EP2094642A1 - Verfahren zur herstellung von aminoalkylaminen - Google Patents

Verfahren zur herstellung von aminoalkylaminen

Info

Publication number
EP2094642A1
EP2094642A1 EP07857461A EP07857461A EP2094642A1 EP 2094642 A1 EP2094642 A1 EP 2094642A1 EP 07857461 A EP07857461 A EP 07857461A EP 07857461 A EP07857461 A EP 07857461A EP 2094642 A1 EP2094642 A1 EP 2094642A1
Authority
EP
European Patent Office
Prior art keywords
unsubstituted
chain
substituted
catalyst
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07857461A
Other languages
English (en)
French (fr)
Inventor
Florian Rampf
Guido Giffels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saltigo GmbH
Original Assignee
Saltigo GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saltigo GmbH filed Critical Saltigo GmbH
Publication of EP2094642A1 publication Critical patent/EP2094642A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/48Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles

Definitions

  • the invention relates to the preparation of aminoalkylamines such as e.g. Tetra-N, N, N-N ', N' - (3-aminopropyl) -1,4-diaminobutane.
  • aminoalkylamines such as e.g. Tetra-N, N, N-N ', N' - (3-aminopropyl) -1,4-diaminobutane.
  • Tetra-N, N, N ', N' - (4-aminopropyl) -l, 4-diaminobutane is a hexamine which can be used as a complexing agent, as a monomer or as a core molecule for the preparation of dendrimers.
  • a complexing agent it acts by the ability to bind metal ions through the lone pairs of electrons on the nitrogen atoms.
  • a monomer it can be used because it can react as a tetrafunctional primary amine with polyfunctional electrophiles to polymeric structures.
  • a special form of a polymer is dendrimers, in which tetra-N, N, N ', N' - (3-aminopropyl) -l, 4-diaminobutane forms tree-like structures in a controlled manner by repeated reaction steps.
  • the hydrogenation is carried out in the cited publications on heterogeneous Raney metal catalysts in the presence of ammonia in alcoholic solvents.
  • the hydrogenations are carried out according to the cited method so that tetra-N, N, N ', N' - (2-cyanoethyl) -l, 4-diaminobutane in an alcoholic solvent with the - liberated by washing - water catalyst is presented , Then ammonia is added, hydrogen is pressed and the reaction temperature can be adjusted. At the end of the reaction time, the hydrogen pressure is released, filtered off from the catalyst and the product separated by distillation from the solvent.
  • the disadvantage of the process described is that it requires the use of very large amounts of the described Raney catalysts.
  • the lowest amount of catalyst described is 12.3 wt .-% of dry catalyst, based on the weight of tetra-N, N, N ', N' - (2-cyanoethyl) -1, 4-diaminobutane used. In further examples, up to 51.8% by weight of dry catalyst is used.
  • this catalyst is supplied as a moist suspension with a water content of 50%, amounts of catalyst from about 25 to more than 100 wt .-% of the amount of tetra-N, N, N ', N' - (2-cyanoethyl ) -l, 4-diaminobutane necessary to obtain the desired product. This hinders the efficient and economical implementation of the process and makes desirable a process that provides equally good product quality using smaller amounts of catalyst. - -
  • the object of the invention was therefore to provide a process for the preparation of aminoalkylamines which is more efficient and economical.
  • tetra-N, N, N ', N' - (3-aminopropyl) -l, 4-diaminobutane can be prepared in high purity with significantly less use of catalyst if the solution of tetra-N, N, N ', N' - (2-cyanoethyl) -l, 4-diaminobutane is metered under hydrogenating conditions to a mixture of Raney catalyst, solvent, ammonia and hydrogen continuously and to the extent consumed by the reaction.
  • the invention consists in a process for the preparation of polyhydric amines of the formulas (I) or (II)
  • A is an aromatic or aliphatic compound from the group unsubstituted or substituted phenylene or naphthylene, methylene, unsubstituted or substituted
  • B is a straight-chain or branched aliphatic carbon chain, such as methylene, unsubstituted or substituted ethylene, propylene, unsubstituted or substituted straight-chain or branched butylene, pentylene, hexylene, heptylene, octylene, nonylene,
  • Decylene wherein at least one CH 2 unit must be in direct proximity to the amino group, and - -
  • X is absent or is a straight-chain or branched aliphatic carbon chain, such as methylene, unsubstituted or substituted ethylene, propylene, unsubstituted or substituted straight-chain or branched butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene,
  • a melt, solution or suspension of the nitrile of formula (III) or (IV) is pumped over the course of the reaction time to a suspension or solution of the Katylsators in a solvent containing ammonia and optionally other additives to increase the selectivity , And stirred at a reaction temperature in the range of 60 to 150 0 C under hydrogen pressure.
  • X corresponds to an ethylene group
  • nitriles are either melted before the reaction or dissolved or suspended in a suitable solvent.
  • suitable solvents are those which are commonly used for hydrogenations, above all water, alcohols, cyclic or open-chain ethers, halogenated or non-halogenated aliphatic or aromatic hydrocarbons.
