Referenz für ein TFT-Panel ohne die organische Photodiode. Die Signale wurden nach einer Integrationszeit von 20 ms ohne Beleuchtung gemessen. Das ohne Elektronenblockerschicht hergestellte Panel zeigt nach dieser Zeit ein deutliches Dunkelstrom-Signal von 12.5 pC über dem Referenzwert, hieraus ergibt sich eine Stromdichte während der 20 ms Integrationszeit von etwa 4 x 10~3 mA/cm2. Das Ladungssignal hat die für den Diodendunkelstrom erwartete Form mit einer Zeitkonstante von 23 μs, die durch das Produkt von Diodenkapazität und ON-Widerstand des Transistors gegeben ist. Das Referenz-Signal b) zeigt dagegen eine andere, wesentlich kürzere Zeitkonstante, da hier Umladungseffekte durch andere Kapazitäten und Widerstände wirksam sind.
Das mit einer Elektronenblockerschicht hergestellte Detektor- Panel zeigt nun ein Ladungssignal, welches in Form und Höhe nahezu identisch mit dem Referenzsignal des Panels ohne organische Photodiode ist. An entsprechenden Devices mit Elektronenblockerschicht wurden Dunkelstromdichten von weniger als 8 x 10~5 mA/cm2 nachgewiesen. Somit wird durch die Verwendung der Elektronenblockerschicht auf pixelierten Photodetektoren eine Verbesserung des Dunkelstroms um mindestens einen Faktor 50 erreicht, ohne dass die Quanteneffizienz des Detektors reduziert wird. Durch diese Performance-Verbesserung können mit dem oben beschriebenem Aufbau auch sehr schwache Lichtsignale detektiert werden, wie sie zum Beispiel in einem Röntgen- flachdetektor auftreten, in dem eine Szintillatorschicht die Röntgenstrahlung in sichtbares Licht konvertiert und dieses dann durch hochempfindliche pixelierte Photodioden ortsaufge- löst gemessen wird.
Die Erfindung betrifft einen organischen Photodetektor mit reduziertem Dunkelstrom, also mit erhöhter Empfindlichkeit insbesondere für niedrige Lichtintensitäten. Durch eine Elektronenblockerschicht in einem Photodetektor wird es erstmals ermöglicht, den Dunkelstrom von Photodetektoren wirksam zu reduzieren. Dazu wird zwischen der Anode und der photoaktiven Schicht eine Elektronenblockerschicht angeordnet, deren HOMO an das Energieniveau des Anodenmaterials angepasst ist, deren HOMO/LUMO Bandabstand zumindest 2,5 eV beträgt und die eine gute Lochmobilität innerhalb der Schicht zeigt.

Claims

Patentansprüche
1. Photosensitives optoelektronisches Bauelement auf organischer Basis, eine obere und eine untere Elektrode mit dazwi- sehen zumindest einer photoaktiven Schicht umfassend, dadurch gekennzeichnet, dass zwischen der photoaktiven Schicht und der Anode eine Elektronenblockerschicht angeordnet ist, deren HOMO-Niveau an die Anode angepasst ist und die einen HOMO/LUMO Bandabstand von mindestens 2,5 eV und eine Lochmo- bilität von zumindest 10"6 cm2/Vs hat.
2. Optoelektronisches Bauelement nach Anspruch 1, wobei die energetische Lage des HOMO der Elektronenblockerschicht in einem Bereich von +0,5 eV bis -0,5 eV von der Idealposition des HOMOs in der energetischen Mitte des HOMO/LUMO- Bandabstandes der Anode abweichen kann.
3. Optoelektronisches Bauelement nach Anspruch 1 oder 2, wobei die Elektronenblockerschicht ein Copolymer oder ein Blend zumindest zweier organischer Polymere umfasst.
4. Optoelektronisches Bauelement nach Anspruch 3, wobei eines der organischen Polymere eine Triarylkomponente umfasst.
5. Optoelektronisches Bauelement nach Anspruch 5, wobei zumindest ein Copolymer eine Fluoren und/oder eine Spirofluo- ren-Komponente umfasst.
6. Optoelektronisches Bauelement nach einem der vorstehenden Ansprüche, wobei die Elektronenblockerschicht das Polymer
ADS250BE der Firma American Dye Source umfasst.
7. Anwendung eines Copolymers aus mindestens einer Triaryla- min-Einheiten enthaltenden Komponente und einer Fluoren und/oder einer Spirofluoren enthaltenden Komponente in einer Elektronenblockerschicht eines Photodetektors, die zwischen der Anode und der photoaktiven Schicht angeordnet ist.
8. Anwendung nach Anspruch I1 wobei das Copolymer die Komponente ADS250BE der Firma American Dye Source ist.
9. Anwendung nach Anspruch 7 oder 8 in einem Röntgendetektor ,
PCT/EP2006/065081 2005-08-08 2006-08-04 Organischer photodetektor mit erhöhter empfindlichkeit, sowie verwendung eines triarylmin-fluoren-polymers als zwischenschicht in einem photodetektor WO2007017475A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005037421.2 2005-08-08
DE102005037421 2005-08-08

