EP2125592B1 - Aufzugsanlage mit einer aufzugskabine mit einer im bereiche der aufzugskabine angeordneten bremseinrichtung zum halten und bremsen der aufzugskabine und ein verfahren zum halten und bremsen einer solchen aufzugskabine. - Google Patents

Aufzugsanlage mit einer aufzugskabine mit einer im bereiche der aufzugskabine angeordneten bremseinrichtung zum halten und bremsen der aufzugskabine und ein verfahren zum halten und bremsen einer solchen aufzugskabine. Download PDF

Info

Publication number
EP2125592B1
EP2125592B1 EP07845642.3A EP07845642A EP2125592B1 EP 2125592 B1 EP2125592 B1 EP 2125592B1 EP 07845642 A EP07845642 A EP 07845642A EP 2125592 B1 EP2125592 B1 EP 2125592B1
Authority
EP
European Patent Office
Prior art keywords
elevator car
connecting means
brake
force
brake unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07845642.3A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2125592A1 (de
Inventor
Steffen Grundmann
Gert Silberhorn
Hans Kocher
Michael STÜBI
Georg Halasy-Wimmer
Johann Jungbecker
Stefan Johannes Schmitt
Bernward Bayer
Andreas Emmerich
Andreas Pohlmann
Karl-Hermann Tegge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Priority to EP07845642.3A priority Critical patent/EP2125592B1/de
Publication of EP2125592A1 publication Critical patent/EP2125592A1/de
Application granted granted Critical
Publication of EP2125592B1 publication Critical patent/EP2125592B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/16Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well
    • B66B5/18Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well and applying frictional retarding forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B17/00Hoistway equipment
    • B66B17/34Safe lift clips; Keps