  • alcohols such as methanol, ethanol, isopropanol or mixtures of these alcohols with water in a mixing ratio of water to alcohol of from 1:50 to 10: 1.
  • the reaction is carried out, for example, in a closed pressure vessel, which has a stirring device.
  • a continuous procedure in a tubular reactor is also conceivable.
  • the hydrogenation is carried out in the presence of hydrogen gas.
  • hydrogen gas To ensure complete reduction of the nitrile groups, it is necessary to use a sufficient amount of hydrogen - - to provide. At least an amount of 2 equivalents of hydrogen is required per nitrile group.
  • a sufficient amount of hydrogen is usually achieved by pressurizing the hydrogen under pressure.
  • the hydrogen is initially introduced under pressure into the reactor before the beginning of the reaction. Preference is given to hydrogen under a pressure of 10 to 200 bar, more preferably under a pressure of 50 to 150 bar.
  • the pressure in the reactor is further conditioned by the presence of ammonia.
  • Ammonia serves to control the selectivity of the hydrogenation in such a way that primary amines prefer to form.
  • secondary and tertiary amines are formed as by-products of the reaction.
  • the molar ratio between ammonia and nitrile groups in the educt should be between 0.25 and 2 mol of ammonia per mole of nitrile group, preferably between 0.65 and 1.25.
  • additives may also serve to increase the selectivity of the reaction for primary amines.
  • Suitable examples are basic additives such as sodium hydroxide or potassium hydroxide or calcium oxide.
  • the temperature of the reaction is adjusted to values of 60 to 150 ° C., preferably to values of 80 to 120 ° C.
  • the hydrogenation is carried out in the presence of a suitable catalyst.
  • a hydrogenation catalyst is used, preferably a heterogeneous hydrogenation catalyst.
  • the catalysts used can be derived from the VIII. Group of the Periodic Table of the Elements, which are known to show hydrogenation activity towards nitriles.
  • nickel, cobalt, platinum, palladium and rhodium are known to show hydrogenation activity towards nitriles.
  • nickel, cobalt, platinum, palladium and rhodium especially in molds which have a high active surface area.
  • the metal can be mounted, for example, on a carrier material in a thin layer.
  • Raney catalysts such as Raney nickel or Raney cobalt. These catalysts are known in the art and commercially available from several manufacturers.
  • Raney Nickel and Raney Cobalt are alloys of nickel or cobalt with aluminum. They may contain additions of other metals such as chromium or iron to increase their activity or selectivity. Especially the addition of chromium is advantageous for a high activity in the hydrogenation of nitriles.
  • Raney catalysts are often supplied as an aqueous suspension.
  • the catalyst can be used either moist with water or else the water of the delivery form - - Is replaced by washing with a solvent.
  • Suitable solvents are the abovementioned solvents which can also be used for pumping in the nitrile.
  • the optionally washed catalyst is introduced into the reactor together with solvent, hydrogen and ammonia and stirred under the reaction conditions.
  • the amount of catalyst used is initially dependent on the geometry and handling of the reactor used. In addition, it depends on the amount of substrate to be hydrogenated. Surprisingly, it has now been found that the amount of catalyst required can be reduced to about half that of the prior art, whereby the selectivity and activity of the catalyst is not reduced.
  • WO95 / 2008 and EP-A 707 611 describe the use of from 12 to 50% by weight of the educt of dry catalyst as necessary. According to the inventive method already 5-8 wt .-% of the reactant dry catalyst to complete a reaction of the nitrile of formula (III) and (IV) with almost complete selectivity in favor of the amines of formula (I) and (II ) to ensure.
  • the contents of the reactor must be thoroughly mixed so that both sufficient hydrogen is introduced into the reaction mixture and the catalyst is sufficiently fluidized in order to be able to interact with the starting material.
  • stirring devices in the reactor are suitable.
  • the reaction is started by pumping the melt, the solution or the suspension of the educt against the hydrogen pressure into the reactor.
  • the reaction occurs spontaneously after the dropwise addition of the educt.
  • the reaction time is largely determined by the duration of the pumping process. Usually is pumped in a period of 30 min to 24 h, preferably within 1 h to 8 h. After the end of the pumping process, continued uptake of hydrogen may occur due to the not yet completely completed reaction. After the end of the hydrogen uptake, the reaction is complete. Typical post-reaction times are between 5 minutes and 4 hours.
  • the catalyst used is filtered off from the reaction mixture after the reaction. This can be done via a filter unit outside the reactor or through filter cartridges and a riser inside the boiler. Thus, the catalyst can either be supplied to a suitable disposal or reuse. For reuse, the catalyst may either remain in the reactor and be reused immediately, or it may be reactivated prior to next use. For reactivation, the catalyst can be washed, for example, with an aqueous solution of NaOH or KOH at elevated temperature and washed with water until the effluent solution is almost neutral. - -

