EP2012996A2 - Articles thermoplastiques et procédés améliorés pour les fabriquer - Google Patents

Articles thermoplastiques et procédés améliorés pour les fabriquer

Info

Publication number
EP2012996A2
EP2012996A2 EP07782037A EP07782037A EP2012996A2 EP 2012996 A2 EP2012996 A2 EP 2012996A2 EP 07782037 A EP07782037 A EP 07782037A EP 07782037 A EP07782037 A EP 07782037A EP 2012996 A2 EP2012996 A2 EP 2012996A2
Authority
EP
European Patent Office
Prior art keywords
materials
combination
injection molding
polyolefin
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07782037A
Other languages
German (de)
English (en)
Inventor
Mary Ann Jones
Kurt Koppi
Stephanie Anderson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Global Technologies LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Publication of EP2012996A2 publication Critical patent/EP2012996A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/18Feeding the material into the injection moulding apparatus, i.e. feeding the non-plastified material into the injection unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/885Adding charges, i.e. additives with means for treating, e.g. milling, the charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/53Screws having a varying channel depth, e.g. varying the diameter of the longitudinal screw trunk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/67Screws having incorporated mixing devices not provided for in groups B29C48/52 - B29C48/66
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/18Feeding the material into the injection moulding apparatus, i.e. feeding the non-plastified material into the injection unit
    • B29C45/1816Feeding auxiliary material, e.g. colouring material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/58Details
    • B29C45/60Screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/288Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/288Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
    • B29C48/2886Feeding the extrusion material to the extruder in solid form, e.g. powder or granules of fibrous, filamentary or filling materials, e.g. thin fibrous reinforcements or fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/362Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using static mixing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2021/00Use of unspecified rubbers as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0002Condition, form or state of moulded material or of the material to be shaped monomers or prepolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0085Copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/004Semi-crystalline
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2310/00Masterbatches

