EP2278558B1 - Dispositif et procédé de vérification de documents de valeur - Google Patents

Dispositif et procédé de vérification de documents de valeur Download PDF

Info

Publication number
EP2278558B1
EP2278558B1 EP10011627.6A EP10011627A EP2278558B1 EP 2278558 B1 EP2278558 B1 EP 2278558B1 EP 10011627 A EP10011627 A EP 10011627A EP 2278558 B1 EP2278558 B1 EP 2278558B1
Authority
EP
European Patent Office
Prior art keywords
luminescence
previous
luminescence sensor
radiation
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10011627.6A
Other languages
German (de)
English (en)
Other versions
EP2278558A3 (fr
EP2278558A2 (fr
Inventor
Wolfgang Deckenbach
Thomas Dr. Giering
Michael Bloss
Martin Dr. Clara
Hans-Peter Ehrl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giesecke and Devrient Currency Technology GmbH
Original Assignee
Giesecke and Devrient Currency Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giesecke and Devrient Currency Technology GmbH filed Critical Giesecke and Devrient Currency Technology GmbH
Publication of EP2278558A2 publication Critical patent/EP2278558A2/fr
Publication of EP2278558A3 publication Critical patent/EP2278558A3/fr
Application granted granted Critical
Publication of EP2278558B1 publication Critical patent/EP2278558B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/121Apparatus characterised by sensor details
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/1205Testing spectral properties

