EP2215418B1 - Procédé de fabrication et de fusion de fonte brute liquide ou de demi-produits d'acier liquide dans un gazéificateur de fusion - Google Patents

Procédé de fabrication et de fusion de fonte brute liquide ou de demi-produits d'acier liquide dans un gazéificateur de fusion Download PDF

Info

Publication number
EP2215418B1
EP2215418B1 EP08849824A EP08849824A EP2215418B1 EP 2215418 B1 EP2215418 B1 EP 2215418B1 EP 08849824 A EP08849824 A EP 08849824A EP 08849824 A EP08849824 A EP 08849824A EP 2215418 B1 EP2215418 B1 EP 2215418B1
Authority
EP
European Patent Office
Prior art keywords
oxygen
gas
nozzle
oxygen nozzle
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08849824A
Other languages
German (de)
English (en)
Other versions
EP2215418A1 (fr
Inventor
Leopold Werner Kepplinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SIEMENS VAI METALS Technologies GmbH
Posco Holdings Inc
Original Assignee
SIEMENS VAI METALS TECHNOLOGIES GmbH
Siemens VAI Metals Technologies GmbH Austria
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SIEMENS VAI METALS TECHNOLOGIES GmbH, Siemens VAI Metals Technologies GmbH Austria, Posco Co Ltd filed Critical SIEMENS VAI METALS TECHNOLOGIES GmbH
Publication of EP2215418A1 publication Critical patent/EP2215418A1/fr
Application granted granted Critical
Publication of EP2215418B1 publication Critical patent/EP2215418B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/16Tuyéres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M11/00Safety arrangements
    • F23M11/04Means for supervising combustion, e.g. windows
    • F23M11/042Viewing ports of windows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/16Arrangements of tuyeres

