EP2195281A1 - Procédé de production d'hydrocarbures aromatiques à partir d'un mélange d'hydrocarbures - Google Patents

Procédé de production d'hydrocarbures aromatiques à partir d'un mélange d'hydrocarbures

Info

Publication number
EP2195281A1
EP2195281A1 EP08804545A EP08804545A EP2195281A1 EP 2195281 A1 EP2195281 A1 EP 2195281A1 EP 08804545 A EP08804545 A EP 08804545A EP 08804545 A EP08804545 A EP 08804545A EP 2195281 A1 EP2195281 A1 EP 2195281A1
Authority
EP
European Patent Office
Prior art keywords
extractive
extractive solvent
phase
aromatic hydrocarbons
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08804545A
Other languages
German (de)
English (en)
Inventor
Uwe Stabel
Petra Deckert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP08804545A priority Critical patent/EP2195281A1/fr
Publication of EP2195281A1 publication Critical patent/EP2195281A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • C10G7/08Azeotropic or extractive distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/40Extractive distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/04Purification; Separation; Use of additives by distillation
    • C07C7/05Purification; Separation; Use of additives by distillation with the aid of auxiliary compounds
    • C07C7/08Purification; Separation; Use of additives by distillation with the aid of auxiliary compounds by extractive distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/44Solvents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics

