EP2008815B1 - Verfahren und Vorrichtung zum Auftragen eines Feuchtmittels oder einer Farbe - Google Patents

Verfahren und Vorrichtung zum Auftragen eines Feuchtmittels oder einer Farbe Download PDF

Info

Publication number
EP2008815B1
EP2008815B1 EP08159071A EP08159071A EP2008815B1 EP 2008815 B1 EP2008815 B1 EP 2008815B1 EP 08159071 A EP08159071 A EP 08159071A EP 08159071 A EP08159071 A EP 08159071A EP 2008815 B1 EP2008815 B1 EP 2008815B1
Authority
EP
European Patent Office
Prior art keywords
fluid
rotation body
lines
form cylinder
printing form
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08159071A
Other languages
English (en)
French (fr)
Other versions
EP2008815A3 (de
EP2008815A2 (de
Inventor
Thomas Zehnder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wifag Maschinenfabrik AG
Original Assignee
Wifag Maschinenfabrik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wifag Maschinenfabrik AG filed Critical Wifag Maschinenfabrik AG
Publication of EP2008815A2 publication Critical patent/EP2008815A2/de
Publication of EP2008815A3 publication Critical patent/EP2008815A3/de
Application granted granted Critical
Publication of EP2008815B1 publication Critical patent/EP2008815B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F7/00Rotary lithographic machines
    • B41F7/20Details
    • B41F7/24Damping devices
    • B41F7/30Damping devices using spraying elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • B41F33/0027Devices for scanning originals, printing formes or the like for determining or presetting the ink supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • B41F33/0054Devices for controlling dampening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • B41F33/0063Devices for measuring the thickness of liquid films on rollers or cylinders

Definitions

  • the invention relates to a method and a device for the application of a fluid to a rotary body of a printing press.
  • the fluid may be a dampening solution or paint.
  • the printing machine is preferably a rotary printing machine and may be in particular a web-fed printing press. It prints preferably in offset, preferably with ink and dampening solution.
  • WO 2004/039587 A1 is a method for adjusting a spray dampening with intermittently a fountain solution dispensing spray nozzles known.
  • the period or spray frequency of the spray nozzles is set in a certain correlation to the rotation time or rotation frequency of a plate cylinder or a dampening roller.
  • WO 2006/013178 A1 discloses a device for applying a fluid.
  • the invention is based on a method and a device for applying a fluid, namely a dampening solution or a paint, to a rotary body of a printing press, in which the fluid is intermittently applied in pulses to the rotating rotary body.
  • the device accordingly comprises a dispenser for the intermittent delivery of the fluid and the rotary body rotatable about a rotation axis.
  • the rotary body may be a printing form cylinder if the dispensing device delivers the fluid directly to the printing form cylinder. More preferably, at least one rotary body of a dampening unit or inking unit on the Path of the fluid between the dispenser and the plate cylinder arranged.
  • This rotation body can be formed in particular as known from wet or inking units as a roller.
  • the dispenser preferably has no direct contact with the rotary body.
  • a contactless fluid application to the rotary body has the advantage that color transferred back from the printing process can not be transported into the dispenser of a dampening unit or rewetted dampening solution into the dispenser of an inking unit.
  • the dispenser is a spray nozzle.
  • An example of a spray nozzle describes the WO 2005/065948 Al , Along the rotation body are axially offset from each other preferably a plurality of dispensing devices of the same type arranged and jointly or individually controlled.
  • the dispenser discharges the fluid in pulses.
  • a pulse which may be, for example, several milliseconds, a passage of the dispenser is open and allows the fluid to pass under pressure.
  • the pulse duration is followed in each case by a pause duration during which the delivery device is closed and does not deliver any fluid.
  • the pause duration can also be in the millisecond range. It is preferably longer than the pulse duration.
  • a period of the dispenser, in each of which one of the pulses is delivered for example, be 50 to 100 msec, wherein the pulse duration, for example, 3 to 20 msec and the pause duration in the example chosen 30 to 97 msec.
  • a dispensing device which is reversible between the open state and the closed state
  • a dispensing device which can be reversed between a high and a low dispensing rate or in which the transitions are continuous.
  • the period may be variable, but is preferably constant. In the following, it will be referred to as a time interval in general terms.
  • the dispenser dispenses the fluid in successive time intervals in each time interval per one pulse of a pulse duration, which is preferably variable.
  • a pulse interval can be varied.
  • the pulse interval is the time from the beginning of a pulse to the beginning of a next pulse.
  • the transfer of the fluid in the dampening unit or inking unit is simulated in a mathematical model during the printing operation.
  • the model simulates that Behavior of the dampening unit or inking unit. Specifically, it simulates the rotational movement of the body of revolution and the topographical surface occupation of the body of revolution with the fluid, which is intermittently applied by means of the dispenser to the body of revolution in pulses and transported away from the body of revolution in the direction of a printing material to be printed.
  • the model runs in the printing operation according to the rotational speed, preferably of the printing forme cylinder to which the fluid is transferred, preferably in real time parallel to the actual printing process.
  • the printing material to be printed is preferably a web material and may in particular be a paper web, for example for printing a newspaper, but in principle may also be printed in the form of sheets.
  • the model images the outer peripheral surface of the rotating body and simulates, ie, constantly determines a film thickness equivalent of the fluid present on the peripheral surface.
  • the current topographical fluid occupancy of the rotational body is continuously determined during the printing operation.
  • the duration of the respectively next pulse or the time interval of the respectively next pulse from the preceding one is or will be set.
  • the model sequentially generates data records which respectively represent the current fluid occupancy. If the model is running in real-time as preferred, it generates a data set representing the instantaneous and therefore up-to-date fluid occupancy with each revolution of the body of revolution. If the model is not running in real time but slows down, it is possible to interpolate between the individual calculation steps by means of default values, which are preferably adjusted during printing operation by measuring the film thickness equivalent.
  • the topographical surface coverage determined by the simulation thus comprises the information about a specific location of the peripheral surface and the film thickness at this location, ie is a fluid relief.
  • the location may be a point or a line or partial area, preferably an axial strip or an axial line in the model. be on the peripheral surface of the rotating body.
  • the film thickness equivalent is a value representative of the film thickness at each location, which may correspond directly to the simulated film thickness. Instead of directly determining the film thickness, for example, the Fluid quantity or another physical quantity determined grazing, from which clearly and completely on the film thickness can be concluded. In this sense, the value is equivalent to the film thickness.