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Beschrieben wird ein Verfahren zur Herstellung von mehrwertigen Aminen der Formeln (I) oder (II) durch Hydrierung der zugehörigen Nitrile der Formeln (III) oder ((IV) mit Wasserstoff, dadurch gekennzeichnet, das eine Schmelze, Lösung oder Suspension des Nitrils der Formel (I) oder (II) über den Verlauf der Reaktionszeit zu einer Suspension oder Lösung eines Katylsators in einem Lösungsmittel gegeben wird, die Ammoniak und gegebenenfalls andere Additive enthält und bei eine Temperatur im Bereich von 60 bis 150°C unter Wasserstoffdruck gerührt wird.

Description

Verfahren zur Herstellung von Aminoalkylaminen
Die Erfindung betrifft die Herstellung von Aminoalkylaminen wie z.B. Tetra-N,N,N-N',N'-(3- aminopropyl)- 1 ,4-diaminobutan.
Tetra-N,N,N',N'-(4-aminopropyl)-l,4-diaminobutan ist ein Hexamin, das als Komplexbildner, als Monomer oder als Kernmolekül für die Herstellung von Dendrimeren verwendet werden kann. Als Komplexbildner wirkt es durch die Möglichkeit, Metallionen durch die freien Elektronenpaare an den Stickstoffatomen zu binden. Als Monomer kann es eingesetzt werden, weil es als tetrafunktionales primäres Amin mit mehrfunktionalen Elektrophilen zu polymeren Strukturen reagieren kann. Eine Spezialform eines Polymers bildet Dendrimere, in denen Tetra-N,N,N',N'-(3-aminopropyl)-l,4- diaminobutan durch wiederholte Reaktionsschritte in kontrollierter Weise baumartige Strukturen ausbildet.
Eine technische anwendbare Synthese von Tetra-N,N,N',N'-(3-aminopropyl)-l,4-diaminobutan ist in der Patentliteratur beschrieben. WO95/2008 und EP-A 707 611 beschreiben die Herstellung von Tetra-N,N,N',N'-(3-aminopropyl)-l,4-diaminobutan, ausgehend von 1,4-Diaminobutan durch vierfache Reaktion mit Acrylnitril zu Tetra-N,N,N',N'-(2-cyanoethyl)-l,4-diaminobutan und anschließende Hydrierung. Die Hydrierung wird in den zitierten Publikationen an heterogenen Raney-Metall-Katalysatoren in Gegenwart von Ammoniak in alkoholischen Lösemitteln durchgeführt. Die Hydrierungen werden gemäß dem zitierten Verfahren so durchgeführt, dass Tetra- N,N,N',N'-(2-cyanoethyl)-l,4-diaminobutan in einem alkoholischen Lösungsmittel mit dem - durch Waschen vom Wasser befreiten - Katalysator vorgelegt wird, dann Ammoniak zudosiert wird, Wasserstoff aufgepresst und die Reaktionstemperatur eingestellt werden. Am Ende der Reaktionszeit wird der Wasserstoffdruck entspannt, vom Katalysator abfiltriert und das Produkt durch Destillation vom Lösungsmittel getrennt.
Der Nachteil des beschriebenen Verfahrens ist, dass es den Einsatz sehr hoher Mengen an den beschriebenen Raney-Katalysatoren erfordert. Die geringste beschriebene Katalysatormenge ist 12,3 Gew.-% an trockenem Katalysator, bezogen auf das Gewicht des eingesetzten Tetra-N,N,N',N'-(2- cyanoethyl)-l,4-diaminobutan. In weiteren Beispielen werden bis zu 51,8 Gew.-% an trockenem Katalysator eingesetzt. Da dieser Katalysator als feuchte Suspension mit einem Wasseranteil von 50 % geliefert wird, sind Katalysatormengen von ca. 25 bis zu mehr als 100 Gew. -% der eingesetzten Menge an Tetra-N,N,N',N'-(2-cyanoethyl)-l,4-diaminobutan nötig, um das gewünschte Produkt zu erhalten. Dies steht einer effizienten und wirtschaftlichen Umsetzung des Verfahrens im Wege und macht ein Verfahren wünschenswert, das bei Verwendung kleinerer Katalysatormengen eine ebenso gute Qualität des Produktes liefert. - -