Definitions

  • the invention relates to a device and a method for checking, in particular, luminescent documents of value, the document of value being irradiated with light and the luminescent radiation emanating from the document of value being detected in a spectrally resolved manner.
  • Such luminescent documents of value can be, for example, banknotes, cheques, coupons or chip cards.
  • the present invention is primarily concerned with the validation of banknotes. These typically contain a feature substance or a mixture of several feature substances in the paper or in the printing ink that exhibit luminescent behavior, such as fluorescence or phosphorescence.
  • a system is, for example, from the DE 23 66 274 C2 known.
  • the bank note is irradiated obliquely and the vertically reflected fluorescence radiation is detected spectrally resolved using an interference filter.
  • the evaluation is carried out by comparing the signals from different photocells of the spectrometer.
  • EP 1158 459 A1 describes a method and a device for detecting the authenticity of a feature.
  • a luminescence feature is excited with at least one excitation pulse of at least one excitation source, and emission intensity values of the emission radiation emitted by it as a response to the excitation pulse are measured at time intervals.
  • An intensity-time emission function of the emission intensity values is then formed. This function is compared to at least one reference intensity-time emission function, with the two emission functions being normalized before they are compared.
  • an object of the present invention is a device and a method for checking luminescent documents of value provide, which allow a safe test with a compact luminescence sensor.
  • the devices according to the invention can be used in all types of devices in which optical radiation, in particular luminescence radiation, is tested.
  • optical radiation in particular luminescence radiation
  • the checking of banknotes in banknote processing devices which can be used, for example, for counting and/or sorting and/or depositing and/or paying out banknotes, is described below as a preferred variant.
  • banknote sorting device 1 In the 1 such a bank note sorting device 1 is shown in an exemplary manner.
  • the banknote sorting device 1 has an input compartment 3 for banknotes BN in a housing 2, into which banknotes BN to be processed can either be input manually from the outside or bundles of banknotes can be fed automatically, optionally after a previous debanding.
  • the banknotes BN fed into the input pocket 3 are individually withdrawn from the stack by a singler 4 and transported through a sensor device 6 by means of a transport device 5 .
  • the sensor device 6 can have one or more sensor modules integrated in a common housing or mounted in separate housings. The sensor modules can be used, for example, to check the authenticity and/or the condition and/or the denomination of the checked banknotes BN.
  • the checked banknotes BN are then output sorted, depending on the test results of the sensor device 6 and predetermined sorting criteria, via switches 7 and associated spiral compartment stackers 8 into output compartments 9, from which they are either removed manually, if necessary after prior banding or packaging or can be transported away automatically. It can also be a shredder 10 may be provided in order to destroy banknotes BN classified as genuine and no longer fit for circulation.
  • the banknote sorting device 1 is controlled by means of an EDP-supported control unit 11.
  • the sensor device 6 can have different sensor modules.
  • the sensor device 6 is characterized in particular by a sensor module 12 for checking luminescence radiation, which is referred to below for short as a luminescence sensor 12 .
  • FIG. 12 illustrates, in a schematic cross-sectional view, the internal structure and the arrangement of the optical components of a particularly compact luminescence sensor 12 according to an exemplary embodiment of the present invention. 3 12 also shows a part of these components located inside the luminescence sensor 12 in plan view from above.
  • This luminescence sensor 12 is designed to be particularly compact and optimized with regard to high signal-to-noise ratios
  • the luminescence sensor 12 has, in a common housing 13, both one or more light sources 14 for exciting luminescence radiation and a detector 30, preferably a spectrometer 30 for spectrally split detection of the luminescence light.
  • the housing 13 is closed in such a way that unauthorized access to the components contained therein is not possible without damaging the housing 13.
  • the light source 14 can, for. B. an LED, but preferably a laser light source such as a laser diode 14 be.
  • the laser diode 14 can emit one or more different wavelengths or wavelength ranges. If several different wavelengths or wavelength ranges are used, provision can also be made for several light sources 14 for different wavelengths to be used in the same light source housing or in separate light source housings, ie separate light source modules or wavelength ranges, which are arranged next to each other, for example, and preferably emit parallel light that can be projected onto the same point or adjacent points on the bank note BN.
  • the light sources 14 can emit light of several different wavelengths or wavelength ranges, it can be provided that the individual wavelengths or wavelength ranges can be activated selectively.
  • the light emanating from the laser diode 14 is radiated onto a banknote to be checked by means of imaging optics 15,16,17 the collimator lens 15 deflects the laser beam formed by 90°, as well as a condenser lens 17 with a large opening angle, which images the deflected laser beam through a front glass 18, preferably perpendicularly, onto the bank note BN to be checked, which is transported past by means of the transport system 5 in direction T, and thus the bank note BN for emission stimulated by luminescent radiation.
  • the luminescence radiation emanating from the illuminated banknote BN is then preferably also detected in the perpendicular direction, ie coaxially to the excitation light. This leads to a lower sensitivity to interference due to positional tolerances of the banknotes BN transported past on the measurements than with the oblique illumination, for example after DE 23 66 274 C2 .
  • the optics for imaging the luminescence radiation on a photosensitive detector unit 21 also includes the front glass 18, the condenser lens 17 and the mirror 16, which is at least partially transparent for the luminescence radiation to be measured.
  • the optics have a further condenser lens 19 with a large opening, a subsequent filter 20, which is designed to block the illumination wavelength of the light source 14 and other wavelengths not to be measured, and a deflection mirror 23.
  • the deflection mirror 23 serves to fold the beam path and deflect the luminescence radiation to be measured onto an imaging grating 24 or another device for spectral decomposition 24.
  • the deflection mirror is advantageously mounted parallel or almost parallel to the image plane of the spectrometer (angle ⁇ 15 degrees).
  • the imaging grating 24 has a wavelength-dispersing element with a concave mirror 26 which preferably images the first-order or minus-first-order luminescence radiation onto the detector unit 21 .
  • the detector unit 21 preferably has a detector line 22 composed of a plurality of photosensitive pixels, ie picture elements, arranged in a row, as is the case, for. B. in relation to the Figures 6 or 7 are described below as an example.
  • the entrance slit of the spectrometer 30 is in the 2 denoted by the reference AS.
  • the entrance slit AS can be present in the housing 13 in the form of an aperture AS in the beam path.
  • there is no aperture at this point but only a "virtual" entrance gap AS, which is given by the illumination track of the light source 14 on the bank note BN.
  • the latter variant leads to higher light intensities, but can also lead to an undesirable greater sensitivity to ambient light or scattered light.
  • the deflection mirror 23 is positioned in relation to the imaging grating 24 in such a way that the entrance slit AS falls on the area of the deflection mirror 23 . Since this means that the beam cross section of the radiation to be deflected on the deflection mirror 23 is particularly small, the deflection mirror 23 itself can also have particularly small dimensions. If the deflection mirror 23 is part of the detector unit 21, the deflection mirror 23 can thereby not only according to figure 2 above but also next to the photosensitive areas of the detector unit 21.
  • a special embodiment of the present invention is that the light source 14 for the excitation of luminescence radiation generates an elongated illumination surface 35 extending in the transport direction T on the bank note BN to be checked.
  • This variant has the advantage that the luminescent, in particular phosphorescent, feature substances present in the banknotes BN, usually only in very low concentrations, are pumped up longer by the illumination surface extending in the transport direction when the luminescence sensor 12 is transported past, and the radiation intensity of the afterglow, phosphorescent feature substances in particular is thereby increased .
  • FIG 5 illustrates a related snapshot.
  • An elongate illumination surface 35 extending in the transport direction T can be understood to mean that the illumination radiation irradiates an arbitrarily shaped surface, in particular a rectangular track, on the banknote at a given point in time, which is significantly larger in the transport direction T than perpendicular to the transport direction T.
  • the expansion of the illumination area 35 in the transport direction T at least twice, in particular preferably at least three, four or five times as long as the extension perpendicular to the transport direction T.
  • the image area 36, ie the entrance hatch 36 of the spectrometer 30, is also illustrated with a different hatching, ie that area of the banknote BN which is imaged on the spectrometer 30 at the given point in time according to the dimensions of the entrance slit AS. It can be seen that the length and width of the entrance port 36 of the spectrometer 30 are preferably smaller than the corresponding dimensions of the illumination area 35 of the laser diode 14 . This allows greater adjustment tolerances for the individual sensor components.
  • the illumination surface 35 extends significantly further in the transport direction T than against the transport direction T in comparison to the image surface 36 .
  • This is particularly advantageous for exploiting the increased inflation effect.
  • it can also be provided that the illumination surface 35 and the image surface 36 only partially overlap in the transport direction T.
