EP2036147A1 - Procede de modification de la resistance interfaciale d'une electrode de lithium metallique. - Google Patents

Procede de modification de la resistance interfaciale d'une electrode de lithium metallique.

Info

Publication number
EP2036147A1
EP2036147A1 EP07788853A EP07788853A EP2036147A1 EP 2036147 A1 EP2036147 A1 EP 2036147A1 EP 07788853 A EP07788853 A EP 07788853A EP 07788853 A EP07788853 A EP 07788853A EP 2036147 A1 EP2036147 A1 EP 2036147A1
Authority
EP
European Patent Office
Prior art keywords
particles
metal oxide
battery
electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07788853A
Other languages
German (de)
English (en)
Inventor
Lucas Sannier
Marek Marczewski
Hanna Marczewska
Aldona Zalewska
Wladyslaw Wieczorek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite De Technologie De Varsovie
Original Assignee
Universite De Technologie De Varsovie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite De Technologie De Varsovie filed Critical Universite De Technologie De Varsovie
Publication of EP2036147A1 publication Critical patent/EP2036147A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/40Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a method for modifying the interfacial resistance of a lithium metal electrode, as well as a lithium metal electrode and a Li-metal battery comprising such an electrode.
  • metallic lithium as a negative electrode for batteries has been under consideration for several decades.
  • Lithium metal has the advantage of having a high energy density because of its low density and its strong electropositive character.
  • the use of lithium metal in a liquid medium leads to a degradation of the electrolyte solution due to contact with lithium, and also poses safety problems due to the formation of dendrites on the surface of the metal, which can lead to a short circuit causing the battery to explode.
  • the inorganic fillers are blocked within the polymeric material forming the electrolyte, and therefore have little effect on the interfacial resistance of the lithium electrode, which is the indicative factor for the degradation of the electrolyte at the the surface of the electrode.
  • the interfacial resistance increases progressively during the electrochemical process until it reaches a plateau, and the addition of charges in solid electrolytes only has the effect of reducing the value of the interfacial resistance to the plateau. .
  • US Pat. No. 5,503,946 proposes an anode for lithium battery covered with a film consisting of carbon or magnesium particles.
  • this system allows only a moderate decrease in interfacial resistance.
  • the inventors have developed a method for modifying the interfacial resistance of a lithium electrode immersed in an electrolytic solution, which, surprisingly, substantially limits the degradation of the electrolyte in contact with metallic lithium.
  • This method therefore makes it possible to envisage the use of lithium metal electrodes in liquid electrolytes, therefore at ambient temperature, for the manufacture of high performance batteries.
  • the invention provides a method for modifying the interfacial resistance of a lithium metal electrode immersed in an electrolytic solution, which consists in depositing a film of metal oxide particles on the surface of said electrode.
  • Deposition of the particle film protects the surface of the lithium metal electrode, which leads to a significant decrease in the resistance of the interface between the lithium and the electrolyte.
  • the deposition is carried out by dispersing the particles in the electrolytic solution, then by sedimentation of said particles on the surface of the electrode.
  • Such a deposit method has the advantage of being particularly simple, since the formation of the film is by sedimentation over time of the particles dispersed in the electrolytic solution.
  • the metal oxide constituting the particles is chosen for example from Al 2 O 3 , SiO 2 , TiO 2 , ZrO 2 , BaTiO 3 , MgO, LiAlO 2 . These particles are readily available commercially, and are low cost.
  • the metal oxide particles prior to deposition, can be modified by grafting on their surface groups having an acid character.
  • the metal oxide particles may be Al 2 O 3 particles modified with SO 4 2 "groups .
  • the modification of the metal oxide particles may be carried out by bringing the particles into contact with an aqueous solution comprising the acid groups to graft, and then drying and calcination of particles This type of treatment, commonly used in catalytic chemistry, has the advantage of being simple to implement.
  • the electrolytic solution typically consists of a lithium salt and a solvent or a mixture of aprotic polar solvents.
  • aprotic polar solvents examples include linear ethers and cyclic ethers, esters, nitriles, nitrates, amides, sulfones, sulfolanes, alkylsulfamides and partially halogenated hydrocarbons.
  • Particularly preferred solvents are diethyl ether, dimethyl ether, dimethoxyethane, glyme, tetrahydrofuran, dioxane, dimethyltetrahydrofuran, methyl or ethyl formate, propylene carbonate or ethylene carbonate, carbonates.
  • alkyls especially dimethylcarbonate, diethylcarbonate and methylpropylcarbonate
  • butyrolactones acetonitrile, benzonitrile, nitromethane, nitrobenzene, dimethylformamide, diethylformamide, N- methylpyrrolidone, dimethylsulfone, tetramethylene sulfone, tetraalkylsulfonamides having 5 to 10 carbon atoms, polyethylene glycol of low mass.
  • polyethylene glycol dimethyl ether mention may be made of polyethylene glycol dimethyl ether.
  • the lithium salt of the electrolyte may be an ionic compound Li + Y " , in which Y " represents an anion with delocalised electronic charge, for example Br “ , C10, ⁇ , PF 6 " , AsF ⁇ “ , R F SO 3 " , (R F SO 2 Z ) 2 N “ , (R F SO 2 ) 3 C “ , C 6 H (6 - X) (CO (CF 3 SO 2 ) 2 C “ ) X OR C 6 H ( 6 - x > (SO 2 (CF 3 SO 2 ) 2 C " ) x, where R F represents a perfluoroalkyl or perfluoroaryl group, with l ⁇ x ⁇ 4.
