EP2150349B1 - Procédé utilisant une unité de séparation magnétique à gradient élevé pour séparer des éléments contenant de l'acier d'un flux de scories métalliques - Google Patents

Procédé utilisant une unité de séparation magnétique à gradient élevé pour séparer des éléments contenant de l'acier d'un flux de scories métalliques Download PDF

Info

Publication number
EP2150349B1
EP2150349B1 EP08723870A EP08723870A EP2150349B1 EP 2150349 B1 EP2150349 B1 EP 2150349B1 EP 08723870 A EP08723870 A EP 08723870A EP 08723870 A EP08723870 A EP 08723870A EP 2150349 B1 EP2150349 B1 EP 2150349B1
Authority
EP
European Patent Office
Prior art keywords
high gradient
stainless steel
magnet
gradient magnet
waste stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08723870A
Other languages
German (de)
English (en)
Other versions
EP2150349A1 (fr
Inventor
Jan Andreas Groothoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Recco BV
Original Assignee
Recco BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Recco BV filed Critical Recco BV
Publication of EP2150349A1 publication Critical patent/EP2150349A1/fr
Application granted granted Critical
Publication of EP2150349B1 publication Critical patent/EP2150349B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/10Magnetic separation acting directly on the substance being separated with cylindrical material carriers
    • B03C1/14Magnetic separation acting directly on the substance being separated with cylindrical material carriers with non-movable magnets
    • B03C1/145Magnetic separation acting directly on the substance being separated with cylindrical material carriers with non-movable magnets with rotating annular or disc-shaped material carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/002High gradient magnetic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/04Magnetic separation acting directly on the substance being separated with the material carriers in the form of trays or with tables
    • B03C1/08Magnetic separation acting directly on the substance being separated with the material carriers in the form of trays or with tables with non-movable magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/10Magnetic separation acting directly on the substance being separated with cylindrical material carriers
    • B03C1/14Magnetic separation acting directly on the substance being separated with cylindrical material carriers with non-movable magnets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag

