EP2215418B1 - Method for the production and the melting of liquid pig iron or of liquid steel intermediate products in a melt-down gasifier - Google Patents

Method for the production and the melting of liquid pig iron or of liquid steel intermediate products in a melt-down gasifier Download PDF

Info

Publication number
EP2215418B1
EP2215418B1 EP08849824A EP08849824A EP2215418B1 EP 2215418 B1 EP2215418 B1 EP 2215418B1 EP 08849824 A EP08849824 A EP 08849824A EP 08849824 A EP08849824 A EP 08849824A EP 2215418 B1 EP2215418 B1 EP 2215418B1
Authority
EP
European Patent Office
Prior art keywords
oxygen
gas
nozzle
oxygen nozzle
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08849824A
Other languages
German (de)
French (fr)
Other versions
EP2215418A1 (en
Inventor
Leopold Werner Kepplinger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SIEMENS VAI METALS Technologies GmbH
Posco Holdings Inc
Original Assignee
SIEMENS VAI METALS TECHNOLOGIES GmbH
Siemens VAI Metals Technologies GmbH Austria
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SIEMENS VAI METALS TECHNOLOGIES GmbH, Siemens VAI Metals Technologies GmbH Austria, Posco Co Ltd filed Critical SIEMENS VAI METALS TECHNOLOGIES GmbH
Publication of EP2215418A1 publication Critical patent/EP2215418A1/en
Application granted granted Critical
Publication of EP2215418B1 publication Critical patent/EP2215418B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/16Introducing a fluid jet or current into the charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/16Tuyéres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M11/00Safety arrangements
    • F23M11/04Means for supervising combustion, e.g. windows
    • F23M11/042Viewing ports of windows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/16Arrangements of tuyeres

Definitions

  • the application relates to a method and an apparatus for producing and melting liquid pig iron or liquid steel precursors in a melter gasifier.
  • iron oxides or prereduced iron or mixtures thereof are added to the melter gasifier as iron-containing feedstocks and melted thereinto supplying carbonaceous material as solid carbon carriers and oxygen-containing gas in a fixed bed formed from the solid carbon carriers, gasifying the carbon carriers and producing CO and H. 2 -containing reducing gas is generated.
  • the supply of the oxygen-containing gas into the fixed bed takes place via a multiplicity of oxygen nozzles, called oxygen nozzle belts, which are distributed over the circumference of the melter gasifier in the region of the melter gasifier hearth.
  • the oxygen nozzles pass through the metal shell of the melter gasifier and are supplied with oxygen-containing gas from outside the melter gasifier.
  • the oxygen-containing gas may be oxygen or an oxygen-containing gas mixture; the terms oxygen-containing gas and oxygen are used synonymously below.
  • the capacity of a melter gasifier for producing liquid pig iron or liquid steel precursors or its melting capacity increases with its volume.
  • the active area of the oxygen nozzle belt becomes smaller and smaller relative to the cross-sectional area of the melter gasifier, since the periphery of the melter gasifier hearth grows only linearly with the diameter of the melter gasifier hearth, but the cross-sectional area with the square of the diameter of the melter gasifier. Hearth increases.
  • the number of installable oxygen nozzles as well as the scope will increase only linearly with the diameter of the melter gasifier hearth, while the melting capacity at least with the square of the Diameter of the melter gasifier hearth increases.
  • the oxygen nozzles used have to conduct an ever greater amount of oxygen-containing gas into the melter gasifier.
  • a method is described of how fluidization of the material located in front of the oxygen nozzles can be avoided by arranging two nozzle planes.
  • the lower oxygen nozzle level a smaller amount of oxygen-containing gas is supplied, so that a fixed bed layer is formed, which allows, as described above for the energy and mass transfer, procedural effect of the countercurrent flow.
  • only a limited amount of oxygen-containing gas can be introduced by this process.
  • the oxygen introduced via the upper oxygen nozzle belt produces a fluidized bed.
  • a plant according to the Austrian patent AT382390B has only a single oxygen nozzle level opening into a fixed bed of coarse-grained feed.
  • this approach is successful only with hearth diameters up to about 7 m, since at higher diameters the initially explained effect of the fluidization occurs because the amount of oxygen-containing gas to be introduced is too large to allow a stable fixed bed.
  • Another limiting criterion is that when using untreated coal this breaks down during the pyrolysis into smaller particle sizes, which also facilitate fluidization.
  • the object of the present invention is to provide a method and a device by means of which it is also possible with Einschmelzvergasern large diameter and volume, without weakening the strength of the steel shell of the melter gasifier and to avoid or reduce fluidization of the fixed bed to ensure adequate oxygen supply ,
  • This task is solved by Process for the production and melting of pig iron and steel precursors in a fixed-bed gasification furnace with supply of iron oxides or prereduced iron or mixtures thereof, and of carbonaceous material gasifying the carbonaceous material by means of oxygen-containing gas introduced via oxygen nozzles, which method is characterized in that the oxygen-containing gas is introduced at least one oxygen nozzle in at least two gas streams in the fixed bed of the melter gasifier or coal gasifier, and is defined by the geometric features in claim 1.
  • the subject invention avoids the disadvantages discussed above in that in at least one oxygen nozzle, oxygen-containing gas is passed into the fixed bed in at least two gas streams. With this measure it is possible, with the same number of passages for oxygen nozzles in the steel jacket of the melter gasifier, to provide more gas streams penetrating into the fixed bed. If at least two gas streams are introduced from all the oxygen nozzles, twice the number of gas streams is created compared to a conventional solution with one gas stream per oxygen nozzle. Thus, the volume flows of introduced gas can be lowered for each raceway, whereby a large-scale fluidization can be avoided or reduced.
  • the volume flows of introduced gas, for example, reduced by half compared to the introduction with a gas stream. If more than two gas streams per oxygen nozzle are introduced from one, several or all of the oxygen nozzles, the volume flows of the introduced gas decrease correspondingly more.
  • the introduction into at least two gas streams can take place at one, several or all oxygen nozzles.
  • Two, three, four, five, six, or seven gas streams per oxygen nozzle can be introduced into the fixed bed.
  • two to four gas streams are introduced, since with such a number the penetration depth of the raceway into the fixed bed is good and the individual raceways do not overlap. With more than seven gas streams, the penetration depths are low and there is a risk of overlapping the individual raceways.
  • the oxygen-containing gas flows as a feed gas stream through the oxygen nozzle before it is introduced into the fixed bed.
  • the at least two gas streams introduced into the fixed bed originate from a single feed gas stream for oxygen-containing gas. In this way, all gas streams introduced from an oxygen nozzle can be simultaneously controlled by controlling the feed gas flow.
  • the at least two gas streams introduced into the fixed bed each originate from a separate feed gas stream. This makes it possible, by controlling the corresponding feed gas flow, to control each of the introduced gas streams individually, independently of other gas streams introduced from the oxygen nozzle.
  • gas streams which have different flow directions emerge from an oxygen nozzle opening.
  • the oxygen-containing gas is thereby introduced over a wider range in the fixed bed, and for each gas flow with a flow direction forms each own raceway with a lower local gas amount, which is the number Raceways increases and minimizes the risk of fluidization.
  • each gas stream exits from its own oxygen nozzle orifice. Since a separate raceway forms before each oxygen nozzle opening, so increases the number of raceways, which is why the volume flow per raceway can be reduced. Correspondingly, the risk of fluidization of the fixed bed is reduced.
  • Adjacent from the oxygen nozzle exiting gas streams may have the same or different flow directions.
  • the flow directions for the gas flows at an angle of 5 ° to 15 ° to each other. This results in a uniform gasification of the melting and reaction zone before the oxygen nozzles.
  • the larger the angle the better the individual raceways present in front of the same oxygen nozzle are separated from each other; however, as the angle increases, there is a risk of overlapping existing raceways in front of adjacent oxygen nozzles.
  • Which angle is optimal depends on the proximity of adjacent oxygen nozzles to each other. In conventional numbers of oxygen nozzles on the melter gasifier and resulting distances are 5 ° to 15 ° particularly favorable, as defined in claim 1.
  • the said angle is the angle between the projections of the flow directions on a horizontal plane.
  • the introduced into the fixed bed gas streams may have the same or different diameters. It is preferred that when using more than two Gas flows the gas streams have different diameters. For example, with three adjacent gas streams, a mean gas stream having a diameter of two gas streams may be flanked with smaller, for both equal, diameters. The middle gas flow then enters the fixed bed and is less likely to overlap its raceway with the raceways of the adjacent smaller gas streams.
  • each oxygen-containing gas feed gas stream is controllable in terms of pressure and, via the flow rate, amount. This ensures that the introduced into the fixed bed gas streams, which are indeed supplied by the Einspeisungsgasströme with oxygen-containing gas, with respect to pressure and, via the flow velocity, amount can be controlled.
  • fine coal is also injected into the fixed bed via the oxygen nozzles.
  • additional carbonaceous material is fed to the fixed bed.
  • the operation of the oxygen nozzles is monitored by goggles.
  • the condition of the oxygen nozzles can be checked and, in the case of unfavorable developments, such as, for example, laying of the oxygen nozzle openings, timely countermeasures initiated or the oxygen nozzle shut down.
  • Another object of the present invention is an oxygen nozzle for supplying oxygen-containing gas into the fixed bed of a melter gasifier or coal gasifier, characterized in that it comprises at least one oxygen feed passage and at least two oxygen flow outlet passages with outlet ports, each of the oxygen flow outlet passages being connected to at least one oxygen feed passage.
  • the oxygen nozzle may also have three, four, five, six, or seven oxygen flow outlet channels. Preferably, it has two to four Sauerstoffstromauslasskanäle, since in such a number, the penetration depth of the raceway formed before them in the fixed bed is good and the individual raceways do not overlap. With more than seven oxygen flow outlet channels, the penetration depths are low and there is a risk of overlapping the individual raceways.
  • At least two oxygen flow outlet channels are connected to the same oxygen feed channel. This means that the oxygen feed channel branches into at least two oxygen flow outlet channels.
  • the oxygen flow outlet channels are each connected to a separate oxygen feed channel.
  • the outlet openings of the oxygen flow outlet channels are located within a single oxygen nozzle opening.
  • the outlet openings of the oxygen flow outlet channels each form a separate oxygen nozzle opening.
  • the diameters of the individual outlet openings are different in order to adjust the gas volume and penetration depth of the respective raceways to the energetic and geometric requirements in the melter gasifier can.
  • the distance of the peripheries of adjacent outlet openings is up to three times the outlet opening diameter of one of the outlet openings. For large outlet port diameters, this is true for the smaller outlet port diameter. In an example with 3 outlet openings, a central outlet opening being flanked by two outlet openings of smaller, respectively equal, diameter, for example this smaller diameter. A greater distance would cause problems in the oxygen nozzle still accommodate enough wall thickness to accommodate cooling channels.
  • the center axes of the sections of the oxygen flow outlet channels ending with the outlet openings form an angle of 5 ° to 15 ° relative to one another.
  • the said angle is the angle between the projections of the central axes on a horizontal plane.
  • each oxygen feed channel is provided with a control device for controlling pressure and, via the flow velocity, amount of the oxygen-containing gas fed.
  • the oxygen nozzle comprises a display device for monitoring the oxygen flow outlet channels and their outlet openings.
  • the oxygen nozzle comprises a device for injection of fine coal.
  • the oxygen nozzles 1 a, 1 b, 1 c shown by way of example are, similar to blow molding in blast furnaces, annularly arranged at a certain distance d above the hearth at the circumference U of the melter gasifier and are supplied with oxygen-containing gas from outside via feed lines (not shown). For better Clarity, only three oxygen nozzles 1a, 1b, 1c are shown.
  • the melter gasifier has the radius R. Due to high gas velocities, generally more than 100 m / s, the raceway described above forms in front of the oxygen nozzles. Here, the reaction is carried out with the carbonaceous material, which is highly exothermic and serves to melt the feedstocks.
  • the nozzles must be able to withstand very high temperatures up to over 2000 ° C and therefore be either liquid cooled or made of suitable refractory materials.
  • the oxygen-containing gas is introduced at each oxygen nozzle 1 a, 1 b, 1 c in two gas streams in the fixed bed, whereby two Raceways 2a, 2b form before each oxygen nozzle 1a, 1b, 1c.
  • the flow directions adjacent emerging gas streams, and thus the corresponding raceways, form an angle to each other in the projection on a horizontal plane, in this case, for example, the plane of the paper.
  • the outlet openings of the Sauerstoffstromauslasskanäle each form their own oxygen nozzle opening.
  • FIG. 2 shows an oxygen nozzle 1 in cross section.
  • the oxygen nozzle 1 has cooling channels 3 for cooling the tip and the body of the oxygen nozzle. After supplying the oxygen nozzle with oxygen-containing gas from outside the melter gasifier, the oxygen-containing gas flows as feed gas flow through the oxygen feed channel 4 of the oxygen nozzle before passing through the two oxygen flow outlet channels 5a, 5b branching off from the oxygen feed channel 4 Outlet openings 6a, 6b is introduced into the fixed bed.
  • Such showers for monitoring the nozzle function are possible through straight-line oxygen flow outlet channels.
  • Optional devices for injection of fine coal, which penetrate the body of the oxygen nozzle and terminate in the immediate vicinity of the outlet openings on the side of the raceway are not shown.
  • FIG. 3a shows schematically a front view of an embodiment of an oxygen nozzle with 2 Sauerstoffstromauslasskanälen whose outlet openings 8 and 9 each form their own oxygen nozzle openings.
  • the 2 oxygen flow outlet channels are each connected to a separate oxygen feed channel.
  • the associated oxygen flow outlet channels and oxygen feed channels have the same direction. When projected onto a horizontal plane, the two directions of the oxygen flow outlet channels cross each other.
  • FIG. 3b shows a longitudinal section of the oxygen nozzle of FIG. 3a with cooling channels 10 for cooling the body and tip of the oxygen nozzle.
  • FIG. 4a shows a front view of an oxygen nozzle, in which the outlet openings 11,12,13,14 of Sauerstoffstromauslasskanäle within an oxygen nozzle opening 15 are.
  • the oxygen nozzle opening is slit-shaped and arranged horizontally.
  • FIG. 4b shows a plan view of a section along the line AA 'through the in FIG. 4a shown oxygen nozzle.
  • melter gasifier with an absolute melting capacity of 1000 tons of pig iron / day is characterized by the following parameters: Total number of raceways 20 Total number of oxygen nozzles 20 Absolute melting performance 1000 t / d Herd diameter 5.5 m Single melting performance of a raceway 50 t / d Specific hearth load 45 t / m 2 , d
  • melter gasifier with an absolute melting capacity of 2500 tons of pig iron / day is characterized by the following parameters: Total number of raceways 28 Total number of oxygen nozzles 28 Absolute melting performance 2500 t / d Herd diameter 7,5 m Single melting performance of a raceway 89 t / d Specific hearth load 57 t / m 2 , d
  • melter gasifier with an absolute melting capacity of 4000 tons of pig iron / day is characterized by the following parameters: Total number of raceways 20 Total number of oxygen nozzles 20 Absolute melting performance 1000 t / d Herd diameter 5.5 m Single melting performance of a
  • Example 5 melter gasifier with an absolute melting capacity of 2500 tons of pig iron / day
  • Example 6 melter gasifier with an absolute melting capacity of 4000 tons pig iron / day