  • Y " represents an anion with delocalised electronic charge, for example Br “ , C10, ⁇ , PF 6 " , AsF ⁇ “ , R F SO 3 " , (R F SO 2 Z ) 2 N “ , (R F SO 2 ) 3 C “ , C
  • the solvent of the electrolytic solution is polyethylene glycol dimethyl ether (PEGDME), and the lithium salt is lithium perchlorate (LiClO 4 ).
  • PEGDME polyethylene glycol dimethyl ether
  • LiClO 4 lithium perchlorate
  • the deposition of the metal oxide particles on the surface of the electrode can be performed during the operation of an electrochemical cell comprising an anode formed by said electrode, and a cathode, the anode and the cathode being separated by an electro solution. - lytic. If the electrochemical cell is used as a battery, the deposition can take place either before the battery is put into operation, or during the first cycles of operation of the battery.
  • the particles being preferably dispersed in the electrolytic solution, it is possible to let them sediment on the surface of the anode before operating the battery, or to operate the battery as soon as its assembly is complete, the sedimentation then naturally occurring during the first cycles.
  • the subject of the invention is a lithium metal electrode for a battery, the surface of said electrode being covered with a film of metal oxide particles.
  • the particles constituting the film are Al 2 O 3 particles surface-modified with SO 4 2- groups.
  • the invention proposes a lithium metal battery comprising an anode and a cathode separated by an electrolytic solution, characterized in that:
  • the anode and the cathode are in the form of parallel sheets, the cathode being above the anode; • the anode is constituted by a lithium sheet whose surface facing the electrolytic solution is covered with a film of metal oxide particles, said particles being as defined above.
  • the sheets constituting the anode and the cathode are horizontal or substantially horizontal.
  • the cathode may comprise at least one transition metal oxide capable of reversibly intercalating and disintegrating lithium, for example selected from the group consisting of LiCoO 2 , LiNiO 2 , LiMn 2 O 4, LiV 3 O 8, V 2 O 5, 'V 6 Oi 3, LiFePO 4 and Li x MnO 2 (0 ⁇ x ⁇ 0.5), and an electronic conductor (such as carbon black) and a binder, of polymer type.
  • the cathode generally further comprises a current collector, for example aluminum.
  • the electrolytic solution consists of a lithium salt and a solvent or a mixture of solvents, the salt and the solvent being as defined above.
  • the process according to the invention was carried out with suspensions of surface-modified Al 2 O 3 particles by grafting of SO 4 2- groups in an electrolytic solution of LiClO 4 in PEGDME. examples of different grafting rates. Preparation of particles AI 2 O 3 / SO 4 2
  • the Al 2 O 3 particles used are sold by ABCR Karlsruche.
  • the particle size varies between 1.02 and 1.20 mm.
  • the surface modification was carried out by successively implementing the following steps: impregnation of the particles with an aqueous solution of H 2 SO 4 ; drying the particles in two successive stages, respectively at 60 ° C. and 100 ° C. for 24 hours; and then calcining the particles in a stream of dry air at a temperature of 500 ° C. for 24 hours.
  • the particles were then crushed for 4 hours at 300 rpm and sieved to obtain a fine and homogeneous powder, the average grain size being less than 10 microns.
  • Electrolyte solutions were prepared from the compounds PEGDME (molar mass 500 g.mol -1 ) and LiClO 4 (marketed by Aldrich). were dried under vacuum for three days respectively at 60 0 C and 120 0 C, before being used. Solutions containing from 10 -3 to 3 mol / kg of lithium salt relative to the polymer were prepared. After drying under vacuum for 3 days at 150 ° C., the particles whose preparation was described above were introduced into the electrolytic solutions in a proportion equal to 10% by weight relative to PEGDME.
  • the various electrolytic solutions prepared were characterized by measurements of ionic conductivity and by DSC (differential scanning calorimetry).
  • the ionic conductivity was determined by the method of the complex impedance, at temperatures ranging from -2O 0 C to 70 0 C.
  • the samples were placed between stainless steel electrodes and then placed in a thermostatic bath. Impedance measurements were performed on a Solartron-Schlumberger 1255 reference device in a frequency range of 200000 Hz to 1 Hz.
  • the DSC measurements were performed on a Perkin-Elmer Pyris 1 reference apparatus. The samples were first stabilized by slow cooling to -12O 0 C and then heated at 20 ° C. per minute to 150 ° C. 0 C. the error in the measurement of glass transition temperature (Tg) was estimated to be ⁇ 2 ° C.
  • electrochemical cells were prepared. The cells are assembled in a glove box under an argon atmosphere. Each cell is arranged vertically so as to maintain the lithium electrodes in the form of pellets, horizontal. For each cell, a first lithium electrode is disposed on a stainless steel piston, itself placed in a glass cell. A circular polyethylene spacer is then added to define a constant distance between the two electrodes. The center of the spacer is filled with the solution electrolytic, then a second lithium electrode and a second stainless steel piston are added. The cell is then sealed.
  • Table 2 below indicates the composition of the electrolyte solution introduced into each of the four cells, the concentration of lithium salt being equal to
  • FIG. 3 shows the interfacial resistance Ri (in ohms, cm 2 ), as a function of the square root of the time Rt, the time being expressed in days.
  • FIG. 4 represents the curves obtained for the cell C ref for the cells C1 to C3, and for a cell CO, containing an electrolytic solution into which were introduced the mineral reference particles PO, that is to say not grafted. by acid functions.
  • FIG. 4 shows the potential P, in volts, as a function of time t, in minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Abstract