  • the device comprises a data processing device, preferably an electronic data processing device.
  • the model may be hardwired in the data processing device. More preferably, it is programmed, d. H. implemented in the form of software.
  • the data processing device is coupled to a controller for the dispenser or integrated part of such a controller.
  • the control device serves to set the pulse duration or the pulse interval between two successive pulses of the delivery device. By means of the control, either only the pulse duration or only the pulse spacing or both in combination can be changed and adjusted in this way, so that the fluid is delivered to the rotational body according to the demand determined by the simulation.
  • the fluid is preferably applied so that a predetermined desired value is maintained.
  • the desired value is predetermined as the ratio of the pulse duration and the length of the time interval in which the respective fluid pulse is applied.
  • the desired value predetermined in this way is preferably delivered as a function of the peripheral speed or rotational speed of the rotary body, to which the dispensing device applies the fluid or which receives the fluid from this rotary body.
  • the desired value is varied as a function of the speed of a printing forme cylinder to be occupied by the fluid. Due to the variation of the desired value, the fluid application is adjusted to a fluid requirement that changes as a function of the machine speed
  • the lengths of the time intervals are kept constant or can not be varied from the outset, and the required amount of fluid is applied per time interval by varying the pulse duration.
  • the length of the time interval can be varied, optionally in combination with a variation of the pulse duration.
  • the ratio setpoint pulse duration / time interval must not be maintained exactly for each time interval. Not least in order to avoid periodic fluctuations in the actual film thickness that is actually established, it can be advantageous if the fluid is dispensed averaged over a number of successive time intervals in accordance with the desired value.
  • Such a delayed or alternatively anticipatory fluid application may also be made in embodiments in which it is not possible to set the set point as the setpoint exactly for each time interval because, for example, the controller or model does not work or work fast enough for it. Is at a period, d. H.
  • this setpoint may be delivered averaged over several successive time intervals before or after the latency For example, with pulse durations of three times 8 msec and twice 9 msec in all possible sequences, for example 8, 8, 8, 9, 9 msec or 9, 8, 8, 9, 8 msec, or with larger deviations from the mean value forming setpoint.
  • the topographical area occupancy of the printing form cylinder is predetermined and calculated back on the transport path of the fluid to the dispenser on the pulse duration or the pulse distance of the dispenser to set or maintain the predetermined area occupancy of the printing form cylinder.
  • the printing form cylinder emits a constant quantity of the fluid in each time unit in a transfer cylinder which is in pressure with the printing material or preferably on the printing material over its axial length in a gap in which the fluid transfer takes place. This amount of fluid is predetermined in the model and replenished by the dispenser.
  • the predetermined for the printing forme cylinder fluid relief thus changes in the printing operation corresponding to the constant transfer rate in the gap
  • a target assignment is specified for the plate cylinder.
  • a target assignment can in particular a constant film thickness of the fluid can be specified over the circumference of the printing forme cylinder.
  • the two variants can be combined, so that in such a model at a given, for example, constant desired thickness of the fluid film, the transmission rate in the fluid discharging towards the printing material gap is also specified, for example as a constant transfer rate.
  • the data processing device calculates the pulse duration and the pulse interval of the output device on the basis of a target / actual comparison of the predetermined relief, ie the predetermined topographic area occupation, and the area occupation resulting after passing through the gap, and adjusts the two parameters in such a way that the printing form cylinder adjusts the predetermined area occupancy before the axial line on the peripheral surface of the plate cylinder, which has just passed through the gap, the gap passes a next time.
  • the data processing device and the controller can also be set up so that the predetermined area occupation is only obtained again after more than one revolution of the printing form cylinder.
  • the rotational body to which the delivery device discharges the fluid directly preferably not around the printing form cylinder, but around a rotary body of the dampening unit upstream of the printing forme cylinder, becomes the required surface coverage of the upstream rotational body in the second embodiment from the specifications for the printing forme cylinder determined and controlled according to this determined area occupancy the dispenser, d. H. the pulse duration or the pulse interval is set.
  • the simple specification of the desired value as a ratio can also be combined with the specification of a nominal assignment according to the second embodiments.
  • a comparison with a nominal assignment can be made, for example at greater time intervals for checking purposes, in order to adjust the ratio setpoint in the event of a detected deviation ,
  • the peripheral surface of the rotary body can be represented in the model by lines, preferably by parallel to the axis of rotation of the body of revolution, ie axial lines which follow one another in the circumferential direction.
  • the lines can For example, a distance of 1 mm or interpreted as strips have a line width of, for example, 1 mm.
  • the film thickness equivalent preferably the amount of fluid, or rather directly the film thickness, is determined, which results from the supply and removal of fluid per line.
  • the model can be implemented in particular as a spreadsheet program.
  • each table preferably consists of a number of lines which corresponds to the number of lines of the respectively associated rotating body.
  • the table values in the rows of the respective table represent the film thickness or the fluid amount or another film thickness equivalent of the associated row of the respective rotary body. If the fluid is transferred as preferred via at least one rotary body to the printing plate cylinder, which itself is also regarded as a rotary body within the meaning of the invention, in the model, so to speak, the tables circulate on behalf of the physical rotary bodies.
  • the film splitting is simulated by adding the table values of the table rows currently forming the gap in the simulation and halving the sum, so that the two table rows which have just passed the gap in the simulation have the same value after passing.
  • a different ratio for an unequal distribution onto the rotational body forming the respective transfer gap with each other can also be used in the model calculation.
  • the peripheral surface of the rotary body may also be divided into columns which extend in the circumferential direction and are arranged axially next to one another.
  • the model can also be implemented in such executions as a spreadsheet program.
  • a division into columns is advantageous if a plurality of independently controllable dispensing devices are arranged axially adjacent to each other, so that the fluid occupancy can be varied by the application along the rotational body.
  • the peripheral surface of the rotation body is modeled as a grid with grid-determining rows and columns which intersect each other and in each case form a grid location as a point or area in the crossing areas.
  • the statements made above apply preferably.
  • the table representing the rotation body comprises rows and columns with at least one table space per grid location.
  • the table value of the respective table space is the film thickness equivalent for the assigned grid location.
  • the fluid is preferably applied to the rows or columns or grid locations that have a lower film thickness equivalent to the model than others.