Definitions

  • the application relates to a method and an apparatus for producing and melting liquid pig iron or liquid steel precursors in a melter gasifier.
  • iron oxides or prereduced iron or mixtures thereof are added to the melter gasifier as iron-containing feedstocks and melted thereinto supplying carbonaceous material as solid carbon carriers and oxygen-containing gas in a fixed bed formed from the solid carbon carriers, gasifying the carbon carriers and producing CO and H. 2 -containing reducing gas is generated.
  • the supply of the oxygen-containing gas into the fixed bed takes place via a multiplicity of oxygen nozzles, called oxygen nozzle belts, which are distributed over the circumference of the melter gasifier in the region of the melter gasifier hearth.
  • the oxygen nozzles pass through the metal shell of the melter gasifier and are supplied with oxygen-containing gas from outside the melter gasifier.
  • the oxygen-containing gas may be oxygen or an oxygen-containing gas mixture; the terms oxygen-containing gas and oxygen are used synonymously below.
  • the capacity of a melter gasifier for producing liquid pig iron or liquid steel precursors or its melting capacity increases with its volume.
  • the active area of the oxygen nozzle belt becomes smaller and smaller relative to the cross-sectional area of the melter gasifier, since the periphery of the melter gasifier hearth grows only linearly with the diameter of the melter gasifier hearth, but the cross-sectional area with the square of the diameter of the melter gasifier. Hearth increases.
  • the number of installable oxygen nozzles as well as the scope will increase only linearly with the diameter of the melter gasifier hearth, while the melting capacity at least with the square of the Diameter of the melter gasifier hearth increases.
  • the oxygen nozzles used have to conduct an ever greater amount of oxygen-containing gas into the melter gasifier.
  • a method is described of how fluidization of the material located in front of the oxygen nozzles can be avoided by arranging two nozzle planes.
  • the lower oxygen nozzle level a smaller amount of oxygen-containing gas is supplied, so that a fixed bed layer is formed, which allows, as described above for the energy and mass transfer, procedural effect of the countercurrent flow.
  • only a limited amount of oxygen-containing gas can be introduced by this process.
  • the oxygen introduced via the upper oxygen nozzle belt produces a fluidized bed.
  • a plant according to the Austrian patent AT382390B has only a single oxygen nozzle level opening into a fixed bed of coarse-grained feed.
  • this approach is successful only with hearth diameters up to about 7 m, since at higher diameters the initially explained effect of the fluidization occurs because the amount of oxygen-containing gas to be introduced is too large to allow a stable fixed bed.
  • Another limiting criterion is that when using untreated coal this breaks down during the pyrolysis into smaller particle sizes, which also facilitate fluidization.
  • the object of the present invention is to provide a method and a device by means of which it is also possible with Einschmelzvergasern large diameter and volume, without weakening the strength of the steel shell of the melter gasifier and to avoid or reduce fluidization of the fixed bed to ensure adequate oxygen supply ,
  • This task is solved by Process for the production and melting of pig iron and steel precursors in a fixed-bed gasification furnace with supply of iron oxides or prereduced iron or mixtures thereof, and of carbonaceous material gasifying the carbonaceous material by means of oxygen-containing gas introduced via oxygen nozzles, which method is characterized in that the oxygen-containing gas is introduced at least one oxygen nozzle in at least two gas streams in the fixed bed of the melter gasifier or coal gasifier, and is defined by the geometric features in claim 1.
  • the subject invention avoids the disadvantages discussed above in that in at least one oxygen nozzle, oxygen-containing gas is passed into the fixed bed in at least two gas streams. With this measure it is possible, with the same number of passages for oxygen nozzles in the steel jacket of the melter gasifier, to provide more gas streams penetrating into the fixed bed. If at least two gas streams are introduced from all the oxygen nozzles, twice the number of gas streams is created compared to a conventional solution with one gas stream per oxygen nozzle. Thus, the volume flows of introduced gas can be lowered for each raceway, whereby a large-scale fluidization can be avoided or reduced.
  • the volume flows of introduced gas, for example, reduced by half compared to the introduction with a gas stream. If more than two gas streams per oxygen nozzle are introduced from one, several or all of the oxygen nozzles, the volume flows of the introduced gas decrease correspondingly more.
  • the introduction into at least two gas streams can take place at one, several or all oxygen nozzles.
  • Two, three, four, five, six, or seven gas streams per oxygen nozzle can be introduced into the fixed bed.