L'invention concerne un procédé de modification de la résistance interfaciale d'une électrode de lithium métallique immergée dans une solution électrolytique, qui consiste à déposer un film de particules d'oxyde métallique sur la surface de cette électrode. L'invention a également pour objet une électrode de lithium métallique dont la surface est recouverte d'un film de particules d'oxyde métallique, ainsi qu'une batterie de type Lithium métal.

Description

Procédé de modification de la résistance interfaciale d'une électrode de lithium métallique
L'invention concerne un procédé de modification de la résistance interfaciale d'une électrode de lithium métallique, ainsi qu'une électrode de lithium métallique et une batterie Li-métal comprenant une telle électrode. L'utilisation de lithium métallique en tant qu'électrode négative pour des batteries est envisagée depuis plusieurs décennies. Le lithium métallique présente en effet l'avantage de posséder une forte densité d'énergie en raison de sa faible masse volumique et de son fort caractère électropositif. Toutefois, l'utilisation de lithium métallique dans un milieu liquide conduit à une dégradation de la solution électrolytique due au contact avec le lithium, et pose également des problèmes de sécurité dus à la formation de dendrites à la surface du métal, pouvant conduire à un court-circuit provoquant l'explosion de la batterie.
Pour contourner le problème de dégradation de la solution électrolytique, plusieurs solutions ont été envisagées.
Une solution consiste à remplacer l'électrode de lithium par exemple par une électrode de graphite (batteries Li-ion) . Toutefois, ce remplacement se fait au détriment de la capacité massique de la batterie.
Une autre solution consiste à remplacer la solution électrolytique liquide par un polymère solide moins sensible à la dégradation (batteries dites « tout solide ») . Cependant, dans ce type de dispositif, la batterie ne peut fonctionner qu'à des températures élevées, de l'ordre de 800C, ce qui limite les domaines d'application. Des tentatives d'amélioration de ces systèmes « tout-solide » ont été effectuées, en ajoutant des charges minérales dans des électrolytes à base de polyoxyéthylène (POE) (F. Croce et al., Nature, vol. 394, 1998, 456-458, et L. Persi et al., Journal of the Electrochemical Society, 149(2), A212-A216, 2002) . L'ajout de charges minérales vise à diminuer la cristallinité du POE afin d'améliorer la vitesse de transport des ions Li+. Toutefois, dans de tels systèmes, les charges minérales sont bloquées au sein du matériau polymérique formant l' électrolyte, et n'ont en conséquence que peu d'effet sur la résistance interfaciale de l'électrode de lithium, qui est le facteur indicatif de la dégradation de l' électrolyte à la surface de l'électrode. En effet, de façon classique, la résistance interfaciale augmente progressivement au cours du processus électrochimique jusqu'à atteindre un plateau, et l'addition de charges dans des électrolytes solides n' a pour effet que de diminuer la valeur de la résistance interfaciale au plateau.
Pour tenter de réduire la résistance interfaciale, le document US 5 503 946 propose une anode pour pile au lithium recouverte d'un film constitué par des particules de carbone ou de magnésium. Toutefois, ce système ne permet qu'une diminution modérée de la résistance interfaciale.
Les inventeurs ont mis au point un procédé de modification de la résistance interfaciale d'une électrode de lithium immergée dans une solution électrolytique, qui, de façon surprenante, limite substantiellement la dégradation de l' électrolyte au contact du lithium métallique. Ce procédé permet par conséquent d'envisager l'utilisation d'électrodes de lithium métallique dans des électrolytes liquides, donc à température ambiante, pour la fabrication de batteries performantes. A cet effet, selon un premier aspect, l'invention propose un procédé de modification de la résistance interfaciale d'une électrode de lithium métallique immergée dans une solution électrolytique, qui consiste à déposer un film de particules d'oxyde métallique sur la surface de ladite électrode .
Le dépôt du film de particules protège la surface de l'électrode de lithium métallique, ce qui conduit à une diminution importante de la résistance de l'interface entre le lithium et l' électrolyte . Selon un mode de réalisation préféré de l'invention, le dépôt est réalisé par dispersion des particules dans la solution électrolytique, puis par sédimentation desdites particules sur la surface de l'électrode. Un tel mode de dépôt présente l'avantage d'être particulièrement simple, puisque la formation du film se fait par sédimentation au cours du temps des particules dispersées dans la solution électroly- tique . L'oxyde métallique constituant les particules est choisi par exemple parmi Al2O3, SiO2, Tiθ2, ZrO2, BaTiO3, MgO, LiAlO2. Ces particules sont facilement disponibles dans le commerce, et sont de faible coût.
