EP2195281A1 - Verfahren zur gewinnung von aromatischen kohlenwasserstoffen aus einem kohlenwasserstoffgemisch - Google Patents
Verfahren zur gewinnung von aromatischen kohlenwasserstoffen aus einem kohlenwasserstoffgemischInfo
- Publication number
- EP2195281A1 EP2195281A1 EP08804545A EP08804545A EP2195281A1 EP 2195281 A1 EP2195281 A1 EP 2195281A1 EP 08804545 A EP08804545 A EP 08804545A EP 08804545 A EP08804545 A EP 08804545A EP 2195281 A1 EP2195281 A1 EP 2195281A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- extractive
- extractive solvent
- phase
- aromatic hydrocarbons
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 64
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 47
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 47
- 150000004945 aromatic hydrocarbons Chemical class 0.000 title claims abstract description 46
- 239000004215 Carbon black (E152) Substances 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000002904 solvent Substances 0.000 claims abstract description 93
- 239000012071 phase Substances 0.000 claims abstract description 62
- 238000009835 boiling Methods 0.000 claims abstract description 60
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims abstract description 59
- LCEDQNDDFOCWGG-UHFFFAOYSA-N morpholine-4-carbaldehyde Chemical compound O=CN1CCOCC1 LCEDQNDDFOCWGG-UHFFFAOYSA-N 0.000 claims abstract description 56
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 47
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims abstract description 42
- 238000004821 distillation Methods 0.000 claims abstract description 32
- 238000000895 extractive distillation Methods 0.000 claims abstract description 27
- 239000012074 organic phase Substances 0.000 claims abstract description 25
- 239000006286 aqueous extract Substances 0.000 claims abstract description 16
- 238000000605 extraction Methods 0.000 claims abstract description 14
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000000926 separation method Methods 0.000 claims abstract description 8
- 238000011084 recovery Methods 0.000 claims abstract description 4
- 239000008096 xylene Substances 0.000 claims description 17
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 16
- 238000004064 recycling Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 abstract 1
- 238000005191 phase separation Methods 0.000 description 22
- 125000003118 aryl group Chemical group 0.000 description 9
- 239000006185 dispersion Substances 0.000 description 9
- 239000008367 deionised water Substances 0.000 description 5
- 229910021641 deionized water Inorganic materials 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 238000007700 distillative separation Methods 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 2
- KVNYFPKFSJIPBJ-UHFFFAOYSA-N 1,2-diethylbenzene Chemical compound CCC1=CC=CC=C1CC KVNYFPKFSJIPBJ-UHFFFAOYSA-N 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 125000006267 biphenyl group Chemical group 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- SQNZJJAZBFDUTD-UHFFFAOYSA-N durene Chemical compound CC1=CC(C)=C(C)C=C1C SQNZJJAZBFDUTD-UHFFFAOYSA-N 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- PQNFLJBBNBOBRQ-UHFFFAOYSA-N indane Chemical compound C1=CC=C2CCCC2=C1 PQNFLJBBNBOBRQ-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- HFPZCAJZSCWRBC-UHFFFAOYSA-N p-cymene Chemical compound CC(C)C1=CC=C(C)C=C1 HFPZCAJZSCWRBC-UHFFFAOYSA-N 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- QNLZIZAQLLYXTC-UHFFFAOYSA-N 1,2-dimethylnaphthalene Chemical class C1=CC=CC2=C(C)C(C)=CC=C21 QNLZIZAQLLYXTC-UHFFFAOYSA-N 0.000 description 1
- WEJVHFVGNQBRGH-UHFFFAOYSA-N 2,3,4,6-tetramethylphenol Chemical compound CC1=CC(C)=C(O)C(C)=C1C WEJVHFVGNQBRGH-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- -1 N-substituted morpholines Chemical class 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012632 extractable Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G7/00—Distillation of hydrocarbon oils
- C10G7/08—Azeotropic or extractive distillation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/34—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
- B01D3/40—Extractive distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C7/00—Purification; Separation; Use of additives
- C07C7/04—Purification; Separation; Use of additives by distillation
- C07C7/05—Purification; Separation; Use of additives by distillation with the aid of auxiliary compounds
- C07C7/08—Purification; Separation; Use of additives by distillation with the aid of auxiliary compounds by extractive distillation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/44—Solvents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/30—Aromatics
Definitions
- the invention relates to a process for the production of aromatic hydrocarbons from a hydrocarbon mixture which contains, in addition to the aromatic hydrocarbons, non-aromatic hydrocarbons and high-boiling aromatic and non-aromatic hydrocarbons.