Definitions

  • the invention relates to an elevator car with a braking device arranged in the region of the elevator car for holding and braking the elevator car, an elevator system with at least one such elevator car, and a method for holding and braking such an elevator car.
  • An elevator system essentially serves the vertical transport of goods or persons.
  • the elevator installation includes for this purpose one or more elevator cars, for receiving the goods or persons, which elevator car can be moved along a guideway.
  • the elevator installation is installed in a building and the elevator car transports goods or persons from and to different floors of this building.
  • the elevator installation is installed in a driving shaft of the building and, in addition to the elevator car, it contains suspension elements which connect the elevator car with a counterweight.
  • the guideway to guide the elevator car is often a guide rail, which is attached to the building, or in the chute.
  • each of the elevator cars advantageously has its own drive system, but advantageously uses the same guide track or guide rail.
  • Such elevator systems are equipped with braking systems, which on the one hand hold the elevator car in a floor stop and / or can decelerate and hold the elevator car in the event of a fault.
  • the braking system cooperates for the purpose of braking with a braking track, which is usually in the guide rail is integrated.
  • Such elevator system can of course be arranged outside the building, in which case the guide rails can be part of a scaffold.
  • Conventional safety gears are not designed to be able to hold the elevator car in a holding position, for example for loading the elevator car, since they can only be put into operation again by a service specialist.
  • a classic braking device for an elevator car is known in which an actuating device activates a braking device via levers.
  • a braking device to an elevator car is known, which is arranged in the region of the elevator car and which can be used for holding and braking.
  • the braking device shown there includes a fluidic brake unit which can cooperate with a brake rail, an actuating device which can actuate the brake unit and a connecting means which connects the brake unit with the brake unit in a force-active manner.
  • the actuating device is a hydraulic pressure station, which is connected via hydraulic connecting means to individual brake units and thereby force-actuated the hydraulic brake units.
  • Force-active here means that a generated in the actuator hydraulic pressure actively defines a resulting in the brake unit contact pressure of brake pads to the brake rail.
  • This solution uses hydraulic pressure generators. This is expensive and expensive in procurement and maintenance. Such components are also noise intensive and to limit the effects of leaks, safety precautions must be taken.
  • cabin brake devices are also increasingly used, for example, to hold an elevator car in a floor stop, during the loading process, or to quickly and smoothly correct erroneous behavior of the elevator car.
  • the object of the invention is now to provide a braking device, which quickly brought in an irregularity in the operation of an elevator car to use and after their use quickly back to their ready position can be brought.
  • the device should be quiet and easy to use.
  • An elevator car arranged in a driving shaft is equipped with a braking device for holding and braking the elevator car.
  • the braking device consists of a brake unit which, with appropriate operation, can cooperate with a brake rail.
  • the braking device further includes an actuating device, which can generate an actuator force FA, and a connecting means, which connects the actuating device for transmitting the actuator force FA force-actively with the brake unit.
  • a force-active connection means that the brake unit generates a contact force FN and thus ei-ne, resulting from a Bremsreibwert, resulting braking force, which is directly dependent on the Aktuatorkraft FA.
  • a small contact force FN thus causes a small braking force
  • a large actuator force FA causes a correspondingly large contact force FN.
  • the connecting means is now a traction means and the braking unit is designed such that it is in the unloaded position, i. if there is no actuator force FA in open position. Open position means the braking device, or, the brake unit does not brake.
  • pulling means advantageously a pull rope, a pull rod or a pull chain is used.
  • the advantage of this invention is that in an irregularity in the operation of an elevator car, the braking device by means of the mechanical connection means, or the traction means quickly brought into use and can be quickly brought back into their ready position after ih rem use.
  • the brake unit is designed such that it, when no Aktuatorkraft FA is present, in the open position, and the connecting means is carried out by the traction means, as a result of rapid and safe operation and Again, a slight provision can be made.
  • this device is very quiet, since during operation of the elevator system no pumps or the like must be in operation.
  • the device is easy to use because it can be easily checked and understood by a person skilled in the art. This arises already from the fact that the principle of this braking device has long been known and proven in bicycles.
  • this braking device is arranged in the area of the elevator car.
  • the braking device can be easily used to hold the elevator car in a floor or the braking device can in an unexpected behavior of the elevator car, if they are suddenly slipped away, for example, in the open floor access. Thanks to the simple operation, the braking device can be easilytechnischge sets.