Definitions

  • the invention relates to a process for the production of aromatic hydrocarbons from a hydrocarbon mixture which contains, in addition to the aromatic hydrocarbons, non-aromatic hydrocarbons and high-boiling aromatic and non-aromatic hydrocarbons.
  • hydrocarbon fractions are used as hydrocarbon feed mixtures which contain benzene, toluene, ethylbenzene or xylene or any mixture thereof as extractables
  • a number of high-boiling aromatic and non-aromatic hydrocarbons accumulate in the extractive solvent with boiling points similar to the extractive solvent, which can lead to a rapid deterioration of the extractive solvent quality.
  • the deterioration of the solvent quality is usually the faster the higher the proportion of high-boiling hydrocarbons. The result is a deterioration in the separation efficiency of the extractive distillation, which may necessitate rapid replacement of the extractive solvent.
  • EP-A 0329958 is known a method for obtaining a Aromatenge--mixture of a feed hydrocarbon mixture whose boiling range 40-170 0 C, and which contains in addition to non-aromatics several aromatics, especially benzene, toluene and xylenes, in which the feed hydrocarbon mixture extractive distillation using N-substituted morpholines as a selective solvent.
  • the process according to EP-A 0 329 958 solves the problem of enrichment of high-boiling aromatics in the extractive solvent by cooling a partial stream of the extractive solvent withdrawn from the stripper column, adding water and introducing it into a phase separator, the solvent contained in the solvent high-boiling aromatics separate as a lighter upper phase of the solvent / water mixture.
  • the withdrawn from the phase separator solvent / water mixture is finally decomposed into its components and reused in the process.
  • the method is based on the fact that the high-boiling aromatics and the extractive solvent, in particular N-formylmorpholine, have different dissolution properties in water.
  • the solvent in particular N-formylmorpholine
  • the high-boiling aromatics dissolve only in very small amounts in water. Since the high-boiling aromatics also have a significant difference in density compared to the solvent / water mixture, they can be separated in a phase separator as a light phase from the solvent / water mixture.
  • the object of the invention is an improved process for the production of aromatic hydrocarbons from a hydrocarbon mixture, which in addition to the aromatic hydrocarbons non-aromatic hydrocarbons and high-boiling aromatic and non-aromatic hydrocarbons, hereinafter referred to as "high boiler” contains, by means of extractive distillation using To provide N-formylmorpholine, which does not have the disadvantages of the prior art.
  • the object is achieved by a process for the production of aromatic hydrocarbons selected from benzene, toluene, xylene and ethylbenzene and mixtures thereof, from a hydrocarbon mixture, which also contains non-aromatic hydrocarbons and high boilers, with the steps
  • step (C) distilling the mixture b1 of extractive solvents and aromatic hydrocarbons obtained in step (B), wherein one or more fractions d of aromatic hydrocarbons and the extractive solvent c2, which contains high boilers, is obtained,
  • a partial stream e2 ' is separated from the organic phase e2 containing the high-boiling components and recycled to the extraction of step (E), the quantity of organic phase e2' circulated in this way being dimensioned so that Dispersing substream d1 from extractive solvent containing high boilers, water and recycled stream e2 'forming the aqueous extract phase e1 essentially freed from high boilers as a disperse phase and the organic phase from high boilers e2 as a continuous phase.
  • step (E) the phase separation into the aqueous extract phase on the one hand and the organic phase from low-boiling aromatic and non-aromatic hydrocarbons on the other hand can be significantly improved.
  • the phase separation speed is significantly increased by the reversal of the dispersion direction, and the aqueous lower phase containing the extractive solvent becomes clear.
  • the phase separation the high boiler impurities from the extractive solvent are more depleted.
  • partial stream d1 which is separated off from extractive solvent c2 containing high boiler, may be lower.
  • the dispersion direction can be reversed, for example, by an internal recycling of the organic phase e2 accumulating in the phase separation apparatus into the mixing unit.
  • the volume ratio of the organic high-boiling phase to the aqueous extract phase > 0.86 I per I, so that the organic phase forms as a continuous phase.
  • e2 contained NFM can in turn be recovered by extraction of the e2 phase with water.
  • High-boiling aromatics which may be present in the hydrocarbon mixture and can accumulate in the extractive solvent, have already been described by way of example in EP-A 0 329 958 and include, for example, hemellite, p-cymene, 1,2-diethylbenzene, indane, durene, isodurol, Trimethylbenzene, naphthalene, methylnaphtha- line, dimethylnaphthalenes and diphenyl.