Definitions

  • the present invention relates to shaped thermoplastic articles and processes for making the same, and in one particular aspect, to injection molded thermoplastic polyolefin articles that are blended while in an injection molding machine.
  • the present invention is directed to improved processes for making plastic articles, and articles made therefrom.
  • the invention is directed to improved processes, and articles made therefrom, that include the steps of providing as separate materials a first material that includes or consists essentially of a polyolefin (e.g., a thermoplastic polyolefin), an optional second material including an admixture of a particulated filler and a second thermoplastic polyolefin, and a third material that includes or consists essentially of an elastomer; applying a shear force to the first, second and third materials, while the materials are at an elevated temperature for blending the materials to form a molten blend; shaping the molten blend and solidifying the molten blend.
  • a polyolefin e.g., a thermoplastic polyolefin
  • an optional second material including an admixture of a particulated filler and a second thermoplastic polyolefin
  • a third material that includes or consists essentially of an elast
  • the processes include the steps of feeding to an injection molding machine a first material that consists essentially of a thermoplastic polyolefin or polypropylene homopolymer; optionally feeding to the injection molding machine a second material including an admixture of a particulated filler and a second thermoplastic polyolefin or polypropylene homopolymer; feeding to the injection molding machine a third material that consists essentially of an elastomer; blending the first, second and third materials within the injection molding machine to form a blend; and injecting the blend into a tool wherein the process is substantially free of a step of compounding together the first, second and third materials prior to the blending step.
  • a first material that consists essentially of a thermoplastic polyolefin or polypropylene homopolymer
  • a second material including an admixture of a particulated filler and a second thermoplastic polyolefin or polypropylene homopolymer
  • feeding to the injection molding machine a third material that consists
  • FIG. 1 is a schematic of an apparatus in accordance with the teachings herein.
  • the present invention is directed to improved processes for making plastic articles, and articles made therefrom.
  • the invention is directed to improved processes and articles made therefrom, which include the steps of providing as separate materials a first neat polyolefin (e.g., a thermoplastic polyolef ⁇ n or polypropylene homopolymer), a second material including an admixture of a particulated filler and a second polyolefin (e.g., a thermoplastic polyolefin or polypropylene homopolymer, which is the same as or different from the first neat polyolefin), and a neat elastomer; applying a shear force to the three materials, while the materials are at an elevated temperature for blending the materials to form a molten blend; shaping the molten blend and solidifying the molten blend.
  • a first neat polyolefin e.g., a thermoplastic polyolef ⁇ n or polypropylene homopolymer
  • a second material including an admixture of
  • the process is free of a step of compounding together the three materials prior to the blending step, and specifically is free of a prior compounding step that includes a melt blending step.
  • the step of shaping the molten blend can be performed using any one or combination of a number of art-disclosed techniques for making shaped articles.
  • the shaping can be done by blow molding, injection molding, or any combination thereof.
  • such step advantageously employs a suitable apparatus for imparting a shear force to the feedstock, particularly at an elevated temperature, so that a molten blend is obtained.
  • a typical approach employs an apparatus 10 having a screw and barrel assembly 12, into which the feedstock is fed, such as by introduction directly from a storage container (e.g., container 14 shown for the concentrate) and via a mixing hopper 16.
  • a mixing arm 20 may be employed for dry mixing.
  • Suitable feeders may be used such as a gravimetric feeder, such as one including a weigh scale (e.g., available from Maguire).
  • a gravimetric feeder with at least one weigh scale may feed to the mixing hopper.
  • a blender may be employed, such as one incorporated in the gravimetric feeder, in the mixing hopper, or both.
  • the material may be subjected to a mixing flight that includes at least one undercut for providing dispersive mixing, at least one bypass channel for providing distributive mixing or both.
  • a mixing flight that includes at least one undercut for providing dispersive mixing, at least one bypass channel for providing distributive mixing or both.
  • a screw and barrel assembly as used herein may be of any suitable dimensions for accomplishing the desired results.
  • the screw and barrel assembly has a length to diameter ratio greater than about 5:1, more specifically greater than about 10:1 and still more specifically greater than about 15:1 (e.g., about 15:1 to 25:1).
  • a back pressure namely the pressure applied to the plastic during screw recovery
  • the screw compression ratio or both.
  • a back pressure of at least about 100 psi, and more specifically at least about 150 psi, or even at least about 200 psi (e.g., about 250 psi) is applied to the first, second and third materials during the blending step, a screw compression ratio of greater than about
  • 1:1 (and more specifically at least about 2:1, such as about 2: 1 to 3.5:1 or higher (e.g., about 2.4:1)) is employed, or a combination of both.
  • the blending step may occur at any suitable melt set point temperature for the particular machine employed. For example, it may occur at a melt set point temperature for the machine of about 200 to about 270 0 C, and more specifically at about
  • the injecting step includes passing the blend through a static mixer, such as a mixing nozzle (e.g., an interfacial surface generating mixing nozzle).
  • a static mixer such as a mixing nozzle (e.g., an interfacial surface generating mixing nozzle).
  • a mixing nozzle e.g., an interfacial surface generating mixing nozzle.
  • a variety of art-disclosed screw designs may be employed to achieve good mixing, with high performance designs being particularly attractive.
  • One feature of high performance designs is the presence of two or more channels with varying channel dimensions along the length of the screw. This variation in channel dimension forces material to flow between channels, resulting in improved mixing. For example, distributive mixing is accomplished by cutting and folding a polymer melt stream whereas dispersive mixing is accomplished by forcing a polymer melt stream through a restrictive channel.
  • high performance screws consist of but are not limited to Energy Transfer (ET) screws, double wave screws, StratablendTM screws, and UniMixTM screws.
  • Secondary mixing devices may also be employed to improve mixing. These secondary mixing devices may be incorporated into the screw design (dynamic mixer) or they may be incorporated downstream of the screw (static mixer).
  • dynamic mixers consist of but are not limited to one or more of a Maddock- style mixers, blister mixers, spiral dam mixers, pin mixers, and mixing rings.
  • static mixers consist of but are not limited to KenicsTM mixers, interfacial surface generator (ISG) mixers, and KochTM mixers. In the case of injection molding, such static mixer designs can be incorporated into the nozzle and they are referred to as mixing nozzles.
  • the process is substantially free of a step of compounding together the first, second and third materials prior to the blending step. It is surprisingly possible to do so by employment of certain or all of the above-discussed processing conditions.
  • the selection of the first, second and third materials may also be an important consideration.