Aufgabe der Erfindung war es daher, ein Verfahren zur Herstellung von Aminoalkylaminen zur Verfügung zu stellen, das effizienter und wirtschaftlicher ist.
Überraschend wurde nun gefunden, dass Tetra-N,N,N',N'-(3-aminopropyl)-l,4-diaminobutan in hoher Reinheit mit deutlich weniger Katalysatoreinsatz hergestellt werden kann, wenn die Lösung von Tetra-N,N,N',N'-(2-cyanoethyl)-l,4-diaminobutan unter Hydrierbedingungen zu einer Mischung von Raney-Katalysator, Lösemittel, Ammoniak und Wasserstoff kontinuierlich und in dem Maße zudosiert wird, wie es durch die Reaktion verbraucht wird.
Die Erfindung besteht in einem Verfahren zur Herstellung von mehrwertigen Aminen der Formeln (I) oder (II)
O (H)
durch Hydrierung der zugehörigen Nitrile der Formeln (III) oder (IV)
C") (IV)
wobei
A eine aromatische oder aliphatische Verbindung aus der Gruppe unsubstituiertes oder substituiertes Phenylen oder Naphthylen, Methylen, unsubstituiertes oder substituiertes
Ethylen, Propylen, unsubstituiertes oder substituiertes geradkettig oder verzweigtes Butylen, Pentylen, Hexylen, Heptylen, Octylen, Nonylen, Decylen ist und
B eine geradkettige oder verzweigte aliphatische Kohlenstoffkette ist, wie Methylen, unsubstituiertes oder substituiertes Ethylen, Propylen, unsubstituiertes oder substituiertes geradkettig oder verzweigtes Butylen, Pentylen, Hexylen, Heptylen, Octylen, Nonylen,
Decylen, wobei zumindest eine CH2-Einheit in direkter Nachbarschaft zur Aminogruppe stehen muss, und - -
X fehlen kann oder eine geradkettige oder verzweigte aliphatische Kohlenstoffkette ist, wie Methylen, unsubstituiertes oder substituiertes Ethylen, Propylen, unsubstituiertes oder substituiertes geradkettig oder verzweigtes Butylen, Pentylen, Hexylen, Heptylen, Octylen, Nonylen, Decylen,
dadurch gekennzeichnet, das eine Schmelze, Lösung oder Suspension des Nitrils gemäß Formel (III) oder (IV) über den Verlauf der Reaktionszeit zu einer Suspension oder Lösung des Katylsators in einem Lösungsmittel gepumpt wird, die Ammoniak und gegebenenfalls andere Additive zur Erhöhung der Selektivität enthält, und bei einer Reaktionstemperatur im Bereich von 60 bis 1500C unter Wasserstoffdruck gerührt wird.
Bevorzugt werden Nitrile der Formel (III) oder (IV) eingesetzt, bei denen
X einer Ethylengruppe entspricht und
A aus der Gruppe Methylen, Ethylen, Propylen, n-Butylen, n-Pentylen, n-Hexylen
ausgewählt ist. Daraus entstehen durch Hydrierung Amine der Formel (I) und (II), bei denen
B einer Propylengruppe entspricht und
A aus der Gruppe Methylen, Ethylen, Propylen, n-Butylen, n-Pentylen, n-Hexylen
ausgewählt ist.
Die Nitrile werden vor der Reaktion entweder aufgeschmolzen oder in einem geeigneten Lösungsmittel gelöst oder suspendiert. Geeignete Lösungsmittel sind solche, die üblicherweise für Hydrierungen eingesetzt werden, vor allen Wasser, Alkohole, cyclische oder offenkettige Ether, halogenierte oder nicht halogenierte aliphatische oder aromatische Kohlenwasserstoffe.
Bevorzugt werden Wasser oder Alkohole verwendet, und besonders bevorzugt Alkohole wie Methanol, Ethanol, Isopropanol oder Mischungen dieser Alkohole mit Wasser in einem Mischungsverhältnis von Wasser zu Alkohol von 1 :50 bis 10:1.
Die Reaktion wird beispielsweise in einem geschlossenen Druckgefäß durchgeführt, das eine Rührvorrichtung vorweist. Eine kontinuierliche Fahrweise in einem Rohrreaktor ist ebenfalls denkbar.