  • the luminescence sensor 6 can be used both in devices 1 in which the banknotes BN are transported in the transport direction T shown, and in devices 1 in which the banknotes BN are transported in the opposite direction -T.
  • different detector units 21, 27 are used to detect the luminescence radiation, in particular the luminescence radiation emanating from the device for spectral decomposition 24, ie the imaging grating 24.
  • a filter can be provided to only in one or more given wavelengths or ranges to measure, the measurable spectral ranges of the different detector units 21, 27 preferably differ and, for example, only partially or not overlap.
  • the several other detector units 27 can be spatially spaced from each other or in a sandwich structure, as shown in FIG DE 1 0127 837 A1 is described as an example.
  • the at least one further detector unit 27 can thus also be used to measure the broadband, non-spectrally resolved zeroth order of the spectrometer 30 and, if appropriate, the decay behavior of the luminescence radiation.
  • the further detector unit 27 can also be designed to check a different optical property of the at least one feature substance of the bank note BN. This can be done, for example, by the measurements mentioned at other wavelengths or wavelength ranges.
  • the further detector unit 27 can preferably also be designed to check another feature substance of the bank note BN. So e.g. B. the detector line 22 for measuring the optical properties of a first feature substance of the banknote BN and the further detector unit 27 for measuring another feature substance of the banknote BN, in particular in a different spectral range than the detector line 22, be designed.
  • the detectors 22, 27 will preferably have filters in order to suppress undesired scattered light or higher-order light during the measurement.
  • this further detector unit 27 can be arranged tilted in relation to the imaging grating 24 and the detector line 22, in particular when it is designed for measuring the zeroth order of the spectrometer 30, in order to avoid a disruptive reflection back onto the concave mirror 26 .
  • a radiation-absorbing light trap such as a black-colored surface, can also be present at the end of the beam path of the radiation emanating from the further detector unit 27 .
  • a reference sample 32 with one or more luminescent feature substances can also be provided for calibrating and functional testing of the luminescence sensor 12, which can have an identical or different chemical composition to the luminescent feature substances to be tested in the banknotes BN.
  • this reference sample 32 can be integrated in the housing 13 itself and applied, for example, as a film 32 to another light source (LED 31), which is arranged opposite the laser diode 14 with respect to the beam splitter 16.
  • the reference sample 32 can instead, for example, also be a be a separate component between LED 31 and corner mirror 16.
  • For calibration e.g.
  • the reference sample 32 can then be excited by irradiation using the LED 31 to form a defined luminescence radiation, which is imaged on the detector line 22 and evaluated by parasitic reflection at the dichroic beam splitter 16.
  • the luminescent feature substances of the reference sample 32 can preferably emit broadband, for example over the entire spectral range that can be detected by the spectrometer 30.
  • the luminescent feature substances of the reference sample 32 can alternatively or additionally also have a specific characteristic emit a spectral signature with narrow-band peaks to perform wavelength calibration.
  • the reference sample 32 can therefore also be attached outside the housing 13, in particular on the opposite side in relation to the bank note BN to be measured, and e.g. integrated in a counter-element such as a plate 28.
  • An additional detector unit 33 can also be present outside of the housing 13 as a separate component or integrated in the plate 28 .
  • the additional detector unit 33 can be, for example, one or more photocells for measuring the radiation from the laser diode 14 that has passed through the front glass 18 and possibly through the bank note BN and/or the luminescence radiation from the bank note BN.
  • the plate 28 can be slidably mounted in a guide in the direction P, so that either the reference sample 32 or the photocell 33 can be brought into alignment with the illumination radiation of the laser diode 14.
  • the plate 28 is preferably connected to the housing 13 via a connecting element 55, shown in dotted lines, which lies outside the plane of transport of the banknotes BN. in a Fig.2
  • the housing 13, connecting surface 55 and plate 28 are then approximately U-shaped in the horizontal cross-sectional plane.
  • This attachment of plate 28, also in an alternative variant without reference sample 32 and photocell 33, has the advantage that light protection is provided against unwanted escape of the laser radiation from laser diode 14 if plate 28 is detachably attached to housing 13 for maintenance purposes or to clear jams is fixed, it can be provided that when the plate 28 is loosened or removed, the laser diode 14 is deactivated.
  • FIG 4 shows a schematic cross-sectional view of an alternative and very compact luminescence sensor 6, which is used in the banknote sorting device according to FIG 1 can be used.
  • the same components have the same reference numbers as in 2 marked.
  • the arrangement of the optical components in the luminescence sensor 6 4 differs from the luminescence sensor 6 according to 2 in particular in that the deflection mirror 23 can be dispensed with. It should be noted that the luminescence sensor 6 after 4 also has no further detector units 31, 33, although this would also be possible.
  • the dichroic beam splitter 16 does not deflect the illumination radiation, but rather the luminescence radiation in a mirrored manner
  • the light source 14 has two laser diodes 51, 52 arranged perpendicularly to one another, which emit at different wavelengths, the radiation of the individual laser diodes 51, 52 being able to be coupled in, e.g. by a further dichroic beam splitter 53, so that the same illumination area 35 or overlapping or spaced illumination areas 35 can be irradiated on the bank note BN.
  • a further dichroic beam splitter 53 Preferably, depending on the bank note to be checked, either one or the other laser diode 51, 52 or both laser diodes 51, 52 can be activated simultaneously or alternately to emit radiation.
  • the luminescence sensor 6 preferably has a control unit 50 in the housing 13 itself, which is used for signal processing of the measured values of the spectrometer 30 and/or for power control of the individual components of the luminescence sensor 6
  • FIG. 6 shows a section of a conventional detector line 22, which usually has more than 100 photosensitive picture elements, called pixels 40 for short, arranged next to one another (of which 6 only the first seven left pixels 40 are shown), which are of the same size and are mounted at a distance from one another on or in a substrate 41 which corresponds approximately to the width of the pixels 40
  • a modified detector line 22 is preferably used with a significantly lower number of pixels 40, with a larger pixel area and a reduced proportion of non-photosensitive areas, as is the case in FIG 7 is illustrated.
  • Such a modified detector line 22 has the advantage of a significantly greater signal-to-noise ratio than the conventional detector line 22 of 6 to exhibit.
  • the modified detector rows 22 are preferably constructed in such a way that they have only between 10 and 32, particularly preferably between 10 and 20, individual pixels 40 in or on a substrate 41.
  • the individual pixels 40 can have dimensions of at least 0.5 mm ⁇ 0.5 mm, preferably 0.5 mm ⁇ 1 mm, particularly preferably 1 mm ⁇ 1 mm.
  • the detector line 22 has twelve pixels 40 with a height of 2 mm and a width of 1 mm, with the non-photosensitive area 41 between adjacent pixels 40 having an extent of approximately 50 ⁇ m.
  • individual pixels 40 have different dimensions, in particular in the direction of dispersion of the luminescence radiation to be measured, as is shown in FIG 7 is shown Since not all wavelengths of the spectrum are usually evaluated, but rather only individual wavelengths or wavelength ranges, the pixels 40 can be designed to be adapted to the wavelengths (ranges) to be evaluated.
  • the detector line 22 can consist of a different material in the cases mentioned.
  • detectors made of silicon which are sensitive below about 1100 nm
  • detector line 22 made of InGaAs which are sensitive above 900 nm
  • Such an InGaAs detector line 22 is preferably applied directly to a silicon substrate 42, which particularly preferably has an amplifier stage produced using silicon technology for amplifying the analog signals of the pixels 40 of the InGaAs detector line 22. This also results in a particularly compact structure with short signal paths and increased given signal/noise ratio.
  • the detector line 22 with a few pixels 40 preferably only a relatively small spectral range of less than 500 nm, particularly preferably less than or of about 300 nm is detected. Provision can also be made for the detector line 22 to have at least one pixel 40 which is outside the luminescence spectrum of the banknotes to be measured BN is photosensitive in order to carry out normalizations such as finding a baseline when evaluating the measured luminescence spectrum.
  • the imaging grating 24 will preferably have more than about 300, particularly preferably more than about 500 lines/mm, i.e. have diffraction elements, in order to still allow sufficient dispersion of the luminescence radiation on the detector element 21 despite the compact design of the luminescence sensors 6 according to the invention.
  • the distance between the imaging grating 24 and the detector element 21 can preferably be less than approximately 70 mm, particularly preferably less than approximately 50 mm.
  • a readout of the individual pixels 40 of the detector line 22 can, for. B. done serially using a shift register. However, individual pixels 40 and/or pixel groups of detector line 22 are preferably read out in parallel. Following the example of 9 the three left pixels 40 are each read out individually by the measurement signals of these pixels 40 each with the aid of an amplifier stage 45 which, for example, is part of the silicon substrate 42 7 can be, amplified and fed to an analog/digital converter 46 each. The two right pixels in the schematic representation of the 9 are again amplified first by means of separate amplifier stages 45, then to a common multiplex unit 47, which can optionally also include a sample and hold circuit, and then to a common analog/digital converter 46, which is connected to the multiplex unit 47.
  • the parallel reading out of a plurality of pixels 40 or pixel groups made possible in this way enables short integration times and a synchronized measurement of the bank note BN. This measure also contributes to an increase in the signal-to-noise ratio.