- hydrocarbon fractions are used as hydrocarbon feed mixtures which contain benzene, toluene, ethylbenzene or xylene or any mixture thereof as extractables
- a number of high-boiling aromatic and non-aromatic hydrocarbons accumulate in the extractive solvent with boiling points similar to the extractive solvent, which can lead to a rapid deterioration of the extractive solvent quality.
- the deterioration of the solvent quality is usually the faster the higher the proportion of high-boiling hydrocarbons. The result is a deterioration in the separation efficiency of the extractive distillation, which may necessitate rapid replacement of the extractive solvent.
- EP-A 0329958 is known a method for obtaining a Aromatenge--mixture of a feed hydrocarbon mixture whose boiling range 40-170 0 C, and which contains in addition to non-aromatics several aromatics, especially benzene, toluene and xylenes, in which the feed hydrocarbon mixture extractive distillation using N-substituted morpholines as a selective solvent.
- the process according to EP-A 0 329 958 solves the problem of enrichment of high-boiling aromatics in the extractive solvent by cooling a partial stream of the extractive solvent withdrawn from the stripper column, adding water and introducing it into a phase separator, the solvent contained in the solvent high-boiling aromatics separate as a lighter upper phase of the solvent / water mixture.
- the withdrawn from the phase separator solvent / water mixture is finally decomposed into its components and reused in the process.
- the method is based on the fact that the high-boiling aromatics and the extractive solvent, in particular N-formylmorpholine, have different dissolution properties in water.
- the solvent in particular N-formylmorpholine
- the high-boiling aromatics dissolve only in very small amounts in water. Since the high-boiling aromatics also have a significant difference in density compared to the solvent / water mixture, they can be separated in a phase separator as a light phase from the solvent / water mixture.
- the object of the invention is an improved process for the production of aromatic hydrocarbons from a hydrocarbon mixture, which in addition to the aromatic hydrocarbons non-aromatic hydrocarbons and high-boiling aromatic and non-aromatic hydrocarbons, hereinafter referred to as "high boiler” contains, by means of extractive distillation using To provide N-formylmorpholine, which does not have the disadvantages of the prior art.
- the object is achieved by a process for the production of aromatic hydrocarbons selected from benzene, toluene, xylene and ethylbenzene and mixtures thereof, from a hydrocarbon mixture, which also contains non-aromatic hydrocarbons and high boilers, with the steps
- step (C) distilling the mixture b1 of extractive solvents and aromatic hydrocarbons obtained in step (B), wherein one or more fractions d of aromatic hydrocarbons and the extractive solvent c2, which contains high boilers, is obtained,
- a partial stream e2 ' is separated from the organic phase e2 containing the high-boiling components and recycled to the extraction of step (E), the quantity of organic phase e2' circulated in this way being dimensioned so that Dispersing substream d1 from extractive solvent containing high boilers, water and recycled stream e2 'forming the aqueous extract phase e1 essentially freed from high boilers as a disperse phase and the organic phase from high boilers e2 as a continuous phase.
- step (E) the phase separation into the aqueous extract phase on the one hand and the organic phase from low-boiling aromatic and non-aromatic hydrocarbons on the other hand can be significantly improved.
- the phase separation speed is significantly increased by the reversal of the dispersion direction, and the aqueous lower phase containing the extractive solvent becomes clear.
- the phase separation the high boiler impurities from the extractive solvent are more depleted.
- partial stream d1 which is separated off from extractive solvent c2 containing high boiler, may be lower.
- the dispersion direction can be reversed, for example, by an internal recycling of the organic phase e2 accumulating in the phase separation apparatus into the mixing unit.
- the volume ratio of the organic high-boiling phase to the aqueous extract phase > 0.86 I per I, so that the organic phase forms as a continuous phase.
- e2 contained NFM can in turn be recovered by extraction of the e2 phase with water.