  • oligomeric and polymeric aromatics having a very high boiling point hereinafter also referred to for short as “heavy ends", which may have surface-active properties, accumulate in the extractive solvent, and it has been found that such "heavy-boiling constituents" with apparently surface-active properties in the Enrich extractive, and that the presence of these oligo- or polyaromatics, the phase separation in step (E) in an aqueous extract phase and an organic high-boiling phase is apparently hindered. It has furthermore been found that the problem can be remedied if, before carrying out step (E), the oligomeric and polymeric aromatics ("heaviest boilers”) are at least partially separated by distillation from the extractive solvent.
  • a distillation is carried out in which a fraction of very high boiling hydrocarbons ("heavy ends") is separated from the substream d1 of the extractive solvent.
  • the separation of the heaviest boilers is generally carried out in vacuo at a pressure of 10 to 100 mbar in a distillation column having 1 to 10 theoretical stages.
  • the head temperature is generally in the range of 100 to 170 0 C, the bottom temperature in the range of 120 to 190 0 C.
  • the heavy-boiling products are obtained as non-decomposed Bares vaporizable, highly viscous bottom product.
  • the oligomeric and polymeric heavy ends are depleted by at least 90%, preferably at least 95%, of this distillation step.
  • hydrocarbon mixtures of aliphatic, cycloaliphatic and aromatic hydrocarbons which have boiling points in the range from 50 to 225 ° C. at atmospheric pressure. These generally contain a total of 10 to 90 wt .-% of toluene and xylene or a total of 10 to 90 wt .-% benzene, toluene and xylene.
  • the hydrocarbon mixtures generally contain aliphatic hydrocarbons having 5 to 10 carbon atoms and optionally cycloaliphatic hydrocarbons having 5 to 10 carbon atoms.
  • Typical hydrocarbon mixtures which can be worked up according to the invention are, for example, reformate and pyrolysis gasolines.
  • the high boilers contained in the hydrocarbon mixture which accumulate in the extractive solvent and difficult or impossible to economically separated from this by distillation, generally have boiling points in the range of 170 to 250 0 C.
  • the very high-boiling hydrocarbons (“heaviest boilers”) still contained therein generally have a boiling point above 240 ° C. at atmospheric pressure or can no longer be distilled without decomposition, not even in vacuo.
  • the hydrocarbon mixture a1 is subjected to extractive distillation with N-formylmorpholine as the extractive solvent.
  • the operating conditions in the extractive distillation column are generally selected as described in: LJIImann's Encyclopedia of Industrial Chemistry, chapter Benzene, Wiley-VCH GmbH, 2002.
  • Toluene and xylene or benzene, toluene and xylene in the extractive solvent accumulate and are generally removed from the bottom of the extractive distillation column, while the non-aromatic hydrocarbons largely freed from the aromatic hydrocarbons are generally obtained at the top of the extractive distillation column .
  • the mixture of extractive solvent and aromatic hydrocarbons, which also contains the high boilers and heavy boilers, is then by distillation into one or more aromatics fractions, which are obtained as top and / or side draw streams, and the extractive solvent, which contains the heavy and heavy boilers and generally obtained at the bottom of the distillation column, separated.
  • the hydrocarbon mixture a1 contains for example, the hydrocarbon mixture a1 benzene, toluene and xylene, so in the distillative separation of the extractive / aromatic mixture b1 in step (C) a fraction d 1 containing benzene as a top draw and a fraction c12 containing toluene and another fraction c13 containing xylene as Side exhaust streams are obtained.
  • the hydrocarbon mixture a1 contains, for example, essentially toluene and xylene as aromatic hydrocarbons, essentially toluene can be obtained as the top draw stream and xylene as the side draw stream in the distillative separation of the extractive solvent / aromatic mixture b1.
  • a partial stream d1 of the extractive solvent is separated to separate the high boilers contained therein.
  • This partial stream is generally 0.01 to 10%, preferably 0.1 to 2%, of the total stream of the extractive solvent c2 obtained by distillation in step (C).
  • the separation of the extractive solvent from the high boilers contained therein takes place in step (E) by extraction of the extractive solvent with water.
  • the substream d1 of the extractive solvent containing the high boilers can be transferred to a mixing unit and dispersed with water to form an aqueous extract phase e1 which is substantially free from high boilers and an organic phase e2 containing the high boilers.
  • the phases are then separated in a phase separation apparatus, which may be identical to the mixing unit or may be a different phase separation apparatus from this.
  • the extractive solvent is brought into intensive contact with water, so that the thermodynamic equilibrium between the forming aqueous extract phase on the one hand and the organic phase on the other hand can be adjusted.
  • Suitable dispersing units are stirred tanks, static mixers, mixing pumps and dynamic mixers. It is also possible to carry out the extraction in a countercurrent column.
  • the extractive solvent is completely miscible with water.
  • the high-boiling impurities of aromatic and non-aromatic hydrocarbons have a poor water solubility, so that by adding water to the extractive solvent contaminated with the high-boiling hydrocarbons, a second liquid organic phase is formed, which consists mainly of these impurities.