Definitions

  • the invention concerns a process to separate sufficiently pure stainless steel-containing parts from a metal slag waste stream using a high gradient magnetic separation unit, in particular, the separation of sufficiently pure stainless steel-containing parts from waste streams generated during stainless steel production.
  • 'sufficiently pure part' will mean a part, at least 80% of which consists of the steel in question.
  • a de-ferrising unit as per NL-C-1.023.923 is known, which comprises a magnetic station with a magnetic drum over which the whole or part of the waste stream is passed.
  • the magnetic drum consists of a drum that rotates during operation, with a magnetic elements with a semi-circular cross-section, fixed inside it. The position of the magnetic element in the drum can be adjusted.
  • a vibratory feeder discharges its load on a section of the outer circumferential wall of the magnetic drum. There is an air gap between the feeder and the drum.
  • the magnetic field generated causes the iron-containing waste parts to attach to the drum directly from the discharge point of the feeder, and these iron-containing waste components remain attached to the drum by action of the magnetic field, and are thus transported past a specific point of the magnetic drum, after which they are release through the action of gravity.
  • the remaining waste parts fall down much earlier
  • a partition plate may be placed under the drum, to separate out and remove the part fractions that are separated in this manner.
  • the aim of the present invention is to remedy the above-mentioned disadvantages at least partially, or to provide a usable alternative.
  • the invention aims to provide a high gradient magnetic separation unit and a process that uses such a unit, suitable for handling metal slag waste streams generated during steel production, particularly the separation of sterile slag components of (slightly magnetic) stainless steel-containing parts.
  • the high gradient magnet separation unit contains a transport element for the feed of, for example, a slag waste stream generated during stainless steel production.
  • the transport element discharges on a high gradient magnet station, especially one of the type with a rotating drum with a high gradient magnet (more than 0.95 Tesla) fixed inside it, which extends along a part of the internal circumference of the drum.
  • the waste, stream receives an initial falling path, through the action of gravity.
  • the magnet station should preferably be installed in such a position along this initial fall path that stainless steel-containing components are drawn out of the aforesaid initial falling path by action of the magnetic field generated by the magnet station.
  • the belt There is a wear-arid-tear-free plastic, driven belt, which is guided around at least the high gradient magnet of the high gradient magnet separation unit.
  • the unit contains a drum type magnet station.
  • the belt is passed over the rotating drum of the same.
  • the plastic material of the driven belt is wear-and-tear-proof enough to resist the effect of the abrasive steel-containing components, and on the other hand, the components do not remain stuck to it.
  • the belt may be made of PE or PU.
  • stainless steel as well as stainless steel-containing slag components can be separated from the other slag components that are generated during stainless steel production.
  • adjusting controls are provided to adjust the magnet station and the transport element to each other in various operating positions. It is advantageous to quickly and easily adapt the unit using the adjusting controls to match the characteristics of the magnet station to a specific waste stream that has to be processed. For example, the average particle sizes of the waste, adhesion characteristics, percentage of metal-containing components, etc. All of these affect the performance of the magnet station and this can now be anticipated by modifying the position of the magnet station in relation to the transport element.
  • the adjustment of the position with respect to each other may be done once, for example, when the high gradient magnet separation unit is tested or is used for the first time. It is also possible to regularly adapt the setting to the circumstance. It is advantageous, using the adjusting controls, to determine the optimum operating condition by installing the strongest possible magnets in the magnet station, while later, during testing and/or operation, one may try to determine the optimum position of the magnet station in relation to the transport element.
  • the position change may consist in increasing or reducing an initial air gap between the falling path and the magnet station and/or the direction of this air gap, in other words, the transport element is at a different angle with respect to the magnet station, or that the magnet station is in a different position along the falling path.
  • An example is a stepless adjustment between the bottom feeder and the top feeder of the waste stream through the transport element in relation to the magnet station.
  • the high gradient magnet is a. permanent magnet based on at least one of the lanthanide elements, namely a neodymium magnet (more than 0.95 Tesla on the circumference/drum).