  • components of the imaging optics for the luminescence radiation are integrated with components of the detector 30.
  • the Deflection mirror 23 for deflecting the luminescence radiation to be detected onto the spectrometer 30 can be connected directly to the detector unit 21, as is the case, for example, in 2 is shown.
  • the deflection mirror 23 is applied directly to a common carrier with the detector line 22, ie specifically to the silicon substrate 42.
  • the deflection mirror 23 can also be applied, for example, to a cover glass of the detector unit 21 .
  • a photodetector such as a photocell 56 .
  • a photocell 56 This preferred variant is an example in the figure 8 pictured, showing a cross-section along line II of figure 7 indicates.
  • the deflection mirror 23 mounted on the photocell 56 is at least partially transparent for the wavelengths to be measured by the photocell 56.
  • the photocell 56 can in turn be used for calibration purposes and/or for evaluating other properties of the luminescence radiation.
  • the detector line 22 preferably asymmetrically on the carrier, ie the silicon substrate 42 may be applied.
  • the luminescence sensor 12 needs to be calibrated during ongoing operation, ie specifically, for example, in the pauses between two banknote measurement cycles of the luminescence sensor 12.
  • One The possible measure already described is the use of reference samples 32.
  • this can also be done by an active mechanical adjustment of the optical components of the luminescence sensor 12, with the adjustment depending on measured values of the luminescence sensor 12 being controlled, for example, by an external control unit 11 or preferably by an internal control unit 50.
  • the component of the imaging grating 24 can be mounted displaceably in direction S by means of an actuating element 25 .
  • a mechanical adjustment of other optical components, such as e.g. B. the detector 21 can be achieved, the z. B. in the direction of arrow D in 2 can be moved when actively driven.
  • the optical components can also be adjusted in more than one direction.
  • the measured values of the luminescence sensor 12 can be evaluated and if there are deviations in the measured values (e.g. of the detector line 22, the further detector unit 27 or the photocell 33) or of variables derived therefrom from certain Reference values or ranges, an active mechanical adjustment of one or more of the optical components of the luminescence sensor 12 can be carried out in order to achieve an increased signal yield and compensation for undesirable changes, for example due to temperature fluctuations or signs of aging caused by the lighting or electronics of optical components. This is particularly important for a detector unit 21 with few pixels 40.
  • the laser diode 14 is only driven with high power when a bank note BN is just in the region of the measuring window, i. H. of the front glass 18 is located.
  • FIG figure 10 The construction of such a luminescence sensor 12 not according to the invention is shown in FIG figure 10 illustrated.
  • the radiation emitted by the bank note BN to be checked and detected through an entrance window 18 falls through a collimation lens 17 onto a beam splitter 16, from which the light is deflected by 90°, via a lens 19 and a filter 20 for suppressing illumination falls on a first spherical collimator mirror 70.
  • the radiation is deflected onto a plane grating 71 by this mirror 70 .
  • the light spectrally broken down by this is then directed onto a detector array 21 via a second spherical collimator mirror 72 and a cylindrical lens 73 .
  • the luminescence sensor 12 of figure 10 is further distinguished by the fact that the illumination light is coupled in by means of a light guide coupling.
  • the light generated by a laser light source 68 is radiated onto the banknote to be checked via a light guide 69, beam shaping optics 66, the beam splitter 16, the collimation lens 17 and the entry window 18. Since light guides 69 are flexible and deformable and thus the illumination beam path can (largely) run arbitrarily, it is only possible, for example, to place the light source in a particularly space-saving location Housing 13 to attach.
  • the light source can even be fitted outside the housing 13 of the luminescence sensor 12 .
  • This spatial separation has the advantage that the heat generated by the light source 68 significantly less disrupts the operation and the adjustment of the other optical components located in the housing 13 and in particular also the highly sensitive detectors 21
  • figure 11 shows an associated schematic example, in which a light source 68 radiates into a light guide 69, which leads into the housing 13 of a luminescence sensor 12.
  • the housing 13 can be constructed as an example like that of figure 10 with the only difference that the light source 68 is thus located outside of the housing 13 and the light guide 69 thus also runs outside of the housing 13
  • the light source 69 and the housing 13 connecting the light guide 69 in one in the figure 11 Central region 70 shown schematically in a cross-sectional view is spirally wound.
  • the light source 68 shines into the light guide 69, a series of total reflections occurs in the light guide 69.
  • the beam cross-section of the coupled laser radiation from the light source 68 is spatially homogenized.
  • the light guide does not necessarily have to be spirally wound up in one plane. Rather, it is only important that the light guide has a certain length.
  • the light guide 69 will preferably have a length of 1 m to 20 m.
  • the bank note to be checked is irradiated exclusively via optical devices outside the housing 13 Components takes place and the luminescence sensor 12 inside the housing 13 contains only the optical components which are used for measuring the radiation emitted by the illuminated bank note.
  • a so-called DFB laser in which an additional grating is installed in the laser resonator, or a so-called DFR laser, in which an additional grating is installed outside the laser resonator, can also be used to stabilize the illumination beam.
  • a grating spectrometer i.e. a spectrometer 30 with an imaging grating 24
  • this can also be used for a multi-track or a highly sensitive measurement.
  • FIG figure 12 An example of a luminescence sensor 1 not according to the invention without a grating spectrometer is shown in FIG figure 12 illustrated.
  • figure 12 shows only the detection part of a luminescence sensor in a schematic manner. All other components such as the housing, the lighting and the imaging optics have been omitted for the sake of clarity.
  • the beam emanating from the banknote BN to be checked is selectively deflected via a deflection mirror 57, which can be pivoted about an axis of rotation 58, onto individual detectors 59 which are sensitive to different wavelengths or wavelength ranges.
  • this can be done by choosing photosensitive in different wavelength ranges Detector surfaces of the detectors 59 take place.
  • filters 60 for different wavelength ranges can be arranged in front of the detectors 59 and preferably also attached to them themselves.
  • a detector 61 according to yet another example is shown in a very schematic way.
  • the detector has a row or an array of photosensitive pixels 63 of the same type on a substrate 62 .
  • a filter 64 is mounted on the detector 61 above the pixels 63 and has a filter wavelength gradient indicated in the direction of the arrow. This means that, viewed in the direction of the arrow, different wavelengths are filtered out at different points of the filter 64 .
  • the use of such a filter 64 with filter wavelength gradients has the advantage that the light to be tested is radiated directly onto the detector 61 and wavelength-dispersing elements such as the grating 24 or the deflection mirrors 23, 57 can be dispensed with.
  • the structure of the luminescence sensor 1 can be designed in a particularly simple manner and with fewer components.
  • the active optical adjustment of individual components can also be used advantageously not only in the particularly preferred example of a luminescence sensor, but also in other, in particular other, optical sensors.
  • the special design of the spectrometer is also advantageous when the luminescence sensor itself has no light source for exciting luminescent radiation.
  • the system according to the invention can also be designed in such a way that the measured values of the luminescence sensor 12 of a bank note BN are still evaluated, while at the same time measured values of a subsequent bank note BN are already being recorded.
  • the evaluation of the measured values of the preceding bank note BN must be carried out so quickly that the individual diverters 7 of the transport path 5 can still be switched sufficiently quickly to divert the preceding bank note BN into the respectively allocated storage compartment 9 .
  • the devices and methods according to the invention consequently enable simple and reliable checking and differentiation of luminescent documents of value.
  • the check can be carried out, for example, by using the light source 14 to generate a light with a first wavelength and a predetermined intensity for a specific period of time 0-t P for the excitation of the feature substance.
  • the feature substance of the bank note BN to be checked and transported past the front glass 18 in the direction T is excited by the light from the light source 14, whereupon the feature substance emits luminescent light of a second wavelength.
  • the intensity of the emitted luminescence light increases according to a specific law during the period 0-tp of the excitation.
  • the manner in which the intensity of the emitted luminescence light increases and decreases depends on the feature substance used and on the exciting light source 14, ie its intensity and wavelength or wavelength distribution. After the end of the excitation at time t P , the intensity of the emitted luminescence light decreases according to a specific law.
  • the luminescence light emanating from the bank notes BN perpendicularly, ie parallel to the excitation light, is now detected and evaluated.
  • the signal from detector unit 21 By evaluating the signal from detector unit 21 at one or more specific points in time t 2 , t 3 , it is possible to check with particular certainty whether a genuine bank note BN is present, since only the feature substance used for bank note BN or the combination of feature substances used has such a decay behavior .
  • the decay behavior can be checked by means of the above-described comparison of the intensity of the luminescence light at one or more specific points in time with specified intensities for genuine banknotes BN. Provision can also be made for the course of the intensity of the luminescence light to be compared with predetermined courses for known banknotes BN.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Claims (21)