  • the brake rail is a component of a guide rail on which the elevator car is guided along.
  • the location of the braking device is arbitrary. It can be built up or underneath the elevator car or below the elevator car, or it can be integrated in the elevator car structure, for example in a canopy, cabin floor or in side walls.
  • the elevator car according to the invention is installed in an elevator installation which may include one or more such elevator cars which can be moved in a common drive shaft.
  • an elevator installation which may include one or more such elevator cars which can be moved in a common drive shaft.
  • the braking device has at least two brake units, which advantageously at opposite boundary edges the elevator car are arranged and which cooperate with a respective brake, or guide rail.
  • the actuating device generates an actuator force FA for actuating the brake units (9), this actuator force FA being transmitted substantially symmetrically to the brake units by means of connecting means.
  • the actuating device is substantially centrally, is arranged in the middle between two brake units, wherein in each case a first connecting means to a first brake unit and a second connecting means is connected to a second brake unit.
  • This embodiment is advantageous because the holding and braking forces due to the two-sided arrangement of the brake units are introduced substantially symmetrically in the elevator car and the actuator can be centrally, for example, in the middle of a roof of the elevator car. This makes the control easy.
  • a position of the actuating device is essentially defined by a balance of the first and the second connecting means.
  • a limiting means is provided, which limits a lateral displacement of the actuating device in case of failure of one of the connecting means and thus maintains the actuator force FA in the remaining connecting means.
  • This increases the safety of the braking device, since a residual braking force remains despite failure of a connecting means. If, for example, the braking force of the braking device is designed with a safety factor of 2, holding would be ensured even if one of the connecting means fails.
  • the failure of one of the connecting means or contact of the limiting means by the actuator can be monitored with a switch and upon detection of this condition, a maintenance can be initialized or operation of the elevator system can be limited.
  • the brake unit includes a power transmission, which converts the actuator force FA transmitted by the connecting means into a contact pressure FN and at the same time effects a reinforcement of this contact force FN.
  • a power transmission which converts the actuator force FA transmitted by the connecting means into a contact pressure FN and at the same time effects a reinforcement of this contact force FN.
  • This is achieved, for example, by a lever mechanism which converts the actuator force FA into a contact force FN via a toggle lever, via eccentrics or else via dome disks.
  • With such translation or reinforcing means can be achieved large power gains.
  • This is advantageous because commercially available connecting means such as a Bowden cable can be used as a connecting means.
  • the actuating device is a Switzerlandspannvorraum used to generate the Aktuatorkraft FA.
  • the tensioning device when appropriately controlled, pulls or relieves the first and second connection means under control. This is done for example via a spindle gear, which attracts or relaxes one or both connecting means to the actuating device.
  • the spindle gear is designed such that the tensioning device retains its currently set position in the absence of a control signal or a supply energy.
  • the supply energy supplies the drive of the spindle gear or the actuating device with preferably electrical energy and the control signal is the control command to tension the connecting means or to relax the connecting means.
  • the advantages are to be seen in the fact that the braking force determination takes place centrally in the common actuating device and the actuator force is necessarily transmitted to the decentralized brake units with the same effect. In addition, it is ensured with the selected Glasspannvorraum that a set state is maintained.
  • the actuator force is essentially transmitted by train. This allows the use of favorable traction means such as a pull rope, a pull chain or a pull rod.
  • the actuator includes a sensor for fixing the current Aktuatorkraft FA and this sensor is optional for Control, regulation and monitoring used.
  • the sensor is, for example, a force measuring sensor or a spring-loaded position sensor, which detects a compression of a spring, via which the actuator force is transmitted, and accordingly, the position sensor is a measure of the Aktuatorkraft.
  • the position sensor for example, the positions of the actuator force are reached or the actuating device is adjusted, and the tensioning device is controlled on the basis of these signals.
  • actual force or pressure sensors can be used. The use of such a sensor is advantageous because a certain tensile force can be achieved independently of a state of wear and further, that any deviations can be detected and accordingly reported to a service station.
  • connection means with a pulley.
  • the actuator force FA transmitted by the connection means to the brake unit can thus be amplified in accordance with a pulley transfer factor. This makes it possible to achieve a holding or braking force required for a specific elevator installation.