  • the two phases have a sufficiently large density difference so that they can be separated from one another in commercially available apparatuses for liquid / liquid phase separation. Suitable phase separation rates are phase separators, centrifuges, coalescence phase separators and others.
  • the extraction with water and subsequent phase separation can be carried out both in one stage, for example in a mixer-settler, as well as in several stages, for example in a mixer-settler cascade or a countercurrent column.
  • the temperature has an influence on the miscibility gap, which is due to the addition of water to the extractors containing the high boilers. Basically, temperatures above 100 0 C are possible when the extraction is carried out with water in a pressure apparatus. Possible temperatures in the range from 0 to 160 0 C. Preferably, however, temperatures between 10 to 90 0 C, to be particularly favorable, temperatures between 40 and 60 0 C have been found. At least a sufficient amount of water is added to form separate liquid phases.
  • the ratio of amount of water: extractive solvent amount is generally 0.05 to 5 kg / kg, more preferably 0.2 to 0.5 kg / kg.
  • the resultant aqueous extract phase e1 which has essentially been freed from high boilers, is subsequently distilled in purified form in order to recover the extractive solvent.
  • This distillation can be carried out as described in EP-A 0 329 958.
  • the extractive / water mixture is distilled together with the separated in step (B) non-aromatic hydrocarbons, wherein the water contained in the extractive / water mixture is distilled off azeotropically together with the non-aromatic hydrocarbons generally overhead of the distillation column. From this azeotropic mixture, water is separated by phase separation and optionally recycled to the high boiler separation step (E).
  • the de-watered extractive solvent can be separated by phase separation of entrained non-aromatic hydrocarbons and recycled to the extractive distillation (B).
  • FIG. 1 shows a preferred embodiment of the method according to the invention.
  • the hydrocarbon mixture 1 containing benzene, toluene, xylene and non-aromatic hydrocarbons and the extractive solvent 2 are fed to the extractive distillation column 3.
  • a mixture 4 of non-aromatic hydrocarbons and extractive solvent is withdrawn, which is separated in the downstream distillation column 5 into the non-aromatic hydrocarbons 6 and the extractive solvent 7.
  • a mixture 8 of extractive solvent and the aromatic hydrocarbons are then removed by distillation in a distillation column 9.
  • the main stream 14 is returned to the extractive distillation column 3.
  • a partial stream 15 is separated to separate the heavy particles contained therein.
  • oligomeric and polymeric heavy-boiling components with surface-active properties are separated off as residue 17 in the distillation column 16.
  • the extractive solvent stream 18, which is still free of the high-boiling components and still contains the high-boiling components, is transferred together with water 19 into the dispersion unit 20.
  • the resulting dispersion 21 is separated in the phase separation apparatus 22 into an organic upper phase 23, which contains the high boiler, and an aqueous lower phase 26, which contains the extractive solvent.
  • a part 24 of the organic upper phase is discharged from the process, the other part 25 is returned to the dispersing unit 20.
  • the aqueous lower phase 26 is separated in a downstream distillation column 27 into a water stream 28, which is discharged from the process, and the purified extractive solvent stream 29, which is recycled to the extractive distillation column 3.
  • FIG. 2 shows a further preferred embodiment of the method according to the invention.
  • FIG. 2 shows a variant of the method illustrated in FIG.
  • the aqueous lower phase 26 containing the extractive solvent which is obtained in the phase separation apparatus 22, is not distilled in a separate distillation column but is distilled in the distillation column 5 together with the fraction of nonaromatic hydrocarbons obtained as top draw stream 4.
  • a mixture of non-aromatic hydrocarbons and water is obtained as the top draw stream 6a, which is separated in the downstream phase separation apparatus 30 into an organic upper phase of non-aromatic hydrocarbons 31 and an aqueous lower phase 32.
  • the aqueous lower phase may be recycled (as stream 19) to the phase separation apparatus 20.
  • N-formyl morpholine 4 I of laden with high-boiling N-formyl morpholine (NFM) were vacuum distilled off at 48 mbar and about 180 0 C oil bath temperature of the column head. The head temperature was 105 to 120 0 C. After about 4 hours remained about 0.1 wt .-% high boilers in the sump.
  • the characterization of the non-decomposable, vaporizable, black and highly viscous bottoms product at room temperature gave about 0.01% by weight of coke, polymers and about 0.05% by weight of high-boiling, difficult-to-identify aromatics.
  • the high boilers were removed from the process and fed as a residue of combustion. The high boilers freed N-formylmorpholine was then extracted with water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