- High-boiling aromatics which may be present in the hydrocarbon mixture and can accumulate in the extractive solvent, have already been described by way of example in EP-A 0 329 958 and include, for example, hemellite, p-cymene, 1,2-diethylbenzene, indane, durene, isodurol, Trimethylbenzene, naphthalene, methylnaphtha- line, dimethylnaphthalenes and diphenyl.
- oligomeric and polymeric aromatics having a very high boiling point hereinafter also referred to for short as “heavy ends", which may have surface-active properties, accumulate in the extractive solvent, and it has been found that such "heavy-boiling constituents" with apparently surface-active properties in the Enrich extractive, and that the presence of these oligo- or polyaromatics, the phase separation in step (E) in an aqueous extract phase and an organic high-boiling phase is apparently hindered. It has furthermore been found that the problem can be remedied if, before carrying out step (E), the oligomeric and polymeric aromatics ("heaviest boilers”) are at least partially separated by distillation from the extractive solvent.
- a distillation is carried out in which a fraction of very high boiling hydrocarbons ("heavy ends") is separated from the substream d1 of the extractive solvent.
- the separation of the heaviest boilers is generally carried out in vacuo at a pressure of 10 to 100 mbar in a distillation column having 1 to 10 theoretical stages.
- the head temperature is generally in the range of 100 to 170 0 C, the bottom temperature in the range of 120 to 190 0 C.
- the heavy-boiling products are obtained as non-decomposed Bares vaporizable, highly viscous bottom product.
- the oligomeric and polymeric heavy ends are depleted by at least 90%, preferably at least 95%, of this distillation step.
- hydrocarbon mixtures of aliphatic, cycloaliphatic and aromatic hydrocarbons which have boiling points in the range from 50 to 225 ° C. at atmospheric pressure. These generally contain a total of 10 to 90 wt .-% of toluene and xylene or a total of 10 to 90 wt .-% benzene, toluene and xylene.
- the hydrocarbon mixtures generally contain aliphatic hydrocarbons having 5 to 10 carbon atoms and optionally cycloaliphatic hydrocarbons having 5 to 10 carbon atoms.
- Typical hydrocarbon mixtures which can be worked up according to the invention are, for example, reformate and pyrolysis gasolines.
- the high boilers contained in the hydrocarbon mixture which accumulate in the extractive solvent and difficult or impossible to economically separated from this by distillation, generally have boiling points in the range of 170 to 250 0 C.
- the very high-boiling hydrocarbons (“heaviest boilers”) still contained therein generally have a boiling point above 240 ° C. at atmospheric pressure or can no longer be distilled without decomposition, not even in vacuo.
- the hydrocarbon mixture a1 is subjected to extractive distillation with N-formylmorpholine as the extractive solvent.
- the operating conditions in the extractive distillation column are generally selected as described in: LJIImann's Encyclopedia of Industrial Chemistry, chapter Benzene, Wiley-VCH GmbH, 2002.
- Toluene and xylene or benzene, toluene and xylene in the extractive solvent accumulate and are generally removed from the bottom of the extractive distillation column, while the non-aromatic hydrocarbons largely freed from the aromatic hydrocarbons are generally obtained at the top of the extractive distillation column .
- the mixture of extractive solvent and aromatic hydrocarbons, which also contains the high boilers and heavy boilers, is then by distillation into one or more aromatics fractions, which are obtained as top and / or side draw streams, and the extractive solvent, which contains the heavy and heavy boilers and generally obtained at the bottom of the distillation column, separated.
- the hydrocarbon mixture a1 contains for example, the hydrocarbon mixture a1 benzene, toluene and xylene, so in the distillative separation of the extractive / aromatic mixture b1 in step (C) a fraction d 1 containing benzene as a top draw and a fraction c12 containing toluene and another fraction c13 containing xylene as Side exhaust streams are obtained.
- the hydrocarbon mixture a1 contains, for example, essentially toluene and xylene as aromatic hydrocarbons, essentially toluene can be obtained as the top draw stream and xylene as the side draw stream in the distillative separation of the extractive solvent / aromatic mixture b1.
- a partial stream d1 of the extractive solvent is separated to separate the high boilers contained therein.
- This partial stream is generally 0.01 to 10%, preferably 0.1 to 2%, of the total stream of the extractive solvent c2 obtained by distillation in step (C).
- the separation of the extractive solvent from the high boilers contained therein takes place in step (E) by extraction of the extractive solvent with water.