En outre, préalablement au dépôt, on peut modifier les particules d' oxyde métallique par greffage sur leur surface de groupements présentant un caractère acide.
En particulier, les particules d'oxyde métallique peuvent être des particules de Al2O3 modifiées par des groupements SO4 2". La modification des particules d'oxyde métallique peut être réalisée par mise en contact des particules avec une solution aqueuse comprenant les groupements acides à greffer, puis séchage et calcination des particules. Ce type de traitement, communément utilisé en chimie catalytique, présente l'avantage d'être simple à mettre en œuvre.
La solution électrolytique est typiquement constituée d'un sel de lithium et d'un solvant ou d'un mélange de solvants aprotiques polaires. Comme exemples, on peut citer les éthers linéaires et les éthers cycliques, les esters, les nitriles, les dérivés nitrés, les amides, les sulfones, les sulfolanes, les alkylsulfamides et les hydrocarbures partiellement halogènes. Les solvants particulièrement préférés sont le diéthyléther, le diméthyléther, le diméthoxy- éthane, le glyme, le tétrahydrofurane, le dioxane, le dimé- thyltétrahydrofurane, le formiate de méthyle ou d'éthyle, le carbonate de propylène ou d'éthylène, les carbonates d'alky- les (notamment le carbonate de diméthyle, le carbonate de diéthyle et le carbonate de méthylpropyle) , les butyro- lactones, 1 ' acétonitrile, le benzonitrile, le nitrométhane, le nitrobenzène, la diméthylformamide, la diéthylformamide, la N-méthylpyrrolidone, la diméthylsulfone, la tétramé- thylène sulfone, les tétraalkylsulfonamides ayant de 5 à 10 atomes de carbone, un polyéthylèneglycol de faible masse. Comme exemple particulier, on peut citer le polyéthylène- glycol-diméthyléther .
Le sel de lithium de 1 ' électrolyte peut être un composé ionique Li+Y", dans lequel Y" représente un anion à charge électronique délocalisée, par exemple Br", C10,}~, PF6 ", AsFε", RFSO3 ", (RFSOZ)2N", (RFSO2)3C", C6H (6-X) (CO (CF3SO2) 2C") X OU C6H(6-x> (SO2 (CF3SO2) 2C") x, RF représentant un groupement per- fluoroalkyle ou perfluoroaryle, avec l≤x<4. Les composés ioniques préférés sont les sels de lithium, et plus particu- lièrement (CF3SO2J2N-Li+, CF3SO3-Li+, les composés COH(O-X)" [CO (CF3SO2) 2C-Li+] x dans lesquels x est compris entre 1 et 4, de préférence avec x = 1 ou 2, les composés C6H(6-x)- [SO2 (CF3SO2) 2C"Li+] x dans lesquels x est compris entre 1 et 4 , de préférence avec x = 1 ou 2. Des mélanges de ces sels entre eux ou avec d'autres sels peuvent être utilisés.
Selon une réalisation, le solvant de la solution électrolytique est constitué de polyéthylène glycol dimé- thyléther (PEGDME), et le sel de lithium est le perchlorate de lithium (LiClO4) . Le dépôt des particules d'oxyde métallique sur la surface de l'électrode peut être effectué lors du fonctionnement d'une cellule électrochimique comprenant une anode formée par ladite électrode, et une cathode, l'anode et la cathode étant séparées par une solution électro- lytique . Si la cellule électrochimique est utilisée en tant que batterie, le dépôt peut avoir lieu soit avant la mise en fonctionnement de la batterie, soit pendant les premiers cycles de fonctionnement de la batterie. En effet, les particules étant de préférence dispersées dans la solution électrolytique, il est possible de les laisser sédimenter sur la surface de l'anode avant de faire fonctionner la batterie, ou bien de faire fonctionner la batterie dès que son montage est terminé, la sédimentation se faisant alors naturellement au cours des premiers cyclages . Selon un deuxième aspect, l'invention a pour objet une électrode de lithium métallique pour batterie, la surface de ladite électrode étant recouverte d'un film de particules d'oxyde métallique. Dans cette électrode, les particules constituant le film sont des particules de AI2O3 modifiées en surface par des groupements SO4 2".
Selon un troisième aspect, l'invention propose une batterie de type Lithium métal comprenant une anode et une cathode séparées par une solution électrolytique, caractérisée en ce que :