Publications (1)

Publication Number Publication Date
WO2007017475A1 true WO2007017475A1 (de) 2007-02-15

Family

ID=37192404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/065081 WO2007017475A1 (de) 2005-08-08 2006-08-04 Organischer photodetektor mit erhöhter empfindlichkeit, sowie verwendung eines triarylmin-fluoren-polymers als zwischenschicht in einem photodetektor

Country Status (1)

Country Link
WO (1) WO2007017475A1 (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008119766A1 (de) * 2007-03-30 2008-10-09 Siemens Aktiengesellschaft Umgebungslichtsensor
DE102007025975A1 (de) * 2007-06-04 2008-12-11 Siemens Ag Organischer Photodetektor mit einstellbarer Transmission, sowie Herstellungsverfahren dazu
DE102007046444A1 (de) 2007-09-28 2009-04-02 Siemens Ag Organischer Photodetektor mit reduziertem Dunkelstrom
DE102007046502A1 (de) 2007-09-28 2009-04-16 Siemens Ag Organisches opto-elektronisches Bauteil mit reduziertem Dunkelstrom
EP2306541A1 (de) * 2009-09-11 2011-04-06 Fujifilm Corporation Photoelektrische Umwandlungsvorrichtung, Herstellungsverfahren dafür, Photosensor, Abbildungsvorrichtung und deren Antriebsverfahren
EP2317582A1 (de) * 2009-09-29 2011-05-04 Fujifilm Corporation Photoelektrische Umwandlungsvorrichtung, photoelektrisches Umwandlungsvorrichtungsmaterial, Fotosensor und Bildgebungsvorrichtung
WO2013028232A1 (en) * 2011-02-28 2013-02-28 University Of Florida Research Foundation, Inc. Photodetector and upconversion device with gain (ec)
CN103443935B8 (zh) * 2011-02-28 2016-05-11 佛罗里达大学研究基金会有限公司 带有增益(ec)的上转换器件和光检测器
US9841509B2 (en) 2015-11-24 2017-12-12 General Electric Company Processes for fabricating organic x-ray detectors, related x-ray detectors and systems
US9929216B2 (en) 2015-11-24 2018-03-27 General Electric Company Processes for fabricating organic X-ray detectors, related organic X-ray detectors and systems
WO2018060672A1 (en) 2016-09-27 2018-04-05 Cambridge Display Technology Limited Organic microcavity photodetectors with narrow and tunable spectral response
US9997571B2 (en) 2010-05-24 2018-06-12 University Of Florida Research Foundation, Inc. Method and apparatus for providing a charge blocking layer on an infrared up-conversion device
GB2560724A (en) * 2017-03-21 2018-09-26 Sumitomo Chemical Co Organic photodetector
US10134815B2 (en) 2011-06-30 2018-11-20 Nanoholdings, Llc Method and apparatus for detecting infrared radiation with gain
US10700141B2 (en) 2006-09-29 2020-06-30 University Of Florida Research Foundation, Incorporated Method and apparatus for infrared detection and display
US10749058B2 (en) 2015-06-11 2020-08-18 University Of Florida Research Foundation, Incorporated Monodisperse, IR-absorbing nanoparticles and related methods and devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003035714A1 (en) * 2001-10-25 2003-05-01 Cambridge Display Technology Limited Triarylamine containing monomers for optoelectronic devices
WO2003081281A1 (en) * 2002-03-23 2003-10-02 Sang-Hee Nam Digital x-ray image detector
WO2004084260A2 (en) * 2003-03-20 2004-09-30 Cambridge Display Technology Limited Electroluminescent device
WO2004083277A1 (en) * 2003-03-20 2004-09-30 Cambridge Display Technology Limited Polymers, their preparation and uses
WO2005049689A2 (en) * 2003-11-17 2005-06-02 Sumitomo Chemical Company, Limited Crosslinkable substituted fluorene compounds and conjugated oligomers or polymers based thereon
WO2005059951A2 (en) * 2003-12-19 2005-06-30 Cambridge Display Technology Limited Optical device comprising a charge transport layer of insoluble organic material and method for the production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003035714A1 (en) * 2001-10-25 2003-05-01 Cambridge Display Technology Limited Triarylamine containing monomers for optoelectronic devices
WO2003081281A1 (en) * 2002-03-23 2003-10-02 Sang-Hee Nam Digital x-ray image detector
WO2004084260A2 (en) * 2003-03-20 2004-09-30 Cambridge Display Technology Limited Electroluminescent device
WO2004083277A1 (en) * 2003-03-20 2004-09-30 Cambridge Display Technology Limited Polymers, their preparation and uses
WO2005049689A2 (en) * 2003-11-17 2005-06-02 Sumitomo Chemical Company, Limited Crosslinkable substituted fluorene compounds and conjugated oligomers or polymers based thereon