  • two to four gas streams are introduced, since with such a number the penetration depth of the raceway into the fixed bed is good and the individual raceways do not overlap. With more than seven gas streams, the penetration depths are low and there is a risk of overlapping the individual raceways.
  • the oxygen-containing gas flows as a feed gas stream through the oxygen nozzle before it is introduced into the fixed bed.
  • the at least two gas streams introduced into the fixed bed originate from a single feed gas stream for oxygen-containing gas. In this way, all gas streams introduced from an oxygen nozzle can be simultaneously controlled by controlling the feed gas flow.
  • the at least two gas streams introduced into the fixed bed each originate from a separate feed gas stream. This makes it possible, by controlling the corresponding feed gas flow, to control each of the introduced gas streams individually, independently of other gas streams introduced from the oxygen nozzle.
  • gas streams which have different flow directions emerge from an oxygen nozzle opening.
  • the oxygen-containing gas is thereby introduced over a wider range in the fixed bed, and for each gas flow with a flow direction forms each own raceway with a lower local gas amount, which is the number Raceways increases and minimizes the risk of fluidization.
  • each gas stream exits from its own oxygen nozzle orifice. Since a separate raceway forms before each oxygen nozzle opening, so increases the number of raceways, which is why the volume flow per raceway can be reduced. Correspondingly, the risk of fluidization of the fixed bed is reduced.
  • Adjacent from the oxygen nozzle exiting gas streams may have the same or different flow directions.
  • the flow directions for the gas flows at an angle of 5 ° to 15 ° to each other. This results in a uniform gasification of the melting and reaction zone before the oxygen nozzles.
  • the larger the angle the better the individual raceways present in front of the same oxygen nozzle are separated from each other; however, as the angle increases, there is a risk of overlapping existing raceways in front of adjacent oxygen nozzles.
  • Which angle is optimal depends on the proximity of adjacent oxygen nozzles to each other. In conventional numbers of oxygen nozzles on the melter gasifier and resulting distances are 5 ° to 15 ° particularly favorable, as defined in claim 1.
  • the said angle is the angle between the projections of the flow directions on a horizontal plane.
  • the introduced into the fixed bed gas streams may have the same or different diameters. It is preferred that when using more than two Gas flows the gas streams have different diameters. For example, with three adjacent gas streams, a mean gas stream having a diameter of two gas streams may be flanked with smaller, for both equal, diameters. The middle gas flow then enters the fixed bed and is less likely to overlap its raceway with the raceways of the adjacent smaller gas streams.
  • each oxygen-containing gas feed gas stream is controllable in terms of pressure and, via the flow rate, amount. This ensures that the introduced into the fixed bed gas streams, which are indeed supplied by the Einspeisungsgasströme with oxygen-containing gas, with respect to pressure and, via the flow velocity, amount can be controlled.
  • fine coal is also injected into the fixed bed via the oxygen nozzles.
  • additional carbonaceous material is fed to the fixed bed.
  • the operation of the oxygen nozzles is monitored by goggles.
  • the condition of the oxygen nozzles can be checked and, in the case of unfavorable developments, such as, for example, laying of the oxygen nozzle openings, timely countermeasures initiated or the oxygen nozzle shut down.
  • Another object of the present invention is an oxygen nozzle for supplying oxygen-containing gas into the fixed bed of a melter gasifier or coal gasifier, characterized in that it comprises at least one oxygen feed passage and at least two oxygen flow outlet passages with outlet ports, each of the oxygen flow outlet passages being connected to at least one oxygen feed passage.
  • the oxygen nozzle may also have three, four, five, six, or seven oxygen flow outlet channels. Preferably, it has two to four Sauerstoffstromauslasskanäle, since in such a number, the penetration depth of the raceway formed before them in the fixed bed is good and the individual raceways do not overlap. With more than seven oxygen flow outlet channels, the penetration depths are low and there is a risk of overlapping the individual raceways.
  • At least two oxygen flow outlet channels are connected to the same oxygen feed channel. This means that the oxygen feed channel branches into at least two oxygen flow outlet channels.
  • the oxygen flow outlet channels are each connected to a separate oxygen feed channel.
  • the outlet openings of the oxygen flow outlet channels are located within a single oxygen nozzle opening.
  • the outlet openings of the oxygen flow outlet channels each form a separate oxygen nozzle opening.
  • the diameters of the individual outlet openings are different in order to adjust the gas volume and penetration depth of the respective raceways to the energetic and geometric requirements in the melter gasifier can.