Die Hydrierung wird in Anwesenheit von Wasserstoff-Gas durchgeführt. Um ein vollständige Reduktion der Nitrilgruppen zu gewährleisten, ist es nötig, eine ausreichende Menge Wasserstoff - - bereitzustellen. Pro Nitrilgruppe ist mindestens eine Menge von 2 Äquivalenten Wasserstoff nötig. Eine ausreichende Menge Wasserstoff wird üblicherweise durch Aufpressen des Wasserstoffs unter Druck erreicht. Im erfindungsgemäßen Verfahren wird der Wasserstoff vor Reaktionsbeginn im Reaktor unter Druck vorgelegt. Bevorzugt wird Wasserstoff unter einem Druck von 10 bis 200 bar vorgelegt, besonders bevorzugt unter einem Druck von 50 bis 150 bar.
Der Druck im Reaktor wird weiterhin durch die Anwesenheit von Ammoniak bedingt. Ammoniak dient dazu, die Selektivität der Hydrierung so zu steuern, dass bevorzugt primäre Amine entstehen. In Abwesenheit von Ammoniak bilden sich erfahrensgemäß sekundäre und tertiäre Amine als Nebenprodukte der Reaktion. Das molare Verhältnis zwischen Ammoniak und Nitrilgruppen im Edukt sollte zwischen 0,25 und 2 mol Ammoniak pro mol Nitrilgruppe betragen, bevorzugt zwischen 0,65 und 1,25.
Weitere Additive können ebenfalls dazu dienen, die Selektivität der Reaktion für primäre Amine zu erhöhen. Geeignet sind beispielsweise basische Zusätze wie Natriumhydroxid oder Kaliumhydroxid oder Calciumoxid.
Die Temperatur der Reaktion wird auf werte von 60 bis 1500C eingestellt, bevorzugt auf werte von 80 bis 1200C.
Die Hydrierung wird in Gegenwart eines geeigneten Katalysators durchgeführt. Dazu wird üblicherweise ein Hydrierkatalysator verwendet, bevorzugt ein heterogener Hydrierkatalysator. Die verwendeten Katalysatoren können aus der VIII. Gruppe des Periodensystems der Elemente stammen, die bekanntermaßen Hydrieraktivität gegenüber Nitrilen zeigen. Besonders geeignet sind Nickel, Kobalt, Platin, Palladium und Rhodium, besonders in Formen, die eine hohe aktive Oberfläche aufweisen. Dazu kann das Metall beispielsweise auf einem Trägermaterial in dünner Schicht aufgezogen sein. Besonders geeignet sind sogenannte Raney-Katalysatoren wie Raney- Nickel oder Raney-Kobalt. Diese Katalysatoren sind dem Fachmann bekannt und von mehreren Herstellern kommerziell erhältlich.
Raney Nickel und Raney Kobalt stellen Legierungen von Nickel oder Kobalt mit Aluminium dar. Sie können Zusätze anderer Metalle wie Chrom oder Eisen enthalten, um ihre Aktivität oder Selektivität zu erhöhen. Besonders der Zusatz von Chrom ist für eine hohe Aktivität in der Hydrierung von Nitrilen vorteilhaft.
Raney Katalysatoren werden häufig als wässrige Suspension geliefert. Der Katalysator kann im Sinne der Erfindung entweder wasserfeucht eingesetzt werden, oder aber das Wasser der Lieferform - - wird durch Waschen gegen ein Lösungsmittel ausgetauscht. Geeignete Lösungsmittel sind die oben bereits genannten Lösungsmittel, die auch zum Einpumpen des Nitrils dienen können.
Erfindungsgemäß wird der gegebenenfalls gewaschene Katalysator zusammen mit Lösungsmittel, Wasserstoff und Ammoniak im Reaktor vorgelegt und unter den Reaktionsbedingungen gerührt.