  • the first material generally, it will include a polyolefin, and more particularly a thermoplastic polyolefin (that is, a polyolefin alloy that includes polypropylene and a flexibilizing component, such as polyethylene).
  • a thermoplastic polyolefin that is, a polyolefin alloy that includes polypropylene and a flexibilizing component, such as polyethylene.
  • the first material is a neat polyolefin, such as a polypropylene impact copolymer characterized by a melt flow rate of less than about 70g/10 min (at 230 0 C, 2.16kg)(e.g., about 1 to about 55 g/10 min, more particularly about 5 to about 45 g/10 min, and still more particularly about 20 g/10min to about 35 g/10); containing greater than about 8 wt% (by weight of the first material) of ethylene (e.g., greater than about 12 wt% ethylene); having crystallinity greater than about 40 % (e.g., greater than about 50%, or any combination thereof.
  • a neat polyolefin such as a polypropylene impact copolymer characterized by a melt flow rate of less than about 70g/10 min (at 230 0 C, 2.16kg)(e.g., about 1 to about 55 g/10 min, more particularly about 5 to about 45 g/10 min, and still more particularly about 20 g/10min to
  • the first material will typically be present in an amount greater than about 20 wt%, more particularly greater than about 35 wt%, and more specifically, about 40 to about 90 wt%, and still more specifically about 50 to about 75 wt%) of the final material.
  • a neat polypropylene homopolymer may be used in place of, or in addition to, the neat polypropylene impact copolymer. It will be appreciated that the employment of polymers herein desirably employ the polymers in a neat state.
  • the second material when employed, it typically will include an admixture that includes, or (in a more specific aspect) consists essentially of, a particulated filler and a second thermoplastic material, and specifically an polyolefin (e.g., thermoplastic polyolefin or polypropylene homopolymer).
  • a particulated filler e.g., a particulated filler and a second thermoplastic material
  • an polyolefin e.g., thermoplastic polyolefin or polypropylene homopolymer
  • any of a number of alternative art-disclosed fillers may be employed (e.g., mica, calcium carbonate, silica, clays, wood, titanium dioxide), a preferred filler is talc (e.g., one that consists essentially of 3Mg(MSiO 2 -H 2 O).
  • the fillers may have any suitable median particle size, e.g., on the order of about 10 microns or smaller (e.g., about 7 microns or less, or even about 5 micron or less, or possibly even less than about 3 microns (e.g., less than about 1 micron)).
  • the fillers may be any suitable top-size particle size, e.g., on the order of about 50 microns or smaller (e.g., less than about 30 microns, or more specifically less than about 15 microns).
  • the filler be compounded (e.g., by a melt blending step) in advance with the second thermoplastic material. It is desired that the filler be mixed so that it distributes generally uniformly throughout the second material. At that time it is also possible that the second material will be admixed to include one or more additives, as taught elsewhere herein. It is also possible at this stage to add a colorant or pigment. In one approach it may also be desirable to add another polymer in addition to the second thermoplastic, such as a polyethylene (e.g., LLDPE). Thus, it can be seen that the second thermoplastic material may employ the same type of polymer as the first material, or another polymer or combination of polymers.
  • a polyethylene e.g., LLDPE
  • the second thermoplastic is a neat polypropylene impact copolymer, such as one characterized by a melt flow rate of less than about 80g/10 min (at 230 0 C, 2.16kg)(e.g., about 1 to about 55 g/10 min, more particularly about 5 to about 45 g/10 min, and still more particularly about 20 g/10min to about 35 g/10); containing greater than about 8 wt% (by weight of the first material) of ethylene (e.g., greater than about 12 wt% ethylene); having crystallinity greater than about 40 % (e.g., greater than about 50%, or any combination thereof.
  • a melt flow rate of less than about 80g/10 min (at 230 0 C, 2.16kg)(e.g., about 1 to about 55 g/10 min, more particularly about 5 to about 45 g/10 min, and still more particularly about 20 g/10min to about 35 g/10); containing greater than about 8 wt% (by weight of the first material) of ethylene (e
  • the second material may be regarded effectively as a masterbatch, or in a particular example, as a "concentrate".
  • the amount of filler (e.g., talc) in the concentrate will commonly be greater than about 50 wt% of the concentrate, such as from about 50 to about 85 wt%, and more specifically, from about 60 to about 75 wt% of the concentrate.
  • the amount of the respective materials is selected so that the filler is present in the final material in an amount less than about 40 wt%, more specifically less than about 30 wt%, and still more specifically less than about 20 wt%.
  • a polypropylene homopolymer may be used in place of, or in addition to, the neat polypropylene impact copolymer in the second material.
  • additives may be included within the concentrate.
  • the teachings herein generally contemplate that a concentrate or masterbatch is employed, it is possible that the teachings will produce desirable characteristics in the absence of such concentrate or masterbatch. Accordingly, the present invention also contemplates processes and systems that result in materials that are substantially free of a filler (e.g., substantially free of talc).
  • the polyolefin for use in the first material, the second material or both may include propylene-ethylene copolymers (which may be rubber-modified).
  • propylene-ethylene copolymers which may be rubber-modified.
  • suitable material that includes or consists essentially of a polyolefin are available from The Dow Chemical Company under the designation of C705-44NA or C715- 12NHP.
  • polymers that may be employed in accordance with the present teachings include those disclosed in WO 03/040201 Al, published US Application No. 2003-0204017, and U.S. Patent No. 6,525,157, all of which are incorporated by reference. Polymers made with a metallocene catalyst are also possible for use in the first material, the second material or both.
  • the third material it generally will be an elastomer, and particularly a thermoplastic elastomer, such as a neat one that includes an alpha-olefin comonomer (e.g., propylene, 1-butene, 1-hexene, 1-octene), and has a density less than about 0.9 g/cc, a melt flow rate of about 0.1 to about 30g/10 min (at 190 0 C, 2.16kg), and more specifically about 0.5 to about 25g/10 min (at 190 0 C, 2.16kg), has a glass transition temperature of less than about -30 C, or any combination thereof.
  • the materials used herein optionally are substantially free of EPDM rubber.
  • the third material will typically be present in an amount less than about 60 wt%, more particularly less than about 50 wt%, and more specifically about 2 to 45 wt% (e.g., about 15 to 45 wt%) of the final material.
  • Higher amounts of elastomer may be employed in instances, for example, when polypropylene homopolymer is used in place of copolymer.
  • suitable material that includes or consists essentially of an elastomer are commercially available from The Dow Chemical Company under the designation of Affinity® (e.g., including EG-8100 or EG-8200).
  • the relative amounts of the first, second and third materials will range from about 30 to 90 parts by weight of the first material, optionally up to about 30 parts by weight of the second material, and about 3 to 40 parts by weight of the third material.
  • the elastomer of the third material will result in a rubber content in the overall resulting material that ranges from about 2 to about 40 wt%. It is generally contemplated that additions of a rubber in the first and third material in an amount of at least about 2 wt% of the starting materials.