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Manufacture Of Iron (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

Die Anmeldung betrifft ein Verfahren und eine Vorrichtung zum Herstellen und Schmelzen von flüssigem Roheisen oder flüssigen Stahlvorprodukten in einem Einschmelzvergaser.The application relates to a method and an apparatus for producing and melting liquid pig iron or liquid steel precursors in a melter gasifier.

Bei derartigen Verfahren werden Eisenoxide oder vorreduziertes Eisen oder deren Mischungen als eisenhaltige Einsatzstoffe dem Einschmelzvergaser zugegeben und dort unter Zufuhr von kohlenstoffhältigem Material als festen Kohlenstoffträgern und sauerstoffhältigem Gas in einem aus den festen Kohlenstoffträgern gebildeten Festbett erschmolzen, wobei die Kohlenstoffräger vergast und ein CO- und H2-haltiges Reduktionsgas erzeugt wird. Die Zufuhr des sauerstoffhaltigen Gases in das Festbett erfolgt über eine Vielzahl von über den Umfang des Einschmelzvergasers im Bereich des Einschmelzvergaser-Herdes verteilten Sauerstoffdüsen, genannt Sauerstoffdüsengürtel. Die Sauerstoffdüsen durchsetzen den Metallmantel des Einschmelzvergasers und werden von außerhalb des Einschmelzvergasers mit sauerstoffhaltigem Gas beliefert. Bei dem sauerstoffhaltigen Gas kann es sich um Sauerstoff oder ein sauerstoffhaltiges Gasgemisch handeln; die Begriffe sauerstoffhaltiges Gas und Sauerstoff werden im folgenden synonym verwendet.In such processes, iron oxides or prereduced iron or mixtures thereof are added to the melter gasifier as iron-containing feedstocks and melted thereinto supplying carbonaceous material as solid carbon carriers and oxygen-containing gas in a fixed bed formed from the solid carbon carriers, gasifying the carbon carriers and producing CO and H. 2 -containing reducing gas is generated. The supply of the oxygen-containing gas into the fixed bed takes place via a multiplicity of oxygen nozzles, called oxygen nozzle belts, which are distributed over the circumference of the melter gasifier in the region of the melter gasifier hearth. The oxygen nozzles pass through the metal shell of the melter gasifier and are supplied with oxygen-containing gas from outside the melter gasifier. The oxygen-containing gas may be oxygen or an oxygen-containing gas mixture; the terms oxygen-containing gas and oxygen are used synonymously below.

Die Kapazität eines Einschmelzvergasers zum Herstellen von flüssigem Roheisen oder flüssigen Stahlvorprodukten beziehungsweise seine Schmelzleistung nimmt mit seinem Volumen zu. Eine Vergrößerung des Durchmessers, das heisst eine steigende Querschnittsfläche des Einschmelzvergasers, lässt bei gegebener Höhe das Volumen steigen. Bei der Kapazitätssteigerung von Einschmelzvergasern durch Querschnittflächenvergrößerung wird der aktive Bereich des Sauerstoffdüsengürtels relativ zur Querschnittsfläche des Einschmelzvergasers immer kleiner, da der Umfang des Einschmelzvergaser-Herdes nur linear mit dem Durchmesser des Einschmelzvergaser-Herdes wächst, die Querschnittsfläche aber mit dem Quadrat des Durchmessers des Einschmelzvergaser-Herdes zunimmt. Da der Abstand der Sauerstoffdüsen voneinander im Sauerstoffdüsengürtel aus Festigkeitsgründen des Metallmantels des Einschmelzvergasers nicht beliebig klein ausgeführt werden kann, wird die Anzahl der installierbaren Sauerstoffdüsen ebenso wie der Umfang nur linear mit dem Durchmesser des Einschmelzvergaser-Herdes zunehmen, während die Schmelzleistung mindestens mit dem Quadrat des Durchmessers des Einschmelzvergaser-Herdes steigt. Das hat zur Folge, dass die zum Einsatz kommenden Sauerstoffdüsen eine immer größere Menge sauerstoffhaltigen Gases in den Einschmelzvergaser leiten müssen.The capacity of a melter gasifier for producing liquid pig iron or liquid steel precursors or its melting capacity increases with its volume. An increase in the diameter, ie an increasing cross-sectional area of the melter gasifier, causes the volume to increase at a given height. In increasing the capacity of melter gasifiers by cross-sectional area enlargement, the active area of the oxygen nozzle belt becomes smaller and smaller relative to the cross-sectional area of the melter gasifier, since the periphery of the melter gasifier hearth grows only linearly with the diameter of the melter gasifier hearth, but the cross-sectional area with the square of the diameter of the melter gasifier. Hearth increases. Since the distance of the oxygen nozzles from each other in the oxygen nozzle belt for reasons of strength of the metal shell of the melter gasifier can not be made arbitrarily small, the number of installable oxygen nozzles as well as the scope will increase only linearly with the diameter of the melter gasifier hearth, while the melting capacity at least with the square of the Diameter of the melter gasifier hearth increases. As a result, the oxygen nozzles used have to conduct an ever greater amount of oxygen-containing gas into the melter gasifier.

Da die Eindringtiefe des Sauerstoffstrahls in das Koks- oder Charbett des Festbettes, der sogenannte Raceway, im Einschmelzvergaser mit zunehmender Gasmenge nicht wesentlich länger wird, ergibt sich der Nachteil einer sehr hohen örtlichen Gasmenge. Durch die Expansion des Gasstrahles durch die stark exotherme Vergasungsreaktion C + 1 / 2 O 2 = > CO ΔH = - 110 kJ / mol

Figure imgb0001

welche bei Temperaturen von über 2500 °C abläuft, verursachen die heißen Gasströme im und in weiten Bereichen über dem Raceway einen Zustand der Wirbelschichtbildung beziehungsweise Fluidisierung.Since the penetration depth of the oxygen jet into the coke or charbate of the fixed bed, the so-called raceway, in the melter gasifier does not become significantly longer with increasing gas quantity, the disadvantage of a very high local gas quantity results. Due to the expansion of the gas jet by the highly exothermic gasification reaction C + 1 / 2 O 2 = > CO ΔH = - 110 kJ / mol
Figure imgb0001

which takes place at temperatures above 2500 ° C, causing the hot gas flows in and over wide areas above the raceway a state of fluidized bed formation or fluidization.