Die Menge an verwendetem Katalysator ist zunächst abhängig von der Geometrie und der Handhabung des verwendeten Reaktors. Darüber hinaus richtet sie sich nach der Menge des zu hydrierenden Substrats. Überraschend zeigte sich nun, dass die Menge des nötigen Katalysators gegenüber dem Stand der Technik auf ca. die Hälfte reduziert werden kann, wobei die Selektivität und Aktivität des Katalysators nicht verringert wird. WO95/2008 und EP-A 707 611 beschreiben die Verwendung von 12 bis 50 Gew.-% des Edukts an trockenem Katalysator als nötige Menge. Nach dem erfindungsgemäßen Verfahren reichen bereits 5-8 Gew.-% des Edukts an trockenem Katalysator aus, um eine vollständige Umsetzung des Nitrils nach Formel (III) und (IV) bei nahezu vollständiger Selektivität zugunsten der Amine nach Formel (I) und (II) zu gewährleisten.
Der Inhalt des Reaktors muss sorgfältig durchmischt werden, damit sowohl genügend Wasserstoff in die Reaktionsmischung eingetragen als auch der Katalysator ausreichend aufgewirbelt wird, um mit dem Edukt in Wechselwirkung treten zu können. Dazu eignen sich Rührvorrichtungen im Reaktor.
Die Reaktion wird dadurch begonnen, dass die Schmelze, die Lösung oder die Suspension des Edukts gegen den Wasserstoffdruck in den Reaktor eingepumpt wird. Die Reaktion erfolgt spontan nach dem Eintropfen des Edukts. Die Reaktionszeit wird weitgehend von der Dauer des Pumpvorgangs bestimmt. Üblicherweise wird in einem Zeitraum von 30 min bis 24 h eingepumpt, bevorzugt innerhalb von 1 h bis 8 h. Nach Ende des Einpumpvorgangs kann es zu fortgesetzter Aufnahme von Wasserstoff kommen, bedingt durch die noch nicht vollständig abgeschlossene Reaktion. Nach Ende der Wasserstoffaufnahme ist die Reaktion beendet. Typische Nachreaktionszeiten liegen zwischen 5 min und 4 h.
Der verwendete Katalysator wird nach der Reaktion von der Reaktionsmischung abfiltriert. Dies kann über ein Filteraggregat außerhalb des Reaktors erfolgen oder durch Filterkerzen und ein Steigrohr im Inneren des Kessels. So kann der Katalysator entweder einer geeigneten Entsorgung oder aber der Wiederverwendung zugeführt werden. Zur Wiederverwendung kann der Katalysator entweder im Reaktor verbleiben und sofort wieder eingesetzt werden, oder aber er wird vor der nächsten Verwendung reaktiviert. Zur Reaktivierung kann der Katalysator beispielsweise mit einer wässrigen Lösung von NaOH oder KOH bei erhöhter Temperatur gewaschen und mit Wasser solange nachgewaschen werden, bis die ablaufende Lösung nahezu neutral ist. - -
Beispiele Beispiel 1
720 g Tetra-N,N-N',N'-(2-cyanoethyl)-l,4-diaminobutan wurden in 720 g Methanol gelöst. 96 g wasserfeuchter Raney-Kobalt-Katalysator, z.B. Raney 2724 von Grace, (entspricht 48 g trockenem Katalysator) wurden bei Raumtemperatur 3 x mit je 100 ml Methanol gewaschen und mit 320 ml Methanol in einen 3 1 Autoklaven aus VA-Stahl überführt. Der Autoklav wurde verschlossen, durch dreimaliges Aufdrücken von Stickstoff der Luftsauerstoff verdrängt, dann unter fortwährenden Rühren 200 g Ammoniak eingedrückt. Anschließend wurde unter Rühren auf 95°C erwärmt und der Innendruck mit Wasserstoff auf 100 bar erhöht. Über eine LEWA-Hochdruck-Membranpumpe wurde die Reaktionslösung in 4 Stunden in den Autoklaven eingepumpt, während die Reaktionsmischung kräftig gerührt wurde. Nach Dosierende wurde 15 min weitergerührt, dann auf 25°C abgekühlt, entspannt und der Inhalt des Autoklaven unter Luftausschluss (Feuergefahr durch aktiven Katalysator) vom Autoklaven abfiltriert. Die anfallende methanolische Lösung wurde bei 800C und 20 mbar einrotiert. Zurück blieben 735 g Tetra-N,N,N',N'-(3-aminopropyl)-l,4-diaminobutan. Die Reinheit betrug 97 % nach GC.