  1. Dispositif (1) d'examen de documents de valeur (BN) luminescents, avec une source de lumière (14, 51, 52, 68) pour l'excitation de rayonnement luminescent et avec un capteur de luminescence (12) pour saisir de manière spectralement résolue le rayonnement luminescent émanant du document de valeur (BN),
    cependant que le capteur de luminescence (12) comporte une grille de reproduction (24) ayant un miroir concave (26) pour la décomposition spectrale du rayonnement luminescent et une unité de détecteur (21) pour la mesure spectralement résolue d'un autre que l'ordre zéro du rayonnement luminescent excité décomposé spectralement par la grille de reproduction (24),
    caractérisé en ce que
    une autre unité de détecteur (27) est conçue pour la mesure non spectralement résolue du rayonnement luminescent excité et pour la mesure de l'ordre zéro du rayonnement luminescent venant de la grille de reproduction (24).
  2. Dispositif (1) selon la revendication 1, caractérisé en ce que la source de lumière (14, 51, 52, 68) génère sur le document de valeur (BN) transporté dans une direction de transport (T) en passant par le capteur de luminescence (12) une surface d'éclairage (35) qui s'étend en direction de transport (T), et que, de préférence, l'étendue de la surface d'éclairage (35) en direction du transport (T) a au moins deux fois, de préférence au moins trois fois, quatre fois ou particulièrement de préférence au moins cinq fois la longueur de l'étendue perpendiculaire à la direction de transport (T).
  3. Dispositif (1) selon au moins une des revendications précédentes, caractérisé en ce qu'une surface d'image (36) du capteur de luminescence (12) s'étend en direction de transport (T) du document de valeur (BN) transporté en passant par le capteur de luminescence (12).
  4. Dispositif (1) selon au moins une des revendications précédentes, caractérisé en ce que la longueur et/ou la largeur de la surface d'image (36) est inférieure aux dimensions correspondantes de la surface d'éclairage (35) de la source de lumière (14, 51, 52, 68), et/ou que, à un moment donné, la surface d'image (36) et la surface d'éclairage (35) se chevauchent ou moins partiellement ou entièrement sur le document de valeur (BN).
  5. Dispositif (1) selon au moins une des revendications précédentes, caractérisé en ce que le capteur de luminescence (12) comporte une ou plusieurs sources de lumière (14, 51, 52, 68) qui émettent à différentes longueurs d'ondes, cependant que, de préférence, des longueurs individuelles d'ondes peuvent être activées sélectivement.
  6. Dispositif (1) selon au moins une des revendications précédentes, caractérisé en ce que le capteur de luminescence (12) comporte au moins une ligne de détecteurs (22) ayant un faible nombre de pixels (40), de préférence entre 10 et 32 pixels (40), particulièrement de préférence entre 10 et 20 pixels (40).
  7. Dispositif (1) selon au moins une des revendications précédentes, caractérisé en ce que le capteur de luminescence (12) comporte au moins un élément de détecteur (40) pour mesurer du rayonnement à l'extérieur du spectre de luminescence du document de valeur (BN).
  8. Dispositif (1) selon au moins une des revendications précédentes, caractérisé en ce que le capteur de luminescence (12) comporte au moins une ligne de détecteurs (22) ayant des pixels (40) de différentes dimensions, en particulier différentes dimensions dans la direction de dispersion du rayonnement luminescent à mesurer.
  9. Dispositif (1) selon au moins une des revendications précédentes, caractérisé en ce que le capteur de luminescence (12) comporte une cellule de détection InGaAs (22) sur un substrat de silicium (42), cependant que le substrat de silicium (42) comporte de préférence un ou plusieurs étages amplificateurs (45) pour l'amplification des signaux analogiques de mesure de pixels (40) de la cellule de détection InGaAs (22).
  10. Dispositif (1) selon au moins une des revendications précédentes, caractérisé en ce que l'unité de détecteur (21) du capteur de luminescence (6) saisit une plage spectrale de moins de 500 nm, de préférence de moins de ou d'environ 300 nm, et/ou la grille de reproduction (24) du capteur de luminescence (6) comporte plus de 300, de préférence plus d'environ 500 lignes, et/ou l'écart entre grille de reproduction (24) et l'unité de détecteur (21) est inférieur à 70 mm, de préférence inférieur à 50 mm.
  11. Dispositif (1) selon au moins une des revendications précédentes, caractérisé en ce que la source de lumière (14) et/ou le capteur de luminescence (12) et/ou une unité de commande (50) sont, pour le traitement de signal des valeurs de mesure du capteur de luminescence (6) et/ou pour la commande de puissance de composants du capteur de luminescence (6), intégrés dans un boîtier commun (13) ou dans des boîtiers distincts (13, 68).
  12. Dispositif (1) selon au moins une des revendications précédentes, caractérisé en ce que la source de lumière (14) irradie perpendiculairement le document de valeur (BN) à examiner, et le capteur de luminescence (12) saisit du rayonnement luminescent émanant perpendiculairement au document de valeur (BN) irradié, et/ou que le capteur de luminescence (12) comporte un miroir de renvoi (23) pour le repliement du trajet du faisceau du rayonnement luminescent à mesurer, et/ou pour un renvoi du rayonnement luminescent à mesurer vers une autre unité optique telle que la grille de reproduction (24).
  13. Dispositif (1) selon au moins une des revendications précédentes, caractérisé en ce que le capteur de luminescence (12) comporte un photodétecteur (56) ayant un miroir de renvoi (23) se trouvant sur ou au-dessus de sa surface, lequel est au moins partiellement transparent pour les longueurs d'ondes à mesurer par le photodétecteur (56).
  14. Dispositif (1) selon au moins une des revendications précédentes, caractérisé en ce que le capteur de luminescence (12) comporte une pièce (21) qui comporte tant une unité photosensible de détecteur (22) pour rayonnement luminescent que des composants (23) pour la reproduction du rayonnement luminescent sur l'unité photosensible de détecteur (22).
  15. Dispositif (1) selon au moins une des revendications précédentes, caractérisé en ce que le capteur de luminescence (12) comporte une ligne de détecteurs (22) appliquée asymétriquement sur un substrat (42).
  16. Dispositif (1) selon au moins une des revendications précédentes, caractérisé en ce que la une unité de détecteur (21) est conçue pour la mesure intégrée dans le temps du rayonnement luminescent, et l'autre unité de détecteur (27) pour la la mesure résolue dans le temps du rayonnement luminescent.
  17. Dispositif (1) selon au moins une des revendications précédentes, caractérisé en ce que l'autre unité de détecteur (27) est agencée manière basculée par rapport à la grille de reproduction (24) pour la décomposition spectrale afin d'éviter une rétroréflexion sur la grille de reproduction. (24).
  18. Dispositif (1) selon au moins une des revendications précédentes, caractérisé en ce que le capteur de luminescence (12) comporte un échantillon de référence (32) ayant une substance luminescente caractéristique et de préférence une autre source de lumière (31) pour l'irradiation de l'échantillon de référence (32).
  19. Dispositif (1) selon au moins une des revendications précédentes, caractérisé en ce que le capteur de luminescence (12) comporte des moyens (25) d'ajustement mécanique actif de composants optiques (21, 24) du capteur de luminescence (12), et que, de préférence, un ajustement mécanique actif de composants optiques (21, 24) du capteur de luminescence (12) est commandable par une unité de commande (11, 50) en fonction de valeurs de mesure du capteur de luminescence (12).
  20. Dispositif (1) selon au moins une des revendications précédentes, caractérisé en ce que les valeurs de mesure du capteur de luminescence (12) concernant un document de valeur (BN) sont encore évaluées pendant que, en même temps, des valeurs de mesure d'un document de valeur (BN) suivant sont déjà enregistrées.
  21. Dispositif (1) selon au moins une des revendications précédentes, caractérisé en ce que des pixels individuels (40) et/ou des groupes de pixels de la ligne de détecteurs (22) peuvent être lus parallèlement et/ou pixels individuels (40) et/ou des groupes de pixels de la ligne de détecteurs (22) sont respectivement joints avec un propre étage amplificateur (45) et un convertisseur analogique/numérique (46) subséquent.
EP10011627.6A 2004-07-22 2005-07-19 Dispositif et procédé de vérification de documents de valeur Active EP2278558B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102004035494A DE102004035494A1 (de) 2004-07-22 2004-07-22 Vorrichtung und Verfahren zur Prüfung von Wertdokumenten
EP05770995A EP1784795A1 (fr) 2004-07-22 2005-07-19 Dispositif et procede de verification de documents de valeur
PCT/EP2005/007872 WO2006010537A1 (fr) 2004-07-22 2005-07-19 Dispositif et procede de verification de documents de valeur