- the substream d1 of the extractive solvent containing the high boilers can be transferred to a mixing unit and dispersed with water to form an aqueous extract phase e1 which is substantially free from high boilers and an organic phase e2 containing the high boilers.
- the phases are then separated in a phase separation apparatus, which may be identical to the mixing unit or may be a different phase separation apparatus from this.
- the extractive solvent is brought into intensive contact with water, so that the thermodynamic equilibrium between the forming aqueous extract phase on the one hand and the organic phase on the other hand can be adjusted.
- Suitable dispersing units are stirred tanks, static mixers, mixing pumps and dynamic mixers. It is also possible to carry out the extraction in a countercurrent column.
- the extractive solvent is completely miscible with water.
- the high-boiling impurities of aromatic and non-aromatic hydrocarbons have a poor water solubility, so that by adding water to the extractive solvent contaminated with the high-boiling hydrocarbons, a second liquid organic phase is formed, which consists mainly of these impurities.
- the two phases have a sufficiently large density difference so that they can be separated from one another in commercially available apparatuses for liquid / liquid phase separation. Suitable phase separation rates are phase separators, centrifuges, coalescence phase separators and others.
- the extraction with water and subsequent phase separation can be carried out both in one stage, for example in a mixer-settler, as well as in several stages, for example in a mixer-settler cascade or a countercurrent column.
- the temperature has an influence on the miscibility gap, which is due to the addition of water to the extractors containing the high boilers. Basically, temperatures above 100 0 C are possible when the extraction is carried out with water in a pressure apparatus. Possible temperatures in the range from 0 to 160 0 C. Preferably, however, temperatures between 10 to 90 0 C, to be particularly favorable, temperatures between 40 and 60 0 C have been found. At least a sufficient amount of water is added to form separate liquid phases.
- the ratio of amount of water: extractive solvent amount is generally 0.05 to 5 kg / kg, more preferably 0.2 to 0.5 kg / kg.
- the resultant aqueous extract phase e1 which has essentially been freed from high boilers, is subsequently distilled in purified form in order to recover the extractive solvent.
- This distillation can be carried out as described in EP-A 0 329 958.
- the extractive / water mixture is distilled together with the separated in step (B) non-aromatic hydrocarbons, wherein the water contained in the extractive / water mixture is distilled off azeotropically together with the non-aromatic hydrocarbons generally overhead of the distillation column. From this azeotropic mixture, water is separated by phase separation and optionally recycled to the high boiler separation step (E).
- the de-watered extractive solvent can be separated by phase separation of entrained non-aromatic hydrocarbons and recycled to the extractive distillation (B).
- FIG. 1 shows a preferred embodiment of the method according to the invention.
- the hydrocarbon mixture 1 containing benzene, toluene, xylene and non-aromatic hydrocarbons and the extractive solvent 2 are fed to the extractive distillation column 3.
- a mixture 4 of non-aromatic hydrocarbons and extractive solvent is withdrawn, which is separated in the downstream distillation column 5 into the non-aromatic hydrocarbons 6 and the extractive solvent 7.
- a mixture 8 of extractive solvent and the aromatic hydrocarbons are then removed by distillation in a distillation column 9.
- the main stream 14 is returned to the extractive distillation column 3.
- a partial stream 15 is separated to separate the heavy particles contained therein.
- oligomeric and polymeric heavy-boiling components with surface-active properties are separated off as residue 17 in the distillation column 16.
- the extractive solvent stream 18, which is still free of the high-boiling components and still contains the high-boiling components, is transferred together with water 19 into the dispersion unit 20.
- the resulting dispersion 21 is separated in the phase separation apparatus 22 into an organic upper phase 23, which contains the high boiler, and an aqueous lower phase 26, which contains the extractive solvent.
- a part 24 of the organic upper phase is discharged from the process, the other part 25 is returned to the dispersing unit 20.
- the aqueous lower phase 26 is separated in a downstream distillation column 27 into a water stream 28, which is discharged from the process, and the purified extractive solvent stream 29, which is recycled to the extractive distillation column 3.
- FIG. 2 shows a further preferred embodiment of the method according to the invention.
- FIG. 2 shows a variant of the method illustrated in FIG.