  • the line with the lowest film thickness equivalent can be determined by comparing all the lines. The fluid is then applied to this line. It is also possible to determine several lines per revolution which have the lowest film thickness equivalent and fluid are applied to these lines. If the fluid application is sufficiently fast and accurate, only that line (s) will receive or receive fluid. With a line width of preferably at most 10 mm, more preferably at most 5 mm, a limited to individual lines application of the fluid should not be possible, at least in the continuous printing at the then high rotational speeds.
  • a cumulative film thickness equivalent for example, is determined as the moving average and the minimum of the moving averages is determined.
  • the rows can also be combined into locally fixed groups, preferably each with the same number of lines which follow each other in the circumferential direction, the film thickness equivalents of the rows of the respective group are summed and the minimum sum value can be determined from the comparison of these sum values.
  • the number of consecutive lines that are summed over is advantageously length tuned to the time interval within which the dispensing device emits one of their fluid pulses.
  • an absolute minimum or a plurality of local minimums of the film thickness equivalent is determined for each revolution or possibly also only over several revolutions of the body of revolution to which the fluid is applied or of another body of revolution receiving the fluid from or via this body of revolution.
  • At least one fluid pulse is preferably applied to the rotary body during each revolution, in the case of subdivision additionally in columns also at least one pulse per column.
  • the printing form cylinder typically axially next to each other several printed images corresponding to one newspaper page on a downstream transfer cylinder, preferably a blanket cylinder, and this transmits the printed images on the paper web
  • the device of the invention has per printed image, in the preferred application per Newspaper page, several, for example, two delivery devices axially side by side.
  • the device accordingly has n side-by-side delivery devices, for example spray nozzles, at n delivery devices per printed image.
  • it has 6n dispensers adjacent to each other. The lines of the model, d.
  • the rows of the table can correspond per print image to a row on the peripheral surface of the rotary body that extends axially over the entire print image.
  • at least the respective printed image is not divided axially again.
  • the printed images may be divided axially according to the number of nozzles. In principle, however, it suffices if the lines in the model extend continuously over the entire axial length of the respective rotational body or printed image over which fluid is transferred.
  • the dampening unit or inking unit comprises one or more rotary bodies in order to transfer the fluid delivered by the dispensing device to the printing form cylinder via one or more transfer gaps
  • at least two of the rotary bodies differ in scope, preferably a non-integer one Factor.
  • the printing forme cylinder is calculated for the at least two rotational bodies. If the dampening unit or inking unit has a plurality of rotary bodies, preferably more than two of the rotary bodies are distinguished, wherein in turn the printing form cylinder is counted as a rotary body, in each case in pairs in the circumference of one another, preferably in each case by a non-integer factor. It is particularly advantageous if the rotary bodies, including the printing forme cylinder, which form a transfer gap for the fluid in pairs with each other, each differ in scope, preferably by a respective non-integer factor.
  • FIG. 1 shows a printing form cylinder 5 of a web-fed rotary printing press and a printing forme cylinder 5 associated dampening unit.
  • the dampening unit comprises a dispensing device 1 for a non-contact application of a dampening solution, which is hereinafter referred to as fluid, and a rotary body 2, on whose outer peripheral surface the dispensing device 1 applies the fluid.
  • the dispenser 1 is a spray nozzle.
  • the rotary body 2 is a roller, in the embodiment, an axially iridescent in printing operation back and forth distributor roller, the dampening unit further comprises two further rotary body 3 and 4.
  • the rotary body 3 is in the embodiment, a transfer roller and the rotary body 4, an applicator roll, the fluid on the Printing form cylinder 5 transmits.
  • the printing form cylinder 5 may have a printing width of, for example, four or six newspaper pages and on its outer circumference corresponding to axially next to each other carry four or six printed images, namely one printed image per newspaper page.
  • the printing form cylinder 5 can have a so-called single or double or even larger circumference, wherein simply and twice in this context mean that the circumference of the printing form cylinder substantially corresponds to the circumferentially measured length of a single printed image or the added length of two printed images, in the embodiment the height of a newspaper page or two newspaper pages.
  • the rotary bodies 2, 3 and 4 each have a smaller circumference than the printing forme cylinder 5.
  • the rotary bodies 2 and 4 are equal in circumference, and the rotary body 3 has a smaller circumference than the rotary bodies 2 and 4.
  • the circumferences of those rotary bodies 2 to 5 which each form a transmission gap for the fluid, differ in pairs by a non-integer factor,
  • the dampening unit thus comprises eight delivery devices 1 axially next to one another, and in the case of a printing forme cylinder 5, for example six pages wide, it has twelve delivery devices 1 next to each other.
  • the printing form cylinder 5 is also associated with an unillustrated transfer cylinder, which receives from the printing form cylinder 5 fluid and color corresponding to the printed images of the plate cylinder 5.
  • the transfer cylinder transfers the color according to the image to a printing material to be printed, in the exemplary embodiment, a paper web. He forms with a arranged on the other side of the web just such a transfer cylinder or with a non-printing impression cylinder a printing gap for a two-sided or only one-sided pressure on the continuous printing material.
  • the dispensing device 1 In printing operation, the dispensing device 1 and give the other dispensing devices 1 fluid according to the need for the rotary body 2 from, in the embodiment by spraying.
  • the rotary body 2 releases a part of the fluid wetting its outer peripheral surface in a transfer nip N 1 formed with the rotary body 3.
  • the rotary body 3 transfers fluid in a transmission gap N 2 formed with the rotary body 4 onto the rotary body 4, and this transfers fluid into a transfer nip N 3 formed on the printing form cylinder 5 onto the printing forme cylinder 5.
  • the fluid in the exemplary embodiment dampening solution, occupies the printed images of the plate cylinder 5, the fluid receiving points and prevents so that these locations can be covered with paint.
  • an inking unit is arranged downwards from the dampening unit 1-4, which transfers ink to the printing form cylinder 5.
  • Fluid is not only transported by the rotary body 2 in the direction of the printing form cylinder 5, but by splitting in the opposite direction. In the respective transfer nip N 1 , N 2 or N 3 takes place a film splitting with a back and forth transfer of fluid.
  • the dispenser 1 discharges the fluid intermittently in fluid pulses.
  • the duration of each pulse is adjustable, d. H. changeable by means of a control.
  • the dispenser 1 operates with a constant period, in each of which a single pulse is delivered.
  • the period duration can be, for example, 100 msec and the pulse duration between 0 and, for example, 20 msec.
  • the pulse may be shifted, preferably the time of the beginning of the pulse in each period is selectable independently of the beginning of the pulse of the preceding period.