  • first, second and third materials are for sake of convenience. Unless specified, use of those terms should not be construed as excluding other materials. Nor should it be construed as suggesting that any particular sequence of processing steps need be employed.
  • Other ingredients may be employed in addition to the above first, second and third materials, including but not limited to art disclosed ingredients such as one or more fillers, reinforcements, light stabilizers, colorants, flame retardants, thermal stabilizers, nucleators, or the like.
  • two or more of the first, second and third materials can be supplied together as a kit, such as in one or more suitable containers. Such kit, as well as its individual component materials are, therefore within the scope of the present invention.
  • Materials resulting from the teachings herein will have any combination of at least two (and more specifically at least 3, 4 or all) of the following properties; namely, a density from about .85 to about 1.05 g/cc, and more specifically about .9 to about 1.0; flexural modulus that ranges from about 600 to about 2500 MPa, more specifically about 700 to about 1700 MPa, and still more specifically about 900 to about 1300 MPa; a tensile strength (at yield) of at least about 8 MPa, more specifically at least about 10 MPa, and still more specifically, at least about 12 MPa; failure in a ductile mode (e.g., multi- axial dart impact testing (Instrumented Dart Impact)) of greater than about 90% of samples, and more specifically, approximately 100% (at -40 0 C, -30 0 C or 0 0 C); or shrinkage of less than 1%, and more specifically, less than about 0.7%.
  • a density from about .85 to about 1.05 g/cc, and
  • materials resulting from the teachings herein will have any combination of failure in a ductile mode (e.g., multi-axial dart impact testing (Instrumented Dart Impact)) of greater than about 90% of samples, and more specifically, approximately 100% (at -40 0 C, -30 0 C or 0 0 C) and notched Izod Impact value of at least about 3 (e.g., about 5 or higher) ft-lbs/in; and optionally at least one of the following properties; namely, a density from about .85 to about 1.05, and more specifically about .9 to about 1.0 g/cc; flexural modulus that ranges from about 600 to about 2500 MPa, more specifically about 700 to about 1700 MPa, and still more specifically 900 to about 1300 MPa, about; a tensile strength (at yield) of at least about 8 MPa, more specifically at least about 10 MPa, and still more specifically, at least about 12 MPa; or optionally, shrinkage of less than
  • melt flow rate and "melt index” herein is determined by ASTM D1238.
  • polypropylene tests are at 230 0 C with a 2.16 kg weight.
  • elastomer tests are at 190 C and 2.16 kg.
  • Viscosity is determined using a Kayeness Capillary Rheometer, according to ASTM D3835-96 (employing a die diameter of 0.762 mm, a die length of 25.4 mm and an L/D of 33.3).
  • Multiaxial or Instrumented Dart Impact (IDI) Energy measurements are according to ASTM D3763.
  • multi-axial dart impact testing (Instrumented Dart Impact) is run on an MTS 810 High Rate instrument using a 20001b load cell. All specimens are four inch diameter disks that are 0.125 inch thick. The disks are impacted at 6.7meters/second using an approximately 13 mm tip. The outer 0.5 inch is screw- clamped, leaving 3" of test area. A ductile break (denoted herein by a designation "D") leaves a clean hole punched through the center of the part with plastic drawn up to that hole, and no cracks extending radially out visible to the naked eye. [0032] Density measurements are per ISO 1183 (method A). Notched Izod
  • VoCrystallinity ⁇ ° bs °TM d x ⁇ 00 ,
  • Glass transition temperature (T g ) is measured by compression molding elastomer samples and performing a temperature ramp using a Rheometrics Dynamic Mechanical Spectrometer. The glass transition temperature is defined as the temperature at the tan delta peak. Solid State Testing is done under liquid nitrogen environment, with torsion fixtures, in dynamic mode. A temperature ramp rate of 3°C / min is used, with a frequency of 1 rad/sec, and an initial strain of 0.1%. Average sample dimensions have a length of 45.0 mm, width of 12.6 mm, and thickness of 3.2 mm.
  • Flexural modulus is measured by ISO 178.
  • Tensile strength (at yield) is measured by ISO 527-1/2.
  • Shrinkage is measured by ISO 294.
  • the ratio of the apparent viscosity of the dispersed phase to the apparent viscosity of the matrix, as plotted as a function of shear rate (e.g., across the shear rate range of 55 to 5500 sec "1 ) is referred to as the "viscosity ratio”. It desirably ranges from about 0.2 to 10, and more specifically is less than about 5. It is possible that at relatively low viscosity ratios (e.g., less than about 2), lamellar morphology likely will result.
  • the materials resulting from the present teachings generally will exhibit a rubber phase dispersed in a matrix.
  • One common structure will include a plurality of generally uniformly distributed rubber droplets (e.g., from the third material) dispersed in a matrix phase that comprises the polyolefin and ingredients contributed by the first and second materials.
  • the resulting material also exhibits a volume average rubber domain size of about 0.1 micron to about 5 microns, and more specifically, about 0.3 to about 2.5 microns.
  • Atomic force microscopy (AFM) or transmission electron microscopy (TEM) with image analysis is used for rubber domain size analysis.
  • AFM can be used to generate images of the rubber morphology, sampling an injection molded bar, viewing the core of the bar along the direction of flow.
  • Particle size data is generated by using Wavemetrics Igor Pro software (version 5.0.2.0) to first generate Binary (black & white images) from the image created by the Veeco instruments Nanoscope software (version 5.12r3). Once converted to binary it is then processed by Leica Qwin software, generating the particle size analysis. Lamellar morphologies are contemplated also.
  • the articles in accordance with the present invention find use in a number of applications. Among them, are applications in which polyolefinic materials, and particularly thermoplastic polyolefins, are employed.
  • the materials made according to the teachings herein find attractive application in transportation vehicles as an interior or exterior component, such as fascias, interior trim panels, knee bolsters, instrument panels, handles, or the like.
  • the articles may be shaped and will consist essentially of the materials according to the teachings herein. They may be part of an assembly as well. It is possible for example that a shaped article made according to the
  • I l teachings herein is laminated to another structure, such as by weld, adhesive bond, fastener or any combination thereof. It is also possible that that articles may be part of an overmolded or co-injection molded assembly.
  • bonding agent systems suitable for use herein include, without limitation, cyanacrylates, (meth)acrylics, polyurethanes, silicones, epoxies, or the like.
  • One particularly attractive adhesive includes an organoborane/amine complex, such as disclosed in U.S. Patent Nos. 6,710,145; 6,713,579; 6,713,578; 6,730,759; 6,949,603; 6,806,330; and Published U.S. Application Nos. 2005-0004332 and 2005-0137370; all of which are hereby expressly incorporated by reference.
  • the articles may be suitable treated in a secondary operation as well for improving their properties.
  • they may be coated or otherwise surface treated.
  • the surfaces of a body can optionally undergo a preliminary treatment prior to attachment to another body. This optional treatment can include cleaning and degreasing, plasma coating, corona discharge treating, coating with another surface treatment, coated with a bonding agent, or any combination thereof.
  • a body may be subject to a carbon-silica based plasma deposited coating, e.g., as described in U.S. Pat. No. 5,298,587; U.S. Pat. No. 5,320,875; U.S. Pat. No. 5,433,786 and U.S. Pat. No.