- the aqueous lower phase 26 containing the extractive solvent which is obtained in the phase separation apparatus 22, is not distilled in a separate distillation column but is distilled in the distillation column 5 together with the fraction of nonaromatic hydrocarbons obtained as top draw stream 4.
- a mixture of non-aromatic hydrocarbons and water is obtained as the top draw stream 6a, which is separated in the downstream phase separation apparatus 30 into an organic upper phase of non-aromatic hydrocarbons 31 and an aqueous lower phase 32.
- the aqueous lower phase may be recycled (as stream 19) to the phase separation apparatus 20.
- N-formyl morpholine 4 I of laden with high-boiling N-formyl morpholine (NFM) were vacuum distilled off at 48 mbar and about 180 0 C oil bath temperature of the column head. The head temperature was 105 to 120 0 C. After about 4 hours remained about 0.1 wt .-% high boilers in the sump.
- the characterization of the non-decomposable, vaporizable, black and highly viscous bottoms product at room temperature gave about 0.01% by weight of coke, polymers and about 0.05% by weight of high-boiling, difficult-to-identify aromatics.
- the high boilers were removed from the process and fed as a residue of combustion. The high boilers freed N-formylmorpholine was then extracted with water.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Water Supply & Treatment (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08804545A EP2195281A1 (de) | 2007-09-28 | 2008-09-22 | Verfahren zur gewinnung von aromatischen kohlenwasserstoffen aus einem kohlenwasserstoffgemisch |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07117505 | 2007-09-28 | ||
PCT/EP2008/062619 WO2009043754A1 (de) | 2007-09-28 | 2008-09-22 | Verfahren zur gewinnung von aromatischen kohlenwasserstoffen aus einem kohlenwasserstoffgemisch |
EP08804545A EP2195281A1 (de) | 2007-09-28 | 2008-09-22 | Verfahren zur gewinnung von aromatischen kohlenwasserstoffen aus einem kohlenwasserstoffgemisch |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2195281A1 true EP2195281A1 (de) | 2010-06-16 |
Family
ID=40344963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08804545A Withdrawn EP2195281A1 (de) | 2007-09-28 | 2008-09-22 | Verfahren zur gewinnung von aromatischen kohlenwasserstoffen aus einem kohlenwasserstoffgemisch |
Country Status (5)
Country | Link |
---|---|
US (1) | US8378164B2 (enrdf_load_stackoverflow) |
EP (1) | EP2195281A1 (enrdf_load_stackoverflow) |
JP (1) | JP5431334B2 (enrdf_load_stackoverflow) |
CN (1) | CN101808962B (enrdf_load_stackoverflow) |
WO (1) | WO2009043754A1 (enrdf_load_stackoverflow) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5431334B2 (ja) | 2007-09-28 | 2014-03-05 | ビーエーエスエフ ソシエタス・ヨーロピア | 炭化水素混合物から芳香族炭化水素を得るための方法 |
EP2195107A1 (de) * | 2007-09-28 | 2010-06-16 | Basf Se | Verfahren zur gewinnung von aromatischen kohlenwasserstoffen aus einem kohlenwasserstoffgemisch |
US9005405B2 (en) * | 2012-03-01 | 2015-04-14 | Cpc Corporation, Taiwan | Extractive distillation process for benzene recovery |
DE102012111292A1 (de) * | 2012-11-22 | 2014-05-22 | Thyssenkrupp Uhde Gmbh | Verfahren zur Isolierung von Benzol, Toluol und Xylol aus einem aromatenreichen Einsatzgasstrom |
US9221729B1 (en) * | 2015-02-23 | 2015-12-29 | Allnew Chemical Technology Company | Extractive distillation for aromatics recovery |
CN108250014A (zh) * | 2016-12-28 | 2018-07-06 | 中国石油天然气股份有限公司 | 一种异构化制备对二甲苯的方法 |