  • the distance of the peripheries of adjacent outlet openings is up to three times the outlet opening diameter of one of the outlet openings. For large outlet port diameters, this is true for the smaller outlet port diameter. In an example with 3 outlet openings, a central outlet opening being flanked by two outlet openings of smaller, respectively equal, diameter, for example this smaller diameter. A greater distance would cause problems in the oxygen nozzle still accommodate enough wall thickness to accommodate cooling channels.
  • the center axes of the sections of the oxygen flow outlet channels ending with the outlet openings form an angle of 5 ° to 15 ° relative to one another.
  • the said angle is the angle between the projections of the central axes on a horizontal plane.
  • each oxygen feed channel is provided with a control device for controlling pressure and, via the flow velocity, amount of the oxygen-containing gas fed.
  • the oxygen nozzle comprises a display device for monitoring the oxygen flow outlet channels and their outlet openings.
  • the oxygen nozzle comprises a device for injection of fine coal.
  • the oxygen nozzles 1 a, 1 b, 1 c shown by way of example are, similar to blow molding in blast furnaces, annularly arranged at a certain distance d above the hearth at the circumference U of the melter gasifier and are supplied with oxygen-containing gas from outside via feed lines (not shown). For better Clarity, only three oxygen nozzles 1a, 1b, 1c are shown.
  • the melter gasifier has the radius R. Due to high gas velocities, generally more than 100 m / s, the raceway described above forms in front of the oxygen nozzles. Here, the reaction is carried out with the carbonaceous material, which is highly exothermic and serves to melt the feedstocks.
  • the nozzles must be able to withstand very high temperatures up to over 2000 ° C and therefore be either liquid cooled or made of suitable refractory materials.
  • the oxygen-containing gas is introduced at each oxygen nozzle 1 a, 1 b, 1 c in two gas streams in the fixed bed, whereby two Raceways 2a, 2b form before each oxygen nozzle 1a, 1b, 1c.
  • the flow directions adjacent emerging gas streams, and thus the corresponding raceways, form an angle to each other in the projection on a horizontal plane, in this case, for example, the plane of the paper.
  • the outlet openings of the Sauerstoffstromauslasskanäle each form their own oxygen nozzle opening.
  • FIG. 2 shows an oxygen nozzle 1 in cross section.
  • the oxygen nozzle 1 has cooling channels 3 for cooling the tip and the body of the oxygen nozzle. After supplying the oxygen nozzle with oxygen-containing gas from outside the melter gasifier, the oxygen-containing gas flows as feed gas flow through the oxygen feed channel 4 of the oxygen nozzle before passing through the two oxygen flow outlet channels 5a, 5b branching off from the oxygen feed channel 4 Outlet openings 6a, 6b is introduced into the fixed bed.
  • Such showers for monitoring the nozzle function are possible through straight-line oxygen flow outlet channels.
  • Optional devices for injection of fine coal, which penetrate the body of the oxygen nozzle and terminate in the immediate vicinity of the outlet openings on the side of the raceway are not shown.
  • FIG. 3a shows schematically a front view of an embodiment of an oxygen nozzle with 2 Sauerstoffstromauslasskanälen whose outlet openings 8 and 9 each form their own oxygen nozzle openings.
  • the 2 oxygen flow outlet channels are each connected to a separate oxygen feed channel.
  • the associated oxygen flow outlet channels and oxygen feed channels have the same direction. When projected onto a horizontal plane, the two directions of the oxygen flow outlet channels cross each other.
  • FIG. 3b shows a longitudinal section of the oxygen nozzle of FIG. 3a with cooling channels 10 for cooling the body and tip of the oxygen nozzle.
  • FIG. 4a shows a front view of an oxygen nozzle, in which the outlet openings 11,12,13,14 of Sauerstoffstromauslasskanäle within an oxygen nozzle opening 15 are.
  • the oxygen nozzle opening is slit-shaped and arranged horizontally.
  • FIG. 4b shows a plan view of a section along the line AA 'through the in FIG. 4a shown oxygen nozzle.
  • melter gasifier with an absolute melting capacity of 1000 tons of pig iron / day is characterized by the following parameters: Total number of raceways 20 Total number of oxygen nozzles 20 Absolute melting performance 1000 t / d Herd diameter 5.5 m Single melting performance of a raceway 50 t / d Specific hearth load 45 t / m 2 , d
  • melter gasifier with an absolute melting capacity of 2500 tons of pig iron / day is characterized by the following parameters: Total number of raceways 28 Total number of oxygen nozzles 28 Absolute melting performance 2500 t / d Herd diameter 7,5 m Single melting performance of a raceway 89 t / d Specific hearth load 57 t / m 2 , d
  • melter gasifier with an absolute melting capacity of 4000 tons of pig iron / day is characterized by the following parameters: Total number of raceways 20 Total number of oxygen nozzles 20 Absolute melting performance 1000 t / d Herd diameter 5.5 m Single melting performance of a
  • Example 5 melter gasifier with an absolute melting capacity of 2500 tons of pig iron / day
  • Example 6 melter gasifier with an absolute melting capacity of 4000 tons pig iron / day