  • a formulation is made by dry blending about 54.3 wt% neat polypropylene pellets having a melt flow rate of about 44 g/10 min (a polypropylene available from The Dow Chemical Company under the designation of C705-44NA), about 16.7 wt% of pellets of a masterbatch (which consists essentially of about 60 wt% talc and about 38 wt% of the same neat polypropylene and about 2 wt% additives) and 29 wt% neat elastomer having a melt flow rate at or below about 10 g/10 min (e.g., an elastomer available from The Dow Chemical Company under the designation of Affinity® EG 8200).
  • a masterbatch which consists essentially of about 60 wt% talc and about 38 wt% of the same neat polypropylene and about 2 wt% additives
  • 29 wt% neat elastomer having a melt flow rate at or below about 10 g/10 min e.g., an
  • This pellet mixture is processed using an injection molding machine using various combinations melt temperature, screw speed, and back pressure (see Table 1 below).
  • the resultant articles contain about 10% talc.
  • Ductility is measured by testing multiaxial dart impact resistance over a range of -10 to -30 0 C and notched Izod at 0 and 23 0 C.
  • a second formulation is made by dry blending about 71.9 wt% neat polypropylene pellets having a melt flow rate of about 12 g/10 min (a polypropylene available from The Dow Chemical Company under the designation of C715-12NHP), about 23.1 wt% of masterbatch pellets that consist essentially of about 65 wt% talc, about 12.9 wt% of the neat polypropylene (e.g., C715-12NHP), about 21.7 wt% LLDPE and about .004 wt% additives), and about 5 wt% of a neat elastomer having a melt flow rate at or below about lg/10 min (e.g., an elastomer available from The Dow Chemical Company under the designation of Affinity® EG 8150).
  • a neat polypropylene pellets having a melt flow rate of about 12 g/10 min a polypropylene available from The Dow Chemical Company under the designation of C715-12NHP
  • masterbatch pellets that consist
  • This pellet mixture is then processed using an injection molding machine using various combinations of melt temperature, screw speed, and back pressure (see Table 2 below).
  • the resultant articles contain about 15% talc.
  • Ductility is measured by testing multiaxial dart impact resistance at -30C and notched Izod at 23 0 C.
  • the masterbatches are produced, using art-disclosed techniques on a 4" Farrel Continuous mixer using style 15 rotors at a talc loading of about 60-65%.
  • Microscopy of samples made according to the present teachings and samples compounded from neat talc should show similar levels of talc dispersion and no noticeable agglomerates. It is believed important for overall success that the talc is well dispersed.
  • the talc is Jetfil 7C (available from Luzenac), a fine particle size talc (that consists essentially of 3MgO4Si0 2 ⁇ 2 0).
  • the viscosity of the neat elastomer and the neat polypropylene basestocks is measured on a capillary rheometer at 220 0 C. A viscosity ratio is calculated and plotted against shear rate. The samples will size well, provide a generally lamellar and/or droplet morphology, exhibit attractive impact properties or a combination thereof. A lamellar morphology is also possible at about a 30% rubber loading when the viscosity ratio is less than about 2.
  • the screw that is used suitably functions as a mixing screw, and specifically one for achieving distributive mixing or a combination of both dispersive and distributive mixing.
  • the screw is an Eagle mixing screw supplied by Westland Corp.
  • the feed and transition sections of this screw are designed like a general purpose screw.
  • the meter section of the screw possesses a mixing section comprised of two spiral in-flow and two spiral out-flow channels.
  • the mixing flight possesses an undercut that provides a certain degree of dispersive mixing.
  • This mixing flight also contains bypass channels that provide a certain degree of distributive mixing.
  • the amount of distributive mixing is further increased through the use of an interfacial surface generating (ISG) mixing nozzle, comprised of 5 elements, supplied by Nickerson Machinery (e.g., Style E IsoMix nozzle).
  • ISG interfacial surface generating
  • control samples are compounded prior to introduction to an injection molding machine by using a 30 mm twin screw extruder (Werner & Pfleiderer ZSK-30) with an L/D ratio of 29.3.
  • the screw design employs a high intensity, dual stage melting/mixing section employing kneading blocks upstream with blocks of turbine mixing elements downstream. Barrel temperature settings covered a range of 180 to 23O 0 C with a 300 RPM screw speed.
  • the control examples are materials pre-compounded according to known techniques, and then processed as set forth.
  • Tables 1 and 2 illustrate a variety of conditions and the results believed possible.
  • Table 1 refers to the lower total rubber materials, and Table 2 refers to the higher total rubber materials. It is seen that mixing (particularly to increase distributive mixing) has the potential to enhance material characteristics, particularly in combination with the processing parameters specified.
  • Table 1 examples are believed to produce rubber particle morphology sized to the range of 1.25 to 1.4 um. As seen, variation among the processing parameters can contribute to the final attributes of the resulting materials, and particularly as relating to ductility. [0049] Processing according to the parameters set forth in Table 2 examples is contemplated to produces a lamellar morphology and failure in the ductile mode over a range of varying conditions.
  • Tables 3 and 4 illustrates the effects that are loading levels, polypropylene (PP) melt flow rate, intending to be bound by theory, it is believed the melt index for the elastomeric constituents can be selected to achieve a viscosity ratio. It is seen combination of features typically contribute to a successful material, and that iuccessful result.
  • Ethylene-octene rubber 1 Melt Index, 0.87 density, -56 0 C Tg
  • ductility in the multi-axial impact test and the associated ductile-brittle transition temperature is believed dependent at least upon rubber phase volume, while the notched Izod test and its ductile-brittle transition temperature is believed to be a function of rubber domain size, inter-particle distance or both. Mixing conditions are believed to influence consistency in the rubber phase volume across the part. Taking these considerations into account, in combination with a suitable viscosity ratio for setting a desired rubber domain size is believed to result in materials achieving the desired attributes discussed herein, without the need for compounding (and exposure to unnecessary heat history) of the entirety of the main material constituents.
  • Table 5 shows the expected effect of varying viscosity ratio on rubber domain size (expressed in microns) when comparing materials of the present invention that are blended within an injection molding machine and those that are compounded in advance of introduction into a molding machine. It is believed that the viscosity ratio for achieving a predetermined rubber size will differ from the viscosity ratio otherwise needed when employing prior compounding.
  • the materials in column 1 correspond generally with specific materials from IB, and materials respectively from within the ranges of 3 B and 4B in Table 3.
  • the previously compounded materials (in columns 2 and 3) are prepared by compounding similarly composed materials as in the column 1 materials, in a manner such as described above for the control materials. The effect of employing a mixing nozzle is also examined.
  • the process of the present invention is substantially free of a step of compounding together the first, second and third materials prior to the blending step, and specifically a compounding step that includes a melt blending step of the three materials. It will be appreciated that such requirement can still be met by employing dry blend steps below the melting points of the materials.
  • the materials may be dry mixed (e.g., by a mixing arm in a hopper).
  • a suitable feeder such as a gravimetric feeder (as discussed) may optionally be employed.