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP05770995.8 Division 2005-07-19
EP05770995A Division EP1784795A1 (fr) 2004-07-22 2005-07-19 Dispositif et procede de verification de documents de valeur

Publications (3)

Publication Number Publication Date
EP2278558A2 EP2278558A2 (fr) 2011-01-26
EP2278558A3 EP2278558A3 (fr) 2012-01-25
EP2278558B1 true EP2278558B1 (fr) 2022-06-15

Family

ID=35094077

Family Applications (6)

Application Number Title Priority Date Filing Date
EP10011627.6A Active EP2278558B1 (fr) 2004-07-22 2005-07-19 Dispositif et procédé de vérification de documents de valeur
EP10011629.2A Active EP2275998B1 (fr) 2004-07-22 2005-07-19 Dispositif de verification de documents de valeur
EP05770995A Ceased EP1784795A1 (fr) 2004-07-22 2005-07-19 Dispositif et procede de verification de documents de valeur
EP10011626A Ceased EP2278557A3 (fr) 2004-07-22 2005-07-19 Dispositif et procédé de vérification de documents de valeur
EP10011628A Ceased EP2282298A3 (fr) 2004-07-22 2005-07-19 Dispositif et procédé de vérification de documents de valeur
EP10011625A Ceased EP2278556A3 (fr) 2004-07-22 2005-07-19 Dispositif et procédé de vérification de documents de valeur

Family Applications After (5)

Application Number Title Priority Date Filing Date
EP10011629.2A Active EP2275998B1 (fr) 2004-07-22 2005-07-19 Dispositif de verification de documents de valeur
EP05770995A Ceased EP1784795A1 (fr) 2004-07-22 2005-07-19 Dispositif et procede de verification de documents de valeur
EP10011626A Ceased EP2278557A3 (fr) 2004-07-22 2005-07-19 Dispositif et procédé de vérification de documents de valeur
EP10011628A Ceased EP2282298A3 (fr) 2004-07-22 2005-07-19 Dispositif et procédé de vérification de documents de valeur
EP10011625A Ceased EP2278556A3 (fr) 2004-07-22 2005-07-19 Dispositif et procédé de vérification de documents de valeur

Country Status (11)

Country Link
US (1) US7737417B2 (fr)
EP (6) EP2278558B1 (fr)
JP (1) JP4919355B2 (fr)
KR (4) KR101277985B1 (fr)
CN (2) CN1989528B (fr)
AU (2) AU2005266522B2 (fr)
DE (1) DE102004035494A1 (fr)
ES (2) ES2598357T3 (fr)
IL (1) IL180847A (fr)
RU (4) RU2375751C2 (fr)
WO (1) WO2006010537A1 (fr)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10346636A1 (de) * 2003-10-08 2005-05-12 Giesecke & Devrient Gmbh Vorrichtung und Verfahren zur Prüfung von Wertdokumenten
DE102006017256A1 (de) * 2006-04-12 2007-10-18 Giesecke & Devrient Gmbh Vorrichtung und Verfahren zur optischen Untersuchung von Wertdokumenten
KR101353752B1 (ko) 2006-04-12 2014-01-21 기제케 운트 데브리엔트 게엠베하 유가 증서를 광학적으로 검사하는 장치 및 방법
DE102006045626A1 (de) * 2006-09-27 2008-04-03 Giesecke & Devrient Gmbh Vorrichtung und Verfahren zur optischen Untersuchung von Wertdokumenten
RU2358882C1 (ru) 2008-04-18 2009-06-20 Общество С Ограниченной Ответственностью "Новые Энергетические Технологии" Устройство проверки подлинности документов
DE102008028689A1 (de) * 2008-06-17 2009-12-24 Giesecke & Devrient Gmbh Sensoreinrichtung zur spektral aufgelösten Erfassung von Wertdokumenten und ein diese betreffendes Verfahren
DE102008028690A1 (de) * 2008-06-17 2009-12-24 Giesecke & Devrient Gmbh Sensoreinrichtung zur spektral aufgelösten Erfassung von Wertdokumenten und ein diese betreffendes Verfahren
KR100882396B1 (ko) * 2008-10-01 2009-02-05 한국조폐공사 진위 식별기
US8780206B2 (en) 2008-11-25 2014-07-15 De La Rue North America Inc. Sequenced illumination
US8265346B2 (en) 2008-11-25 2012-09-11 De La Rue North America Inc. Determining document fitness using sequenced illumination
US8749767B2 (en) 2009-09-02 2014-06-10 De La Rue North America Inc. Systems and methods for detecting tape on a document
US8400509B2 (en) * 2009-09-22 2013-03-19 Honeywell International Inc. Authentication apparatus for value documents
US8194237B2 (en) 2009-10-15 2012-06-05 Authentix, Inc. Document sensor
US8509492B2 (en) * 2010-01-07 2013-08-13 De La Rue North America Inc. Detection of color shifting elements using sequenced illumination
US8433124B2 (en) * 2010-01-07 2013-04-30 De La Rue North America Inc. Systems and methods for detecting an optically variable material
KR101104522B1 (ko) * 2010-03-10 2012-01-12 엘지엔시스(주) 매체 권종 판별장치 및 그 방법
WO2011114455A1 (fr) * 2010-03-17 2011-09-22 グローリー株式会社 Unité et procédé de distinction authentique/contrefaçon et capteur de fluorescence
DE102010047061A1 (de) * 2010-09-30 2012-04-05 Carl Zeiss Microlmaging Gmbh Optisches Weitbereichsspektrometer
DE102011016509A1 (de) * 2011-04-08 2012-10-11 Giesecke & Devrient Gmbh Verfahren zur Prüfung von Wertdokumenten
US20120313748A1 (en) * 2011-06-09 2012-12-13 Pawlik Thomas D Authentication of a security marker
US20120313747A1 (en) * 2011-06-09 2012-12-13 Pawlik Thomas D Method for authenticating security markers
US20120313749A1 (en) * 2011-06-09 2012-12-13 Pawlik Thomas D Authentication of a security marker
DE102011106523A1 (de) 2011-07-04 2013-01-10 Giesecke & Devrient Gmbh Prüfgerät und Verfahren zur Kalibrierung eines Prüfgeräts
CN102865999B (zh) * 2011-07-08 2015-03-04 中国科学院微电子研究所 Led光学特性检测方法及检测装置
FR2978937B1 (fr) * 2011-08-08 2018-12-07 Banque De France Dispositif de securite luminescent anime pour un document, procede de detection et dispositif de detection correspondants.
DE102011110894A1 (de) 2011-08-17 2013-02-21 Giesecke & Devrient Gmbh Sensor und Verfahren zum Betreiben des Sensors
DE102011110895A1 (de) 2011-08-17 2013-02-21 Giesecke & Devrient Gmbh Sensor und Verfahren zum Betreiben des Sensors
JP5727614B2 (ja) * 2011-08-25 2015-06-03 グローリー株式会社 紙葉類識別装置及びライトガイドケース
DE102011082174A1 (de) * 2011-09-06 2013-03-07 Bundesdruckerei Gmbh Vorrichtung zum mobilen Erkennen eines Dokumentes
WO2013134420A2 (fr) 2012-03-06 2013-09-12 Hydrapak, Inc. Contenant flexible
US9766126B2 (en) * 2013-07-12 2017-09-19 Zyomed Corp. Dynamic radially controlled light input to a noninvasive analyzer apparatus and method of use thereof
US9053596B2 (en) 2012-07-31 2015-06-09 De La Rue North America Inc. Systems and methods for spectral authentication of a feature of a document
CN103414838B (zh) * 2013-06-20 2015-12-23 威海华菱光电股份有限公司 图像扫描装置及其控制方法
US9539018B2 (en) 2013-07-11 2017-01-10 Covidien Lp Devices, systems, and methods for tissue morcellation
CN104183054B (zh) * 2014-07-29 2016-04-06 苏州佳世达光电有限公司 影像辨识装置
WO2016071771A2 (fr) * 2014-11-03 2016-05-12 American University Of Beirut Système optique anti-contrefaçon intelligent (sacos) pour la détection de la fraude à l'aide d'une technique avancée basée sur la spectroscopie
DE102014018726A1 (de) 2014-12-16 2016-06-16 Giesecke & Devrient Gmbh Vorrichtung und Verfahren zur Prüfung von Merkmalsstoffen
JP2016151893A (ja) * 2015-02-17 2016-08-22 株式会社東芝 画像処理装置、物品処理装置、及び、画像処理方法
DE102016000012A1 (de) 2016-01-05 2017-07-06 Giesecke & Devrient Gmbh Echtheitsprüfung von Wertdokumenten
US10918409B2 (en) 2017-12-05 2021-02-16 Covidien Lp Morcellator with auger tissue feeder
US10952787B2 (en) 2017-12-07 2021-03-23 Covidien Lp Energy-based surgical device and system facilitating tissue removal
CN112567216A (zh) * 2018-06-14 2021-03-26 ams国际有限公司 用于检测化学物质的集成的传感器模块
DE102018004884A1 (de) * 2018-06-20 2019-12-24 Giesecke+Devrient Currency Technology Gmbh Verfahren und Sensor zur Prüfung von Dokumenten
RU2703795C1 (ru) * 2019-03-13 2019-10-22 Акционерное общество "ГОЗНАК" Защитный элемент на основе люминесцентного материала