La présente invention concerne un procédé de production d'hydrocarbures aromatiques choisis parmi benzène, toluène, xylène et éthylbenzène et des mélanges de ceux-ci, à partir d'un mélange d'hydrocarbures qui contient également des hydrocarbures non aromatiques et des composés à point d'ébullition élevé. Le procédé comprend les étapes qui consistent (A) à préparer un mélange d'hydrocarbures a1 et un solvant d'extraction a2 à partir de N-formylmorpholine, (B) à effectuer la distillation extractive du mélange d'hydrocarbures a1 avec le solvant d'extraction, ce qui permet d'obtenir un mélange b1 composé d'un solvant d'extraction et des hydrocarbures aromatiques, lequel mélange contient des composés à point d'ébullition élevé, et un mélange b2 qui contient des hydrocarbures non aromatiques, (C) à distiller le mélange b1 composé d'un solvant d'extraction et des hydrocarbures aromatiques obtenu à l'étape (B), ce qui permet d'obtenir une ou plusieurs fractions d d'hydrocarbures aromatiques et le solvant d'extraction c2 qui contient des composés à point d'ébullition élevé, (D) à séparer un courant partiel d1 du solvant d'extraction c2 et à retourner le solvant d'extraction c2 à l'étape de distillation extractive (B), (E) à extraire le courant partiel d1 du solvant d'extraction avec de l'eau, ce qui permet d'obtenir une phase d'extraction aqueuse e1 sensiblement exempte de composés à point d'ébullition élevé et une phase organique e2 contenant les composés à point d'ébullition élevé, (F) à distiller la phase d'extraction aqueuse e1 et à récupérer le solvant d'extraction a2 sous forme purifiée, puis à retourner le solvant d'extraction à l'étape de distillation extractive (B), un courant partiel e2' étant séparé de la phase organique e2 contenant les composés à point d'ébullition élevé et étant retourné à l'extraction de l'étape (E). La quantité de la phase organique e2' ainsi mise en circulation dans le circuit est réglée de manière que, lors de la dispersion du courant partiel d1 composé du solvant d'extraction contenant les composés à point d'ébullition élevé, d'eau et du courant e2' mis en circulation dans le circuit, la phase d'extraction aqueuse e1 sensiblement exempte de composés à point d'ébullition élevé est la phase dispersée, et la phase organique composée de composés à point d'ébullition élevé e2 est la phase continue.
EP08804545A 2007-09-28 2008-09-22 Procédé de production d'hydrocarbures aromatiques à partir d'un mélange d'hydrocarbures Withdrawn EP2195281A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08804545A EP2195281A1 (fr) 2007-09-28 2008-09-22 Procédé de production d'hydrocarbures aromatiques à partir d'un mélange d'hydrocarbures