  • the transport element may be a vibratory feeder, for example. This ensures that the waste components arrive at the magnet station already released through vibration, dosed and distributed.
  • the aim is further achieved using a process as per Claim 12.
  • the first step in this process is a metal slag waste stream feed, in particular generated during steel production, more particularly, stainless steel or tool steel production.
  • the next step is the dosed feeding of the metal slag waste stream to the first high gradient magnet station using a transport element, whereby the stainless steel-containing components are drawn out of the waste stream by action of the magnetic field generated by the first high gradient magnet station.
  • the stainless steel-containing parts separated-out by the first high gradient magnet station are refined by a breaking unit into a 'broken refined fraction', in which at least some of the slag is removed from the stainless steel-containing parts in a type of breaking process.
  • the refining is done for example, in an autogenous breaking process, wherein the stainless steel-containing components are forcefully impacted against a wall, thereby separating the slag from the stainless steel.
  • the broken refined fraction is finally separated-out into a concentrate of sufficiently pure stainless steel-containing components, and a residual fraction.
  • the process has proved excellently suitable for the dry-process recovery of stainless steel scrap from very moist stainless steel slag.
  • the residual product can still be used for special civil applications, especially after mixing in a little FeSO 4 , particularly 2-3%. It has been possible to achieve a maximum recovery of high-value stainless steel metals from a metal slag waste stream, whereby a minimum residual fraction of metal remains in the slag, namely, less than 0.5%.
  • the slag can achieve a good grain distribution to make it suitable for use in special civil projects.
  • the high gradient magnet separation unit thereby guarantees that only the sufficiently stainless steel-containing fraction is further refined to release the stainless steel. Around 65-75% of the slag from the waste stream is removed after the first high gradient magnet station, and therefore unnecessary refining is prevented. As a result, the end-product is largely able to retain its critical grain distribution.
  • the process further comprises the step to separate-out a concentrate of stainless steel-containing parts from the fraction refined by the breaking unit using at least a second high gradient magnet station, after sifting the refined fraction into a fine part-fraction and a coarse part-fraction in a sifting unit.
  • the fine part-fraction is then transported along the second high gradient magnetic station for separating-out the concentrate of stainless steel-containing parts. It is greatly advantageous to re-transport the coarse part-fraction back to the breaking unit for further reduction.
  • the coarse part-fraction may be sent along a third high gradient magnet station for further separation of a concentrate of stainless steel-containing parts.
  • the high gradient magnet stations may be of different types and for example, may be designed as a high gradient drum magnet station, or as a high gradient overband magnet station.
  • the first high gradient magnet station along which the initial waste stream is fed should be of the type with a rotating drum and a high gradient magnet fixed inside it, whereby the drum and the magnet are arranged along a free falling path of the metal slag stream.
  • the second high gradient magnet, station along which the fine part-fraction is transported should preferably be of the type with an endless overband and a high gradient magnet installed between the same, whereby the overband and the magnet are installed above a transport medium.
  • the third high gradient magnet station along which the coarse part-fraction is transported may be either of the overhand type or of the drum type. It is also possible to use both types in combination, linked one after the other.
  • FIG. 1 shows the high gradient magnet separation unit in its entirety, indicated by the reference figure 1 .
  • the unit 1 contains 2 vibration feeder installed next to each other.
  • the vibration feeders 2 are fed from above with a metal slag wastes stream via a vibration feeder 3 that extends transversely over the vibration feeders 2.
  • the vibration feeder 3 in its turn is fed with the metal slag waste stream via a conveyor belt 4.
  • the metal slags are already sorted on the basis of pieces with a cross-section less than or equal to 20 mm. This may be done using a straining unit (not shown) which may or may not be mobile.
  • the vertical positioning of the vibration feeder 3 on the bottom vibration feeders 2 ensures that the waste stream is directly dosed over the entire breadth of the underlying vibration feeders 2. This was found necessary to ensure proper separation, and the advantage is that the unit 1 can be made more compact.
  • the unit 1 also includes two magnet stations 5, each having a rotating drum 7 with permanent neodymium magnets 8 fixed within the same.
  • the magnet station 5 is installed at an angle under the relevant vibration feeder 2 along a falling path that receives the waste stream 9 through the action of gravity, after vibration by the vibration feeder 2.