In diesem fluiddynamischen Strömungsregime werden Feststoffpartikel in intensive Bewegung gebracht, so dass sich diese ähnlich einer Flüssigkeit verhalten. Aus diesem Grund wird aus dem in Schachtöfen üblichen, für den Energie- und Stoffaustausch vorteilhaften Gegenstrom ein für die im Einschmelzvergaser ablaufenden Reduktions- und Schmelzvorgänge ungünstiger Kreuz-Gegenstrom. Als weiterer Nachteil kommt hinzu, dass es in diesen Bereichen zu keinem ausgeprägtem Festbett mehr kommt, welches für den idealen Gas-Feststoff-Gegenstrom notwendig ist. Dadurch wird Material, wie Eisenerz und Eisenschwamm, mit unterschiedlichen Eigenschaften, wie Reduktionsgrad und Temperatur, mit ebenfalls in unterschiedlichen Zuständen befindlichen Schlacken, Zuschlagstoffen und entgaster Kohle (Char) vermischt. Ein geregelter Energie- und Stoffaustausch ist dadurch nur sehr unvollkommen möglich.In this fluid-dynamic flow regime solid particles are brought into intensive motion, so that they behave like a liquid. For this reason, from the customary in shaft furnaces, for the energy and mass transfer countercurrent advantageous for running in the melter carburetor reduction and melting operations unfavorable cross-countercurrent. Another disadvantage is that there is no longer any pronounced fixed bed in these areas, which is necessary for the ideal gas-solid countercurrent. As a result, material such as iron ore and sponge iron, mixed with different properties, such as degree of reduction and temperature, with also located in different states slags, aggregates and degassed coal (Char). A regulated energy and mass transfer is thus only very imperfectly possible.

In der EP0114040 wird ein Verfahren beschrieben, wie durch Anordnung von zwei Düsenebenen eine Fluidisierung des vor den Sauerstoffdüsen befindlichen Materials vermieden werden kann. Dabei wird der unteren Sauerstoffdüsenebene eine geringere Menge von sauerstoffhältigem Gas zugeführt, so dass eine Festbettschicht gebildet wird, welche den, wie oben beschrieben für den Energie- und Stoffaustausch vorteilhaften, verfahrenstechnischen Effekt der Gegenstromführung ermöglicht . Mittels dieses Verfahrens kann jedoch nur eine begrenzte Menge an sauerstoffhältigem Gas eingebracht werden. Der über den oberen Sauerstoffdüsengürtel eingebrachte Sauerstoff erzeugt eine Wirbelschicht.In the EP0114040 For example, a method is described of how fluidization of the material located in front of the oxygen nozzles can be avoided by arranging two nozzle planes. In this case, the lower oxygen nozzle level, a smaller amount of oxygen-containing gas is supplied, so that a fixed bed layer is formed, which allows, as described above for the energy and mass transfer, procedural effect of the countercurrent flow. However, only a limited amount of oxygen-containing gas can be introduced by this process. The oxygen introduced via the upper oxygen nozzle belt produces a fluidized bed.

Eine Anlage nach der österreichischen Patentschrift AT382390B besitzt nur eine einzige Sauerstoffdüsenebene mündend in ein Festbett aus grobkörnigem Einsatzmaterial. Dieser Weg ist aber nur bei Herddurchmessern bis etwa 7 m erfolgreich, da bei höheren Durchmessern der einleitend erläuterte Effekt der Fluidisierung auftritt, da die einzubringende Menge an sauerstoffhältigem Gas zu groß ist, um ein stabiles Festbett zu ermöglichen. Ein weiteres limitierendes Kriterium ist, dass bei Einsatz von unbehandelter Kohle diese bei der Pyrolyse in kleinere Korngrößen zerfällt, welche ebenfalls eine Fluidisierung erleichtern.A plant according to the Austrian patent AT382390B has only a single oxygen nozzle level opening into a fixed bed of coarse-grained feed. However, this approach is successful only with hearth diameters up to about 7 m, since at higher diameters the initially explained effect of the fluidization occurs because the amount of oxygen-containing gas to be introduced is too large to allow a stable fixed bed. Another limiting criterion is that when using untreated coal this breaks down during the pyrolysis into smaller particle sizes, which also facilitate fluidization.

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine Vorrichtung bereitzustellen, mittels derer es auch bei Einschmelzvergasern mit großem Durchmesser und Volumen möglich ist, ohne Schwächung der Festigkeit des Stahlmantels des Einschmelzvergasers und unter Vermeidung oder Verminderung einer Fluidisierung des Festbettes eine ausreichende Sauerstoffzufuhr zu gewährleisten.The object of the present invention is to provide a method and a device by means of which it is also possible with Einschmelzvergasern large diameter and volume, without weakening the strength of the steel shell of the melter gasifier and to avoid or reduce fluidization of the fixed bed to ensure adequate oxygen supply ,

Diese Aufgabe wird gelöst durch ein
Verfahren zum Herstellen und Schmelzen von Roheisen und Stahlvorprodukten in einem Einschmelzvergaser in einem Festbett unter Zufuhr von Eisenoxiden oder vorreduziertem Eisen oder deren Mischungen, und von kohlenstoffhältigem Material, unter Vergasung des kohlenstoffhältigen Materials mittels über Sauerstoffdüsen eingeleitetem sauerstoffhaltigem Gas,
welches Verfahren dadurch gekennzeichnet ist, dass das sauerstoffhaltige Gas bei mindestens einer Sauerstoffdüse in mindestens zwei Gasströmen in das Festbett des Einschmelzvergasers oder Kohlevergasers eingeleitet wird, und durch die geometrischen Merkmalen in Auspruch 1 definiert ist.
This task is solved by
Process for the production and melting of pig iron and steel precursors in a fixed-bed gasification furnace with supply of iron oxides or prereduced iron or mixtures thereof, and of carbonaceous material gasifying the carbonaceous material by means of oxygen-containing gas introduced via oxygen nozzles,
which method is characterized in that the oxygen-containing gas is introduced at least one oxygen nozzle in at least two gas streams in the fixed bed of the melter gasifier or coal gasifier, and is defined by the geometric features in claim 1.

Die gegenständliche Erfindung vermeidet die oben diskutierten Nachteile dadurch, dass bei mindestens einer Sauerstoffdüse sauerstoffhältiges Gas in mindestens zwei Gasströmen in das Festbett geleitet wird. Mit dieser Maßnahme ist es möglich, bei gleicher Anzahl von Durchlässen für Sauerstoffdüsen im Stahlmantel des Einschmelzvergasers mehr in das Festbett eindringende Gasströme bereitzustellen. Werden aus allen Sauerstoffdüsen jeweils mindestens zwei Gasströme eingeleitet, wird gegenüber einer herkömmlichen Lösung mit einem Gasstrom pro Sauerstoffdüse die doppelte Anzahl von Gasströmen geschaffen. Damit können die Volumsströme an eingebrachtem Gas für jeweils einen Raceway abgesenkt werden, wodurch eine großräumige Fluidisierung vermieden oder vermindert werden kann. Im Falle einer Einleitung von zwei gleich starken Gasströmen pro Sauerstoffdüse werden die Volumsströme an eingebrachtem Gas beispielsweise auf die Hälfte abgesenkt im Vergleich zur Einleitung mit einem Gasstrom. Werden aus einer, mehreren oder allen Sauerstoffdüsen mehr als zwei Gasströme pro Sauerstoffdüse eingeleitet, vermindern sich die Volumsströme an eingebrachtem Gas entsprechend stärker. Die Einleitung in mindestens zwei Gasströmen kann bei einer, mehreren oder allen Sauerstoffdüsen erfolgen. Es können zwei, drei, vier, fünf, sechs, oder sieben Gasströme pro Sauerstoffdüse in das Festbett eingeleitet werden. Bevorzugt werden zwei bis vier Gasströme eingeleitet, da bei einer solchen Anzahl die Eindringtiefe des Raceways in das Festbett gut ist und die einzelnen Raceways nicht überlappen. Bei mehr als sieben Gasströmen sind die Eindringtiefen gering und es besteht die Gefahr der Überlappung der einzelnen Raceways.The subject invention avoids the disadvantages discussed above in that in at least one oxygen nozzle, oxygen-containing gas is passed into the fixed bed in at least two gas streams. With this measure it is possible, with the same number of passages for oxygen nozzles in the steel jacket of the melter gasifier, to provide more gas streams penetrating into the fixed bed. If at least two gas streams are introduced from all the oxygen nozzles, twice the number of gas streams is created compared to a conventional solution with one gas stream per oxygen nozzle. Thus, the volume flows of introduced gas can be lowered for each raceway, whereby a large-scale fluidization can be avoided or reduced. In case of a Introduction of two equal gas streams per oxygen nozzle, the volume flows of introduced gas, for example, reduced by half compared to the introduction with a gas stream. If more than two gas streams per oxygen nozzle are introduced from one, several or all of the oxygen nozzles, the volume flows of the introduced gas decrease correspondingly more. The introduction into at least two gas streams can take place at one, several or all oxygen nozzles. Two, three, four, five, six, or seven gas streams per oxygen nozzle can be introduced into the fixed bed. Preferably, two to four gas streams are introduced, since with such a number the penetration depth of the raceway into the fixed bed is good and the individual raceways do not overlap. With more than seven gas streams, the penetration depths are low and there is a risk of overlapping the individual raceways.

Nach Belieferung der Sauerstoffdüse mit sauerstoffhaltigem Gas von ausserhalb des Einschmelzvergasers strömt das sauerstoffhaltige Gas als Einspeisungsgasstrom durch die Sauerstoffdüse, bevor es in das Festbett eingeleitet wird.After supplying the oxygen nozzle with oxygen-containing gas from outside the melter gasifier, the oxygen-containing gas flows as a feed gas stream through the oxygen nozzle before it is introduced into the fixed bed.