• l'anode et la cathode sont sous forme de feuilles parallèles, la cathode étant au-dessus de l'anode ; • l'anode est constituée par une feuille de lithium dont la surface en regard de la solution électrolytique est recouverte d'un film de particules d'oxyde métallique, lesdites particules étant telles que définies ci-dessus. De préférence, les feuilles constituant l'anode et la catho- de sont horizontales ou sensiblement horizontales.
Dans une batterie selon l'invention, la cathode peut comprendre au moins un oxyde de métal de transition capable d' intercaler et de désintercaler du lithium de manière réversible, par exemple choisi dans le groupe formé par LiCoO2, LiNiO2, LiMn2O4, LiV3O8, V2O5, 'V6Oi3, LiFePO4 et LixMnO2 (0<x<0,5), ainsi qu'un conducteur électronique (tel que le noir de carbone) et un liant, de type polymère. La cathode comprend généralement en outre un collecteur de courant, par exemple de l'aluminium. La solution électrolytique est constituée par un sel de lithium et un solvant ou un mélange de solvants, le sel et le solvant étant tels que définis ci-dessus.
La présente invention est illustrée ci-après par des exemples concrets de réalisation, auxquels elle n'est cepen- dant pas limitée.
Le procédé selon l'invention a été mis en œuvre avec des suspensions de particules de Al2O3 modifiées en surface par greffage de groupements SO4 2", dans une solution électrolytique de LiClO4 dans le PEGDME. On a utilisé pour les différents exemples des taux de greffage différents. Préparation des particules AI2O3/SO4 2
Les particules de Al2O3 utilisées sont commercialisées par la société ABCR Karlsruche. La taille des particules varie entre 1,02 et 1,20 mm. La modification de surface a été réalisée en mettant en œuvre de façon successive les étapes suivantes : imprégnation des particules par une solution aqueuse de H2SO4 ; séchage des particules en deux étapes successives, res- pectivement à 6O0C et 1000C pendant 24 heures ; puis calcination des particules dans un courant d'air sec à une température de 5000C pendant 24 heures.
Les particules ont ensuite été broyées, pendant 4 heures à 300 tours/minute, puis tamisées de sorte à obte- nir une poudre fine et homogène, la taille moyenne des grains étant inférieure à 10 μm.
Ce mode opératoire a été suivi en utilisant différentes solutions aqueuses de H2SO4, dont les concentrations respectives ont été calculées de sorte à obtenir plusieurs types de particules dont le taux de greffage est indiqué dans le tableau 1 ci-dessous. On a également préparé des particules de Al2O3 non greffées.
Tableau 1
Préparation de solutions électrolytiques contenant les particules
Des solutions électrolytiques ont été préparées à partir des composés PEGDME (masse molaire 500 g.mol"1) et LiClO4 (commercialisés par la société Aldrich) . Ces composés ont été séchés sous vide pendant trois jours respectivement à 600C et 1200C, avant d'être utilisés. Des solutions contenant de 10~3 à 3 mol/kg, de sel de lithium par rapport au polymère ont été préparées. Après séchage sous vide pendant 3 jours à 1500C, les particules dont la préparation a été décrite plus haut ont été introduites dans les solutions électrolytiques , dans une proportion égale à 10% en poids par rapport à PEGDME.
Les solutions ont ensuite été mises sous agitation pen- dant 1 semaine, pour assurer une bonne dispersion des particules .
Caractérisation des solutions électrolytiques
Les différentes solutions électrolytiques préparées ont été caractérisées par des mesures de conductivité ionique et par DSC (calorimétrie différentielle à balayage) .
Les mesures ont été réalisées sur quatre solutions électrolytiques différentes : trois solutions électrolytiques contenant les particules Pl à P3, et une solution électrolytique de référence (désignée dans les figures par la lettre A) ne contenant pas de particules minérales. Conductivité ionique
La conductivité ionique a été déterminée par la méthode de l'impédance complexe, à des températures variant de -2O0C à 700C. Les échantillons ont été placés entre des électrodes en acier inoxydable puis disposés dans un bain thermostaté. Les mesures d'impédance ont été réalisées sur un appareil de référence Solartron-Schlumberger 1255, dans une gamme de fréquences comprise entre 200000 Hz et 1 Hz.
Les résultats de ces mesures sont présentés sur les figures la à Ic qui représentent le logarithme de la conductivité, exprimée en Siemens par centimètres (S. cm"1) en fonction de l'inverse de la température (exprimée en degrés Kelvin) multiplié par un facteur 1000, pour des concentrations de sel de lithium égales à 3 mol par kg de polymère (fig. la), 1 mol par kg de polymère (fig. Ib) et 0,01 mol par kg de polymère (fig. Ic) . II apparaît d'après ces figures que l'addition des particules minérales, quelque soit le taux de greffage des groupements acides, ne modifie pas de façon notable la con- ductivité des solutions électrolytiques, et par conséquent n'entraîne aucune dégradation de celles-ci. Mesures de DSC