  • the steel-containing components are drawn out of the falling waste stream 9, by action of the magnet field 10.
  • the steel-containing parts are drawn against the rotating drum 7, past the segment where the neodymium magnet 8 is located, and only then released so that they can be dropped freely.
  • a partition plate 12 installed under the magnet station keeps the steel-containing parts 13 separate, after they have been separated-cut of the "clean" part 14 of the waste stream.
  • adjusting controls have been provided for the mutual adjustment of the magnet station 5 and the vibration feeder 2 (see fig. 2 ), in various operating modes.
  • adjusting controls 20 have been provided for the mutual vertical adjustment of the drum 7 and the vibrating feeder 2.
  • Adjusting controls 21 have also been provided for the mutual horizontal adjustment of the drum 7 and the vibrating feeder 2.
  • adjusting controls 22 have been provided for adjusting the angle at which the vibrating feeder 2 is installed.
  • the adjusting controls 20, 21, 22 may consist for example, of screw spindles, hydraulic or pneumatic setting cylinders, that grip the suspension points of the drum 7 and/or the vibratory feeder 2.
  • the vibration feeder 2 is made of non-magnetisable material, for example stainless steel, at least on its discharge side. This advantageously prevents the very powerful neodymium magnet 8 from being able to magnetise this part of the vibration feeder 2, which could lead to an undesirable burr formation of steel-containing parts in that part of the vibration feeder 2.
  • the vibration feeder 2 also has a friction-reduction coating, for example of polyurethane. This prevents the waste stream 9. from adhering to the surface of the vibratory feeder 2, and therefore contributes to the reliability of the dosed supply of the waste stream to the magnet station 5.
  • the falling path of the waste stream 9 is limited by a collection plate 30.
  • Lead-through space has been provided between the collection plate 30 and the drum 7.
  • the collection plate 30 is to prevent (heavy) parts from the waste stream from moving too far away from the drum 7.
  • the collection plate 30 guides these parts back if so desired, so that they can again be pulled-up by the neodymium magnet 8.
  • the collection plate 30 can be adjusted in various operating positions with respect to the magnet station 5, using the adjusting controls 31. This may consist of moving the collection plate 30 horizontally, or changing the angle rotation of the collection plate 30.
  • the invention also relates to a process for the separation of steel-containing parts from a metal slag waste stream, using a high gradient magnet separation unit.
  • Figure 3 shows a flow diagram of such a process.
  • a slag waste stream is loaded in a hopper 36 using a loader 35 From there, the waste stream goes to a mobile straining unit 37.
  • the larger parts are transported to storage facility 38 for further treatment.
  • the smaller parts that are strained out are transported to a high gradient magnet separation unit 39.
  • this is a high gradient magnet separation unit as described above in figures 1 and 2 .
  • the adjusting controls are not strictly required here, and may even be left out if so desired.
  • the unit 39 pulls out the steel-containing parts out of a falling waste stream using a neodymium magnet station that is arranged with a slope under a vibration feeder.
  • the rest of the waste stream is moved to a storage facility 40 as "clean" slag.
  • the steel-containing parts drawn from the waste stream (around 20%) are transported to a breaking unit 41, specifically, formed by a vertical impactor.
  • a vacuum cleaner 42 has been provided to remove the dust generated during the reduction.
  • the reduced stream of steel-containing components is then transported tc a second straining unit 43, with a setting to strain-out any particles exceeding a few millimetres, for example 1 mm.
  • the strained-out fine fraction is transported to a storage facility 44 as "clean" slag.
  • the parts larger than 1 mm will either be removed as steel-containing concentrate 45 that can be offered again if so desired to the high gradient magnet separation unit 39, or may be removed to the storage unit 46.
  • Figure 4 shows a possible layout of figure 3 .
  • suitable transport elements have been provided between the various stations, in the form of conveyor belts and/or vibration feeders for example.
  • a second high gradient magnet station may also be used instead of or in addition to the second strainer unit.
  • the air humidity of the waste stream is too high, this offers advantages because it will no longer be possible to properly strain out particles not exceeding a couple of millimetres.
  • the compressor of the vacuum cleaning system may be used for this purpose.
  • FIG. 5 and 6 shows a convenient model of a high gradient magnet separation unit for the execution of a process as pert the invention.
  • the unit contains a bunker 51 via which a metal slag waste stream, specifically, of 0-15mm metal slag is transported via a conveyor belt 52 to a vibration distributor 53, which in turn feeds two high gradient magnet stations 54.
  • the magnetic concentrate (steel-containing parts) separated by the high gradient magnet station will be transported by a conveyor belt 55 to a special vertical impact breaker 56 where slag will be broken away from the parts.