Nach einer Ausführungsform des Verfahrens entspringen die mindestens zwei in das Festbett eingeleiteten Gasströme aus einem einzigen Einspeisungsgasstrom für sauerstoffhaltiges Gas. Auf diese Weise lassen sich alle aus einer Sauerstoffdüse eingeleiteten Gasströme gleichzeitig durch Kontrolle des Einspeisungsgasstromes kontrollieren.According to one embodiment of the method, the at least two gas streams introduced into the fixed bed originate from a single feed gas stream for oxygen-containing gas. In this way, all gas streams introduced from an oxygen nozzle can be simultaneously controlled by controlling the feed gas flow.

Nach einer anderen Ausführungsform des Verfahrens entspringen die mindestens zwei in das Festbett eingeleiteten Gasströme jeweils aus einem eigenen Einspeisungsgasstrom. Das ermöglicht es, durch Kontrolle des entsprechenden Einspeisungsgasstromes jeden der eingeleiteten Gasströme einzeln, unabhängig von weiteren aus der Sauerstoffdüse eingeleiteten Gasströme, zu kontrollieren.According to another embodiment of the method, the at least two gas streams introduced into the fixed bed each originate from a separate feed gas stream. This makes it possible, by controlling the corresponding feed gas flow, to control each of the introduced gas streams individually, independently of other gas streams introduced from the oxygen nozzle.

Nach einer Ausführungsform des Verfahrens treten aus einer Sauerstoffdüsenöffnung Gasströme aus, die verschiedene Strömungsrichtungen aufweisen. Im Vergleich zur herkömmlichen Einleitung eines Gasstromes mit einer Strömungsrichtung aus einer Sauerstoffdüsenöffnung wird das sauerstoffhaltige Gas dadurch über einen breiteren Bereich in das Festbett eingeleitet, und für jeden Gasstrom mit einer Strömungsrichtung bildet sich jeweils ein eigener Raceway mit geringerer örtlicher Gasmenge aus, was die Zahl der Raceways erhöht und die Gefahr der Fluidisierung herabsetzt.According to one embodiment of the method, gas streams which have different flow directions emerge from an oxygen nozzle opening. Compared to the conventional introduction of a gas flow with a flow direction from an oxygen nozzle opening, the oxygen-containing gas is thereby introduced over a wider range in the fixed bed, and for each gas flow with a flow direction forms each own raceway with a lower local gas amount, which is the number Raceways increases and minimizes the risk of fluidization.

Nach einer anderen Ausführungsform des Verfahrens tritt jeder Gasstrom aus einer eigenen Sauerstoffdüsenöffnung aus. Da sich vor jeder Sauerstoffdüsenöffnung ein eigener Raceway bildet, erhöht sich damit die Zahl der Raceways, weshalb der Volumsstrom pro Raceway vermindert werden kann. Enstprechend ist die Gefahr der Fluidisierung des Festbettes vermindert.According to another embodiment of the method, each gas stream exits from its own oxygen nozzle orifice. Since a separate raceway forms before each oxygen nozzle opening, so increases the number of raceways, which is why the volume flow per raceway can be reduced. Correspondingly, the risk of fluidization of the fixed bed is reduced.

Benachbart aus der Sauerstoffdüse austretende Gasströme können gleiche oder verschiedene Strömungsrichtungen haben. Um den von einzelnen Gasströmen hervorgerufenen Raceways genügend Abstand gegeneinander zu gewährleisten, bilden in einer bevorzugten Ausführungsform die Strömungsrichtungen für die Gasströme einen Winkel von 5° bis 15°, zueinander bilden. Dadurch kommt es zu einer gleichmäßigen Durchgasung der Schmelz- und Reaktionszone vor den Sauerstoffdüsen. Je größer der Winkel ist, desto besser sind die vor der selbe Sauerstoffdüse vorhandenen einzelnen Raceways voneinander separiert; jedoch steigt mit steigendem Winkel die Gefahr, dass sich vor benachbarten Sauerstoffdüsen vorhandene Raceways überlappen. Welcher Winkel optimal ist, hängt von der Nähe benachbarter Sauerstoffdüsen zueinander ab. Bei üblichen Anzahlen von Sauerstoffdüsen am Einschmelzvergaser und daraus resultierenden Abständen sind 5° bis 15° besonders günstig, Wie in Anspruch 1 definiert. Der besagte Winkel ist dabei der Winkel zwischen den Projektionen der Strömungsrichtungen auf eine horizontale Ebene.Adjacent from the oxygen nozzle exiting gas streams may have the same or different flow directions. In order to ensure sufficient distance from each other caused by individual gas streams raceways against each other, form in a preferred embodiment, the flow directions for the gas flows at an angle of 5 ° to 15 ° to each other. This results in a uniform gasification of the melting and reaction zone before the oxygen nozzles. The larger the angle, the better the individual raceways present in front of the same oxygen nozzle are separated from each other; however, as the angle increases, there is a risk of overlapping existing raceways in front of adjacent oxygen nozzles. Which angle is optimal depends on the proximity of adjacent oxygen nozzles to each other. In conventional numbers of oxygen nozzles on the melter gasifier and resulting distances are 5 ° to 15 ° particularly favorable, as defined in claim 1. The said angle is the angle between the projections of the flow directions on a horizontal plane.

Durch die bei Durchführung des erfindungsgemäßen Verfahrens im Vergleich zu bekannten Verfahren mit einem Gasstrom pro Sauerstoffdüse geringeren Volumsströme pro Raceway besteht innerhalb der kreisringförmigen Schmelzzone eines Raceways eine verringerte örtliche Gasströmung. Beispielsweise verringert sich bei Einleitung des gleichen Volumens von sauerstoffhältigem Gas mit zwei gleich großen Gasströmen statt einem Gasstrom die örtliche Gasströmung auf die Hälfte; bei Einleitung mit mehr als zwei Gasströmen verringert sich die örtliche Gasströmung entsprechend mehr. Durch die Verringerung der örtlichen Gasströmung ist auch in den Zonen unmittelbar über den Raceways die Gasgeschwindigkeit entsprechend geringer, wodurch die Bildung einer unzulässigen Vermischung der Einsatzstoffe minimiert wird und der vorteilhafte Gas-Feststoff-Gegenstrom gewährleistet werden kann.Due to the lower volume flows per raceway compared with known methods with one gas flow per oxygen nozzle when carrying out the method according to the invention, there is a reduced local gas flow within the annular melting zone of a raceway. For example, upon introduction of the same volume of oxygen-containing gas with two equal gas streams instead of one gas stream, the local gas flow decreases by half; when introduced with more than two gas streams, the local gas flow decreases correspondingly more. By reducing the local gas flow, the gas velocity is correspondingly lower even in the zones immediately above the raceways, whereby the formation of an impermissible mixing of the starting materials is minimized and the advantageous gas-solid countercurrent can be ensured.

Die in das Festbett eingeleiteten Gasströme können gleiche oder verschiedene Durchmesser haben. Bevorzugt ist es, dass bei Verwendung von mehr als zwei Gasströmen die Gasströme verschiedene Durchmesser haben. Beispielsweise kann bei drei benachbarten Gasströmen ein mittlerer Gasstrom mit einem Durchmesser von zwei Gassströmen mit kleineren, für beide gleichen, Durchmessern flankiert werden. Der mittlere Gasstrom tritt dann weiter in das Festbett ein und es ist weniger wahrscheinlich, dass sein Raceway mit den Raceways der benachbarten kleineren Gasströme überlappt. Vorzugsweise ist jeder Einspeisungsgasstrom für sauerstoffhaltiges Gas bezüglich Druck und, über die Strömungsgeschwindigkeit, Menge regelbar. Dadurch wird erreicht, dass die in das Festbett eingeleiteten Gasströme , die ja durch die Einspeisungsgasströme mit sauerstoffhaltigem Gas versorgt werden, bezüglich Druck und, über die Strömungsgeschwindigkeit, Menge regelbar sind.The introduced into the fixed bed gas streams may have the same or different diameters. It is preferred that when using more than two Gas flows the gas streams have different diameters. For example, with three adjacent gas streams, a mean gas stream having a diameter of two gas streams may be flanked with smaller, for both equal, diameters. The middle gas flow then enters the fixed bed and is less likely to overlap its raceway with the raceways of the adjacent smaller gas streams. Preferably, each oxygen-containing gas feed gas stream is controllable in terms of pressure and, via the flow rate, amount. This ensures that the introduced into the fixed bed gas streams, which are indeed supplied by the Einspeisungsgasströme with oxygen-containing gas, with respect to pressure and, via the flow velocity, amount can be controlled.

Nach einer Ausführungsform des erfindungsgemäßenVerfahrens wird über die Sauerstoffdüsen auch Feinkohle in das Festbett eingedüst. Dadurch wird dem Festbett zusätzliches kohlenstoffhältiges Material zugeführt.According to one embodiment of the method according to the invention, fine coal is also injected into the fixed bed via the oxygen nozzles. As a result, additional carbonaceous material is fed to the fixed bed.

Nach einer weiteren Ausführungsform des erfindungsgemäßenVerfahrens wird der Betrieb der Sauerstoffdüsen durch Schauvorrichtungen überwacht. Dadurch kann der Zustand der Sauerstoffdüsen überprüft und im Falle ungünstiger Entwicklungen, wie beispielsweise Verlegung der Sauerstoffdüsenöffnungen, rechtzeitig Gegenmaßnahmen eingeleitet oder die Sauerstoffdüse stillgelegt werden.According to a further embodiment of the method according to the invention, the operation of the oxygen nozzles is monitored by goggles. As a result, the condition of the oxygen nozzles can be checked and, in the case of unfavorable developments, such as, for example, laying of the oxygen nozzle openings, timely countermeasures initiated or the oxygen nozzle shut down.

Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Sauerstoffdüse zum Zuführen von sauerstoffhältigem Gas in das Festbett eines Einschmelzvergasers oder Kohlevergasers, dadurch gekennzeichnet, dass sie mindestens einen Sauerstoffeinspeisungskanal, und mindestens zwei Sauerstoffstromauslasskanäle mit Auslassöffnungen aufweist, wobei jeder der Sauerstoffstromauslasskanäle mit mindestens einem Sauerstoffeinspeisungskanal verbunden ist. Die Sauerstoffdüse kann auch drei, vier, fünf, sechs, oder sieben Sauerstoffstromauslasskanäle aufweisen. Bevorzugterweise weist sie zwei bis vier Sauerstoffstromauslasskanäle auf, da bei einer solchen Anzahl die Eindringtiefe des vor ihnen gebildeten Raceways in das Festbett gut ist und die einzelnen Raceways nicht überlappen. Bei mehr als sieben Sauerstoffstromauslasskanäle sind die Eindringtiefen gering und es besteht die Gefahr der Überlappung der einzelnen Raceways.Another object of the present invention is an oxygen nozzle for supplying oxygen-containing gas into the fixed bed of a melter gasifier or coal gasifier, characterized in that it comprises at least one oxygen feed passage and at least two oxygen flow outlet passages with outlet ports, each of the oxygen flow outlet passages being connected to at least one oxygen feed passage. The oxygen nozzle may also have three, four, five, six, or seven oxygen flow outlet channels. Preferably, it has two to four Sauerstoffstromauslasskanäle, since in such a number, the penetration depth of the raceway formed before them in the fixed bed is good and the individual raceways do not overlap. With more than seven oxygen flow outlet channels, the penetration depths are low and there is a risk of overlapping the individual raceways.