  • An advantageous embodiment provides that several elevator cars according to the invention are installed, each with a braking device in a common driving shaft.
  • the braking devices of these elevator cars can be used not only to secure the elevator car in a floor stop but also to ensure a sufficient safety distance between several elevator cars. This is advantageous because it is possible to intervene quickly with the braking device if, for example, two elevator cars move toward each other at a small distance or if a distance between two successively moving elevator cars is reduced inadmissibly.
  • the braking device can quickly, or preventively, be brought into action and they can be reset after the elimination of the fault reason just as quickly.
  • the braking device can be mounted in addition to a safety gear on the elevator car. This is advantageous because it protects a known and safety-tested emergency brake system the elevator car against extreme errors, such as the failure of suspension elements, and the task of the braking device primarily for errors and / or use in areas of stops or in the vicinity of track limits, such as Fahrschachtende or another elevator car, can be aligned.
  • the elevator installation 1 shown includes an elevator car 3, for receiving goods or persons.
  • the elevator car 3 is movable along a guide rail 7.
  • the elevator installation 1 is installed in a building and the elevator car 3 transports goods or persons from and to different floors E1... EN of this building.
  • the elevator installation 1 is installed in a drive shaft 2 of the building and, in addition to the elevator car 3, it contains support means 5 which connect the elevator car 3 to a counterweight 4. By means of a drive 6, which acts on the support means 5, the elevator car 3 is moved.
  • the guideway for guiding the elevator car 3 is a guide rail 7, which is fixedly arranged in the building or in the driving shaft 2.
  • each of the elevator cars 3, 3a has its own drive system, but they use the same guideway or guide rail 7.
  • the elevator car 3 is equipped with a braking device 8 which hold the elevator car 3 in a holding position and / or the elevator car 3 in one Deceleration trap can hold and hold.
  • the holding position is normally a floor stop.
  • the braking device 8 cooperates for the purpose of braking with a brake rail 7, which is integrated in the illustrated example in the guide rail 7.
  • the illustrated elevator car 3 is according to Fig.
  • both elevator cars 3, 3a each with a above the elevator car 3, 3a arranged braking device 8, 8a and arranged below the elevator car catching device 21, 21a provided.
  • Fig. 2 shows a plan view of the elevator car 3 of in Fig. 1 illustrated embodiment.
  • the braking device 8 consists of a first brake unit 9, 9.1 and a second brake unit 9, 9.2.
  • the brake units 9 are arranged at respectively opposite boundary edges 3.1 of the elevator car 3 and they act there on the guide rail 7, which at the same time the Brake rail forms.
  • the braking device 8 includes an actuating device 10, which is arranged substantially in the middle between the two brake units 9.
  • the actuating device 10 is connected to the two-sided brake units 9 by means of connecting means 11 or a first connecting means 11.1 and a second connecting means 11.2. By contraction of the two connecting means 11, the brake units 9 are acted upon synchronously with the same force.
  • the connecting means 11 in the example shown are traction cables such as used for a Bowden cable.
  • tension rods with articulated connection points or even a pull chain could be used instead of tension cables.
  • the connecting means is only designed to transmit a tensile force to the brake unit 9, it is a traction means.
  • Fig. 3 shows a possible embodiment of the brake unit 9.
  • an unoperated brake is shown, which is connected in a known manner via a floating storage with one-sided stop to the elevator car 3.
  • This clamping force or contact force FN creates a braking force by means of which the elevator car 3 is braked or held.
  • the brake unit is force-actuated by the connecting means 11, that is to say without an actuator force FA transmitted by the connecting means 11, the brake unit is in the open or non-braking position.
  • Fig. 5 shows another embodiment of the brake unit 9.
  • a, also un-actuated brake is shown, which fixed to the elevator car 3rd is connected.
  • the connecting means 11, or the traction cable 12 is, in the case of actuation, via a power transmission lever 14 to the movable brake pad and thus clamps the guide rail 7 firmly.
  • a braking force is produced by means of which the elevator car 3 is braked or held.
  • a translation lever 14 can be mechanical force ratios of 1:10, for example, achieve.
  • a further power transmission is also provided by the traction cable 12 is umgesammlung via a pulley in the ratio 2: 1.
  • an actuator force FA can be amplified by a factor of 2x10.
  • the resulting contact force FN is thus twenty times the value of the actuator force.
  • FN 20 x FA
  • the gain factor is exemplary.
  • the brake unit 9 simultaneously assumes a guidance of the elevator car 3, at least in the area of the brake unit 9.
  • the brake unit 9 is connected to the elevator car 3 as shown.
  • On the side of the movable or deliverable brake plate 30, a solid guide pad 32 is arranged. This solid guide pad 32 assumes normal executives during normal operation.
  • an elastically mounted guide pad 33 is arranged on the side of the fixed brake pad 31.
  • An elastic bearing 34 of the guide pad 33 is dimensioned such that usual executives as they result in normal operation result in no deflection of the elastic guide pad 33.