  • the period is set according to the fluid requirement, d. H. is changed, with either constant pulse duration or constant pulse spacing or by changing these two parameters.
  • the fluid requirement of the printing unit, to which the printing form cylinder 5 and the dampening unit 1-4 belong, can be taken from the so-called wet curve, the context between the machine speed and thus the rotational speed of the plate cylinder 5 and the required amount of fluid at the respective engine speed.
  • a corresponding delivery of fluid, which also ensures a uniform occupancy of the printing forme cylinder 5 with fluid is ensured by simulating the behavior of the dampening unit 1-4 and the plate cylinder 5 in a mathematical model
  • the pulse duration and the pulse spacing of the dispenser 1 and each Another dispensing device 1 of the dampening unit 1-4 are set in dependence on a determined in the model topographic fluid occupancy of the plate cylinder 5.
  • the determined in the simulation of fluid occupancy can be compared with a target occupancy, for example, a uniform target occupancy and set the pulse duration in dependence on the result of the comparison.
  • a target occupancy for example, a uniform target occupancy and set the pulse duration in dependence on the result of the comparison.
  • only the fluid usage determined in the simulation is used for a comparison and the adjustment of the fluid application. In this case, an absolute minimum or a plurality of local minimums of fluid occupancy is determined and the fluid is deliberately applied in the minimum or the minimum.
  • the model "runs" in real-time during the entire printing process, even in phases of acceleration or deceleration, parallel to the printing process.
  • each of the rotary bodies 2 to 5 is divided into axially straight lines Z i which follow each other in the circumferential direction and each have the same width, for example 1 mm measured in the circumferential direction of the respective rotary body 2, 3, 4 or 5.
  • this topography is indicated for the rotation bodies 2 to 5.
  • Each of the rotary bodies 2 to 5 is thus divided into rows Z i of equal width.
  • the outer peripheral surface of each of the rotary bodies 2 to 5 is further divided into columns S j which extend in the circumferential direction, follow each other axially and each have the same axial width.
  • the lines Z i and columns S j form a surface grid with grid locations G ij .
  • each of the dispensing devices 1 is associated with exactly one of the columns S j , in that each of the dispensing devices 1 faces its associated column S j .
  • the number of columns S j is equal for each of the rotary body 2 to 5 equal to the number of axially offset from each other dispensing devices.
  • the rotational movements of the rotary bodies 2 to 5 are simulated according to the actual machine speed.
  • the same transfer nip N 1 , N 2 or N 3 one of the lines Z i of one of the rotational bodies forming the transfer nip passes into overlap with one of the lines Z i of the other rotational body forming the respective transfer nip.
  • the model calculates the area occupation on the modeled topography of the peripheral surface of the respective rotational body at least once for each of the rotational bodies 2 to 5 during each rotation of the plate cylinder 5 or of the smallest rotational body, preferably during each period of the dispenser 1.
  • This topographical area occupation corresponds to the local distribution of the fluid, ie for each location of the circumferential area it contains the information about the local film thickness on the respective rotational body 2, 3, 4 or 5.
  • the peripheral surfaces of the rotary bodies 2 to 5 could also be subdivided only into the rows Z i , ie only in the circumferential direction.
  • the rows Z i would extend continuously over the entire wetted with fluid peripheral surface of the respective rotary body 2, 3, 4 or 5 in the axial direction.
  • the film thickness would vary in such a simplified model line by line only in the circumferential direction and would be constant in the axial direction of the respective peripheral surface.
  • the film thickness can also be varied axially, at least from print image to print image of the plate cylinder 5. More preferably, it can also be axially varied within each printed image by a plurality of dispensing devices 1 are arranged axially adjacent to each print image and can independently release fluid.
  • FIG. 2 shows the arrangement of the rotary body 2 to 5 as in FIG. 1 , Furthermore, an associated table, namely a table 12 for the rotary body 2, a table 1.3 for the rotary body 3, a table 14 for the rotary body 4 and a table 15 for the rotary body or forme cylinder 5 are shown per rotary body 2 to 5.
  • Tables 12 to 15 each consist of rows Z i in one of the number of Rows Z i of the respectively associated rotary body 2, 3, 4 or 5 corresponding number and columns S j , exactly one column per dispenser 1.
  • the rows Z i of Tables 12 to 15 are continuously in the direction of rotation of the respectively associated rotary body 2, 3,
  • the tables 12 to 15 each contain, in their table locations corresponding to the grid positions G ij , a table value T ij which represents the film thickness on the respective grid position G ij of the peripheral surface of the associated rotary body 2, 3, 4 or 5. This may be the amount of fluid present on the grid site, directly the film thickness, or another equivalent film thickness.
  • Each table value is assigned a specific location on the perimeter area by the respective table.
  • Table 12 thus represents the topographical area occupancy of the rotating body 2 and the tables 13 to 14 correspondingly represent the topographical area occupancy of the rotating body 3, the rotating body 4 and the rotating body 5.
  • the model is implemented in the exemplary embodiment in a data processing device of the printing press as a table call.
  • Tables 12 to 15 metaphorically lap in simulation, ie, Table 12 on Table 13, Table 13 on Table 14, and Table 14 on Table 15, substituting either rows Z i of Tables 12 to 15 are shifted in accordance with the rotational speed and the direction of rotation of each associated rotational body within the table, as indicated by a respective loop arrow for each of the tables 12 to 15.
  • the rows Z i within the tables 12 to 15 can keep their places and one pointer per table can pass through the rows Z i .
  • the fluid transfer in the transfer nips N 1 to N 3 is simulated according to the film splitting.
  • the fluid transfer is indicated by arrows, which are also denoted by N 1 , N 2 and N 3 , for the table transmission.
  • the film-splitting effect on which the fluid transfer is based is simulated by forming the arithmetic mean of the film thicknesses of the lines Z i of the contra-rotating peripheral surfaces just in the nip N 1 , N 2 or N 3 as they enter the nip exhibit.
  • the table values T ij of the currently overlapped lines Z i are added in each of the columns S j , and the sum is half each on the two lines Z i of the graphically contiguous tables 12 and 13, 13 and 14, Split 14 and 15. It In each calculation step in which the fluid transfer in the individual transfer gaps S 1 to S 3 is determined, the instantaneous area occupancy of all rotational bodies 2 to 5 results.
  • the table values T ij are compared with one another within each of its columns S j in order to determine an absolute minimum or a plurality of local minimums of the film thickness equivalent per column S j .