Nach einer Ausführungsform der erfindungsgemäßen Sauerstoffdüse sind mindestens zwei Sauerstoffstromauslasskanäle mit demselben Sauerstoffeinspeisungskanal verbundenen. Das heisst, dass sich der Sauerstoffeinspeisungskanal in mindestens zwei Sauerstoffstromauslasskanäle verzweigt.According to one embodiment of the oxygen nozzle according to the invention, at least two oxygen flow outlet channels are connected to the same oxygen feed channel. This means that the oxygen feed channel branches into at least two oxygen flow outlet channels.

Nach einer anderen Ausführungsform sind die Sauerstoffstromauslasskanäle jeweils mit einem eigenen Sauerstoffeinspeisungskanal verbundenen.According to another embodiment, the oxygen flow outlet channels are each connected to a separate oxygen feed channel.

Nach einer Ausführungsform der erfindungsgemäßen Sauerstoffdüse liegen die Auslassöffnungen der Sauerstoffstromauslasskanäle innerhalb einer einzigen Sauerstoffdüsenöffnung.According to one embodiment of the oxygen nozzle according to the invention, the outlet openings of the oxygen flow outlet channels are located within a single oxygen nozzle opening.

Nach einer anderen Ausführungsform bilden die Auslassöffnungen der Sauerstoffstromauslasskanäle jeweils eine eigene Sauerstoffdüsenöffnung.According to another embodiment, the outlet openings of the oxygen flow outlet channels each form a separate oxygen nozzle opening.

Nach einer Ausführungsform sind bei Sauerstoffdüsen mit mehr als zwei Sauerstoffstromauslasskanälen die Durchmesser der einzelnen Auslassöffnungen unterschiedlich, um die Gasmenge und Eindringtiefe der jeweiligen Raceways an die energetischen und geometrischen Erfordernisse im Einschmelzvergaser anpassen zu können.According to one embodiment, in oxygen nozzles with more than two Sauerstoffstromauslasskanälen the diameters of the individual outlet openings are different in order to adjust the gas volume and penetration depth of the respective raceways to the energetic and geometric requirements in the melter gasifier can.

Wenn die Auslassöffnungen der Sauerstoffstromauslasskanäle jeweils eine eigene Sauerstoffdüsenöffnung bilden, ist es bevorzugt dass der Abstand der Umfänge benachbarter Auslassöffnungen bis zum dreifachen des Auslassöffnungsdurchmessers einer der Auslassöffnungen beträgt. Bei verscheiden großen Auslassöffnungsdurchmessern gilt das für den kleineren Auslassöffnungsdurchmesser. Bei einem Beispiel mit 3 Auslassöffnungen, wobei eine zentrale Auslassöffnung von zwei Auslassöffnungen mit kleinerem, jeweils gleichem, Durchmesser flankiert ist, beispielsweise dieser kleinere Durchmesser. Ein größerer Abstand würde Probleme dabei bereiten, in der Sauerstoffdüse noch genügend Wandstärke zur Unterbringung von Kühlkanälen unterzubringen.When the outlet openings of the oxygen flow outlet channels each form a separate oxygen nozzle opening, it is preferred that the distance of the peripheries of adjacent outlet openings is up to three times the outlet opening diameter of one of the outlet openings. For large outlet port diameters, this is true for the smaller outlet port diameter. In an example with 3 outlet openings, a central outlet opening being flanked by two outlet openings of smaller, respectively equal, diameter, for example this smaller diameter. A greater distance would cause problems in the oxygen nozzle still accommodate enough wall thickness to accommodate cooling channels.

Nach Anspruch 1 bilden die Mittelachsen der mit den Auslassöffnungen endenden Teilstücke der Sauerstoffstromauslasskanäle einen Winkel von 5° bis 15°, zueinander. Je größer der Winkel ist, desto besser sind die vor der selbe Sauerstoffdüse vorhandenen einzelnen Raceways voneinander separiert; jedoch steigt mit steigendem Winkel die Gefahr, dass sich vor benachbarten Sauerstoffdüsen vorhandene Raceways überlappen. Deshalb soll der Winkel nicht mehr als 45° betragen. Welcher Winkel optimal ist, hängt von der Nähe benachbarter Sauerstoffdüsen zueinander ab. Bei üblichen Anzahlen von Sauerstoffdüsen am Einschmelzvergaser und daraus resultierenden Abständen sind 5° bis 15° besonders günstig, wie in Aspruch 1 definiert.In accordance with claim 1, the center axes of the sections of the oxygen flow outlet channels ending with the outlet openings form an angle of 5 ° to 15 ° relative to one another. The larger the angle, the better the individual raceways present in front of the same oxygen nozzle are separated from each other; however, it increases with increasing Angle the danger that overlap before adjacent oxygen nozzles existing raceways. Therefore, the angle should not be more than 45 °. Which angle is optimal depends on the proximity of adjacent oxygen nozzles to each other. For conventional numbers of oxygen nozzles on the melter gasifier and the resulting distances are 5 ° to 15 ° particularly favorable, as defined in claim 1.

Der besagte Winkel ist dabei der Winkel zwischen den Projektionen der Mittelachsen auf eine horizontale Ebene.The said angle is the angle between the projections of the central axes on a horizontal plane.

Vorzugsweise ist jeder Sauerstoffeinspeisungskanal mit einer Regelvorrichtung zur Regelung von Druck und, über die Strömungsgeschwindigkeit, Menge des eingespeisten sauerstoffhaltigen Gases versehen.Preferably, each oxygen feed channel is provided with a control device for controlling pressure and, via the flow velocity, amount of the oxygen-containing gas fed.

Vorzugsweise umfasst die Sauerstoffdüse eine Schauvorrichtung zur Beobachtung der Sauerstoffstromauslasskanäle und ihrer Auslassöffnungen.Preferably, the oxygen nozzle comprises a display device for monitoring the oxygen flow outlet channels and their outlet openings.

Nach einer weitern Ausführungsform umfasst die Sauerstoffdüse eine Vorrichtung zur Eindüsung von Feinkohle.According to another embodiment, the oxygen nozzle comprises a device for injection of fine coal.

Die vorliegende Erfindung wird nachfolgend anhand schematischer Figuren, die beispielhaft Ausführungsformen darstellen, beschrieben.

  • Figur 1 zeigt ein Segment eines Querschnitts eines Einschmelzvergasers im Herdbereich des Einschmelzvergasers.
  • Figur 2 zeigt eine Sauerstoffdüse im Querschnitt.
  • Figur 3a zeigt schematisch eine Vorderansicht einer Ausführungsform einer Sauerstoffdüse mit 2 Sauerstoffstromauslasskanälen,
  • Figur 3b zeigt einen Längsschnitt der Sauerstoffdüse von Figur 3a
  • Figur 4a zeigt eine Vorderansicht einer Sauerstoffdüse
  • Figur 4b zeigt eine Draufsicht auf einen Schnitt längs der Linie A-A' durch die in Figur 4a gezeigte Sauerstoffdüse.
The present invention will be described below with reference to schematic figures, which represent exemplary embodiments.
  • FIG. 1 shows a segment of a cross-section of a melter gasifier in the hearth area of the melter gasifier.
  • FIG. 2 shows an oxygen nozzle in cross section.
  • FIG. 3a shows schematically a front view of an embodiment of an oxygen nozzle with 2 oxygen flow outlet channels,
  • FIG. 3b shows a longitudinal section of the oxygen nozzle of FIG. 3a
  • FIG. 4a shows a front view of an oxygen nozzle
  • FIG. 4b shows a plan view of a section along the line AA 'through the in FIG. 4a shown oxygen nozzle.

Die exemplarisch dargestellten Sauerstoffdüsen 1 a, 1b, 1c sind, ähnlich wie Blasformen beim Hochofen, in einem bestimmten Abstand d über dem Herd am Umfang U des Einschmelzvergasers kreisringförmig angeordnet und werden von Außerhalb über nicht dargestellte Zuleitungen mit sauerstoffhaltigem Gas versorgt. Zur besseren Übersichtlichkeit werden nur drei Sauerstoffdüsen 1a,1b,1c dargestellt. Der Einschmelzvergasers hat den Radius R. Durch hohe Gasgeschwindigkeiten, in der Regel über 100 m/s, bildet sich vor den Sauerstoffdüsen der bereits beschriebene Raceway aus. Hier erfolgt die Reaktion mit dem kohlenstoffhältigem Material, welche stark exotherm ist und zum Schmelzen der Einsatzstoffe dient. Die Düsen müssen sehr hohen Temperaturen bis über 2000 °C widerstehen können und daher entweder flüssigkeitsgekühlt oder aus geeignetem Refraktärwerkstoffen hergestellt sein.The oxygen nozzles 1 a, 1 b, 1 c shown by way of example are, similar to blow molding in blast furnaces, annularly arranged at a certain distance d above the hearth at the circumference U of the melter gasifier and are supplied with oxygen-containing gas from outside via feed lines (not shown). For better Clarity, only three oxygen nozzles 1a, 1b, 1c are shown. The melter gasifier has the radius R. Due to high gas velocities, generally more than 100 m / s, the raceway described above forms in front of the oxygen nozzles. Here, the reaction is carried out with the carbonaceous material, which is highly exothermic and serves to melt the feedstocks. The nozzles must be able to withstand very high temperatures up to over 2000 ° C and therefore be either liquid cooled or made of suitable refractory materials.

Das Sauerstoffhaltige Gas wird bei jeder Sauerstoffdüse 1 a, 1 b, 1 c in zwei Gasströmen in das Festbett eingeleitet, wodurch sich vor jeder Sauerstoffdüse 1a,1b,1c zwei Raceways 2a, 2b bilden. Die Strömungsrichtungen benachbart austretender Gasströme, und damit die entsprechenden Raceways, bilden in der Projektion auf eine horizontale Ebene, in diesem Fall beispielsweise die Ebene des Papiers, einen Winkel zueinander. Die Auslassöffnungen der Sauerstoffstromauslasskanäle bilden jeweils eine eigene Sauerstoffdüsenöffnung.The oxygen-containing gas is introduced at each oxygen nozzle 1 a, 1 b, 1 c in two gas streams in the fixed bed, whereby two Raceways 2a, 2b form before each oxygen nozzle 1a, 1b, 1c. The flow directions adjacent emerging gas streams, and thus the corresponding raceways, form an angle to each other in the projection on a horizontal plane, in this case, for example, the plane of the paper. The outlet openings of the Sauerstoffstromauslasskanäle each form their own oxygen nozzle opening.