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07117505 2007-09-28
PCT/EP2008/062619 WO2009043754A1 (fr) 2007-09-28 2008-09-22 Procédé de production d'hydrocarbures aromatiques à partir d'un mélange d'hydrocarbures
EP08804545A EP2195281A1 (fr) 2007-09-28 2008-09-22 Procédé de production d'hydrocarbures aromatiques à partir d'un mélange d'hydrocarbures

Publications (1)

Publication Number Publication Date
EP2195281A1 true EP2195281A1 (fr) 2010-06-16

Family

ID=40344963

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08804545A Withdrawn EP2195281A1 (fr) 2007-09-28 2008-09-22 Procédé de production d'hydrocarbures aromatiques à partir d'un mélange d'hydrocarbures

Country Status (5)

Country Link
US (1) US8378164B2 (fr)
EP (1) EP2195281A1 (fr)
JP (1) JP5431334B2 (fr)
CN (1) CN101808962B (fr)
WO (1) WO2009043754A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2195281A1 (fr) 2007-09-28 2010-06-16 Basf Se Procédé de production d'hydrocarbures aromatiques à partir d'un mélange d'hydrocarbures
JP5566291B2 (ja) * 2007-09-28 2014-08-06 ビーエーエスエフ ソシエタス・ヨーロピア 炭化水素混合物から芳香族炭化水素を得るための方法
US9005405B2 (en) * 2012-03-01 2015-04-14 Cpc Corporation, Taiwan Extractive distillation process for benzene recovery
DE102012111292A1 (de) * 2012-11-22 2014-05-22 Thyssenkrupp Uhde Gmbh Verfahren zur Isolierung von Benzol, Toluol und Xylol aus einem aromatenreichen Einsatzgasstrom
US9221729B1 (en) * 2015-02-23 2015-12-29 Allnew Chemical Technology Company Extractive distillation for aromatics recovery
CN108250014A (zh) * 2016-12-28 2018-07-06 中国石油天然气股份有限公司 一种异构化制备对二甲苯的方法
CN108002974A (zh) * 2017-12-15 2018-05-08 武汉钢铁有限公司 精制焦化粗苯的工艺方法
CN112920162A (zh) * 2021-01-29 2021-06-08 临涣焦化股份有限公司 一种溶剂再生装置
WO2023083655A1 (fr) 2021-11-12 2023-05-19 Thyssenkrupp Industrial Solutions Ag Procédé et dispositif de séparation d'un flux de charge contenant des hydrocarbures par distillation extractive
EP4180103A1 (fr) 2021-11-12 2023-05-17 Thyssenkrupp Uhde Engineering Services GmbH Procédé de vidange d'un récipient de régénération de solvant et dispositif
DE102021212776A1 (de) 2021-11-12 2023-05-17 Thyssenkrupp Ag Verfahren und Vorrichtung zur Trennung eines kohlenwasserstoffhaltigen Einsatzstoffstroms durch Extraktivdestillation
BE1029921B1 (de) 2021-11-12 2023-06-12 Thyssenkrupp Ind Solutions Ag Verfahren und Vorrichtung zur Trennung eines kohlenwasserstoffhaltigen Einsatzstoffstroms durch Extraktivdestillation
DE102021212775A1 (de) 2021-11-12 2023-05-17 Thyssenkrupp Ag Verfahren und Vorrichtung zur Trennung eines kohlenwasserstoffhaltigen Einsatzstoffstroms durch Extraktivdestillation
BE1029920B1 (de) 2021-11-12 2023-06-12 Thyssenkrupp Uhde Eng Services Gmbh Verfahren zur Entleerung eines Lösungsmittel-Regenerierungs-Behälters sowie Vorrichtung
DE102021212777A1 (de) 2021-11-12 2023-05-17 Thyssenkrupp Ag Verfahren zur Entleerung eines Lösungsmittel-Regenerierungs-Behälters sowie Vorrichtung
BE1029922B1 (de) 2021-11-12 2023-06-12 Thyssenkrupp Uhde Eng Services Gmbh Verfahren und Vorrichtung zur Trennung eines kohlenwasserstoffhaltigen Einsatzstoffstroms durch Extraktivdestillation
WO2023083656A1 (fr) 2021-11-12 2023-05-19 Thyssenkrupp Industrial Solutions Ag Procédé et dispositif de séparation d'un flux de charge d'alimentation contenant des hydrocarbures par distillation extractive

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3612384A1 (de) * 1986-04-12 1987-10-15 Krupp Koppers Gmbh Verfahren zur herstellung eines zur verwendung als blendingkomponente fuer vergaserkraftstoffe geeigneten aromatenkonzentrates
DE3805383A1 (de) * 1988-02-20 1989-08-31 Krupp Koppers Gmbh Verfahren zur herstellung eines zur verwendung als blendingkomponente fuer vergaserkraftstoffe geeigneten aromatenkonzentrates
US5399244A (en) * 1993-12-06 1995-03-21 Glitsch, Inc. Process to recover benzene from mixed hydrocarbons by extractive distillation
CN1209327C (zh) * 2001-09-27 2005-07-06 中国石油化工股份有限公司 利用萃取和萃取精馏回收芳烃的方法
JP5566291B2 (ja) * 2007-09-28 2014-08-06 ビーエーエスエフ ソシエタス・ヨーロピア 炭化水素混合物から芳香族炭化水素を得るための方法
EP2195281A1 (fr) 2007-09-28 2010-06-16 Basf Se Procédé de production d'hydrocarbures aromatiques à partir d'un mélange d'hydrocarbures