  • the breaker 56 is also equipped with one or more pressure guns for the periodic breaking open of lumped parts, if necessary.
  • Nonmagnetic parts leave the magnet stations 54 via a belt 65 and come to rest on a collection belt 60.
  • the high gradient magnet stations 54 are preferably so adjusted that only those components that contain ⁇ 0.5% steel will be placed on the collection belt 60.
  • the material (the broken, refined fraction) will be placed on a conveyor belt 57 with direct dust suction 66 at the start of belt 57.
  • the conveyor belt 57 feeds a fine strainer of the type 58, which is specially set-up for straining up to a couple of millimetres, particularly 3mm, under relatively wet conditions.
  • the strained-out coarse part-fraction (also called overgrain) including the coarse metal parts contained therein, particularly those between 3-15mm will leave the strainer 58 via a belt 64, and will return to the breaker 56 in order to be further refined there.
  • this strained coarse part-fraction will become a concentrate of steel -containing parts, or of sufficiently pure metal, specifically, containing >80% steel, via a high gradient magnet station 63, which can be adjusted, extracted and placed in a collection container 68.
  • the strained fine part-fraction (also called undergrain), including the fine metal parts in the same, specifically, between 0-3mm, leave the strainer 58 via a belt 59.
  • Two high gradient magnet stations 61 and 62 extrude from this fine part-fraction as well, a concentrate of steel-containing parts, that is to say sufficiently pure metal, in particular, with a steel content >80%.
  • the one high gradient magnet station is installed transversely, and the other in line with a sub-band of the strainer 58.
  • Non-magnetic parts (including the fine broken-off slag parts) of the fine part-fraction leave the magnet station 61, 62 via the belt 59 and come to rest on the collection belt 60.
  • the high gradient magnet stations 61 should preferably be so adjusted that only those components that contain ⁇ 0.5% steel will be placed on the collection belt 60.
  • a signal-activated return conveyor 67 may be used. By stopping the feed belt 52, there remains, at that given moment, only sufficiently pure metal in the circuit which comprises the belt 64, the conveyor belt 55, the breaker 56, the conveyor belt 57 and the strainer 58. If this is not directly collected by the high gradient magnet station 63, for example due to the strongly austenitic character of these pieces, the return belt 67 may be activated to directly collect these parts.
  • FIG. 7 shows a model of a high gradient magnet station 75 fed by a vibration feeder 74, which is particularly suitable for processing more moist metal slags.
  • the moisture content of the waste streams of the metal slag to be processed may be up to 18% water.
  • the magnet station 75 is now equipped with a special endless, driven belt 76, in particular of wear-and-tear proof PU or PE material, which passes over a magnetic drum 77 at one end, specifically, within the rotation of the magnetic drum 77.
  • the magnetic drum 77 is installed along the falling path that receives a waste stream after this has been vibrated off by the vibration feeder 74.
  • the magnetic drum 77 is self-rotating and encloses a high gradient magnet that is fixed inside it.
  • the endless belt 76 Since the endless belt 76 is self-driving, its speed can be changed.
  • the belt 76 has ribs 77' extending over the breadth.
  • the version with belt 76 prevents adhesion to the drum 77. Since metal can no longer remain suspended from the drum 77, the drum 77 is prevented from deforming, which would otherwise jam the magnet station 75.
  • This installation allows the use a high gradient magnet with a breadth greater than or equal to 1500mm, without the possible pulling of the magnetic drum during operation, into a bent shape.
  • Figure 8 shows a variant of this idea, in which an entire endless, driven plastic belt 80 of this type is guided over a rotating high gradient magnet roller 81.
  • a metal slag waste stream is now fed with a fast moving belt 82.
  • metal concentrate is drawn out of the falling parts sideways during the fall, past an underlying separation plate 83.
  • the magnet roller 81, over which the belt 80 is guided is installed along the falling path that receives the waste stream if it leaves this discharge belt 82.
  • the position of the magnet roller 81, with the belt 80 guided over the same, can be adjusted according to the feed belt 82.
  • neodymium magnet instead of a neodymium magnet, one may use a different permanent magnet based on the lanthanide elements, or a high gradient magnet with a magnetic flux density exceeding 0.95 Tesla on the circumference, respectively on the magnetic drum.
  • this is a reliably working multi-functional high gradient magnet separation unit, which can preferably be easily adjusted according to changes in the working conditions and which can then be precisely adjusted to obtain an optimum performance so as to prevent blockages.
  • the invention is especially suitable to the recovery of steel-containing metal parts out of slag waste streams generated during steel production, particularly stainless steel or tool steel production.