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Manufacture Of Iron (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Claims (19)

  1. Procédé de fabrication et de fusion en lit fixe de fonte brute et de pré-produits d'acier dans un gazéificateur de fusion, dans lequel des oxydes de fer, du fer pré-réduit ou leurs mélanges sont apportés ainsi qu'un matériau contenant du carbone, et où le matériau contenant du carbone est gazéifié au moyen d'un gaz contenant de l'oxygène apporté par des tuyères d'oxygène,
    caractérisé en ce que
    le gaz contenant de l'oxygène est introduit dans le lit fixe du gazéificateur de fusion ou du gazéificateur de charbon en au moins deux écoulements de gaz par au moins une tuyère d'oxygène, les directions d'écoulement des écoulements voisins de sortie de gaz formant l'une par rapport à l'autre un angle de 5° à 15°.
  2. Procédé selon la revendication 1, caractérisé en ce que les deux ou plusieurs écoulements de gaz proviennent d'un unique écoulement de gaz d'injection de gaz contenant de l'oxygène.
  3. Procédé selon la revendication 1, caractérisé en ce que les deux ou plusieurs écoulements de gaz proviennent chacun de leur propre écoulement d'alimentation en gaz contenant de l'oxygène.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que les écoulements de gaz présentant des directions d'écoulement différentes proviennent d'une ouverture de la tuyère d'oxygène.
  5. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que chaque écoulement de gaz sort de la tuyère d'oxygène par sa propre ouverture.
  6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que lorsqu'il utilise plus de deux écoulements de gaz, les écoulements de gaz ont des diamètres différents.
  7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que chaque écoulement d'injection de gaz contenant de l'oxygène peut être régulé en débit et en pression.
  8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que du charbon finement divisé peut également être injecté dans le lit fixe par les tuyères d'oxygène.
  9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que le fonctionnement des tuyères d'oxygène est surveillé à travers des trous d'observation.
  10. Tuyère d'oxygène destinée à apporter un gaz contenant de l'oxygène dans le lit fixe d'un gazéificateur de fusion ou d'un gazéificateur de charbon,
    caractérisée en ce que
    elle présente au moins un canal d'injection d'oxygène et au moins deux canaux de sortie d'écoulement d'oxygène dotés d'ouvertures de sortie, chacun des canaux de sortie d'écoulement d'oxygène étant relié à au moins un canal d'injection d'oxygène, les axes centraux des parties des canaux de sortie d'écoulement d'oxygène qui se terminent par les ouvertures de sortie formant l'un avec l'autre un angle de 5° à 15°.
  11. Tuyère d'oxygène selon la revendication 10, caractérisée en ce qu'au moins deux canaux de sortie d'écoulement d'oxygène sont reliés au même canal d'injection d'oxygène.
  12. Tuyère d'oxygène selon la revendication 10, caractérisée en ce que chacun des canaux de sortie d'écoulement d'oxygène est relié à son propre canal d'injection d'oxygène.
  13. Tuyère d'oxygène selon l'une des revendications 10 à 12, caractérisée en ce que les ouvertures de sortie des canaux de sortie d'écoulement d'oxygène sont situées à l'intérieur d'une unique ouverture de tuyère d'oxygène.
  14. Tuyère d'oxygène selon l'une des revendications 10 à 12, caractérisée en ce que les ouvertures de sortie des canaux de sortie d'écoulement d'oxygène forment chacune une ouverture propre de tuyère d'oxygène.
  15. Tuyère d'oxygène selon l'une des revendications 10 à 12, caractérisée en ce que lorsque plus de deux canaux de sortie d'écoulement d'oxygène sont prévus, les diamètres des différentes ouvertures de sortie sont différents.
  16. Tuyère d'oxygène selon les revendications 14 ou 15, caractérisée en ce que la distance entre les périphéries d'ouvertures de sortie voisines représente jusqu'à trois fois le diamètre de l'une des ouvertures de sortie.
  17. Tuyère d'oxygène selon l'une des revendications 10 à 16, caractérisée en ce que chaque canal d'injection d'oxygène est doté d'un dispositif de régulation qui régule la pression et le débit d'injection du gaz contenant de l'oxygène.
  18. Tuyère d'oxygène selon l'une des revendications 10 à 17, caractérisée en ce qu'elle comporte un dispositif d'observation qui permet d'observer les canaux de sortie d'écoulement d'oxygène et leurs ouvertures de sortie.
  19. Tuyère d'oxygène selon l'une des revendications 10 à 18, caractérisée en ce qu'elle comporte un dispositif d'injection de charbon finement divisé.
EP08849824A 2007-11-13 2008-11-04 Procédé de fabrication et de fusion de fonte brute liquide ou de demi-produits d'acier liquide dans un gazéificateur de fusion Not-in-force EP2215418B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0182407A AT506042A1 (de) 2007-11-13 2007-11-13 Verfahren zum schmelzen von roheisen und stahlvorprodukten in einem schmelzvergaser
PCT/EP2008/009277 WO2009062611A1 (fr) 2007-11-13 2008-11-04 Procédé de fabrication et de fusion de fonte brute liquide ou de demi-produits d'acier liquide dans un gazéificateur de fusion

Publications (2)

Publication Number Publication Date
EP2215418A1 EP2215418A1 (fr) 2010-08-11
EP2215418B1 true EP2215418B1 (fr) 2012-12-26

Family

ID=40342612

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08849824A Not-in-force EP2215418B1 (fr) 2007-11-13 2008-11-04 Procédé de fabrication et de fusion de fonte brute liquide ou de demi-produits d'acier liquide dans un gazéificateur de fusion

Country Status (15)