  • FIG. 3 1 shows a schematic illustration of a controller 11 and a data processing device 10 coupled thereto for the plurality of dispensing devices 1.
  • the spreadsheet with its tables 12 to 15 is implemented by programming.
  • the controller 11 controls the dispensers 1 so that targeted fluid is applied to the location of the absolute absolute minimum in the circumferential direction or the respective local minimum.
  • the minimum or the minima is or are determined by the data processing device 10.
  • the location of the job is determined by varying the time of beginning of the pulse within the respective time interval.
  • a desired value for the ratio "pulse duration / length of a time interval" is stored for the dispensing device 1.
  • the time interval is the period of time within which the dispenser 1 emits exactly one pulse of the fluid.
  • a separate desired value is stored in the same way for the other dispensing devices 1.
  • the setpoints can be different or the same. In a simple embodiment, only the same desired value can be provided for all dispensing devices 1 from the outset. However, a separate set point specification per delivery device or print image allows a more flexible coordination of the fluid application to the local requirement.
  • the desired value is preferably predefined as a function of the machine speed, for example as a step function in the form of a number of desired values, which are respectively constant within certain speed ranges and increase with the speed.
  • the setpoint corresponds to the amount of fluid to be dispensed per time interval.
  • the controller 11 can precisely control the dispensing devices 1 in accordance with the respective setpoint value, ie, maintain the pulse duration per time interval, or if this is not the case possible or not desired to control the setpoint before or after, so that the setpoint is set only in the middle after several consecutive time intervals or the mean approaches the exact setpoint without exactly meeting it.
  • a nominal assignment can be stored for the printing form cylinder 5.
  • the data processing device 10 then determined by a target / actual comparison of the target occupancy with the determined in each calculation step or even at larger intervals actual occupancy, which is represented by the tables 12 to 15, the dispensed by the dispenser 1 amount of fluid to be dispensed Fluid quantity is the controller 11 abandoned, which forms therefrom a control signal for the dispenser 1, with which the pulse duration of the dispenser 1 is set according to the amount of fluid to be dispensed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung für den Auftrag eines Fluids auf einen Rotationskörper einer Druckmaschine. Das Fluid kann ein Feuchtmittel oder Farbe sein. Die Druckmaschine ist vorzugsweise eine Rotationsdruckmaschine und kann insbesondere eine Rollendruckmaschine sein. Sie druckt vorzugsweise im Offset, bevorzugt mit Farbe und Feuchtmittel.
  • Aus der WO 2004/039587 A1 ist ein Verfahren zur Einstellung eines Sprühfeuchtwerks mit intermittierend ein Feuchtmittel abgebenden Sprühdüsen bekannt. Um unerwünschte Überlagerungen von aufgesprühtem Feuchtmittel auf Walzen des Feuchtwerks zu verhindern, wird die Periodendauer oder Sprühfrequenz der Sprühdüsen in einer bestimmten Korrelation zu der Umdrehungsdauer oder Drehfrequenz eines Druckformzylinders oder einer Feuchtwerkswalze eingestellt.
  • Das Dokument WO 2006/013178 A1 offenbart eine Vorrichtung zum Auftragen eines Fluids.
  • Es ist eine Aufgabe der Erfindung, bei Verwendung einer Abgabeeinrichtung, die ein Feuchtmittel oder Farbe intermittierend, d. h. pulsweise abgibt, das Feuchtmittel oder die Farbe dem Bedarf gemäß auf einen Rotationskörper eines Feucht- oder Farbwerks abzugeben. Überlagerungen sollen so gut als möglich verhindert werden.
  • Die Erfindung geht von einem Verfahren und einer Vorrichtung zum Auftragen eines Fluids, nämlich eines Feuchtmittels oder einer Farbe, auf einen Rotationskörper einer Druckmaschine aus, bei dem bzw. mit der das Fluid in Pulsen intermittierend auf den drehenden Rotationskörper aufgetragen wird. Die Vorrichtung umfasst entsprechend eine Abgabeeinrichtung für die intermittierende Abgabe des Fluids und den um eine Rotationsachse drehbaren Rotationskörper. Der Rotationskörper kann ein Druckformzylinder sein, falls die Abgabeeinrichtung das Fluid unmittelbar an den Druckformzylinder abgibt. Bevorzugter ist wenigstens ein Rotationskörper eines Feuchtwerks oder Farbwerks auf dem Weg des Fluids zwischen der Abgabeeinrichtung und dem Druckformzylinder angeordnet. Dieser Rotationskörper kann insbesondere wie von Feucht- oder Farbwerken bekannt als Walze gebildet sein. Die Abgabeeinrichtung hat mit dem Rotationskörper vorzugsweise keinen direkten Kontakt. Ein berührungsloser Fluidauftrag auf den Rotationskörper hat den Vorteil, dass aus dem Druckprozess rückübertragene Farbe nicht in die Abgabeeinrichtung eines Feuchtwerks oder rückübertragenes Feuchtmittel nicht in die Abgabeeinrichtung eines Farbwerks transportiert werden kann. Bevorzugt ist die Abgabeeinrichtung eine Sprühdüse. Ein Beispiel einer Sprühdüse beschreibt die WO 2005/065948 Al . Längs des Rotationskörpers sind axial versetzt zueinander vorzugsweise mehrere Abgabeeinrichtungen der gleichen Art angeordnet und gemeinsam oder einzeln ansteuerbar.
  • Die Abgabeeinrichtung gibt das Fluid pulsweise ab. Während der Zeitdauer eines Pulses, die beispielsweise mehrere Millisekunden betragen kann, ist ein Durchlass der Abgabeeinrichtung offen und lässt das Fluid unter Druck passieren. An die Pulsdauer schließt sich jeweils eine Pausendauer an, während der die Abgabeeinrichtung geschlossen ist und kein Fluid abgibt. Die Pausendauer kann ebenfalls im Millisekundenbereich liegen. Sie ist vorzugsweise länger als die Pulsdauer. So kann eine Periodendauer der Abgabeeinrichtung, in der jeweils einer der Pulse abgegeben wird, beispielsweise 50 bis 100 msec betragen, wobei die Pulsdauer beispielsweise 3 bis 20 msec und die Pausendauer im gewählten Beispiel 30 bis 97 msec betragen. Anstatt einer bevorzugten Abgabeeinrichtung, die zwischen dem Offen-Zustand und dem Geschlossen-Zustand umsteuerbar ist, kann auch eine Abgabeeinrichtung verwendet werden, die zwischen einer hohen und einer niedrigen Abgaberate umsteuerbar ist oder bei der die Übergänge kontinuierlich sind. Die Periodendauer kann variabel sein, ist vorzugsweise jedoch konstant. Sie wird im Folgenden verallgemeinernd daher als Zeitintervall bezeichnet. Die Abgabeeinrichtung gibt das Fluid somit in aufeinander folgenden Zeitintervallen in pro Zeitintervall je einem Puls einer Pulsdauer ab, die vorzugsweise variabel ist. Vorzugsweise kann ein Pulsabstand variiert werden. Der Pulsabstand ist die Zeitdauer vom Beginn eines Pulses bis zum Beginn eines nächstfolgenden Pulses.