Claims (18)

  1. Unité de séparation magnétique à gradient élevé pour séparer des éléments contenant de l'acier inoxydable à partir d'un flux de déchets de scories métalliques, comprenant :
    - un élément de transport (74, 82) pour alimenter en flux de déchets de scories métalliques ; et
    - un poste magnétique à gradient élevé (75, 81) pour séparer les éléments contenant de l'acier inoxydable à partir du flux de déchets de scories métalliques,
    dans laquelle le poste magnétique contient un aimant à gradient élevé avec une densité de flux magnétique dépassant 0,95 Tesla sur la circonférence,
    caractérisée en ce que
    une courroie d'entrainement en plastique résistant à l'usure (76, 80) est fournie, qui est guidée autour au moins de l'aimant à gradient élevé,
    dans laquelle le poste magnétique (75, 81) comprend en outre un tambour rotatif à l'intérieur duquel l'aimant à gradient élevé est positionné de manière fixe, et s'étend le long d'une partie de la circonférence interne du tambour, et dans laquelle la courroie d'entrainement en plastique est guidée autour du tambour.
  2. Unité de séparation magnétique à gradient élevé selon la revendication 1, dans laquelle la courroie d'entrainement en plastique contient une couche de PE ou de PU.
  3. Unité de séparation magnétique à gradient élevé selon l'une des revendications précédentes, dans laquelle le poste magnétique est installé le long d'une voie de chute qui reçoit le flux de déchets par action de la gravité après que le flux de déchets a quitté l'élément de transport de son côté de déchargement, de sorte que les éléments contenant de l'acier inoxydable sont tirés hors du flux de déchets qui chutent par le champ magnétique généré par le poste magnétique.
  4. Unité de séparation magnétique à gradient élevé selon la revendication 3, dans laquelle une plaque de collecte est fournie le long de la voie de chute au niveau de l'emplacement du poste magnétique, avec une ouverture traversante entre la plaque de collecte et le poste magnétique, avec des commandes d'ajustement pour l'ajustement mutuel du poste magnétique et de la plaque de collecte dans des conditions de fonctionnement variées.
  5. Unité de séparation magnétique à gradient élevé selon l'une des revendications précédentes, dans laquelle des commandes d'ajustement sont fournies pour faire des ajustements mutuels entre le poste magnétique et l'élément de transport déchargeant sa charge au niveau de ce point, dans des positions de fonctionnement variées.
  6. Unité de séparation magnétique à gradient élevé selon l'une des revendications précédentes, dans laquelle une unité de concassage est fournie en aval du poste magnétique, pour l'affinage des éléments contenant de l'acier inoxydable séparés par le poste magnétique en une fraction affinée concassée, dans laquelle au moins une partie des scories est retirée des éléments contenant de l'acier inoxydable.
  7. Unité de séparation magnétique à gradient élevé selon la revendication 6, dans laquelle l'unité de concassage est un concasseur à impact vertical.
  8. Unité de séparation magnétique à gradient élevé selon la revendication 6 ou 7, dans laquelle un second poste magnétique à gradient élevé est installé en aval de l'unité de concassage.
  9. Poste magnétique à gradient élevé selon l'une des revendications 6 à 8, dans laquelle une unité de filtrage est installée en aval de l'unité de concassage, pour la séparation par filtrage d'une fraction partielle fine et d'une fraction partielle grossière à partir de la fraction affinée concassée.
  10. Unité de séparation magnétique à gradient élevé selon la revendication 9, dans laquelle un élément de transport est fourni pour la ré-alimentation de la fraction partielle grossière vers l'unité de concassage.