Figur 2 zeigt eine Sauerstoffdüse 1 im Querschnitt. Die Sauerstoffdüse 1 hat Kühlungskanäle 3 zur Kühlung der Spitze und des Körpers der Sauerstoffdüse. Zur Kühlung werden diese Kühlungskanäle 3 von Kühlmittel durchflossen..Nach Belieferung der Sauerstoffdüse mit sauerstoffhaltigem Gas von ausserhalb des Einschmelzvergasers strömt das sauerstoffhaltige Gas als Einspeisungsgasstrom durch den Sauerstoffeinspeisungskanal 4 der Sauerstoffdüse, bevor es durch die beiden vom Sauerstoffeinspeisungskanal 4 abzweigenden Sauerstoffstromauslasskanäle 5a,5b und deren Auslassöffnungen 6a,6b in das Festbett eingeleitet wird. FIG. 2 shows an oxygen nozzle 1 in cross section. The oxygen nozzle 1 has cooling channels 3 for cooling the tip and the body of the oxygen nozzle. After supplying the oxygen nozzle with oxygen-containing gas from outside the melter gasifier, the oxygen-containing gas flows as feed gas flow through the oxygen feed channel 4 of the oxygen nozzle before passing through the two oxygen flow outlet channels 5a, 5b branching off from the oxygen feed channel 4 Outlet openings 6a, 6b is introduced into the fixed bed.

Über Schaugläser 7 als Schauvorrichtung können die Sauerstoffstromauslasskanäle und Ihrer Auslassöffnungen beobachtet werden.With sight glasses 7 as a display device, the oxygen flow outlet channels and their outlet openings can be observed.

Solche Schauvorrichtungen zum Überwachen der Düsenfunktion sind durch geradlinige Sauerstoffstromauslasskanäle möglich. Optional vorhandene Vorrichtungen zur Eindüsung von Feinkohle, die den Körper der Sauerstoffdüse durchdringen und in unmittelbarer Nähe der Auslassöffnungen auf der Seite des Raceway enden sind nicht dargestellt.Such showers for monitoring the nozzle function are possible through straight-line oxygen flow outlet channels. Optional devices for injection of fine coal, which penetrate the body of the oxygen nozzle and terminate in the immediate vicinity of the outlet openings on the side of the raceway are not shown.

Figur 3a zeigt schematisch eine Vorderansicht einer Ausführungsform einer Sauerstoffdüse mit 2 Sauerstoffstromauslasskanälen, deren Auslassöffnungen 8 und 9 jeweils eigene Sauerstoffdüsenöffnungen bilden. Die 2 Sauerstoffstromauslasskanäle sind jeweils mit einem eigenen Sauerstoffeinspeisungskanal verbunden. Die zusammengehörigen Sauerstoffstromauslasskanäle und Sauerstoffeinspeisungskanäle haben die gleiche Richtung. Bei Projektion auf eine horizontale Ebene überkreuzen sich die beiden Richtungen der Sauerstoffstromauslasskanäle. FIG. 3a shows schematically a front view of an embodiment of an oxygen nozzle with 2 Sauerstoffstromauslasskanälen whose outlet openings 8 and 9 each form their own oxygen nozzle openings. The 2 oxygen flow outlet channels are each connected to a separate oxygen feed channel. The associated oxygen flow outlet channels and oxygen feed channels have the same direction. When projected onto a horizontal plane, the two directions of the oxygen flow outlet channels cross each other.

Der Vorteil dieser Ausführungsform ist die Einzelregelbarkeit des Gasstromes durch jede der Auslassöffnungen 8 und 9. Figur 3b zeigt einen Längsschnitt der Sauerstoffdüse von Figur 3a mit Kühlkanälen 10 zur Kühlung von Körper und Spitze der Sauerstoffdüse.The advantage of this embodiment is the individual controllability of the gas flow through each of the outlet openings 8 and 9. FIG. 3b shows a longitudinal section of the oxygen nozzle of FIG. 3a with cooling channels 10 for cooling the body and tip of the oxygen nozzle.

Figur 4a zeigt eine Vorderansicht einer Sauerstoffdüse, bei der die Auslassöffnungen 11,12,13,14 der Sauerstoffstromauslasskanäle innerhalb einer Sauerstoffdüsenöffnung 15 liegen. Die Sauerstoffdüsenöffnung ist schlitzförmig und horizontal angeordnet. Figur 4b zeigt eine Draufsicht auf einen Schnitt längs der Linie A-A' durch die in Figur 4a gezeigte Sauerstoffdüse. Durch die drei Leitbleche 16,17,18 werden vier Sauerstoffstromauslasskanäle 19,20,21,22 begrenzt. Die aus diesen austretenden Gasströme besitzen verschiedene Strömungsrichtungen. FIG. 4a shows a front view of an oxygen nozzle, in which the outlet openings 11,12,13,14 of Sauerstoffstromauslasskanäle within an oxygen nozzle opening 15 are. The oxygen nozzle opening is slit-shaped and arranged horizontally. FIG. 4b shows a plan view of a section along the line AA 'through the in FIG. 4a shown oxygen nozzle. By the three baffles 16,17,18 four Sauerstoffstromauslasskanäle 19,20,21,22 are limited. The emerging from these gas streams have different flow directions.

Im Nachfolgenden werden Kennwerte für Einschmelzvergaser unterschiedlicher Schmelzleistung gegenübergestellt:

  • Dabei haben die verwendeten Begriffe die folgenden Bedeutungen::
    • Absolute Schmelzleistung (Tonnen/Tag)
      Dieser Wert gibt die Menge an Roheisen an, weiche im Normalbetrieb täglich erzeugt wird.
    • Spezifische Herdbelastung (Tonnen/m2,Tag).
      Das ist die auf einen Quadratmeter Herdfläche des Einschmelzvergasers bezogene absolute Schmelzleistung an Roheisen. Dieser Wert charakterisiert die Energieintensität einer Schmelzreduktionsanlage.
    • Einzel-Schmelzleistung eines Raceways (Tonnen/Tag).
      Dieser Wert charakterisiert die Schmelzleistung an Roheisen eines einzelnen Raceways.
In the following, characteristic values for melter gasifiers of different melting performance are compared:
  • The terms used here have the following meanings ::
    • Absolute melting rate (tons / day)
      This value indicates the amount of pig iron that is produced daily during normal operation.
    • Specific hearth load (tons / m 2 , day).
      This is the absolute melting capacity of pig iron relative to one square meter of hearth of the melter gasifier. This value characterizes the energy intensity of a smelting reduction plant.
    • Single melting rate of a raceway (tons / day).
      This value characterizes the melting performance of pig iron of a single raceway.

Vorteilhafte Bedingungen herrschen, wenn die Zahlenwerte für Einzel-Schmelzleistung eines Raceways und für Spezifische Herdbelastung etwa gleich sind.Favorable conditions prevail when the numerical values for individual melting performance of a raceway and for specific hearth load are approximately the same.

Beispiele für Einschmelzvergaser mit herkömmlichen Sauerstoffdüsen, bei denen pro Sauerstoffdüse ein Gasstrom von sauerstoffhaltigem Gas in das Festbett eingeleitet wird:
Beispiel 1: Ein Einschmelzvergaser mit einer absoluten Schmelzleistung von 1000 Tonnen Roheisen/Tag ist durch folgende Parameter gekennzeichnet: Gesamtzahl der Raceways 20 Gesamtzahl der Sauerstoffdüsen 20 Absolute Schmelzleistung 1000 t/ d Herddurchmesser 5,5 m Einzel-Schmelzleistung eines Raceways 50 t/ d Spezifische Herdbelastung 45 t/ m2,d
Beispiel 2: Einschmelzvergaser mit einer absoluten Schmelzleistung von 2500 Tonnen Roheisen/Tag ist durch folgende Parameter gekennzeichnet: Gesamtzahl der Raceways 28 Gesamtzahl der Sauerstoffdüsen 28 Absolute Schmelzleistung 2500 t/ d Herddurchmesser 7,5 m Einzel-Schmelzleistung eines Raceways 89 t/ d Spezifische Herdbelastung 57 t/ m2,d
Beispiel 3: Einschmelzvergaser mit einer absoluten Schmelzleistung von 4000 Tonnen Roheisen/Tag ist durch folgende Parameter gekennzeichnet: Gesamtzahl der Raceways 30 Gesamtzahl der Sauerstoffdüsen 30 Absolute Schmelzleistung 4000 t/ d Herddurchmesser 8,9 m Einzel-Schmelzleistung eines Raceways 133 t/ d Spezifische Herdbelastung 65 t/ m2,d
Beispiel 4: Einschmelzvergaser mit einer absoluten Schmelzleistung von 5800 Tonnen Roheisen/Tag ist durch folgende Parameter gekennzeichnet: Gesamtzahl der Raceways 34 Gesamtzahl der Sauerstoffdüsen 34 Absolute Schmelzleistung 5800 t/ d Herddurchmesser 10,2 m Einzel-Schmelzleistung eines Raceways 171 t/ d Spezifische Herdbelastung 71 t/ m2,d
Examples of melter gasifier with conventional oxygen nozzles, in which per oxygen nozzle, a gas stream of oxygen-containing gas is introduced into the fixed bed:
Example 1: A melter gasifier with an absolute melting capacity of 1000 tons of pig iron / day is characterized by the following parameters: Total number of raceways 20 Total number of oxygen nozzles 20 Absolute melting performance 1000 t / d Herd diameter 5.5 m Single melting performance of a raceway 50 t / d Specific hearth load 45 t / m 2 , d
Example 2: melter gasifier with an absolute melting capacity of 2500 tons of pig iron / day is characterized by the following parameters: Total number of raceways 28 Total number of oxygen nozzles 28 Absolute melting performance 2500 t / d Herd diameter 7,5 m Single melting performance of a raceway 89 t / d Specific hearth load 57 t / m 2 , d
Example 3: melter gasifier with an absolute melting capacity of 4000 tons of pig iron / day is characterized by the following parameters: Total number of raceways 30 Total number of oxygen nozzles 30 Absolute melting performance 4000 t / d Herd diameter 8,9 m Single melting performance of a raceway 133 t / d Specific hearth load 65 t / m 2 , d
Example 4: melter gasifier with an absolute melting capacity of 5800 tons of pig iron / day is characterized by the following parameters: Total number of raceways 34 Total number of oxygen nozzles 34 Absolute melting performance 5800 t / d Herd diameter 10.2 m Single melting performance of a raceway 171 t / d Specific hearth load 71 t / m 2 , d

Wie aus den Beispielen zu ersehen ist, steigt die Einzel-Schmelzleistung eines Raceways überproportional zu den spezifischen Herdbelastungen an.As can be seen from the examples, the individual melting performance of a raceway increases disproportionately to the specific hearth loads.