  • the brake unit 9 delivered that is, the movable brake pad 30 delivered by actuator force FA
  • the movable brake pad 30 pushes in front of the fixed guide pad 32 and then pushes the mutual elastic guide pad 33 against the elastic bearing 34 back to the fixed brake pad 31 for Concerning the guide rail 7 comes and then can develop its braking effect.
  • This embodiment of storage is not mandatory. Other designs, like those in Fig. 3 illustrated floating storage are also applicable.
  • Fig. 4 shows an example of an actuating device 10.
  • the first connec tion means 11.1 is by means of a tensioning device 15, consisting of a spindle and spindle motor, which can move the first connecting means 11.1 in the actuator 10.
  • the mutual second connecting means 11.2 is connected to the actuating device 10 via a force measuring device 19.
  • a clamping force FA generated by the tensioning device 15 is thus symmetrical about the connecting means 11.1, 11.2 to the brake units 9 (in Fig. 4 not shown).
  • the tensioning device 15 is controlled.
  • the tensioning device 15 when the actuator force FA is being set up, the tensioning device 15 is switched off when a set force point is reached, as a result of which the actuator force achieved is maintained upright, and when the actuator force is released the tension is released until the corresponding force information is measured.
  • the illustrated tensioning device 15 is selected such that in the event of a failure of a power supply 17, which may be a mains power source AC or a DC voltage source DC or if a control signal "Control" fails, a currently achieved actuator force FA is maintained. This is achieved for example by appropriate choice of a spindle pitch.
  • Fig. 6 shows another example of an actuating device 10.
  • the first and second connecting means 11.1, 11.2 are connected by means of tensioning device 15, consisting of a spindle with opposite thread pitches together.
  • tensioning device 15 consisting of a spindle with opposite thread pitches together.
  • the two connecting means 11 are clamped against each other.
  • force sensors 19 the current Aktuatorkraft FA measured and the Switzerlandspannvoriques 15 are controlled accordingly.
  • the spindle pushes against one of the limiting means 13 in case of failure of one of the connecting means 11 and the Aktuatorkraft can still be constructed in the remaining connecting means 11. Since the actuator force FA is measured in both connection means 11, such an error can be fast be determined and appropriate repairs can be initialized.
  • Such an actuator may typically provide an actuator force FA of about 1500N. With a force increase in the force transmission 14 of the factor ten, the result is thus, with a direct connection of the connecting means 11 to the brake unit 9, as in FIG Fig. 3 shown, a contact force FN of about 15,000N.
  • a contact force FN of about 15,000N.
  • a safety factor of 2 to hold a 125% loaded elevator car and a 50% balance, this corresponds to an elevator car with a permissible transport load of about 1200 kg.
  • This design is exemplary. Other safety factors, balancing and other designs of actuators 10, power transmissions 14 or braking units 9, etc. are of course possible.
  • Fig. 7 shows an application of the invention in an elevator installation with several elevator cars 3 in a driving shaft 2.
  • Each of the elevator cars 3, 3a is equipped with a braking device 8, 8a.
  • This braking device 8, 8a is used inter alia to maintain a sufficient safety distance 20 between two elevator cars 3, 3a. If, for example, a distance detector determines that the distance between two elevator cars decreases unexpectedly rapidly, the braking device 8, 8a of the following elevator car 3, 3a is activated, thus preventing a collision. Also, the braking device is activated at a stop of one of the elevator cars 3, 3a in a floor E, ie operated. This prevents the elevator car 3, 3a from swinging or slipping off during loading.
  • the existing safety gear 21 is still available.
  • the design criteria for the braking device 8 are reduced.
  • the braking device 8 for example, using redundant power supplies and Controls, also used as a safety brake.
  • the elevator expert can variously change the set shapes and arrangements.
  • the tensioning device 15 shown can be carried out instead of spindle drives with linear motors or Aufwickelmotoren or the like, or the connecting means 11 can be deflected to the actuator 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)
EP07845642.3A 2007-01-05 2007-12-20 Aufzugsanlage mit einer aufzugskabine mit einer im bereiche der aufzugskabine angeordneten bremseinrichtung zum halten und bremsen der aufzugskabine und ein verfahren zum halten und bremsen einer solchen aufzugskabine. Not-in-force EP2125592B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07845642.3A EP2125592B1 (de) 2007-01-05 2007-12-20 Aufzugsanlage mit einer aufzugskabine mit einer im bereiche der aufzugskabine angeordneten bremseinrichtung zum halten und bremsen der aufzugskabine und ein verfahren zum halten und bremsen einer solchen aufzugskabine.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07100189 2007-01-05
EP07845642.3A EP2125592B1 (de) 2007-01-05 2007-12-20 Aufzugsanlage mit einer aufzugskabine mit einer im bereiche der aufzugskabine angeordneten bremseinrichtung zum halten und bremsen der aufzugskabine und ein verfahren zum halten und bremsen einer solchen aufzugskabine.
PCT/CH2007/000645 WO2008080243A1 (de) 2007-01-05 2007-12-20 Aufzugsanlage mit einer aufzugskabine mit einer im bereiche der aufzugskabine angeordneten bremseinrichtung zum halten und bremsen der aufzugskabine und ein verfahren zum halten und bremsen einer solchen aufzugskabine