Landscapes

  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

La présente invention concerne des procédés améliorés pour fabriquer des articles en plastique, et des articles fabriqués par ces procédés. De façon générale, l'invention concerne des procédés améliorés et des articles fabriqués par ceux-ci, procédés qui comprennent les étapes consistant à obtenir séparément un premier matériau comprenant une polyoléfine thermoplastique, un deuxième matériau comprenant un mélange d'une charge particulaire et d'une deuxième polyoléfine thermoplastique, et un troisième matériau comprenant un élastomère, appliquer une force de cisaillement aux premier, deuxième et troisième matériaux pendant que ceux-ci se trouvent à haute température pour les mélanger afin d'obtenir un mélange fondu, façonner le mélange fondu et le solidifier.
EP07782037A 2006-04-19 2007-04-17 Articles thermoplastiques et procédés améliorés pour les fabriquer Withdrawn EP2012996A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US74511606P 2006-04-19 2006-04-19
PCT/US2007/066778 WO2007124303A2 (fr) 2006-04-19 2007-04-17 Articles thermoplastiques et procédés améliorés pour les fabriquer

Publications (1)

Publication Number Publication Date
EP2012996A2 true EP2012996A2 (fr) 2009-01-14

Family

ID=38556421

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07782037A Withdrawn EP2012996A2 (fr) 2006-04-19 2007-04-17 Articles thermoplastiques et procédés améliorés pour les fabriquer

Country Status (11)