Höhere Schmelzleistungen bedingen einen höheren Energieeintrag, welcher durch einen höheren Kohlenstoffumsatz mit Sauerstoff erreicht wird. Proportional mit der Erhöhung der zugeführten Menge von Sauerstoff steigt die erzeugte Vergasungsgasmenge an Kohlenmonoxid an. Zunehmende Gasmengen ergeben immer stärkere Ausbildungen von fluidisierten Zonen oberhalb der Raceways, was einen nachteiligen Effekt auf die Stabilität des Stoff- und Energieaustausches im Einschmelzvergaser hat. Um die günstigen Bedingungen, wie sie im Beispiel 1 und 2 gezeigt sind, auch für größere Einheiten erreichen zu können, wären mehr Sauerstoffdüsen als sie bei den derzeitigen Anlagen aus Stabilitätsgründen möglich sind, vorzusehen.Higher melting powers require a higher energy input, which is achieved by a higher carbon turnover with oxygen. Proportionally with the increase of the supplied amount of oxygen, the generated gasification gas amount of carbon monoxide increases. Increasing amounts of gas result in ever greater formation of fluidized zones above the raceways, which has a detrimental effect on the stability of the material and energy exchange in the melter gasifier. In order to be able to achieve the favorable conditions, as shown in Examples 1 and 2, even for larger units, more oxygen nozzles would be provided than are possible for stability reasons in the present systems.

Erfindungsgemäß werden an Stelle von Sauerstoffdüsen, aus denen nur ein Gasstrom austritt, solche installiert, aus denen mindestens zwei Gasströme in das Festbett eingeleitet werden. Damit kann die durch den Umsatz von sauerstoffhältigem Gas mit kohlenstoffhältigem Material freigesetzte Energie pro eingeleitetem Gasstrom herabgesetzt werden. Gleichzeitig wird der Energieeintrag gleichmäßiger über den Umfang des Einschmelzvergasers verteilt.According to the invention, instead of oxygen nozzles, from which only one gas stream emerges, those are installed from which at least two gas streams are introduced into the fixed bed. Thus, the energy released by the conversion of oxygen-containing gas with carbonaceous material per injected gas stream can be reduced. At the same time, the energy input is distributed more uniformly over the circumference of the melter gasifier.

Beispiele mit erfindungsgemäßen Sauerstoffdüsen:Examples with oxygen nozzles according to the invention:

Beispiel 5: Einschmelzvergaser mit einer absoluten Schmelzleistung von 2500 Tonnen Roheisen/TagExample 5: melter gasifier with an absolute melting capacity of 2500 tons of pig iron / day

Bei guter Möllerverteilung sind erfindungsgemäße Sauerstoffdüsen zur Erzielung guter Bedingungen im Festbett nicht unbedingt nötig, bei ungünstigen Rohstoffen ist eine 50 %-ige Erhöhung der eingeleiteten Gasströme von 28 auf 42 vorteilhaft. Dies kann durch abwechselnde Anordnung von herkömmlichen und erfindungsgemäßen Sauerstoffdüsen erreicht werden: Gesamtzahl der Sauerstoffdüsen 28 Gesamtzahl der Raceways 42 With good Möllerverteilung oxygen nozzles according to the invention to achieve good conditions in a fixed bed is not necessary, with unfavorable raw materials, a 50% increase in the introduced gas flows from 28 to 42 is advantageous. This can be achieved by alternating arrangement of conventional and inventive oxygen nozzles: Total number of oxygen nozzles 28 Total number of raceways 42

Damit ergeben sich folgende Kenngrößen: Einzel-Schmelzleistung eines Raceways 59 t/ d Spezifische Herdbelastung 57 t/ m2,d This results in the following parameters: Single melting performance of a raceway 59 t / d Specific hearth load 57 t / m 2 , d

Es werden durch diese Maßnahme die beiden Zahlenwerte wieder angepasst.The two numerical values are adjusted again by this measure.

Beispiel 6: Einschmelzvergaser mit einer absoluten Schmelzleistung von 4000 Tonnen Roheisen/TagExample 6: melter gasifier with an absolute melting capacity of 4000 tons pig iron / day

In diesem Fall ist bei Verwendung herkömmlicher Sauerstoffdüsen die Abweichung der Zahlenwerte für Einzel-Schmelzleistung eines Raceways und für Spezifische Herdbelastung sehr unterschiedlich, nämlich 133 zu 65. In diesem Fall ist eine Verdoppelung der Anzahl der Raceways anzustreben. Dies ist durch ausschließliche Verwendung von erfindungsgemäßen Sauerstoffdüsen, aus denen jeweils 2 Gasströme in das Festbett eingeleitet werden, erreichbar. Gesamtzahl der Sauerstoffdüsen 30 Gesamtzahl der Raceways 60 In this case, when using conventional oxygen nozzles, the deviation of the numerical values for individual melting performance of a raceway and specific hearth load is very different, namely 133 to 65. In this case, a doubling of the number of raceways should be aimed for. This can be achieved by the exclusive use of oxygen nozzles according to the invention, from which in each case 2 gas streams are introduced into the fixed bed. Total number of oxygen nozzles 30 Total number of raceways 60

Es ergeben sich folgende Kenngrößen: Spezifische Schmelzleistung der Einzeldüse 67 t/ d Spezifische Herdbelastung 65 t/ m2,d The following parameters result: Specific melting performance of the individual nozzle 67 t / d Specific hearth load 65 t / m 2 , d

Es werden durch diese Maßnahme die beiden Zahlenwerte wieder angepasstThe two numerical values are adjusted again by this measure

Ein weiterer Vorteil der erfindungsgemäßen Sauerstoffdüsen liegt darin, dass sie in vorhandene Einschmelzvergaser-Anlagen ohne Änderung der Einschmelzvergaser nachgerüstet werden können.

1,1a,1b,1c
Sauerstoffdüse
2a,2b
Raceway
3
Kühlungskanal
4
Sauerstoffeinspeisungskanal
5a,5b
Sauerstoffstromauslasskanal
6
Auslassöffnung
7
Schaugläser
8
Auslassöffnung
9
Auslassöffnung
10
Kühlkanal
11
Auslassöffnung
12
Auslassöffnung
13
Auslassöffnung
14
Auslassöffnung
15
Sauerstoffdüsenöffnung
16
Leitblech
17
Leitblech
18
Leitblech
19
Sauerstoffstromauslasskanal
20
Sauerstoffstromauslasskanal
21
Sauerstoffstromauslasskanal
22
Sauerstoffstromauslasskanal
Another advantage of the oxygen nozzles according to the invention is that they can be retrofitted into existing melter gasifier plants without changing the melter gasifier.
1,1a, 1b, 1c
oxygen nozzle
2a, 2b
Raceway
3
cooling channel
4
Oxygen feed channel
5a, 5b
Sauerstoffstromauslasskanal
6
outlet
7
sight glasses
8th
outlet
9
outlet
10
cooling channel
11
outlet
12
outlet
13
outlet
14
outlet
15
Oxygen nozzle opening
16
baffle
17
baffle
18
baffle
19
Sauerstoffstromauslasskanal
20
Sauerstoffstromauslasskanal
21
Sauerstoffstromauslasskanal
22
Sauerstoffstromauslasskanal

Claims (19)

  1. Method for the production and the melting of pig iron and of steel intermediate products in a melt-down gasifier in a solid bed, with the supply of iron oxides or pre-reduced iron or mixtures thereof, and of carbon-containing material, the carbon-containing material being gasified by means of oxygen-containing gas introduced via oxygen nozzles, characterized in that the oxygen-containing gas is introduced, in the case of at least one oxygen nozzle, in at least two gas streams into the sold bed of the melt-down gasifier or coal gasifier, wherein the flow directions of adjacently emerging gas streams form an angle of 5° to 15° to one another.
  2. Method according to Claim 1, characterized in that the at least two gas streams originate from a single feed gas stream for oxygen-containing gas.
  3. Method according to Claim 1, characterized in that the at least two gas streams originate in each case from a specific feed gas stream for oxygen-containing gas.
  4. Method according to one of Claims 1 to 3, characterized in that gas streams having different flow directions emerge from an oxygen nozzle orifice.
  5. Method according to one of Claims 1 to 3, characterized in that each gas stream emerges from a specific oxygen nozzle orifice.
  6. Method according to one of Claims 1 to 5, characterized in that, when more than two gas streams are used, the gas streams have different diameters.
  7. Method according to one of Claims 1 to 6, characterized in that each feed gas stream for oxygen-containing gas can be regulated in terms of quantity and of pressure.
  8. Method according to one of Claims 1 to 7, characterized in that small coal is also injected into the solid bed via the oxygen nozzles.
  9. Method according to one of Claims 1 to 8, characterized in that the operation of the oxygen nozzles is monitored through inspection holes.
  10. Oxygen nozzle for the supply of oxygen-containing gas into the solid bed of a melt-down gasifier or coal gasifier, characterized in that it has at least one oxygen feed duct and at least two oxygen stream outlet ducts with outlet orifices, each of the oxygen stream outlet ducts being connected to at least one oxygen feed duct, wherein the center axes of those portions of the oxygen stream outlet ducts which end in the outlet orifices form an angle of 5° to 15° to one another.
  11. Oxygen nozzle according to Claim 10, characterized in that at least two oxygen stream outlet ducts are connected to the same oxygen feed duct.
  12. Oxygen nozzle according to Claim 10, characterized in that the oxygen stream outlet ducts are connected in each case to a specific oxygen feed duct.
  13. Oxygen nozzle according to one of Claims 10 to 12, characterized in that the outlet orifices of the oxygen stream outlet ducts lie within a single oxygen nozzle orifice.
  14. Oxygen nozzle according to one of Claims 10 to 12, characterized in that the outlet orifices of the oxygen stream outlet ducts form in each case a specific oxygen nozzle orifice.
  15. Oxygen nozzle according to one of Claims 10 to 12, characterized in that, with more than two oxygen stream outlet ducts, the diameters of the individual outlet orifices are different.
  16. Oxygen nozzle according to Claim 14 or 15, characterized in that the distance between the circumferences of adjacent outlet orifices amounts to three times the outlet orifice diameter of one of the outlet orifices.
  17. Oxygen nozzle according to one of Claims 10 to 16, characterized in that each oxygen feed duct is provided with a regulating device for regulating the pressure and quantity of the oxygen-containing gas fed in.
  18. Oxygen nozzle according to one of Claims 10 to 17, characterized in that it comprises an inspection device for observing the oxygen stream outlet duct and their outlet orifices.
  19. Oxygen nozzle according to one of Claims 10 to 18, characterized in that it comprises a device for the injection of small coal.
EP08849824A 2007-11-13 2008-11-04 Method for the production and the melting of liquid pig iron or of liquid steel intermediate products in a melt-down gasifier Not-in-force EP2215418B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0182407A AT506042A1 (en) 2007-11-13 2007-11-13 METHOD FOR MELTING RAW IRONS AND STEEL PREPARED PRODUCTS IN A MELTING GASER
PCT/EP2008/009277 WO2009062611A1 (en) 2007-11-13 2008-11-04 Method for the production and the melting of liquid pig iron or of liquid steel intermediate products in a melt-down gasifier