  11. Unité de séparation magnétique à gradient élevé selon la revendication 9 ou 10, dans laquelle un troisième poste magnétique à gradient élevé est fourni pour alimenter en fraction partielle grossière, afin de séparer davantage le concentré d'éléments contenant de l'acier inoxydable.
  12. Méthode pour séparer des éléments contenant de l'acier inoxydable à partir d'un flux de déchets de scories métalliques comprenant les étapes suivantes :
    - l'alimentation d'un flux de déchets de scories métalliques ;
    - l'alimentation dosée du flux de déchets de scorie métalliques vers un premier poste magnétique à gradient élevé selon l'une des revendications précédentes, au moyen d'un élément de transport ;
    - l'extraction d'éléments contenant de l'acier inoxydable à partir du flux de déchets, par l'action du champ magnétique généré par le premier poste magnétique à gradient élevé ;
    - l'utilisation d'une unité de concassage pour concasser les éléments contenant de l'acier inoxydable, séparés par le premier poste magnétique à gradient élevé, en une fraction affinée concassée, dans laquelle au moins une partie des scories est retirée des éléments contenant de l'acier inoxydable ;
    - la séparation de la fraction affinée concassée au moins en un concentré d'éléments contenant de l'acier inoxydable et une fraction résiduelle.
  13. Méthode selon la revendication 12, incluant en outre l'étape d'ajustement mutuel du poste magnétique à gradient élevé et de l'élément de transport en fonction des conditions de travail, ou des caractéristiques du flux de déchets respectivement, dans des positions de fonctionnement variées.
  14. Méthode selon l'une des revendications précédentes 12 ou 13, comprenant en outre l'étape de séparation du concentré d'éléments contenant de l'acier inoxydable à partir de la fraction affinée concassée séparée par l'unité de concassage, en utilisant au moins un second poste magnétique à gradient élevé.
  15. Méthode selon la revendication 14, selon laquelle avant l'étape de séparation du concentré d'éléments contenant de l'acier inoxydable en utilisant le second poste magnétique à gradient élevé, la fraction affinée concassée est filtrée par une unité de filtrage en une fraction partielle fine et une fraction partielle grossière, la fraction partielle fine étant alimentée le long du second poste magnétique à gradient élevé pour la séparation du concentré d'éléments contenant de l'acier inoxydable.
  16. Méthode selon la revendication 15, selon laquelle la fraction partielle grossière est retournée vers l'unité de concassage pour affinage supplémentaire.
  17. Méthode selon la revendication 15 ou 16, selon laquelle la fraction partielle grossière est transportée le long d'un troisième poste magnétique à gradient élevé pour séparer d'autres concentrés d'éléments contenant de l'acier inoxydable.
  18. Utilisation du procédé selon l'une des revendications précédentes 12 à 17 pour récupérer des éléments métalliques contenant de l'acier inoxydable à partir d'un flux de déchets de scories qui se forme dans la production de l'acier inoxydable ou d'outil en acier.
EP08723870A 2007-04-04 2008-04-04 Procédé utilisant une unité de séparation magnétique à gradient élevé pour séparer des éléments contenant de l'acier d'un flux de scories métalliques Not-in-force EP2150349B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL1033644A NL1033644C2 (nl) 2007-04-04 2007-04-04 Hooggradient magneetscheidingseenheid met instelmiddelen en opvangplaat.
PCT/NL2008/000098 WO2008123770A1 (fr) 2007-04-04 2008-04-04 Procédé utilisant une unité de séparation magnétique à gradient élevé pour séparer des éléments contenant de l'acier d'un flux de scories métalliques