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3315377A1 (de) * 1983-02-19 1984-08-23 Dr. Bruno Lange Gmbh, 1000 Berlin Farbmessgeraet
US4936684A (en) * 1989-03-24 1990-06-26 Pacific Scientific Company Spectrometer with photodetector array detecting uniform bandwidth intervals
US20040061855A1 (en) * 2000-12-21 2004-04-01 Hansjorg Klock Optical sensor device and method for spectral analysis

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT330574B (de) * 1972-05-03 1976-07-12 Int Security Systems Sa Falschungsgesichertes wertpapier
US3922090A (en) * 1974-06-28 1975-11-25 Teknekron Inc Method and apparatus for authenticating documents
DE3303779A1 (de) * 1983-02-04 1984-08-16 Hoechst Ag, 6230 Frankfurt Verfahren zur herstellung eines katalytisch wirksamen elektrodenmaterials fuer sauerstoffverzehr-elektroden
GB8311795D0 (en) * 1983-04-29 1983-06-02 De La Rue Syst Detecting luminescent security features
US4807006A (en) * 1987-06-19 1989-02-21 International Business Machines Corporation Heterojunction interdigitated schottky barrier photodetector
US5050990A (en) * 1990-08-24 1991-09-24 Xerox Corporation Variable detector geometry for resolving and sensing apparatus for filtering and other applications
JPH04137232A (ja) * 1990-09-27 1992-05-12 Sharp Corp 光ピックアップ装置
US5825402A (en) * 1993-03-26 1998-10-20 Symbol Technologies, Inc. Method and appratus for reading and writing indicia such as bar codes using a scanned laser beam
CA2179994A1 (fr) * 1994-01-04 1995-07-13 John Geoffrey Hopwood Detection de faux, notamment de faux billets de banque
DE19517194A1 (de) * 1995-05-11 1996-11-14 Giesecke & Devrient Gmbh Vorrichtung und Verfahren zur Prüfung von Blattgut, wie z.B. Banknoten oder Wertpapiere
US6721104B2 (en) * 1995-05-12 2004-04-13 Pc Lens Corp System and method for focusing an elastically deformable lens
EP0777379B1 (fr) * 1995-11-21 2002-02-20 STMicroelectronics S.r.l. Capteur optique adaptatif
DE19651101A1 (de) * 1996-12-09 1998-06-10 Giesecke & Devrient Gmbh Vorrichtung und Verfahren zur Detektion von fluoreszentem und phosphoreszentem Licht
DE19710621A1 (de) * 1997-03-14 1998-09-17 Giesecke & Devrient Gmbh Vorrichtung zur optischen Detektion von Blattgut
RU2225030C2 (ru) * 1998-02-12 2004-02-27 Хкр Сенсорсистем Гмбх Способ и устройство для проверки подлинности маркировки
JP2001102676A (ja) * 1999-09-27 2001-04-13 Toshiba Electronic Engineering Corp 光集積ユニット、光ピックアップ及び光記録媒体駆動装置
US6473165B1 (en) * 2000-01-21 2002-10-29 Flex Products, Inc. Automated verification systems and methods for use with optical interference devices
DE60040595D1 (de) * 2000-05-16 2008-12-04 Sicpa Holding Sa Verfahren , Vorrichtung und System zur Authentifikation einer Markierung
GB0025096D0 (en) * 2000-10-13 2000-11-29 Bank Of England Detection of printing and coating media
US6416183B1 (en) 2000-12-04 2002-07-09 Barco N.V. Apparatus and method for three-dimensional movement of a projected modulated beam
RU2206919C2 (ru) * 2001-05-14 2003-06-20 Подгорнов Владимир Аминович Способ определения подлинности документа на бумажном носителе
JP4096521B2 (ja) * 2001-05-18 2008-06-04 富士ゼロックス株式会社 記録読み出し方法、及び記録読み出し装置
DE10127837A1 (de) * 2001-06-08 2003-01-23 Giesecke & Devrient Gmbh Vorrichtung und Verfahren zur Untersuchung von Dokumenten
JP4580602B2 (ja) * 2001-09-21 2010-11-17 株式会社東芝 紙葉類処理装置
US20030160182A1 (en) * 2002-02-25 2003-08-28 Emerge Interactive, Inc. Apparatus and method for detecting fecal and ingesta contamination using a hand held illumination and imaging device
US6998623B2 (en) * 2002-02-28 2006-02-14 Nidec Copal Corporation Sheets fluorescence detecting sensor
US6695270B1 (en) * 2002-08-15 2004-02-24 Ole Falk Smed Flat panel display system
JP3736523B2 (ja) * 2002-12-20 2006-01-18 セイコーエプソン株式会社 実装ケース入り電気光学装置及び投射型表示装置並びに実装ケース
CN100444204C (zh) * 2003-02-28 2008-12-17 日本电产科宝株式会社 检查装置及检查方法
JP4188111B2 (ja) * 2003-03-13 2008-11-26 日立オムロンターミナルソリューションズ株式会社 紙葉の真偽鑑別装置
US20040183004A1 (en) * 2003-03-20 2004-09-23 Accu-Sort Systems, Inc. Method and device for identification and authentication of an object
JP3992005B2 (ja) * 2004-03-23 2007-10-17 セイコーエプソン株式会社 光学装置、およびプロジェクタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3315377A1 (de) * 1983-02-19 1984-08-23 Dr. Bruno Lange Gmbh, 1000 Berlin Farbmessgeraet
US4936684A (en) * 1989-03-24 1990-06-26 Pacific Scientific Company Spectrometer with photodetector array detecting uniform bandwidth intervals
US20040061855A1 (en) * 2000-12-21 2004-04-01 Hansjorg Klock Optical sensor device and method for spectral analysis