Publications (2)

Publication Number Publication Date
EP2125592A1 EP2125592A1 (de) 2009-12-02
EP2125592B1 true EP2125592B1 (de) 2018-07-04

Family

ID=38281637

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07845642.3A Not-in-force EP2125592B1 (de) 2007-01-05 2007-12-20 Aufzugsanlage mit einer aufzugskabine mit einer im bereiche der aufzugskabine angeordneten bremseinrichtung zum halten und bremsen der aufzugskabine und ein verfahren zum halten und bremsen einer solchen aufzugskabine.

Country Status (7)

Country Link
US (1) US8517150B2 (zh)
EP (1) EP2125592B1 (zh)
CN (1) CN101622185B (zh)
AR (1) AR064759A1 (zh)
ES (1) ES2680893T3 (zh)
TW (1) TW200840790A (zh)
WO (1) WO2008080243A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2108000B1 (de) * 2007-01-05 2019-03-27 Continental Teves AG & Co. OHG Aufzugsanlage mit einer aufzugskabine mit einer im bereiche der aufzugskabine angeordneten bremseinrichtung zum halten und bremsen der aufzugkabine und ein verfahren zum halten und bremsen einer solchen aufzugskabine
GB2488090B (en) * 2009-12-22 2014-04-30 Otis Elevator Co Elevator system with magnetic braking device
AU2012264897A1 (en) * 2011-05-30 2013-08-22 Inventio Ag Controllable elevator brake
KR101267004B1 (ko) * 2011-08-12 2013-05-30 (주)금영제너럴 수동제동장치가 부착된 비상정지장치
MX341637B (es) * 2011-09-30 2016-08-25 Inventio Ag Dispositivo de freno con actuacion electromecanica.
KR101997945B1 (ko) * 2011-11-29 2019-07-08 인벤티오 아게 재설정 수단을 갖는 안전 브레이크
EP2607288A1 (de) * 2011-12-19 2013-06-26 Inventio AG Anordnung für einen Aufzug
BR112014015079A2 (pt) * 2011-12-21 2017-06-13 Inventio Ag atuador para freio de elevador
DE102014220445B4 (de) * 2014-10-09 2017-06-08 Thyssenkrupp Ag Vorrichtung zur Überprüfung von Führungen
EP3233707A1 (de) * 2014-12-17 2017-10-25 Inventio AG Dämpfereinheit für einen aufzug
US9975733B2 (en) * 2015-01-26 2018-05-22 Kevin Cunningham Elevator safety device
US10562739B2 (en) * 2017-08-25 2020-02-18 Otis Elevator Company Synchronized electronic safety actuator
EP3674244B1 (en) * 2018-12-31 2022-09-14 KONE Corporation An elevator car parking brake
CN110143505A (zh) * 2019-05-20 2019-08-20 嘉世达电梯有限公司 一种电梯防坠落装置
CN111960214A (zh) * 2020-08-26 2020-11-20 升华电梯有限公司 一种轿厢平行的调整结构