Claims

- -Patentansprüche
1. Verfahren zur Herstellung von mehrwertigen Aminen der Formeln
/B^ /B^ H2N N NH2 -Bv
H2N' "N' 'NH I I
6^NH2 Oder .B B.
/
H2 N ^NH 2
(I) (H)
durch Hydrierung der zugehörigen Nitrile der Formeln
C") (IV)
mit Wasserstoff, wobei
A eine aromatische oder aliphatische Verbindung aus der Gruppe unsubstituiertes oder substituiertes Phenylen oder Naphthylen, Methylen, unsubstituiertes oder substituiertes Ethylen, Propylen, unsubstituiertes oder substituiertes geradkettig oder verzweigtes Butylen, Pentylen, Hexylen, Heptylen, Octylen, Nonylen, Decylen ist und
B eine geradkettige oder verzweigte aliphatische Kohlenstoffkette mit 1 bis
10 C-Atomen ist, wie Methylen, unsubstituiertes oder substituiertes Ethylen,
Propylen, unsubstituiertes oder substituiertes geradkettig oder verzweigtes Butylen, Pentylen, Hexylen, Heptylen, Octylen, Nonylen, Decylen, wobei zumindest eine
CH2-Einheit in direkter Nachbarschaft zur Aminogruppe stehen muss, und
X fehlen kann oder eine geradkettige oder verzweigte aliphatische Kohlenstoffkette mit 1 bis 10 C-Atomen ist, wie Methylen, unsubstituiertes oder substituiertes Ethylen, Propylen, unsubstituiertes oder substituiertes geradkettig oder verzweigtes Butylen, Pentylen, Hexylen, Heptylen, Octylen, Nonylen, Decylen,
dadurch gekennzeichnet, das eine Schmelze, Lösung oder Suspension des Nitrils der Formel (III) oder (IV) über den Verlauf der Reaktionszeit zu einer Suspension oder Lösung eines Katalylators in einem Lösungsmittel gegeben wird, die Ammoniak und gegebenenfalls andere Additive enthält und bei einer Temperatur im Bereich von 60 bis 1500C unter Wasserstoffdruck gerührt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Katalysator ein Hydrier- katalysator ist, enthaltend Nickel, Kobalt, Platin, Palladium oder Rhodium gegebenenfalls auf einem Trägermaterial.
3. Verfahren nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass das molare Verhältnis zwischen Ammoniak und Nitrilgruppe in Edukt 0,25 bis 2,00 beträgt.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Wasserstoffdruck zwischen 10 und 200 bar beträgt.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Lösungsmittel Wasser, Methanol, Ethanol, Isopropanol oder eine Mischung dieser Alkohole mit Wasser ist.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass X eine Ethylengruppe und A eine Methyl, Ethyl-, Propyl, n-Butyl-, n-Pentyl- oder n-Hexylgruppe ist.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass als Additive Natirumhydroxid, Kaliumhydroxid oder Calciumoxid zugesetzt werden.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Temperatur zwischen 80 und 1200C liegt.
EP07857461A 2006-12-27 2007-12-12 Verfahren zur herstellung von aminoalkylaminen Withdrawn EP2094642A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006061535A DE102006061535A1 (de) 2006-12-27 2006-12-27 Verfahren zur Herstellung von Aminoalkylaminen
PCT/EP2007/063798 WO2008080784A1 (de) 2006-12-27 2007-12-12 Verfahren zur herstellung von aminoalkylaminen

Publications (1)

Publication Number Publication Date
EP2094642A1 true EP2094642A1 (de) 2009-09-02

Family

ID=39292708

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07857461A Withdrawn EP2094642A1 (de) 2006-12-27 2007-12-12 Verfahren zur herstellung von aminoalkylaminen

Country Status (5)