Publications (2)

Publication Number Publication Date
EP2215418A1 EP2215418A1 (en) 2010-08-11
EP2215418B1 true EP2215418B1 (en) 2012-12-26

Family

ID=40342612

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08849824A Not-in-force EP2215418B1 (en) 2007-11-13 2008-11-04 Method for the production and the melting of liquid pig iron or of liquid steel intermediate products in a melt-down gasifier

Country Status (15)

Country Link
US (1) US8313552B2 (en)
EP (1) EP2215418B1 (en)
JP (1) JP2011503508A (en)
KR (1) KR20100083837A (en)
CN (1) CN101855506B (en)
AR (1) AR069285A1 (en)
AT (1) AT506042A1 (en)
AU (1) AU2008323317B2 (en)
BR (1) BRPI0820559A2 (en)
CA (1) CA2705434A1 (en)
CL (1) CL2008003359A1 (en)
RU (1) RU2487948C2 (en)
TW (1) TW200936769A (en)
UA (1) UA98677C2 (en)
WO (1) WO2009062611A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT510313B1 (en) 2010-08-25 2013-06-15 Siemens Vai Metals Tech Gmbh METHOD FOR INCREASING THE INTRUSION DEPTH OF A OXYGEN BEAM
AT511206B1 (en) * 2011-05-19 2012-10-15 Siemens Vai Metals Tech Gmbh METHOD AND DEVICE FOR CHARGING CARBONATED MATERIAL AND ICE CARRIER MATERIAL
AT511738B1 (en) * 2011-07-21 2013-04-15 Siemens Vai Metals Tech Gmbh MELT REDUCTION AGGREGATE AND METHOD FOR OPERATING A MELT REDUCTION AGGREGATE
CN108048610A (en) * 2018-01-10 2018-05-18 航天长征化学工程股份有限公司 Burner combination device and method for directly gasifying reduced iron

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1166000A (en) * 1967-02-23 1969-10-01 Steel Co Of Wales Ltd Improvements in or relating to the Manufacture of Steel
JPS5375104A (en) * 1976-12-14 1978-07-04 Kubota Ltd Auxiliary combustion apparatus for cupola
SU956571A1 (en) * 1981-02-02 1982-09-07 Сибирский Ордена Трудового Красного Знамени Металлургический Институт Им.С.Орджоникидзе Multinozzle tuyere for metal blasting
AT378970B (en) 1982-12-21 1985-10-25 Voest Alpine Ag METHOD AND DEVICE FOR THE PRODUCTION OF LIQUID PIPE IRON OR STEEL PRE-PRODUCTS
JPS6050143A (en) 1983-08-29 1985-03-19 Sumitomo Metal Ind Ltd Production of ferro alloy
DE3503493A1 (en) * 1985-01-31 1986-08-14 Korf Engineering GmbH, 4000 Düsseldorf METHOD FOR THE PRODUCTION OF RAW IRON
AT382390B (en) 1985-03-21 1987-02-25 Voest Alpine Ind Anlagen METHOD FOR THE PRODUCTION OF LIQUID PIPE IRON OR STEEL PRE-PRODUCTS
JPS62263906A (en) * 1986-05-12 1987-11-16 Sumitomo Metal Ind Ltd Method for blowing pulverized coal from blast furnace tuyere
JP2600733B2 (en) * 1987-12-18 1997-04-16 日本鋼管株式会社 Smelting reduction method
JP3509128B2 (en) 1993-06-22 2004-03-22 Jfeスチール株式会社 Operating method of converter type smelting reduction furnace and oxygen blowing lance
KR20000005151A (en) 1996-04-05 2000-01-25 니테츠 플랜트 디자이닝 코포레이션 Melt reduction apparatus and operating method thereof
MXPA98009613A (en) * 1996-05-17 2004-03-10 Xothermic Inc Burner apparatus and method.
GB9616442D0 (en) * 1996-08-05 1996-09-25 Boc Group Plc Oxygen-fuel burner
JPH1121610A (en) 1997-07-02 1999-01-26 Kawasaki Steel Corp Lance for blowing gas and operation of converter type refining furnace
AT407398B (en) 1998-08-28 2001-02-26 Voest Alpine Ind Anlagen Process for producing a metal melt
AT407994B (en) * 1999-08-24 2001-07-25 Voest Alpine Ind Anlagen METHOD FOR OPERATING A MELT-UP CARBURETTOR
EP1521853B1 (en) * 2002-07-10 2013-04-10 Tata Steel Nederland Technology B.V. Metallurgical vessel and method of iron making by means of direct reduction
JP4119336B2 (en) * 2003-09-17 2008-07-16 大陽日酸株式会社 Method for melting and refining porous burners and lances and cold iron sources
DE102004034212A1 (en) 2004-07-14 2006-02-16 Air Liquide Deutschland Gmbh Fuel-oxygen burner and method of operating the burner
KR100732461B1 (en) * 2005-12-26 2007-06-27 주식회사 포스코 Method for manufacturing molten irons for improving charging and discharging of fine iron ores and apparatus using the same

Also Published As

Publication number Publication date
BRPI0820559A2 (en) 2015-06-16
WO2009062611A1 (en) 2009-05-22
EP2215418A1 (en) 2010-08-11
UA98677C2 (en) 2012-06-11
RU2487948C2 (en) 2013-07-20
KR20100083837A (en) 2010-07-22
AT506042A1 (en) 2009-05-15
US20100294080A1 (en) 2010-11-25
TW200936769A (en) 2009-09-01
AR069285A1 (en) 2010-01-13
JP2011503508A (en) 2011-01-27
CA2705434A1 (en) 2009-05-22
AU2008323317B2 (en) 2014-01-09
AU2008323317A1 (en) 2009-05-22
CN101855506A (en) 2010-10-06
CL2008003359A1 (en) 2009-10-02
RU2010123947A (en) 2011-12-20
US8313552B2 (en) 2012-11-20
CN101855506B (en) 2014-02-19

Similar Documents

Publication Publication Date Title
DD212751A5 (en) METHOD AND FASTENING GASER FOR PRODUCING LIQUID RAW STEEL OR STEEL PREPARED PRODUCTS
EP2215418B1 (en) Method for the production and the melting of liquid pig iron or of liquid steel intermediate products in a melt-down gasifier
DD243716A5 (en) METHOD AND DEVICE FOR PRODUCING LIQUID RAW STEEL OR STEEL PREPARED PRODUCTS
DD229982A5 (en) METHOD FOR PRODUCING SYNTHESEGAS FROM A HYDROCARBON FUEL
DE3145011A1 (en) METHOD AND DEVICE FOR PRODUCING WOOL FIBERS
EP1948833B1 (en) Method for the operation of a shaft furnace
EP0236669A1 (en) Method for producing molten pig iron or steel pre-material
WO2002090283A1 (en) Plant and method for the production of cement clinker
AT405521B (en) METHOD FOR TREATING PARTICLE-SHAPED MATERIALS IN A FLUID BED LAYER METHOD, AND VESSEL AND SYSTEM FOR IMPLEMENTING THE METHOD
EP1105541A1 (en) Method for producing liquid pig iron
DE4238020A1 (en) Procedure for the operation of a multimedia nozzle and the nozzle system
DE69014057T2 (en) Metal smelting reduction process and smelting reduction furnace.
EP2734649B1 (en) Melting reduction assembly and method for operating a melting reduction assembly
AT404138B (en) METHOD FOR PRODUCING LIQUID PIPE IRON OR STEEL PRE-PRODUCTS AND SYSTEM FOR IMPLEMENTING THE METHOD
DE69028856T2 (en) PRE-REDUCTION STOVE WITH A FLUIDIZED LAYER FOR OXIDE-BASED RAW MATERIALS
AT405651B (en) DEVICE FOR DOSINGLY ADDING FINE-PARTICULAR MATERIAL INTO A REACTOR VESSEL
AT404022B (en) METHOD AND INSTALLATION FOR THE PRODUCTION OF LIQUID PIPE IRON OR STEEL PRE-PRODUCTS FROM IRON-CONTAINING MATERIAL
EP1090148B1 (en) Electric arc furnace
AT404254B (en) METHOD AND SYSTEM FOR THE PRODUCTION OF RAW IRON OR LIQUID STEEL PRE-PRODUCTS FROM IRON-CONTAINING MATERIALS
DE60003570T2 (en) DEVICE FOR DIRECT REDUCTION OF IRON
AT407994B (en) METHOD FOR OPERATING A MELT-UP CARBURETTOR
DD226157A3 (en) METHOD FOR PRODUCING LIQUID RAW STEEL AND REDUCTION GAS IN A SEPARATOR REFRIGERATOR
AT404021B (en) Process for the production of liquid pig iron or primary steel products from fine ore
EP2697587B1 (en) Method for operating an electric arc furnace
EP0877822A1 (en) Process for producing liquid pig iron or semifinished steel products from ore

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100421

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS VAI METALS TECHNOLOGIES GMBH

Owner name: POSCO

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 590702

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008008971

Country of ref document: DE

Effective date: 20130228

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130326

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130426

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130326

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

26N No opposition filed

Effective date: 20130927

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008008971

Country of ref document: DE

Effective date: 20130927

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20131011

Year of fee payment: 6

BERE Be: lapsed

Owner name: POSCO

Effective date: 20131130

Owner name: SIEMENS VAI METALS TECHNOLOGIES GMBH

Effective date: 20131130

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131104

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008008971

Country of ref document: DE

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131104

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 590702

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131104

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141104

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121226