  • Nach der Erfindung wird die Übertragung des Fluids im Feuchtwerk oder Farbwerk in einem mathematischen Modell während des Druckbetriebs simuliert. Das Modell simuliert das Verhalten des Feuchtwerks oder Farbwerks. Im Einzelnen simuliert es die Drehbewegung des Rotationskörpers und die topographische Flächenbelegung des Rotationskörpers mit dem Fluid, das mittels der Abgabeeinrichtung auf den Rotationskörper intermittierend in Pulsen aufgetragen und von dem Rotationskörper in Richtung auf ein zu bedruckendes Druckmaterial abtransportiert wird. Das Modell läuft im Druckbetrieb entsprechend der Drehgeschwindigkeit vorzugsweise des Druckformzylinders ab, auf den das Fluid übertragen wird, bevorzugt in Echtzeit parallel zum tatsächlichen Druckprozess. Das zu bedruckende Druckmaterial ist vorzugsweise ein Bahnmaterial und kann insbesondere eine Papierbahn sein, beispielsweise zum Druck einer Zeitung, kann grundsätzlich jedoch auch in Form von Bögen bedruckt werden. Das Modell bildet die äußere Umfangsfläche des Rotationskörpers ab und simuliert, d. h. ermittelt ständig ein auf der Umfangsfläche vorhandenes Filmdickenäquivalent des Fluids.
  • Im mitlaufenden Modell wird während des Druckbetriebs fortwährend die momentane topographische Fluidbelegung des Rotationskörpers ermittelt. In Abhängigkeit von der momentanen Fluidbelegung wird oder werden die Dauer des jeweils nächsten Pulses oder der zeitliche Abstand des jeweils nächsten Pulses vom vorhergehenden eingestellt. Das Modell generiert in Abhängigkeit von der Drehgeschwindigkeit des Rotationskörpers sequentiell Datensätze, die jeweils die aktuelle Fluidbelegung repräsentieren. Läuft das Modell wie bevorzugt in Echtzeit mit, generiert es bei jeder Umdrehung des Rotationskörpers einen Datensatz, der die momentane und daher zeitnah aktuelle Fluidbelegung repräsentiert. Falls das Modell nicht in Echtzeit, sondern verlangsamt mitläuft, kann anhand von Vorgabewerten, die im Druckbetrieb vorzugsweise durch Messung des Filmdickenäquivalents angepasst werden, zwischen den einzelnen Rechenschritten interpoliert werden.
  • Die durch die Simulation ermittelte topographische Flächenbelegung umfasst somit die Information über einen bestimmten Ort der Umfangsfläche und die Filmdicke an diesem Ort, ist also ein Fluidrelief Der Ort kann im Modell ein Punkt oder eine Linie oder Teilfläche, vorzugsweise ein axialer Streifen oder eine axiale Linie, auf der Umfangsfläche des Rotationskörpers sein. Das Filmdickenäquivalent ist ein für die Filmdicke am jeweiligen Ort repräsentativer Wert, der unmittelbar der simulierten Filmdicke entsprechen kann. Anstatt unmittelbar die Filmdicke zu ermitteln, kann für den jeweiligen Ort beispielsweise auch die Fluidmenge oder eine andere physikalische Größe ermittelt weiden, aus der sich eindeutig und vollständig auf die Filmdicke schließen lässt. In diesem Sinne ist der Wert äquivalent der Filmdicke.
  • Die Vorrichtung umfasst für die Modellierung und für die Simulation der Flächenbelegung eine Datenverarbeitungseinrichtung, vorzugsweise eine elektronische Datenverarbeitungseinrichtung. Das Modell kann in der Datenverarbeitungseinrichtung fest verdrahtet sein. Bevorzugter ist es programmiert, d. h. in Form einer Software implementiert. Die Datenverarbeitungseinrichtung ist mit einer Steuerungseinrichtung für die Abgabeeinrichtung gekoppelt oder integrierter Bestandteil solch einer Steuerungseinrichtung. Die Steuerungseinrichtung dient der Einstellung der Pulsdauer oder des Pulsabstands zwischen zwei aufeinander folgenden Pulsen der Abgabeeinrichtung. Mittels der Steuerung ist dementsprechend entweder nur die Pulsdauer oder nur der Pulsabstand oder beides in Kombination veränderbar und in diesem Sinne einstellbar, so dass das Fluid dem durch die Simulation ermittelten Bedarf entsprechend auf den Rotationskörper abgegeben wird.
  • Das Fluid wird vorzugsweise so aufgetragen, dass ein vorgegebener Sollwert eingehalten wird.