Also Published As

Publication number Publication date
EP2282298A3 (fr) 2012-01-25
AU2005266522A1 (en) 2006-02-02
DE102004035494A1 (de) 2006-02-09
KR101277932B1 (ko) 2013-06-27
AU2005266522B2 (en) 2011-01-20
EP1784795A1 (fr) 2007-05-16
IL180847A0 (en) 2007-06-03
KR101277935B1 (ko) 2013-06-27
RU2428742C2 (ru) 2011-09-10
US7737417B2 (en) 2010-06-15
EP2278556A3 (fr) 2012-01-25
CN102169607A (zh) 2011-08-31
ES2923700T3 (es) 2022-09-29
EP2275998B1 (fr) 2016-09-07
KR101224255B1 (ko) 2013-01-18
KR20070039953A (ko) 2007-04-13
AU2011201132B2 (en) 2012-03-08
RU2491641C1 (ru) 2013-08-27
JP4919355B2 (ja) 2012-04-18
JP2008507052A (ja) 2008-03-06
CN1989528B (zh) 2011-03-30
EP2278557A3 (fr) 2012-01-25
EP2275998A2 (fr) 2011-01-19
EP2278558A3 (fr) 2012-01-25
KR20120003980A (ko) 2012-01-11
KR20120003026A (ko) 2012-01-09
RU2009129195A (ru) 2011-02-10
RU2451339C1 (ru) 2012-05-20
CN102169607B (zh) 2013-09-18
EP2278558A2 (fr) 2011-01-26
IL180847A (en) 2012-04-30
RU2007106554A (ru) 2008-08-27
AU2011201132A1 (en) 2011-04-07
RU2375751C2 (ru) 2009-12-10
WO2006010537A1 (fr) 2006-02-02
CN1989528A (zh) 2007-06-27
US20080135780A1 (en) 2008-06-12
ES2598357T3 (es) 2017-01-27
EP2275998A3 (fr) 2012-01-25
KR20120003979A (ko) 2012-01-11
EP2282298A2 (fr) 2011-02-09
EP2278556A2 (fr) 2011-01-26
EP2278557A2 (fr) 2011-01-26
KR101277985B1 (ko) 2013-06-27

Similar Documents

Publication Publication Date Title
EP2278558B1 (fr) Dispositif et procédé de vérification de documents de valeur
EP3234929B1 (fr) Dispositif et procédé pour contrôler des substances caractéristiques
EP2304696B1 (fr) Dispositif de détection pour la détection à résolution spectrale de documents de valeur et procédé correspondant
EP2304697B1 (fr) Dispositif de détection pour la détection à résolution spectrale de documents de valeur et procédé correspondant
EP2011092B1 (fr) Dispositif et procédé d'examen optique de documents de valeur
EP2176641B1 (fr) Dispositif et procédé d'étalonnage d'un système de détecteurs
EP1244073A2 (fr) Méthode et palpeur pour la validation de documents
EP1160719B1 (fr) Capteur pour l'authentification de signets sur des documents
EP2070058A1 (fr) Procédé et dispositif d'examen optique de documents de valeur
WO2001061654A2 (fr) Procede et dispositifs pour le controle d'authenticite d'objets imprimes
DE102006017256A1 (de) Vorrichtung und Verfahren zur optischen Untersuchung von Wertdokumenten
DE102006045624A1 (de) Vorrichtung und Verfahren zur optischen Untersuchung von Wertdokumenten
EP4014210B1 (fr) Procédé et dispositif d'examen de documents de valeur
DE102004039049A1 (de) Verfahren und Vorrichtung zum Messen von Blattgut
AU2012203003B2 (en) Device and method for verifying value documents
AT14049U1 (de) Bildgebende Kamera und Vorrichtung zum Klassifizieren von Objekten
DE102017202636A1 (de) Mikrospektrometer, Verfahren und Steuergerät zum Betreiben eines Mikrospektrometers
DE102008028250A1 (de) Kamerasystem für die Bearbeitung von Wertdokumenten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1784795

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: G07D 7/12 20060101AFI20111220BHEP

17P Request for examination filed

Effective date: 20120725

17Q First examination report despatched

Effective date: 20130529

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220113

RIN1 Information on inventor provided before grant (corrected)

Inventor name: EHRL, HANS-PETER

Inventor name: CLARA, MARTIN, DR.

Inventor name: BLOSS, MICHAEL

Inventor name: GIERING, THOMAS, DR.

Inventor name: DECKENBACH, WOLFGANG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 1784795

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005016196

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1498841

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2923700

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220929

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220916

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221017

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221015

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: GIESECKE+DEVRIENT CURRENCY TECHNOLOGY GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005016196

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220719

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

26N No opposition filed

Effective date: 20230316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230724

Year of fee payment: 19

Ref country code: ES

Payment date: 20230821

Year of fee payment: 19

Ref country code: CH

Payment date: 20230801

Year of fee payment: 19

Ref country code: AT

Payment date: 20230718

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230724

Year of fee payment: 19

Ref country code: DE

Payment date: 20230731

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220615