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009043754A1 *

Also Published As

Publication number Publication date
JP5431334B2 (ja) 2014-03-05
JP2010540484A (ja) 2010-12-24
US20100228072A1 (en) 2010-09-09
WO2009043754A1 (fr) 2009-04-09
CN101808962B (zh) 2012-11-28
US8378164B2 (en) 2013-02-19
CN101808962A (zh) 2010-08-18

Similar Documents

Publication Publication Date Title
WO2009043754A1 (fr) Procédé de production d'hydrocarbures aromatiques à partir d'un mélange d'hydrocarbures
EP2195107A1 (fr) Procédé de production d'hydrocarbures aromatiques à partir d'un mélange d'hydrocarbures
EP2178611B1 (fr) Récupération de benzène et de dérivés benzéniques à partir de fractions d'essence et de courants de raffinerie
DE60105798T2 (de) Trennung von aromaten aus erdölströmen
EP0329958B1 (fr) Procédé de préparation d'un concentré aromatique utilisable comme produit de mélange d'un combustible pour moteurs à carburateur
DE2165455A1 (de) Verfahren zur Gewinnung aromatischer Kohlenwasserstoffe aus Mischungen, in denen sie enthalten sind
DE2065779C3 (de) Verfahren zur Extraktion aromatischer Kohlenwasserstoffe aus einem Kohlenwasserstoffgemisch in einem Mehrstufensystem
DE1545413C3 (de) Verfahren zur Flüssig-Flüssig-Extraktion aromatischer Kohlenwasserstoffe
EP0305668B1 (fr) Procédé de production d'un concentré d'aromatique propre à l'utilisation comme composante de mélange pour essences
DE2359300C3 (de) Verfahren zur Gewinnung von reinen gesättigten Kohlenwasserstoffen durch Extraktivdestillation
DE2013298A1 (de) Verfahren zur Gewinnung von hochreinen Aromaten aus Kohlenwasserstoffgemischen, die neben diesen Aromaten einen beliebig hohen Gehalt an Nichtaromaten aufweisen
DE69813420T2 (de) Entfernung von neutralem Öl aus Mischungen von natürlicher Kresylsäure
DE2047162C2 (de) Verfahren zum Auftrennen eines Gemisches von Verbindungen durch Flüssig-Flüssig-Extraktion
BE1029922B1 (de) Verfahren und Vorrichtung zur Trennung eines kohlenwasserstoffhaltigen Einsatzstoffstroms durch Extraktivdestillation
BE1029921B1 (de) Verfahren und Vorrichtung zur Trennung eines kohlenwasserstoffhaltigen Einsatzstoffstroms durch Extraktivdestillation
DE977482C (de) Kontinuierliches Verfahren zur Abtrennung von Toluol und/oder Benzol aus einer Mischung mit nichtaromatischen Kohlenwasserstoffen
DE855547C (de) Verfahren zur Reinigung aromatischer Kohlenwasserstoffe
DE102021212776A1 (de) Verfahren und Vorrichtung zur Trennung eines kohlenwasserstoffhaltigen Einsatzstoffstroms durch Extraktivdestillation
WO2023083656A1 (fr) Procédé et dispositif de séparation d'un flux de charge d'alimentation contenant des hydrocarbures par distillation extractive
WO2023083655A1 (fr) Procédé et dispositif de séparation d'un flux de charge contenant des hydrocarbures par distillation extractive
DE102021212775A1 (de) Verfahren und Vorrichtung zur Trennung eines kohlenwasserstoffhaltigen Einsatzstoffstroms durch Extraktivdestillation
DE2046976C3 (de) Verfahren zur Gewinnung von Benzol, Toluol und C tief 8 -Aromaten aus aromatenreichen Kohlenwasserstoffgemischen
DE3430022A1 (de) Verfahren zur gewinnung von reinen diisocyanaten
DE913054C (de) Verfahren zur Gewinnung von ª‰-Naphthol aus Gemischen, die ein ª‰-Dialkylmethylnaphthalin enthalten
AT226688B (de) Verfahren zur Gewinnung von Naphthalinkohlenwasserstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100428

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170401