  • In bevorzugten ersten Ausführungen wird der Sollwert als Verhältnis aus Pulsdauer und Länge des Zeitintervalls vorgegeben, in dem der jeweilige Fluidpuls aufgetragen wird. Der so vorgegebene Sollwert wird vorzugsweise in Abhängigkeit von der Umfangsgeschwindigkeit oder Drehzahl des Rotationskörpers abgegeben, auf den die Abgabeeinrichtung das Fluid aufträgt oder der das Fluid von diesem Rotationskörper erhält. Vorzugsweise wird der Sollwert in Abhängigkeit von der Geschwindigkeit eines mit dem Fluid zu belegenden Druckformzylinders variiert. Durch die Variation des Sollwerts wird der Fluidauftrag einem sich in Abhängigkeit von der Maschinengeschwindigkeit ändernden Fluidbedarf eingestellt
  • In bevorzugten einfachen Varianten der ersten Ausführung werden die Längen der Zeitintervalle konstant gehalten oder sind von vornherein nicht variierbar, und es wird pro Zeitintervall durch Variation der Pulsdauer die erforderliche Fluidmenge aufgetragen. In anderen Varianten kann die Länge des Zeitintervalls variiert werden, gegebenenfalls in Kombination mit einer Variation der Pulsdauer. Der als Verhältnis vorgegebene Sollwert Pulsdauer/Zeitinteivall muss nicht exakt für jedes Zeitintervall eingehalten werden. Nicht zuletzt zur Vermeidung periodischer Schwankungen der tatsächlich sich einstellenden Filmdicke kann es vorteilhaft sein, wenn das Fluid erst über mehrere aufeinander folgende Zeitintervalle gemittelt gemäß dem Sollwert abgegeben wird. Solch ein verzögerter oder alternativ vorauseilender Fluidauftrag kann auch in Ausführungen vorgenommen werden, in denen es nicht möglich ist, den als Verhältnis vorgegebenen Sollwert exakt für jedes Zeitintervall einzustellen, weil beispielsweise die Steuerung oder das Modell hierfür nicht schnell genug arbeitet oder arbeiten. Wird bei einer Periodendauer, d. h. einem fixen Zeitintervall, von beispielsweise 100 msec eine Pulsdauer von 8,4 msec entsprechend einem Sollwert von 8,4 % vorgegeben und beträgt die Taktzeit der Simulation 1 msec, so kann dieser Sollwert vor- oder nacheilend erst gemittelt über mehrere aufeinander folgende Zeitintervalle abgegeben werden, beispielsweise mit Pulsdauern von dreimal 8 msec und zweimal 9 msec in allen hierfür möglichen Sequenzen, zum Beispiel 8, 8, 8, 9, 9 msec oder 9, 8, 8, 9, 8 msec, oder mit größeren Abweichungen von dem den Mittelwert bildenden Sollwert.
  • In zweiten Ausführungen wird die topographische Flächenbelegung des Druckformzylinders vorgegeben und auf dem Transportweg des Fluids bis zu der Abgabeeinrichtung auf die Pulsdauer oder den Pulsabstand der Abgabeeinrichtung zurückgerechnet, um die vorgegebene Flächenbelegung des Druckformzylinders einzustellen oder aufrechtzuerhalten. In einfachen ersten Varianten wird davon ausgegangen, dass der Druckformzylinder in einem mit dem Druckmaterial oder vorzugsweise einem auf das Druckmaterial druckenden Übertragungszylinder über seine axiale Länge in einem Spalt, in dem die Fluidübertragung erfolgt, in jeder Zeiteinheit eine konstante Menge des Fluids abgibt. Diese Fluidmenge wird im Modell vorgegeben und von der Abgabeeinrichtung nachgeliefert. Das für den Druckformzylinder vorgegebene Fluidrelief ändert sich im Druckbetrieb somit entsprechend der konstanten Übertragungsrate im Spalt In einer zweiten Variante wird für den Druckformzylinder eine Sollbelegung vorgegeben. Als Sollbelegung kann insbesondere eine über den Umfang des Druckformzylinders konstante Filmdicke des Fluids vorgegeben werden. Die beiden Varianten können kombiniert werden, so dass in solch einem Modell bei vorgegebener, beispielsweise konstanter Solldicke des Fluidfilms die Übertragungsrate in dem das Fluid in Richtung Druckmaterial abführenden Spalt ebenfalls vorgegeben wird, beispielsweise als konstante Übertragungsrate. Die Datenverarbeitungseinrichtung errechnet auf der Basis eines Soll/Ist-Vergleichs des vorgegebenen Reliefs, d. h. der vorgegebenen topographischen Flächenbelegung, und der sich nach dem Durchlaufen des Spalts ergebenden Flächenbelegung die Pulsdauer und den Pulsabstand der Abgabeeinrichtung und stellt die beiden Parameter so ein, dass sich auf dem Druckformzylinder die vorgegebene Flächenbelegung einstellt, bevor die axiale Zeile an der Umfangsfläche des Druckformzylinders, die gerade den Spalt durchlaufen hat, den Spalt ein nächstes Mal passiert. Gegebenenfalls können die Datenverarbeitungseinrichtung und die Steuerung auch so eingerichtet sein, dass die vorgegebene Flächenbelegung erst wieder nach mehr als einer Umdrehung des Druckformzylinders erhalten wird.
  • Handelt es sich bei dem Rotationskörper, auf den die Abgabeeinrichtung unmittelbar das Fluid abgibt, wie bevorzugt nicht um den Druckformzylinder, sondern um einen dem Druckformzylinder vorgelagerten Rotationskörper des Feuchtwerks, wird in den zweiten Ausführungen aus den Vorgaben für den Druckformzylinder die erforderliche Flächenbelegung des vorgelagerten Rotationskörpers ermittelt und entsprechend dieser ermittelten Flächenbelegung die Abgabeeinrichtung gesteuert, d. h. die Pulsdauer oder der Pulsabstand eingestellt.
  • Die einfache Vorgabe des Sollwerts als Verhältnis kann auch mit der Vorgabe einer Sollbelegung entsprechend den zweiten Ausführungen kombiniert werden, So kann ein Vergleich mit einer Sollbelegung beispielsweise in größeren zeitlichen Abständen zu Kontrollzwecken vorgenommen werden, um den Verhältnis-Sollwert im Falle einer festgestellten Abweichung zu justieren.
  • Die Umfangsfläche des Rotationskörpers kann in dem Modell durch Zeilen repräsentiert werden, vorzugsweise durch parallel zu der Rotationsachse des Rotationskörpers erstreckten, d. h. axialen Zeilen, die in Umfangsrichtung aufeinander folgen. Die Zeilen können zueinander beispielsweise einen Abstand von 1 mm oder als Streifen interpretiert eine Zeilenbreite von beispielsweise 1 mm haben. Für jede Zeile wird für den in der Simulation in Echtzeit mitdrehenden Rotationskörper das Filmdickenäquivalent, vorzugsweise die Fluidmenge oder stattdessen unmittelbar die Filmdicke, ermittelt, die sich aus der Zufuhr und Abfuhr von Fluid pro Zeile ergibt.