Country Link
US (1) US8313552B2 (fr)
EP (1) EP2215418B1 (fr)
JP (1) JP2011503508A (fr)
KR (1) KR20100083837A (fr)
CN (1) CN101855506B (fr)
AR (1) AR069285A1 (fr)
AT (1) AT506042A1 (fr)
AU (1) AU2008323317B2 (fr)
BR (1) BRPI0820559A2 (fr)
CA (1) CA2705434A1 (fr)
CL (1) CL2008003359A1 (fr)
RU (1) RU2487948C2 (fr)
TW (1) TW200936769A (fr)
UA (1) UA98677C2 (fr)
WO (1) WO2009062611A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT510313B1 (de) * 2010-08-25 2013-06-15 Siemens Vai Metals Tech Gmbh Verfahren zur erhöhung der eindringtiefe eines sauerstoffstrahles
AT511206B1 (de) * 2011-05-19 2012-10-15 Siemens Vai Metals Tech Gmbh Verfahren und vorrichtung zum chargieren von kohlehaltigem material und eisenträger-material
AT511738B1 (de) * 2011-07-21 2013-04-15 Siemens Vai Metals Tech Gmbh Schmelzreduktionsaggregat und verfahren zum betrieb eines schmelzreduktionsaggregats
CN108048610A (zh) * 2018-01-10 2018-05-18 航天长征化学工程股份有限公司 一种直接气化还原铁的烧嘴组合装置及方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1166000A (en) * 1967-02-23 1969-10-01 Steel Co Of Wales Ltd Improvements in or relating to the Manufacture of Steel
JPS5375104A (en) * 1976-12-14 1978-07-04 Kubota Ltd Auxiliary combustion apparatus for cupola
SU956571A1 (ru) * 1981-02-02 1982-09-07 Сибирский Ордена Трудового Красного Знамени Металлургический Институт Им.С.Орджоникидзе Многосоплова фурма дл продувки металла
AT378970B (de) * 1982-12-21 1985-10-25 Voest Alpine Ag Verfahren und vorrichtung zur herstellung von flùssigem roheisen oder stahlvorprodukten
JPS6050143A (ja) 1983-08-29 1985-03-19 Sumitomo Metal Ind Ltd 合金鉄の製造法
DE3503493A1 (de) * 1985-01-31 1986-08-14 Korf Engineering GmbH, 4000 Düsseldorf Verfahren zur herstellung von roheisen
AT382390B (de) * 1985-03-21 1987-02-25 Voest Alpine Ind Anlagen Verfahren zur herstellung von fluessigem roheisen oder stahlvorprodukten
JPS62263906A (ja) * 1986-05-12 1987-11-16 Sumitomo Metal Ind Ltd 高炉羽口からの微粉炭吹込み方法
JP2600733B2 (ja) * 1987-12-18 1997-04-16 日本鋼管株式会社 溶融還元法
JP3509128B2 (ja) 1993-06-22 2004-03-22 Jfeスチール株式会社 転炉型溶融還元炉の操業方法及び酸素上吹きランス
WO1997038141A1 (fr) 1996-04-05 1997-10-16 Nippon Steel Corporation Appareil de reduction par fusion et procede de mise en oeuvre
AU5751996A (en) * 1996-05-17 1997-12-09 Xothermic, Inc. Burner apparatus and method
GB9616442D0 (en) * 1996-08-05 1996-09-25 Boc Group Plc Oxygen-fuel burner
JPH1121610A (ja) 1997-07-02 1999-01-26 Kawasaki Steel Corp ガス吹き用ランス及び転炉型精錬炉の操業方法
AT407398B (de) * 1998-08-28 2001-02-26 Voest Alpine Ind Anlagen Verfahren zum herstellen einer metallschmelze
AT407994B (de) * 1999-08-24 2001-07-25 Voest Alpine Ind Anlagen Verfahren zum betreiben eines einschmelzvergasers
CN1688721B (zh) * 2002-07-10 2012-05-30 塔塔钢铁荷兰科技有限责任公司 冶金容器
JP4119336B2 (ja) * 2003-09-17 2008-07-16 大陽日酸株式会社 多孔バーナー・ランス及び冷鉄源の溶解・精錬方法
DE102004034212A1 (de) * 2004-07-14 2006-02-16 Air Liquide Deutschland Gmbh Brennstoff-Sauerstoff-Brenner und Verfahren zum Betreiben des Brenners
KR100732461B1 (ko) * 2005-12-26 2007-06-27 주식회사 포스코 분철광석의 장입 및 배출을 개선한 용철제조방법 및 이를이용한 용철제조장치