WO2005059951A2 (en) * 2003-12-19 2005-06-30 Cambridge Display Technology Limited Optical device comprising a charge transport layer of insoluble organic material and method for the production thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HALLS J., WILSON R.: "Plastic Cells for Energy from the Sun", 30 November 2004 (2004-11-30), pages 1 - 128, XP002405608, Retrieved from the Internet <URL:http://www.dti.gov.uk/files/file17307.pdf> [retrieved on 20061103] *
YASUNARI NISHIKATA ET AL: "PREPARATION OF POLYIMIDE LANGMUIR-BLODGETT FILMS POSSESSING A TRIPHENYLAMINE UNIT AND THEIR APPLICATION TO PHOTODIODES", THIN SOLID FILMS, ELSEVIER-SEQUOIA S.A. LAUSANNE, CH, vol. 210 / 211, no. 1 / 2, 15 April 1992 (1992-04-15), pages 296 - 298, XP000360119, ISSN: 0040-6090 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10700141B2 (en) 2006-09-29 2020-06-30 University Of Florida Research Foundation, Incorporated Method and apparatus for infrared detection and display
WO2008119766A1 (de) * 2007-03-30 2008-10-09 Siemens Aktiengesellschaft Umgebungslichtsensor
DE102007025975A1 (de) * 2007-06-04 2008-12-11 Siemens Ag Organischer Photodetektor mit einstellbarer Transmission, sowie Herstellungsverfahren dazu
WO2008148705A1 (de) * 2007-06-04 2008-12-11 Siemens Aktiengesellschaft Organischer photodetektor mit einstellbarer transmission, sowie herstellungsverfahren dazu
DE102007046444A1 (de) 2007-09-28 2009-04-02 Siemens Ag Organischer Photodetektor mit reduziertem Dunkelstrom
DE102007046502A1 (de) 2007-09-28 2009-04-16 Siemens Ag Organisches opto-elektronisches Bauteil mit reduziertem Dunkelstrom
US8637860B2 (en) 2009-09-11 2014-01-28 Fujifilm Corporation Photoelectric conversion device, production method thereof, photosensor, imaging device and their drive methods
US8378339B2 (en) 2009-09-11 2013-02-19 Fujifilm Corporation Photoelectric conversion device, production method thereof, photosensor, imaging device and their drive methods
EP2306541A1 (de) * 2009-09-11 2011-04-06 Fujifilm Corporation Photoelektrische Umwandlungsvorrichtung, Herstellungsverfahren dafür, Photosensor, Abbildungsvorrichtung und deren Antriebsverfahren
CN102024907A (zh) * 2009-09-11 2011-04-20 富士胶片株式会社 光电转换装置,其制备方法,光传感器,成像装置及它们的驱动方法
EP2317582A1 (de) * 2009-09-29 2011-05-04 Fujifilm Corporation Photoelektrische Umwandlungsvorrichtung, photoelektrisches Umwandlungsvorrichtungsmaterial, Fotosensor und Bildgebungsvorrichtung
US8525577B2 (en) 2009-09-29 2013-09-03 Fujifilm Corporation Photoelectric conversion device, photoelectric conversion device material, photosensor and imaging device
US9070887B2 (en) 2009-09-29 2015-06-30 Fujifilm Corporation Photoelectric conversion device, photoelectric conversion device material, photosensor and imaging device
US9997571B2 (en) 2010-05-24 2018-06-12 University Of Florida Research Foundation, Inc. Method and apparatus for providing a charge blocking layer on an infrared up-conversion device
US9214502B2 (en) 2011-02-28 2015-12-15 University Of Florida Research Foundation, Inc. Photodetector and up-conversion device with gain
US9196661B2 (en) 2011-02-28 2015-11-24 University Of Florida Research Foundation, Inc. Photodetector and up-conversion device with gain
CN103443935B8 (zh) * 2011-02-28 2016-05-11 佛罗里达大学研究基金会有限公司 带有增益(ec)的上转换器件和光检测器
CN103443935A (zh) * 2011-02-28 2013-12-11 佛罗里达大学研究基金会有限公司 带有增益(ec)的上转换器件和光检测器
WO2013028232A1 (en) * 2011-02-28 2013-02-28 University Of Florida Research Foundation, Inc. Photodetector and upconversion device with gain (ec)
US10134815B2 (en) 2011-06-30 2018-11-20 Nanoholdings, Llc Method and apparatus for detecting infrared radiation with gain
US10749058B2 (en) 2015-06-11 2020-08-18 University Of Florida Research Foundation, Incorporated Monodisperse, IR-absorbing nanoparticles and related methods and devices
US9841509B2 (en) 2015-11-24 2017-12-12 General Electric Company Processes for fabricating organic x-ray detectors, related x-ray detectors and systems
US9929216B2 (en) 2015-11-24 2018-03-27 General Electric Company Processes for fabricating organic X-ray detectors, related organic X-ray detectors and systems
WO2018060672A1 (en) 2016-09-27 2018-04-05 Cambridge Display Technology Limited Organic microcavity photodetectors with narrow and tunable spectral response
GB2560724A (en) * 2017-03-21 2018-09-26 Sumitomo Chemical Co Organic photodetector