CN108002974A (zh) * | 2017-12-15 | 2018-05-08 | 武汉钢铁有限公司 | 精制焦化粗苯的工艺方法 |
CN112920162A (zh) * | 2021-01-29 | 2021-06-08 | 临涣焦化股份有限公司 | 一种溶剂再生装置 |
WO2023083655A1 (de) | 2021-11-12 | 2023-05-19 | Thyssenkrupp Industrial Solutions Ag | Verfahren und vorrichtung zur trennung eines kohlenwasserstoffhaltigen einsatzstoffstroms durch extraktivdestillation |
DE102021212777A1 (de) | 2021-11-12 | 2023-05-17 | Thyssenkrupp Ag | Verfahren zur Entleerung eines Lösungsmittel-Regenerierungs-Behälters sowie Vorrichtung |
WO2023083656A1 (de) | 2021-11-12 | 2023-05-19 | Thyssenkrupp Industrial Solutions Ag | Verfahren und vorrichtung zur trennung eines kohlenwasserstoffhaltigen einsatzstoffstroms durch extraktivdestillation |
BE1029920B1 (de) | 2021-11-12 | 2023-06-12 | Thyssenkrupp Uhde Eng Services Gmbh | Verfahren zur Entleerung eines Lösungsmittel-Regenerierungs-Behälters sowie Vorrichtung |
DE102021212776A1 (de) | 2021-11-12 | 2023-05-17 | Thyssenkrupp Ag | Verfahren und Vorrichtung zur Trennung eines kohlenwasserstoffhaltigen Einsatzstoffstroms durch Extraktivdestillation |
EP4180103A1 (de) | 2021-11-12 | 2023-05-17 | Thyssenkrupp Uhde Engineering Services GmbH | Verfahren zur entleerung eines lösungsmittel-regenerierungs-behälters sowie vorrichtung |
BE1029922B1 (de) | 2021-11-12 | 2023-06-12 | Thyssenkrupp Uhde Eng Services Gmbh | Verfahren und Vorrichtung zur Trennung eines kohlenwasserstoffhaltigen Einsatzstoffstroms durch Extraktivdestillation |
DE102021212775A1 (de) | 2021-11-12 | 2023-05-17 | Thyssenkrupp Ag | Verfahren und Vorrichtung zur Trennung eines kohlenwasserstoffhaltigen Einsatzstoffstroms durch Extraktivdestillation |
BE1029921B1 (de) | 2021-11-12 | 2023-06-12 | Thyssenkrupp Ind Solutions Ag | Verfahren und Vorrichtung zur Trennung eines kohlenwasserstoffhaltigen Einsatzstoffstroms durch Extraktivdestillation |
CN119258576A (zh) * | 2023-07-05 | 2025-01-07 | 国家能源投资集团有限责任公司 | 一种从萘和硫茚的混合物中分离硫茚和萘的系统和方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3612384A1 (de) * | 1986-04-12 | 1987-10-15 | Krupp Koppers Gmbh | Verfahren zur herstellung eines zur verwendung als blendingkomponente fuer vergaserkraftstoffe geeigneten aromatenkonzentrates |
DE3805383A1 (de) * | 1988-02-20 | 1989-08-31 | Krupp Koppers Gmbh | Verfahren zur herstellung eines zur verwendung als blendingkomponente fuer vergaserkraftstoffe geeigneten aromatenkonzentrates |
US5399244A (en) * | 1993-12-06 | 1995-03-21 | Glitsch, Inc. | Process to recover benzene from mixed hydrocarbons by extractive distillation |
CN1209327C (zh) * | 2001-09-27 | 2005-07-06 | 中国石油化工股份有限公司 | 利用萃取和萃取精馏回收芳烃的方法 |
EP2195107A1 (de) * | 2007-09-28 | 2010-06-16 | Basf Se | Verfahren zur gewinnung von aromatischen kohlenwasserstoffen aus einem kohlenwasserstoffgemisch |
JP5431334B2 (ja) | 2007-09-28 | 2014-03-05 | ビーエーエスエフ ソシエタス・ヨーロピア | 炭化水素混合物から芳香族炭化水素を得るための方法 |
-
2008
- 2008-09-22 JP JP2010526259A patent/JP5431334B2/ja not_active Expired - Fee Related
- 2008-09-22 WO PCT/EP2008/062619 patent/WO2009043754A1/de active Application Filing
- 2008-09-22 EP EP08804545A patent/EP2195281A1/de not_active Withdrawn
- 2008-09-22 US US12/680,563 patent/US8378164B2/en not_active Expired - Fee Related
- 2008-09-22 CN CN2008801093082A patent/CN101808962B/zh not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO2009043754A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP5431334B2 (ja) | 2014-03-05 |
US8378164B2 (en) | 2013-02-19 |