Country Link
US (1) US7897093B2 (fr)
EP (1) EP2012996A2 (fr)
JP (1) JP2009534226A (fr)
KR (1) KR20080110830A (fr)
CN (1) CN101583476A (fr)
BR (1) BRPI0709408A2 (fr)
CA (1) CA2645500A1 (fr)
MX (1) MX2008013432A (fr)
RU (1) RU2008145589A (fr)
WO (1) WO2007124303A2 (fr)
ZA (1) ZA200807902B (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2008016342A (es) 2006-06-29 2009-01-19 Dow Global Technologies Inc Articulos termoplasticos y procesos para hacer los mismos usando un lote maestro mejorado.
US8080607B2 (en) * 2006-08-16 2011-12-20 Dow Global Technologies Llc Polymeric material and process for forming and using same
US7862671B2 (en) * 2007-01-11 2011-01-04 Dow Global Technologies Inc. Welding of a polymeric material and structures formed thereby
JP5357169B2 (ja) * 2007-10-22 2013-12-04 ダウ グローバル テクノロジーズ エルエルシー 物品を成形するためのポリマー組成物及び方法
WO2009114761A2 (fr) * 2008-03-14 2009-09-17 Dow Global Technologies Inc. Procédé amélioré pour façonner des objets polymères
US7988903B2 (en) * 2008-07-02 2011-08-02 Zeon Chemicals L.P. Fast curing vulcanizable multi-part elastomer composition, and process for blending, injection molding and curing of elastomer composition
BRPI1005329B1 (pt) 2009-01-30 2019-06-18 Dow Global Technologies Llc Composição polimérica, composição de poliolefina termoplástica enchida e processo para a fabricação de um artigo moldado
WO2013059321A1 (fr) * 2011-10-17 2013-04-25 Bucknell University Procédé de production de composites et/ou de nanocomposites polymères exfoliés et/ou dispersés par extrusion à l'état solide/à chaud (ssme)
CN104602892B (zh) 2012-06-28 2019-05-17 陶氏环球技术有限责任公司 制造多层微毛细管膜的系统,方法和装置
CN103302830A (zh) * 2013-06-09 2013-09-18 无锡市华牧机械有限公司 通过注塑机机械手控制成品重量的方法
US10150858B2 (en) * 2014-02-11 2018-12-11 Flint Hills Resources, Lp Blended compositions, methods for making same, and articles made therefrom
CN104261008A (zh) * 2014-09-19 2015-01-07 无锡同心塑料制品有限公司 泡塑板生产设备的上料装置
CN104588658B (zh) * 2014-12-25 2016-08-31 苏州米莫金属科技有限公司 一种增压粉末注射成型装置
IL261905B1 (en) * 2016-03-27 2024-07-01 Zamir Ofri System and methods for an injection molding machine with an additive feeding system
DE102016119754A1 (de) * 2016-10-17 2018-04-19 Windmöller & Hölscher Kg Verfahren für die Durchführung eines Materialwechsels bei einer Vorlagevorrichtung eines Extruders
US10577159B2 (en) 2017-04-07 2020-03-03 Berry Plastics Corporation Drink cup lid
CN111182818B (zh) 2017-08-07 2023-07-04 贝瑞全球有限公司 用于热成型制品的方法和装置
USD907997S1 (en) 2018-08-10 2021-01-19 Berry Global, Inc. Drink cup lid
CA3129224A1 (fr) 2019-02-06 2020-08-13 Berry Global, Inc. Procede de formage d'un materiau polymere
USD911168S1 (en) 2019-03-05 2021-02-23 Berry Global, Inc. Drink cup lid
JP7388057B2 (ja) * 2019-08-30 2023-11-29 セイコーエプソン株式会社 三次元造形装置、および、射出成形装置
US12084231B2 (en) 2020-08-05 2024-09-10 Berry Global, Inc. Polypropylene sheets and articles