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US483145A (en) * 1892-09-27 ailes
US613628A (en) * 1898-11-01 Clutch or brake mechanism
US557117A (en) * 1896-03-31 Safety device for elevators
US621475A (en) * 1899-03-21 Elevator
US805818A (en) * 1905-07-24 1905-11-28 Vito Regina Brake apparatus for elevator-cars.
US1124804A (en) * 1913-12-22 1915-01-12 John Remjas Elevator safety device.
US1129536A (en) * 1914-05-06 1915-02-23 Andrew Barash Safety device for elevators.
US1360653A (en) * 1919-11-08 1920-11-30 Liddicoat Caleb Safety attachment for elevators
US1773869A (en) * 1928-01-13 1930-08-26 Schank Adolf Automatic stop gear for lift cages
US1764303A (en) * 1928-05-03 1930-06-17 Westinghouse Electric & Mfg Co Safety device for elevators
US1803762A (en) * 1929-07-05 1931-05-05 Otis Elevator Co Elevator safety apparatus
US1937035A (en) * 1930-10-20 1933-11-28 Westinghouse Elec Elevator Co Elevator safety device
US1971114A (en) * 1932-06-17 1934-08-21 Westinghouse Elec Elevator Co Safety device
US2274000A (en) * 1941-10-16 1942-02-24 Otis Elevator Co Elevator safety apparatus
US2298167A (en) * 1942-03-07 1942-10-06 Westinghouse Elec Elevator Co Elevator safety device
US2511697A (en) * 1947-12-12 1950-06-13 William C Clift Elevator safety apparatus
US2925151A (en) * 1954-07-26 1960-02-16 Clifford E Chandler Mine cage safety device
GB1111425A (en) * 1965-07-26 1968-04-24 Anthes Imp Ltd Brake mechanism for a hoist
BE787631A (fr) * 1971-08-18 1973-02-19 Westinghouse Electric Corp Parachute d'ascenseur a serrage elastique sur rails de guidage
US3942607A (en) * 1974-09-06 1976-03-09 Dane Sobat Elevator safety brake
US4083432A (en) * 1976-12-01 1978-04-11 Otis Elevator Company Safety arrangement
DE3739654A1 (de) 1987-11-23 1989-06-01 Freisl Paul Peter Selbsttaetige bremsvorrichtung fuer foerderkoerbe
EP0440839B2 (de) 1990-02-06 1999-02-03 Thyssen Aufzüge Gmbh Vorrichtung zur Verhinderung unkontrollierter Bewegungen von Aufzügen
US5321217A (en) * 1990-07-18 1994-06-14 Otis Elevator Company Apparatus and method for controlling an elevator horizontal suspension
JP2529771B2 (ja) * 1990-11-06 1996-09-04 三菱電機株式会社 ロ―プレスリニアモ―タエレベ―タ―
CA2072187C (en) * 1992-06-23 1996-09-03 Dermot Camack Emergency braking systems for hoists
ATE175946T1 (de) * 1993-10-18 1999-02-15 Inventio Ag Bremssicherheitseinrichtung für eine aufzugskabine
US5495919A (en) * 1994-04-25 1996-03-05 Otis Elevator Company Safety brake apparatus for an elevator car or counterweight
DE59808783D1 (de) * 1997-04-11 2003-07-31 Inventio Ag Einrichtung zum Festsetzen einer Aufzugskabine
ATE310704T1 (de) * 2001-09-28 2005-12-15 Inventio Ag Einrichtung zum sperren einer fangvorrichtung für eine aufzugseinrichtung
US7849972B2 (en) * 2004-05-25 2010-12-14 Mitsubishi Denki Kabushiki Kaisha Emergency stop device of elevator
ES2537756T3 (es) * 2004-12-03 2015-06-11 Otis Elevator Company Dispositivo de seguridad para uso en un sistema de elevador
MY192706A (en) * 2004-12-17 2022-09-02 Inventio Ag Lift installation with a braking device, and method for braking and holding a lift installation
US20080067011A1 (en) * 2006-06-19 2008-03-20 Nicolas Gremaud Method of checking elevator braking equipment, a method for placing an elevator in operation and equipment for carrying out placing in operation
EP2108000B1 (de) * 2007-01-05 2019-03-27 Continental Teves AG & Co. OHG Aufzugsanlage mit einer aufzugskabine mit einer im bereiche der aufzugskabine angeordneten bremseinrichtung zum halten und bremsen der aufzugkabine und ein verfahren zum halten und bremsen einer solchen aufzugskabine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AR064759A1 (es) 2009-04-22
US8517150B2 (en) 2013-08-27
TW200840790A (en) 2008-10-16
EP2125592A1 (de) 2009-12-02
CN101622185B (zh) 2014-07-16
US20100089705A1 (en) 2010-04-15
ES2680893T3 (es) 2018-09-11
CN101622185A (zh) 2010-01-06
WO2008080243A1 (de) 2008-07-10