Les mesures de DSC ont été effectuées sur un appareil de référence Perkin-Elmer Pyris 1. Les échantillons ont tout d'abord été stabilisés par refroidissement lent jusqu'à -12O0C, puis chauffés à 200C par minute jusqu'à 1500C. L' erreur sur la mesure de température de transition vitreuse (Tg) a été estimée à ± 2°C.
Ces mesures donnent des informations sur l'effet des charges minérales à l'égard du mouvement des chaînes poly- mères, en mesurant l'évolution de la température de transition vitreuse.
Les résultats sont présentés sur la figure 2, qui fait apparaître la température de transition vitreuse Tg, exprimée en degrés Kelvin, en fonction de la concentration en sel de lithium C, exprimée en mol/kg.
Les résultats obtenus confirment que la présence de particules minérales n'a pas d'incidence sur les propriétés intrinsèques de la solution électrolytique qui les contient. Les particules minérales n'exercent donc aucune interaction avec le sel ou le polymère en solution susceptible de dégrader la solution électrolytique.
Application à une cellule Lithium-Lithium
On a préparé quatre cellules électrochimiques. Les cellules sont assemblées dans une boîte à gants sous atmos- phère d'argon. Chaque cellule est disposée de manière verticale de sorte à maintenir les électrodes de lithium, sous forme de pastilles, horizontales. Pour chaque cellule, une première électrode de lithium est disposée sur un piston en acier inoxydable, lui-même placé dans une cellule en verre. Un espaceur circulaire en polyéthylène est ensuite ajouté afin de définir une distance constante entre les deux électrodes. Le centre de l' espaceur est rempli de la solution électrolytique, puis une seconde électrode de lithium et un second piston en acier inoxydable sont ajoutés. La cellule est ensuite fermée de manière étanche .
Le tableau 2 ci-dessous indique la composition de la solution électrolytique introduite dans chacune des quatre cellules, la concentration en sel de lithium étant égale à
1 mol de sel par kg de polymère pour toutes les solutions électrolytiques .
Tableau 2
L'évolution de la résistance interfaciale des cellules a été suivie sur une période de 20 jours, à température ambiante, en enregistrant chaque jour les spectres d'impédance sur un logiciel EQ ver.4.55. Les résultats obtenus pour les quatre cellules sont présentés sur la figure 3, qui fait apparaître la résistance interfaciale Ri (en ohms, cm2), en fonction de la racine carrée du temps Rt, le temps étant exprimé en jours.
On constate que, pour la cellule Créf, la résistance in- terfaciale augmente fortement au cours des premiers jours, avant d'atteindre un plateau. Ce phénomène est attribué à la formation d'une couche de passivation créée par la dégradation de la solution électrolytique à la surface de l'électrode de lithium. Les valeurs de résistance atteintes ne permettent pas d'envisager l'utilisation du lithium métallique en tant qu'électrode négative pour batterie.
En revanche, pour les trois autres cellules Cl à C3, il apparaît que la valeur de la résistance interfaciale augmente pendant les premiers jours mais diminue ensuite de fa- çon importante, jusqu'à une valeur inférieure à la valeur initiale. Ce phénomène résulte de la sédimentation des par- ticules et de la formation d'un film à la surface du lithium.
La stabilité de l'interface solution électrolyti- que/électrode de lithium a été étudiée par polarisation galvanostatique, avec une densité de courant j=0,3 mA/cm2. La figure 4 représente les courbes obtenues pour la cellule Créff pour les cellules Cl à C3, et pour une cellule CO, contenant une solution électrolytique dans laquelle ont été introduites les particules minérales de référence PO, c' est- à-dire non greffées par des fonctions acide. La figure 4 fait apparaître le potentiel P, en Volts, en fonction du temps t, en minutes.
Il ressort de l'analyse de cette courbe que le potentiel induit par la polarisation pour la cellule Créf est su- périeur d'un facteur 7 par rapport aux cellules dans lesquelles la solution électrolytique contient des particules minérales. Ce paramètre, directement proportionnel à la résistance interfaciale, confirme les résultats présentés sur la figure 3. En outre, l'aspect lisse des courbes obte- nues pour les cellules CO à C3 indique très clairement la stabilité du dépôt de particules minérales sur la surface de l'électrode de lithium.