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1292365A (en) * 1969-05-23 1972-10-11 Windmoeller & Hoelscher Mixing devices for plastics materials
JPS6031514A (ja) * 1983-07-29 1985-02-18 Daicel Chem Ind Ltd 耐熱耐衝撃性樹脂及びその製造方法
US4663103A (en) * 1983-08-09 1987-05-05 Collins & Aikman Corporation Apparatus and method of extrusion
US4732926A (en) * 1986-09-29 1988-03-22 General Motors Corporation Dry blendable polypropylene composition
IT1240417B (it) 1990-02-28 1993-12-15 Himont Inc Procedimento per la produzione di film e corpi laminari polipropilenici e prodotti cosi' ottenuti
US5130076A (en) * 1990-08-27 1992-07-14 E. I. Du Pont De Nemours And Company Direct fabrication
JP3177709B2 (ja) * 1991-02-15 2001-06-18 住友化学工業株式会社 熱可塑性樹脂組成物およびその射出成形体
US5215764A (en) * 1991-06-10 1993-06-01 Westland Corporation Extruder mixing screw
US5298587A (en) * 1992-12-21 1994-03-29 The Dow Chemical Company Protective film for articles and method
US5433786A (en) * 1993-08-27 1995-07-18 The Dow Chemical Company Apparatus for plasma enhanced chemical vapor deposition comprising shower head electrode with magnet disposed therein
JP3113774B2 (ja) * 1994-05-31 2000-12-04 東芝機械株式会社 プラスチック成形用スクリュ
DE19532412C2 (de) * 1995-09-01 1999-09-30 Agrodyn Hochspannungstechnik G Vorrichtung zur Oberflächen-Vorbehandlung von Werkstücken
JPH09104056A (ja) * 1995-10-12 1997-04-22 Niigata Eng Co Ltd プラスチック加工用スクリュ
JP3852326B2 (ja) * 1995-11-24 2006-11-29 チッソ株式会社 プロピレン系組成物およびその製造方法ならびにポリプロピレン系組成物および成型品
US6525157B2 (en) * 1997-08-12 2003-02-25 Exxonmobile Chemical Patents Inc. Propylene ethylene polymers
CN1247795A (zh) 1998-09-16 2000-03-22 严而明 注塑成型
JP4205786B2 (ja) * 1998-10-05 2009-01-07 住友化学株式会社 ポリプロピレン系樹脂組成物およびその射出成形体
US6132076A (en) * 1998-12-09 2000-10-17 General Electric Company Single extruder screw for efficient blending of miscible and immiscible polymeric materials
US6806330B1 (en) * 1999-12-17 2004-10-19 Dow Global Technologies Inc. Amine organoborane complex polymerization initiators and polymerizable compositions
FR2804964B1 (fr) * 2000-02-14 2006-09-29 Omya Sa Utilisation de polypropylenes isotactiques de tres grande fluidite pour la preparation de concentres de charges utilisables dans les thermoplastiques de type olefinique, concentres de charges et thermoplastiques ainsi obtenus
JP2002020559A (ja) * 2000-07-06 2002-01-23 Sumitomo Chem Co Ltd ポリプロピレン系樹脂組成物及びその自動車用射出成形体
US20040048967A1 (en) * 2000-09-07 2004-03-11 Ryuzo Tomomatsu Process for producing thermoplastic resin composition and thermoplastic resin composition obtained thereby
JP2004514574A (ja) * 2000-11-28 2004-05-20 ゼネラル・エレクトリック・カンパニイ 熱可塑性樹脂ブレンドの成形及び加工方法
CN1328032C (zh) * 2001-07-25 2007-07-25 倍耐力轮胎公司 连续生产弹性体合成物的方法和设备
US20050070673A1 (en) * 2001-10-01 2005-03-31 Novak Leo R. Thermoformable propylene polymer compositions
KR100908269B1 (ko) * 2001-10-18 2009-07-20 커뮤니티 엔터프라이즈, 엘엘씨. 다층 물품 사출 성형 장치
SG147306A1 (en) 2001-11-06 2008-11-28 Dow Global Technologies Inc Isotactic propylene copolymers, their preparation and use
US6960635B2 (en) * 2001-11-06 2005-11-01 Dow Global Technologies Inc. Isotactic propylene copolymers, their preparation and use
AU2002360862A1 (en) * 2002-01-15 2003-07-30 Advanced Elastomer Systems, L.P. Thermoplastic elastomers and process for making the same
US20050156352A1 (en) * 2002-06-21 2005-07-21 Krauss-Maffei Kunststofftechnik Gmbh Method of and apparatus for injection molding multicomponent fiber-reinforced molded parts
US6734253B2 (en) * 2002-07-19 2004-05-11 Dow Global Technologies, Inc. Scratch and mar resistant propylene polymer composition
US6812286B2 (en) * 2002-08-15 2004-11-02 Fina Technology, Inc. Clear impact-resistant syndiotactic polypropylene
US7550528B2 (en) * 2002-10-15 2009-06-23 Exxonmobil Chemical Patents Inc. Functionalized olefin polymers
JP2004168876A (ja) 2002-11-19 2004-06-17 Inoac Corp マスターバッチ
US6777512B1 (en) * 2003-02-28 2004-08-17 Dow Global Technologies Inc. Amine organoborane complex initiated polymerizable compositions containing siloxane polymerizable components
CA2531694A1 (fr) * 2003-06-09 2004-12-09 Dow Global Technologies Inc. Initiateurs de polymerisation d'organoborane stabilise et compositions polymerisables
US20050116390A1 (en) * 2003-08-29 2005-06-02 Nailite International Method for injection molding
JP4464676B2 (ja) 2003-12-18 2010-05-19 カルプ工業株式会社 自動車用部品の成形方法
WO2005063480A1 (fr) * 2003-12-22 2005-07-14 Dow Global Technologies Inc. Compositions a polymerisation acceleree initiee par un complexe organoborane amine
US20050250890A1 (en) * 2004-05-06 2005-11-10 Yan Chen Filler masterbatch for thermoplastic compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007124303A3 *

Also Published As

Publication number Publication date
WO2007124303B1 (fr) 2008-08-07
RU2008145589A (ru) 2010-05-27
JP2009534226A (ja) 2009-09-24
CA2645500A1 (fr) 2007-11-01
US7897093B2 (en) 2011-03-01
MX2008013432A (es) 2008-11-04
WO2007124303A3 (fr) 2008-05-29
ZA200807902B (en) 2010-01-27
WO2007124303A2 (fr) 2007-11-01
BRPI0709408A2 (pt) 2011-07-12
CN101583476A (zh) 2009-11-18
US20070246862A1 (en) 2007-10-25
KR20080110830A (ko) 2008-12-19

Similar Documents

Publication Publication Date Title
US7897093B2 (en) Thermoplastic articles and improved processes for making the same
CA2656615C (fr) Articles thermoplastiques et procedes de fabrication au moyen d'un melange maitre ameliore
Hassan et al. Mechanical and morphological properties of PP/NR/LLDPE ternary blend—effect of HVA-2
EP2054470B1 (fr) Matériau polymère et procédé pour le constituer et pour l'employer
EP2391677B1 (fr) Compositions polymères et articles en polyoléfine thermoplastique (tpo) chargée ayant une esthétique améliorée
EP1130055B1 (fr) Composition de resine thermoplastique et objet moule par injection a partir de celle-ci
JP2000143904A (ja) 強化ポリプロピレン系樹脂組成物
JP2019172061A (ja) エアバッグ収納カバー用熱可塑性エラストマー組成物及びエアバッグ収納用カバー
EP1392771B1 (fr) Composition de resine thermoplastique
JP2622891B2 (ja) ポリプロピレン樹脂成形品
JP2007056169A (ja) 熱可塑性樹脂組成物、それを用いた熱可塑性樹脂組成物成形品、及び熱可塑性樹脂組成物の製造方法
KR20240070175A (ko) 폴리프로필렌수지 조성물

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20090209

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DOW GLOBAL TECHNOLOGIES LLC

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20120213