Similar Documents

Publication Publication Date Title
EP2125592B1 (de) Aufzugsanlage mit einer aufzugskabine mit einer im bereiche der aufzugskabine angeordneten bremseinrichtung zum halten und bremsen der aufzugskabine und ein verfahren zum halten und bremsen einer solchen aufzugskabine.
EP2108000B1 (de) Aufzugsanlage mit einer aufzugskabine mit einer im bereiche der aufzugskabine angeordneten bremseinrichtung zum halten und bremsen der aufzugkabine und ein verfahren zum halten und bremsen einer solchen aufzugskabine
EP2651809B1 (de) Betätigung einer fangvorrichtung
EP1067084B1 (de) Vorrichtung und Verfahren zur Verhinderung von Vertikalverschiebungen und Vertikalschwingungen an Lastaufnahmemitteln von Vertikalförderanlagen
EP2558396B1 (de) Aktuator zu einer bremseinrichtung und eine aufzugsanlage
EP1401757B1 (de) Verfahren zum verhindern einer unzulässig hohen fahrgeschwindigkeit des lastaufnahmemittels eines aufzugs
EP2058262B1 (de) Bremsvorrichtung zum Bremsen eines Fahrkorbs
EP2170753B1 (de) Aufzugsanlage mit einer aufzugkabine und einer bremseinrichtung zum stillsetzen der aufzugkabine im sonderbetrieb und ein verfahren zum stillsetzen einer aufzugkabine im sonderbetrieb
EP3177555B1 (de) Aufzugssystem, bremssystem für ein aufzugssystem und verfahren zur steuerung einer bremsanlage eines aufzugssystems
WO2012110273A1 (de) Reibungsbremse für aufzüge mit verbesserten dämpfungseigenschaften
EP2582606B1 (de) Haltebremse mit gesperre
EP2219983A1 (de) Auffahrbremse für zwei unabhängig voneinander verfahrende aufzugkörper
EP1870369A1 (de) Verfahren zur Prüfung einer Aufzugsbremseinrichtung, ein Verfahren zur Inbetriebnahme einer Aufzugsanlage und eine Einrichtung zur Durchführung einer Inbetriebnahme
EP3265415B1 (de) Bremsvorrichtung für einen fahrkorb einer aufzugsanlage
WO2016005429A1 (de) Aufzugsanlage mit bremseinrichtung am fahrkorb und verfahren zum betrieb der selbigen
EP3037375A1 (de) Aufzugsanlage mit einem Halte- und Verstellsystem für eine Aufzugskabinenanordnung
WO2009062881A1 (de) Aufzugsantrieb und verfahren zum antreiben und halten einer aufzugskabine, ein entsprechendes verfahren sowie eine bremseinrichtung und verfahren zum verzögern und halten einer aufzugskabine und ein zugehöriges verfahren
EP3468908A1 (de) Fangvorrichtung für hubeinrichtung
EP3774629A1 (de) Zangenbremse für eine aufzugsanlage, die insbesondere als halte- und sicherheitsbremse dient
EP2135832B1 (de) Aufzugbremse und eine Aufzuganlage mit einer Aufzugbremse
DE102011118544A1 (de) Hilfsantrieb für Fahrkörbe von Aufzugsanlagen
WO2022144322A1 (de) Aufhängevorrichtung und deren verwendung in einer aufzugsanlage und verfahren
EP1755934A1 (de) Vorrichtung zur feinpositionierung seilgetriebener transportmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1137717

Country of ref document: HK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: EMMERICH, ANDREAS

Inventor name: POHLMANN, ANDREAS

Inventor name: SILBERHORN, GERT

Inventor name: TEGGE, KARL-HERMANN

Inventor name: KOCHER, HANS

Inventor name: GRUNDMANN, STEFFEN

Inventor name: HALASY-WIMMER, GEORG

Inventor name: BAYER, BERNWARD

Inventor name: JUNGBECKER, JOHANN

Inventor name: STUEBI, MICHAEL

Inventor name: SCHMITT, STEFAN, JOHANNES

17Q First examination report despatched

Effective date: 20130510

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1137717

Country of ref document: HK

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502007016267

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B66B0005180000

Ipc: B66B0017340000

RIC1 Information provided on ipc code assigned before grant

Ipc: B66B 17/34 20060101AFI20170629BHEP

Ipc: B66B 5/18 20060101ALI20170629BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170818

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180201

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1014274

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007016267

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2680893

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180911

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180704

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181005

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181104

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007016267

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

26N No opposition filed

Effective date: 20190405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181220

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191210

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191220

Year of fee payment: 13

Ref country code: IT

Payment date: 20191230

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20191219

Year of fee payment: 13

Ref country code: AT

Payment date: 20191220

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20191220

Year of fee payment: 13

Ref country code: ES

Payment date: 20200121

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071220

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007016267

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1014274

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201220

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201220

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201220

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201221