Claims

Revendications
1. Procédé de modification de la résistance interfaciale d'une électrode de lithium métallique immergée dans une solution électrolytique, caractérisé en ce qu'il consiste à déposer un film de particules d'oxyde métallique sur la surface de ladite électrode.
2. Procédé selon la revendication 1, caractérisé en ce que le dépôt est réalisé par dispersion des particules dans la solution électrolytique, puis par sédimentation desdites particules sur la surface de l'électrode.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'oxyde métallique est choisi parmi Al2O3, SiC>2, TiO2, ZrO2, BaTiO3, MgO, LiAlO2.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que, préalablement au dépôt, on modifie lesdites particules d' oxyde métallique par greffage sur leur surface de groupements présentant un caractère acide .
5. Procédé selon la revendication 4, caractérisé en ce que les particules d'oxyde métallique sont des particules de AI2O3 modifiées par des groupements SO^2".
6. Procédé selon la revendication 4 ou 5, caractérisé en ce que la modification des particules d'oxyde métallique est réalisée par mise en contact des particules avec une solution aqueuse comprenant les groupements acides à greffer, puis séchage et calcination des particules.
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la solution électrolytique est constituée d'un sel de lithium et d'un solvant ou d'un mélange de solvants.
8. Procédé selon la revendication 7, caractérisé en ce que le (s) solvant (s) est ' (sont) du type aprotique polaire .
9. Procédé selon la revendication 7 ou 8 , caractérisé en ce que le solvant est constitué de polyéthylène glycol diméthyléther (PEGDME) , et le sel de lithium est le perchlorate de lithium (LiClO4) .
10. Procédé selon la revendication 1, caractérisé en ce que le film de particules d' oxyde métallique est déposé sur la surface de ladite électrode lors du fonctionnement d'une cellule électrochimique comprenant une anode formée par ladite électrode, et une cathode, ladite anode et ladite cathode étant séparées par une solution électrolytique .
11. Procédé selon la revendication 10, caractérisé en ce que ladite cellule électrochimique est utilisée en tant que batterie, le dépôt des particules d'oxyde métallique ayant lieu avant la mise en fonctionnement de la batterie.
12. Procédé selon la revendication 10, caractérisé en ce que ladite cellule électrochimique est utilisée en tant que batterie, le dépôt des particules d'oxyde métallique ayant lieu pendant les premiers cycles de fonctionnement de la batterie.
13. Electrode de lithium métallique pour batterie, la surface de ladite électrode étant recouverte d'un film de particules d'oxyde métallique, caractérisée en ce que les particules sont des particules de Al2O3 modifiées en surface par des groupements SO4 2".
14. Batterie de type Lithium métal comprenant une anode et une cathode séparées par une solution électrolytique, caractérisée en ce que : • l'anode et la cathode sont sous forme de feuilles parallèles, la cathode étant au-dessus de l'anode ; • l'anode est constituée par une feuille de lithium dont la surface en regard de la solution électrolytique est recouverte d'un film de particules d'oxyde métallique.
15. Batterie selon la revendication 14, caractérisée en ce que les feuilles constituant l'anode et la cathode sont horizontales ou sensiblement horizontales.
16. Batterie selon la revendication 14 ou 15, caractérisée en ce que l'oxyde métallique est choisi parmi Al2O3, SiO2, TiO2, ZrO2, BaTiO3, MgO, LiAlO2.
17. Batterie selon la revendication 16, caractérisée en ce que les particules d'oxyde métallique sont des particules de Al2O3 modifiées en surface par des groupements SO4 2".
18. Batterie selon l'une quelconque des revendications 14 à 17, caractérisée en ce que la solution électrolytique est constituée par un sel de lithium et un solvant ou un mélange de solvants aprotiques polaires .
EP07788853A 2006-06-16 2007-06-08 Procede de modification de la resistance interfaciale d'une electrode de lithium metallique. Withdrawn EP2036147A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0605399A FR2902576B1 (fr) 2006-06-16 2006-06-16 Procede de modification de la resistance interfaciale d'une electrode de lithium metallique.
PCT/FR2007/000948 WO2007144488A1 (fr) 2006-06-16 2007-06-08 Procede de modification de la resistance interfaciale d'une electrode de lithium metallique.

Publications (1)

Publication Number Publication Date
EP2036147A1 true EP2036147A1 (fr) 2009-03-18

Family

ID=37944430

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07788853A Withdrawn EP2036147A1 (fr) 2006-06-16 2007-06-08 Procede de modification de la resistance interfaciale d'une electrode de lithium metallique.

Country Status (11)

Country Link
US (1) US20090280405A1 (fr)
EP (1) EP2036147A1 (fr)
JP (1) JP2009540518A (fr)
KR (1) KR20090019892A (fr)
CN (1) CN101467284A (fr)
AU (1) AU2007259117A1 (fr)
BR (1) BRPI0713641A2 (fr)
CA (1) CA2653539A1 (fr)
FR (1) FR2902576B1 (fr)
IL (1) IL195222A0 (fr)
WO (1) WO2007144488A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9209458B2 (en) 2010-02-10 2015-12-08 Alevo Research Ag Rechargeable electrochemical battery cell
EP2360772A1 (fr) * 2010-02-12 2011-08-24 Fortu Intellectual Property AG Cellule électrochimique rechargeable
DE112011103839B4 (de) * 2010-11-19 2016-08-18 Central South University Verfahren und eine Vorrichtung zum Trennen des Lithiums von Magnesium und Anreicherung von Lithium in Salzlake
JP5800196B2 (ja) * 2011-12-20 2015-10-28 トヨタ自動車株式会社 非水電解質二次電池およびその製造方法
CN104617259B (zh) * 2015-01-06 2018-06-08 中国科学院化学研究所 锂二次电池中锂负极的保护处理
KR102601603B1 (ko) 2016-05-11 2023-11-14 삼성전자주식회사 리튬 금속 전지
CN107293780B (zh) * 2017-06-01 2019-08-02 北京理工大学 一种锂电池用基于离子液体的准固态电解质及其制备方法
CN109326771B (zh) * 2018-11-20 2022-03-11 中国电力科学研究院有限公司 一种金属锂负极的制备方法及磷酸铁锂电池
KR102201358B1 (ko) 2019-04-09 2021-01-11 한국전자기술연구원 고체초강산 코팅층을 포함하는 분리막, 리튬금속 음극 및 리튬금속 이차전지
CN110323489B (zh) * 2019-06-28 2020-09-08 华中科技大学 一种固态锂离子导体及其制备方法与应用
CN112164767B (zh) * 2020-07-24 2022-03-18 浙江工业大学 一种氧化硅-锂复合材料及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3528856A (en) * 1966-08-29 1970-09-15 Energy Conversion Devices Inc Thermoelectric device and method of manufacture
US5278005A (en) * 1992-04-06 1994-01-11 Advanced Energy Technologies Inc. Electrochemical cell comprising dispersion alloy anode
JP3487438B2 (ja) * 1993-09-22 2004-01-19 株式会社デンソー リチウム二次電池用負極
US5503946A (en) * 1994-09-29 1996-04-02 Arthur D. Little, Inc. Particulate interface for electrolytic cells and electrolytic process
US6632573B1 (en) * 2001-02-20 2003-10-14 Polyplus Battery Company Electrolytes with strong oxidizing additives for lithium/sulfur batteries
AU2002367181A1 (en) * 2001-12-27 2003-07-15 National Institute Of Advanced Industrial Science And Technology Lithium polymer cell and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007144488A1 *