Publications (2)

Publication Number Publication Date
EP2150349A1 EP2150349A1 (fr) 2010-02-10
EP2150349B1 true EP2150349B1 (fr) 2011-11-02

Family

ID=38669643

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08723870A Not-in-force EP2150349B1 (fr) 2007-04-04 2008-04-04 Procédé utilisant une unité de séparation magnétique à gradient élevé pour séparer des éléments contenant de l'acier d'un flux de scories métalliques

Country Status (6)

Country Link
EP (1) EP2150349B1 (fr)
KR (1) KR20100016055A (fr)
CN (1) CN101678361B (fr)
AT (1) ATE531456T1 (fr)
NL (1) NL1033644C2 (fr)
WO (1) WO2008123770A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2963744A1 (fr) * 2010-08-11 2012-02-17 Arnaud Becker Dispositif de separation de produits ferreux et non ferreux issus de broyage, d'incineration ou autre
GB201816400D0 (en) * 2018-10-08 2018-11-28 Ecohog Ltd An improved machine for the magnetic separation
CN110075999B (zh) * 2019-05-27 2020-09-11 山西高义钢铁有限公司 一种炼钢用磁选设备及磁选方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE489268C (de) * 1927-05-29 1930-01-15 Fried Krupp Grusonwerk Akt Ges Gutsaufgabevorrichtung fuer Magnettrommelscheider
NL180484C (nl) * 1976-06-09 1987-03-02 Esmil Bv Werkwijze voor het scheiden van ferromagnetisch materiaal uit stadsvuil of overeenkomstig materiaal.
DE2650540C3 (de) * 1976-11-04 1981-05-27 Klöckner-Humboldt-Deutz AG, 5000 Köln Starkfeld-Trommelmagnetscheider
DE2949855A1 (de) * 1979-12-12 1981-06-19 Klöckner-Humboldt-Deutz AG, 5000 Köln Magnetscheider, insbesondere zur trennung eines trocken-feststoffgemisches in fraktionen nach der suszeptibilitaet
GB8530360D0 (en) * 1985-12-10 1986-01-22 Gec Elliott Mech Handling Magnetic separators
US6832691B2 (en) * 2002-04-19 2004-12-21 Rampage Ventures Inc. Magnetic separation system and method for separating
DE10251570A1 (de) * 2002-11-06 2004-05-19 Dürr Ecoclean GmbH Feststoffseparator
WO2004105952A1 (fr) * 2003-05-28 2004-12-09 Circulation System Co., Ltd Systeme de recyclage de boites metalliques
NL1023923C2 (nl) * 2003-07-15 2005-01-18 Recco B V Mobiele ontijzeringseenheid met magneettrommel inclusief laadstation met voeder.
CN2704418Y (zh) * 2003-09-05 2005-06-15 刘新仔 一种逆流式永磁自动排渣磁选机

Also Published As

Publication number Publication date
KR20100016055A (ko) 2010-02-12
NL1033644C2 (nl) 2008-10-07
ATE531456T1 (de) 2011-11-15
WO2008123770A1 (fr) 2008-10-16
CN101678361A (zh) 2010-03-24
EP2150349A1 (fr) 2010-02-10
CN101678361B (zh) 2013-06-19

Similar Documents

Publication Publication Date Title
CA1324987C (fr) Methode et dispositif de triage de matieres recyclables
WO2012020607A1 (fr) Système de recyclage de déchets de gypse
US8695903B2 (en) Processing of steel making slag
RU2189865C2 (ru) Способ первичной переработки смешанных отходов и перерабатывающая установка
JP3894666B2 (ja) ステンレス選別装置
KR19980701262A (ko) 혼합 플라스틱 재처리 방법 및 장치(process and plant for processing mixed plastics)
US8857746B2 (en) Process for improving the quality of separated materials in the scrap metal industry
CN100360241C (zh) 用于从墨粉盒提取墨粉的方法和装置
KR101768096B1 (ko) 슬래그 처리장치
US5992776A (en) Process for processing ash
KR101685025B1 (ko) 건설폐기물의 순환골재 선별처리장치
CN108356060A (zh) 全金属分选线
EP1490182B1 (fr) Procede permettant de retirer le papier colle sur une plaque de platre recouverte de papier
JP2007105582A (ja) 選別装置
EP2150349B1 (fr) Procédé utilisant une unité de séparation magnétique à gradient élevé pour séparer des éléments contenant de l'acier d'un flux de scories métalliques
GB2521827A (en) Separating waste materials
US3037711A (en) Method of and installation for processing dross of non-ferrous metals
JPH07299381A (ja) 移動型磁選装置
KR100689796B1 (ko) 블러스터를 이용한 재생 굵은골재용 모르타르 박리기
JP3176156U (ja) 粉粒体分離回収処理システム
KR101391444B1 (ko) 자동차 폐플라스틱류의 재활용 처리시스템
CN110774486B (zh) 废旧pcb板的铜粉循环再生利用系统
EP1486256A1 (fr) Séparateur de déchets avec des tamis à étoiles et séparateur à courant de Foucault
CN217707458U (zh) 矿石杂物清理系统
EA016538B1 (ru) Безленточный магнитный сепаратор

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008011083

Country of ref document: DE

Effective date: 20120112

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111102

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120202

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120203

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120302

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120202

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 531456

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111102

26N No opposition filed

Effective date: 20120803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008011083

Country of ref document: DE

Effective date: 20120803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120404

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120404

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120404

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080404

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140425

Year of fee payment: 7

Ref country code: FR

Payment date: 20140424

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008011083

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430