Country Link
US (1) US8227641B2 (de)
EP (1) EP2094642A1 (de)
JP (1) JP2010514724A (de)
DE (1) DE102006061535A1 (de)
WO (2) WO2008080755A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5702086B2 (ja) * 2010-08-06 2015-04-15 国立大学法人大阪大学 パラジウムクラスターとデンドリマーの複合体、その製造方法および当該複合体を利用した水素化方法
EP2557074A1 (de) * 2011-08-11 2013-02-13 Astellas Pharma Inc. Verfahren zur Herstellung von N,N,N',N'-tetrakis(3-aminpropyl)-1,4-butanediamin
RU2495020C1 (ru) * 2012-10-22 2013-10-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) Способ получения 2-(2-амино)алкиладамантанов
US20160304445A1 (en) * 2013-12-11 2016-10-20 Basf Se N,n-bis(2-aminoalkyl)-1,2-alkyl diamine derivatives
JP6478775B2 (ja) * 2014-05-15 2019-03-06 キヤノン株式会社 アミン化合物及びイオン導電剤、導電性樹脂組成物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2538208B2 (ja) * 1986-05-21 1996-09-25 旭化成工業株式会社 4−アミノメチル−1,8−ジアミノオクタンの製造法
AU620205B2 (en) * 1989-02-07 1992-02-13 W.R. Grace & Co.-Conn. Preparation of tris(2-aminoethyl)amine
JP3422331B2 (ja) * 1991-07-19 2003-06-30 広栄化学工業株式会社 N,n−ジ置換エチレンジアミンの製造方法
BE1007260A3 (nl) 1993-07-08 1995-05-02 Dsm Nv Werkwijze voor het bereiden van een dendritisch macromolekuul.
JP3340439B2 (ja) * 1993-12-28 2002-11-05 ローヌ−プーラン シミ ドーピングさせたラニーニッケル型の触媒の存在におけるニトリルの、アミンへの接触水素添加方法
JPH08333308A (ja) * 1995-06-07 1996-12-17 Koei Chem Co Ltd N,n´−ビス(3−アミノプロピル)−ジアミノアルカンの製法
NL1001977C2 (nl) * 1995-12-22 1997-06-24 Dsm Nv Werkwijze voor de bereiding van een macromolekuul.
US5874625A (en) * 1996-11-04 1999-02-23 Henkel Corporation Process to hydrogenate organic nitriles to primary amines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008080784A1 *

Also Published As

Publication number Publication date
US20100145102A1 (en) 2010-06-10
US8227641B2 (en) 2012-07-24
DE102006061535A1 (de) 2008-07-03
WO2008080755A1 (de) 2008-07-10
WO2008080784A1 (de) 2008-07-10
JP2010514724A (ja) 2010-05-06

Similar Documents

Publication Publication Date Title
CH429705A (de) Verfahren zur Herstellung von Gemischen aus Aminoalkoholen und Diaminen
DE849109C (de) Verfahren zur Herstellung aliphatischer Azoverbindungen
EP2094642A1 (de) Verfahren zur herstellung von aminoalkylaminen
EP0857719B2 (de) Kontinuierliches Verfahren zur Herstellung von 4-Aminopiperidinen
DE3721539A1 (de) Verfahren zur herstellung von methylaminen
EP0671382A1 (de) Gesättigte Fluoralkylamine und deren Derivate sowie Mischungen davon
EP1585718A1 (de) Verfahren zur herstellung von (r)-salbutamol
AT401930B (de) Verfahren zur herstellung von n-substituierten glycinestern und verfahren zur indigosynthese aus den so hergestellten glycinestern
DE69837423T2 (de) Verfahren zur herstellung von cyanoarylmethylamin
EP0535518A1 (de) Verfahren zur Herstellung von 2-Aminomethylpiperidin
DE3303789C2 (de)
DE3544510A1 (de) Verfahren zur herstellung aliphatischer tertiaerer amine
DE60224968T2 (de) Prozess für die Herstellung von 5-Arylpentanolen
DE10138967B4 (de) Verfahren zur Herstellung von 3-Alkoxypropanol
DE2555735C3 (de) Verfahren zur Herstellung von Aminopropyläthern mehrwertiger Alkohole
WO2007071626A2 (de) Verfahren zur herstellung von aminoalkansäureamiden
EP3180308B1 (de) Verfahren zur herstellung von 2,2-difluorethylamin
EP0142070A1 (de) Verfahren zur Herstellung von N-Methylhomoveratrylamin
WO1993013047A1 (de) Verfahren zur herstellung von dibenzylamin
DE60216946T2 (de) Herstellung von aminonitrilen
DE815043C (de) Verfahren zur Herstellung von Derivaten des 1-(p-Oxyphenyl)-2-amino-propanols-(1)
DE2319360A1 (de) Verfahren zur herstellung von epsilonaminocapronsaeureamid
DE3441989A1 (de) Verfahren zur herstellung von aminobenzylamin
WO1995030666A1 (de) Tertiäres diamin, verwendung als katalysator und verfahren zur herstellung von tertiären diaminen
WO2003074468A1 (de) Verfahren zur herstellung von ethyldimethylamin und triethylamin

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090727

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100525

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120424