Also Published As

Publication number Publication date
CA2653539A1 (fr) 2007-12-21
BRPI0713641A2 (pt) 2012-10-23
US20090280405A1 (en) 2009-11-12
WO2007144488A1 (fr) 2007-12-21
FR2902576A1 (fr) 2007-12-21
AU2007259117A1 (en) 2007-12-21
IL195222A0 (en) 2009-08-03
KR20090019892A (ko) 2009-02-25
JP2009540518A (ja) 2009-11-19
CN101467284A (zh) 2009-06-24
FR2902576B1 (fr) 2009-05-29

Similar Documents

Publication Publication Date Title
EP2036147A1 (fr) Procede de modification de la resistance interfaciale d&#39;une electrode de lithium metallique.
JP4752992B2 (ja) 非水電解質二次電池用負極材
EP1828058B1 (fr) Materiau d&#39;electrode positive optimise pour accumulateurs au lithium, procede pour sa realisation, electrode, accumulateur et batterie mettant en oeuvre ce materiau
CA2534243A1 (fr) Particules d&#39;oxyde metallique enrobees a faible taux de dissolution, procedes de preparation et utilisation dans les systemes electrochimiques
JP2014524120A (ja) リチウム金属アノードのための複合体保護層およびその製造方法
EP2260526A2 (fr) Procede de fabrication d&#39;une electrode a base de silicium, electrode a base de silicium et batterie au lithium comprenant une telle electrode
KR101876801B1 (ko) 도파민계 중합체가 코팅된 입자, 이를 포함하는 입자층, 이를 포함하는 전극 및 이들의 제조 방법
CA2584227C (fr) Procede de preparation de gamma-liv2o5
EP1794828B1 (fr) Materiau composite d&#39;electrode negative, procede de fabrication, electrode negative et accumulateur lithium-ion
EP4104222A1 (fr) Électrodes à surface modifiée, procédés de préparation, et utilisations dans des cellules électrochimiques
WO2022126253A1 (fr) Matériaux d&#39;électrode comprenant un oxyde lamellaire de métaux enrobé d&#39;un oxyde de métaux de type tunnel, électrodes les comprenant et leur utilisation en électrochimie
EP0837036B1 (fr) Oxydes doubles de lithium et de manganèse pour électrode positive de dispositifs électrochimiques, leur préparation et les électrodes comportant de tels oxydes
KR101834203B1 (ko) 도파민계 중합체가 코팅된 입자, 이를 포함하는 입자층, 이를 포함하는 전극 및 이들의 제조 방법
WO2019097189A1 (fr) Utilisation d&#39;un melange de sels a titre d&#39;additif dans une batterie au lithium gelifiee
EP4423327A1 (fr) Composés inorganiques possédant une structure de type argyrodite, leurs procédés de préparation et leurs utilisations dans des applications électrochimiques
KR20220120752A (ko) 세리신을 이용하여 표면 개질된 양극 활물질의 제조방법과 이를 이용하여 제조된 양극 활물질 및 리튬이차전지
CN112687878A (zh) 电化学装置和电子装置
JP2020107601A (ja) コバルト酸リチウム正極活物質及びそれを用いた二次電池
EP2721683B1 (fr) Electrolyte liquide pour accumulateur au lithium, comprenant un mélange ternaire de solvants organiques non-aqueux
WO2024105128A1 (fr) Composition d&#39;electrolyte a base de sel de (2-cyanoethyl)phosphonium et batterie le comprenant
EP1268346B1 (fr) Oxyde de sodium et de vanadium, son utilisation comme matiere active d&#39;une electrode positive
WO2023193111A1 (fr) Matériaux d&#39;électrode comprenant un oxyde de sodium, de lithium, de manganèse et de métal de type tunnel dopé au fe, électrodes les comprenant et leur utilisation en électrochimie
WO2023015396A1 (fr) Électrodes à surface modifiée, procédés de préparation, et utilisations électrochimiques
WO2023118772A1 (fr) Matériau d&#39;électrode enrobé d&#39;un composé particulier
WO2022261785A1 (fr) Matériau composite comprenant un amide fluoré et utilisations dans des cellules électrochimiques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081230

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091001