WO2009043754A1 (de) | 2009-04-09 |
CN101808962A (zh) | 2010-08-18 |
US20100228072A1 (en) | 2010-09-09 |
CN101808962B (zh) | 2012-11-28 |
JP2010540484A (ja) | 2010-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009043754A1 (de) | Verfahren zur gewinnung von aromatischen kohlenwasserstoffen aus einem kohlenwasserstoffgemisch | |
WO2009043753A1 (de) | Verfahren zur gewinnung von aromatischen kohlenwasserstoffen aus einem kohlenwasserstoffgemisch | |
DE60105798T2 (de) | Trennung von aromaten aus erdölströmen | |
EP2178611B1 (de) | Gewinnung von benzol und benzolabkömmlingen aus benzinfraktionen und raffinerieströmen | |
EP0329958B1 (de) | Verfahren zur Herstellung eines zur Verwendung als Blendingkomponente für Vergaserkraftstoffe geeigneten Aromatenkonzentrates | |
DE2359300C3 (de) | Verfahren zur Gewinnung von reinen gesättigten Kohlenwasserstoffen durch Extraktivdestillation | |
DE2165455A1 (de) | Verfahren zur Gewinnung aromatischer Kohlenwasserstoffe aus Mischungen, in denen sie enthalten sind | |
DE1545413C3 (de) | Verfahren zur Flüssig-Flüssig-Extraktion aromatischer Kohlenwasserstoffe | |
DE2065779C3 (de) | Verfahren zur Extraktion aromatischer Kohlenwasserstoffe aus einem Kohlenwasserstoffgemisch in einem Mehrstufensystem | |
EP0305668B1 (de) | Verfahren zur Herstellung eines zur Verwendung als Blendingskomponente für Vergaserkraftstoffe geeigneten Aromatenkonzentrates | |
DE2013298A1 (de) | Verfahren zur Gewinnung von hochreinen Aromaten aus Kohlenwasserstoffgemischen, die neben diesen Aromaten einen beliebig hohen Gehalt an Nichtaromaten aufweisen | |
DE69813420T2 (de) | Entfernung von neutralem Öl aus Mischungen von natürlicher Kresylsäure | |
DE2047162C2 (de) | Verfahren zum Auftrennen eines Gemisches von Verbindungen durch Flüssig-Flüssig-Extraktion | |
BE1029922B1 (de) | Verfahren und Vorrichtung zur Trennung eines kohlenwasserstoffhaltigen Einsatzstoffstroms durch Extraktivdestillation | |
BE1029921B1 (de) | Verfahren und Vorrichtung zur Trennung eines kohlenwasserstoffhaltigen Einsatzstoffstroms durch Extraktivdestillation | |
DE977482C (de) | Kontinuierliches Verfahren zur Abtrennung von Toluol und/oder Benzol aus einer Mischung mit nichtaromatischen Kohlenwasserstoffen | |
DE102021212776A1 (de) | Verfahren und Vorrichtung zur Trennung eines kohlenwasserstoffhaltigen Einsatzstoffstroms durch Extraktivdestillation | |
DE102021212775A1 (de) | Verfahren und Vorrichtung zur Trennung eines kohlenwasserstoffhaltigen Einsatzstoffstroms durch Extraktivdestillation | |
DE2046976C3 (de) | Verfahren zur Gewinnung von Benzol, Toluol und C tief 8 -Aromaten aus aromatenreichen Kohlenwasserstoffgemischen | |
DE3430022A1 (de) | Verfahren zur gewinnung von reinen diisocyanaten | |
EP4430144A1 (de) | Verfahren und vorrichtung zur trennung eines kohlenwasserstoffhaltigen einsatzstoffstroms durch extraktivdestillation | |
EP4430143A1 (de) | Verfahren und vorrichtung zur trennung eines kohlenwasserstoffhaltigen einsatzstoffstroms durch extraktivdestillation | |
DE913054C (de) | Verfahren zur Gewinnung von ª‰-Naphthol aus Gemischen, die ein ª‰-Dialkylmethylnaphthalin enthalten | |
AT226688B (de) | Verfahren zur Gewinnung von Naphthalinkohlenwasserstoffen | |
DE1165186B (de) | Verfahren zum Abtrennen von Paraffinen und Aromaten aus Kohlenwasserstoffgemischen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100428 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20170401 |