Also Published As

Publication number Publication date
CL2008003359A1 (es) 2009-10-02
US8313552B2 (en) 2012-11-20
EP2215418A1 (fr) 2010-08-11
RU2487948C2 (ru) 2013-07-20
CN101855506B (zh) 2014-02-19
AU2008323317B2 (en) 2014-01-09
TW200936769A (en) 2009-09-01
CA2705434A1 (fr) 2009-05-22
AT506042A1 (de) 2009-05-15
AR069285A1 (es) 2010-01-13
RU2010123947A (ru) 2011-12-20
BRPI0820559A2 (pt) 2015-06-16
JP2011503508A (ja) 2011-01-27
KR20100083837A (ko) 2010-07-22
AU2008323317A1 (en) 2009-05-22
UA98677C2 (ru) 2012-06-11
WO2009062611A1 (fr) 2009-05-22
CN101855506A (zh) 2010-10-06
US20100294080A1 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
EP0114040A1 (fr) Procédé et gazéificateur de fusion pour la production de la fonte brute liquide ou de produits de base de l'acier
EP0341436A2 (fr) Procédé et dispositif pour refroidir un courant de gaz chaud contenant des particules collantes ou en fusion
EP2215418B1 (fr) Procédé de fabrication et de fusion de fonte brute liquide ou de demi-produits d'acier liquide dans un gazéificateur de fusion
DD243716A5 (de) Verfahren und einrichtung zur herstellung von fluessigem roheisen oder stahlvorprodukten
DD229982A5 (de) Verfahren zur erzeugung von synthesegas aus einem kohlenwasserstoffbrennstoff
DE3145011A1 (de) Verfahren und vorrichtung zur herstellung von wollefasern
EP1948833B1 (fr) Procede d'utilisation d'un four a cuve
EP0236669A1 (fr) Procédé pour la fabrication de fonte liquide ou de matériau de préparation de l'acier
AT405521B (de) Verfahren zum behandeln teilchenförmigen materials im wirbelschichtverfahren sowie gefäss und anlage zur durchführung des verfahrens
EP1105541A1 (fr) Procede de fabrication de fonte brute liquide
DE4238020A1 (de) Verfahren für den Betrieb einer Multimediendüse und das Düsensystem
EP2734649B1 (fr) Ensemble de réduction par fusion et procédé permettant de faire fonctionner un ensemble de réduction par fusion
AT404138B (de) Verfahren zur herstellung von flüssigem roheisen oder stahlvorprodukten sowie anlage zur durchführung des verfahrens
AT405651B (de) Vorrichtung zum dosierten einbringen von feinteilchenförmigem material in ein reaktorgefäss
AT404022B (de) Verfahren und anlage zur herstellung von flüssigem roheisen oder stahlvorprodukten aus eisenhältigemmaterial
EP1090148B1 (fr) Four a arc
AT404254B (de) Verfahren und anlage zur herstellung von roheisen oder flüssigen stahlvorprodukten aus eisenerzhältigen einsatzstoffen
DE60003570T2 (de) Vorrichtung für die direktreduktion von eisen
DE2916908A1 (de) Verfahren zur erzeugung von roheisen im hochofen unter verminderung des spezifischen kokseinsatzes durch verwendung von gasfoermigen austauschbrennstoffen
AT407994B (de) Verfahren zum betreiben eines einschmelzvergasers
EP0877822B1 (fr) Procede de transformation de minerais de fer en fonte brute liquide ou en produits bruts en acier
AT404021B (de) Verfahren zur herstellung von flüssigem roheisen oder stahlvorprodukten aus feinerz
EP2697587B1 (fr) Procédé pour faire fonctionner un four à arc électrique
DD250437A3 (de) Verfahren zur prozessabhaengigen injektion von austauschbrennstoffen in schachtoefen und lanze zur durchfuehrung des verfahrens
DD279693A5 (de) Einschmelzvergaser

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100421

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS VAI METALS TECHNOLOGIES GMBH

Owner name: POSCO

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 590702

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008008971

Country of ref document: DE

Effective date: 20130228

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130326

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130426

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130326

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

26N No opposition filed

Effective date: 20130927

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008008971

Country of ref document: DE

Effective date: 20130927

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20131011

Year of fee payment: 6

BERE Be: lapsed

Owner name: POSCO

Effective date: 20131130

Owner name: SIEMENS VAI METALS TECHNOLOGIES GMBH

Effective date: 20131130

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131104

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008008971

Country of ref document: DE

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131104

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 590702

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131104

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141104

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226