Similar Documents

Publication Publication Date Title
WO2007017475A1 (de) Organischer photodetektor mit erhöhter empfindlichkeit, sowie verwendung eines triarylmin-fluoren-polymers als zwischenschicht in einem photodetektor
EP2188855B1 (de) Organischer photodetektor zur detektion infraroter strahlung, verfahren zur herstellung dazu und verwendung
EP2398056B1 (de) Organische Solarzelle mit mehreren Transportschichtsystemen
DE102005055278B4 (de) Organischer pixelierter Flachdetektor mit erhöhter Empfindlichkeit
WO2009156419A1 (de) Photodetektor und verfahren zur herstellung dazu
EP1611484A2 (de) Photoaktives bauelement mit organischen schichten
EP1859494A1 (de) Photoaktives bauelement mit organischen schichten
DE102013106639A1 (de) Organisches, halbleitendes Bauelement
DE602004005824T2 (de) Elektronische vorrichtung
DE10209789A1 (de) Photoaktives Bauelement mit organischen Schichten
EP3516710A1 (de) Diffusionslimitierende elektroaktive barriereschicht für ein optoelektronisches bauteil
DE102009038633B4 (de) Photoaktives Bauelement mit organischen Doppel- bzw. Mehrfachmischschichten
DE102006046210B4 (de) Verfahren zur Herstellung eines organischen Photodetektors
WO2014006566A1 (de) Elektrodenanordnung für optoelektronische bauelemente
WO2022117149A1 (de) Schichtsystem für ein organisches elektronisches bauelement
DE102008034256A1 (de) Photoaktives Bauelement mit organischen Schichten
WO2009043684A1 (de) Organisches opto-elektronisches bauteil mit reduziertem dunkelstrom
DE102012105809B4 (de) Organisches optoelektronisches Bauelement mit transparenter Gegenelektrode und transparenter Elektrodenvorrichtung
DE102021130501A1 (de) Schichtsystem mit mindestens einer photoaktiven Schicht mit mindestens einer Zwischenschicht für ein organisches elektronisches Bauelement
DE102020112320A1 (de) Schichtsystem für ein organisches elektronisches Bauelement
DE102004030628A1 (de) Organisches elektronisches Element mit elektrisch leitfähiger semitransparenter Schicht
DE102019120457A1 (de) Organische halbleitende Verbindung mit einer Indolgruppe, organisches optoelektronisches Bauelement mit einer solchen Verbindung, und Verwendung einer solchen Verbindung
DE10235012A1 (de) Material für eine Zwischenschicht eines organischen photovoltaischen Bauelements, Herstellungsverfahren und Verwendung dazu sowie ein photovoltaisches Bauelement
DE102015106372A1 (de) Organische lichtemittierende elektrochemische Zelle und Verfahren zur Herstellung einer organischen lichtemittierenden elektrochemischen Zelle
WO2008148705A1 (de) Organischer photodetektor mit einstellbarer transmission, sowie herstellungsverfahren dazu

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06778173

Country of ref document: EP

Kind code of ref document: A1