    Das Modell kann insbesondere als Tabellenkalkulationsprogramm implementiert sein. Wird die äußere Umfangsfläche des Druckformzylinders und des vorzugsweise wenigstens einen weiteren Rotationskörpers des Feuchtwerks oder Farbwerks jeweils von in Umfangsrichtung aufeinander folgenden Zeilen repräsentiert, ist für jeden solchen Rotationskörper eine Tabelle angelegt. Jede Tabelle besteht vorzugsweise aus einer Anzahl von Zeilen, die der Anzahl der Zeilen des jeweils zugeordneten Rotationskörpers entspricht. Die Tabellenwerte in den Zeilen der jeweiligen Tabelle repräsentieren die Filmdicke oder die Fluidmenge oder ein anderes Filmdickenäquivalent der zugeordneten Zeile des jeweiligen Rotationskörpers. Wird das Fluid wie bevorzugt über wenigstens einen Rotationskörper auf den Druckformzylinder übertragen, der selbst ebenfalls als Rotationskörper im Sinne der Erfindung aufgefasst wird, wälzen im Modell sozusagen die Tabellen stellvertretend für die physikalischen Rotationskörper aufeinander ab. Bei diesem simulierten Abwälzen gelangen die beiden Zeilen zweier Tabellen, die aneinander abwälzende Rotationskörper repräsentieren, virtuell in eine Überlappung, derart, dass zwischen diesen beiden Zeilen der beiden Tabellen Fluid entsprechend der realen Filmspaltung übertragen wird. In einfachen Ausführungen wird die Filmspaltung durch Addition der Tabellenwerte der in der Simulation momentan den Spalt bildenden Tabellenzeilen und Halbierung der Summe simuliert, so dass die beiden Tabellenzeilen, die in der Simulation gerade den Spalt passiert haben, nach dem Passieren den gleichen Wert aufweisen. Entsprechend der Viskosität des Fluids kann anstatt des arithmetischen Mittels auch ein anderes Verhältnis für eine ungleiche Aufteilung auf die den jeweiligen Übertragungsspalt miteinander bildenden Rotationskörper in der Modellrechnung verwendet werden.
  • Anstatt der Unterteilung in Zeilen kann die Umfangsfläche des Rotationskörpers auch in Spalten unterteilt sein, die sich in Umfangsrichtung erstrecken und axial nebeneinander angeordnet sind. Das Modell kann auch in solchen Ausführungen als Tabellenkalkulationsprogramm implementiert sein. Für die Aufteilung in Spalten gelten die Ausführungen zu den Zeilen sinngemäß, Eine Aufteilung in Spalten ist vorteilhaft, wenn mehrere unabhängig voneinander steuerbare Abgabeeinrichtungen axial nebeneinander angeordnet sind, so dass die Fluidbelegung durch das Auftragen längs des Rotationskörpers variiert werden kann.
  • In einer Weiterentwicklung wird die Umfangsfläche des Rotationskörpers als Gitter mit das Gitter bestimmenden Zeilen und Spalten modelliert, die einander kreuzen und in den Kreuzungsbereichen jeweils einen Gitterplatz als Punkt oder Fläche bilden. Für die Zeilen und Spalten gelten vorzugsweise die vorstehend hierzu getroffenen Aussagen. Bei Implementierung als Tabellenkalkulationsprogramm umfasst die den Rotationskörper repräsentierende Tabelle Zeilen und Spalten mit wenigstens einem Tabellenplatz pro Gitterplatz. Der Tabellenwert des jeweiligen Tabellenplatzes ist das Filmdickenäquivalent für den zugeordneten Gitterplatz.
  • Das Fluid wird bevorzugt auf die Zeilen oder Spalten oder Gitterplätze aufgetragen, die nach dem Modell ein geringeres Filmdickenäquivalent aufweisen als andere. Bei Aufteilung in Zeilen kann beispielsweise die Zeile mit dem geringsten Filmdickenäquivalent durch Vergleich sämtlicher Zeilen ermittelt werden. Auf diese Zeile wird dann das Fluid aufgetragen. Es können auch pro Umdrehung mehrere Zeilen ermittelt werden, die das geringste Filmdickenäquivalent aufweisen und Fluid auf diese Zeilen aufgetragen werden. Falls der Fluidauftrag ausreichend schnell und genau vonstatten geht, erhält oder erhalten nur diese Zeile(n) Fluid. Bei einer Zeilenbreite von vorzugsweise höchstens 10 mm, bevorzugter höchstens 5 mm, dürfte ein auf einzelne Zeilen begrenztes Auftragen des Fluids zumindest im Fortdruck bei den dann hohen Drehgeschwindigkeiten jedoch nicht möglich sein. Es kann daher vorteilhafter sein, wenn für mehrere in Umfangsrichtung unmittelbar aufeinander folgende Zeilen jeweils kumuliert ein Filmdickenäquivalent beispielsweise als gleitender Durchschnitt und von den gleitenden Durchschnitten das Minimum ermittelt werden. Die Zeilen können auch zu örtlich festen Gruppen vorzugsweise je gleicher Anzahl von in Umfangsrichtung unmittelbar aufeinander folgenden Zeilen zusammengefasst, die Filmdickenäquivalente der Zeilen der jeweiligen Gruppe summiert und aus dem Vergleich dieser Summenwerte der minimale Summenwert ermittelt werden. Die Anzahl von aufeinander folgenden Zeilen, über die summiert wird, ist vorteilhafterweise auf die Länge des Zeitintervalls abgestimmt, innerhalb dessen die Abgabeeinrichtung jeweils einen ihrer Fluidpulse abgibt. Vorzugsweise wird ein absolutes Minimum oder werden mehrere lokale Minima des Filmdickenäquivalents für jede Umdrehung oder gegebenenfalls auch erst über mehrere Umdrehungen des Rotationskörpers, auf den das Fluid aufgetragen wird, oder eines weiteren Rotationskörpers, der das Fluid von oder über diesen Rotationskörper erhält, ermittelt. Auf den Rotationskörper wird vorzugsweise bei jeder Umdrehung wenigstens ein Fluidpuls aufgetragen, im Falle der Unterteilung zusätzlich in Spalten auch wenigstens ein Puls pro Spalte.
  • In Zeitungsoffsetdruck, den bevorzugten Anwendungsgebiet der Erfindung, überträgt der Druckformzylinder typischerweise axial nebeneinander mehrere Druckbilder entsprechend jeweils einer Zeitungsseite auf einen nachgeordneten Übertragungszylinder, vorzugsweise ein Gummituchzylinder, und dieser überträgt die Druckbilder auf die Papierbahn, Die erfindungsgemäße Vorrichtung weist pro Druckbild, im bevorzugten Anwendungsfall pro Zeitungsseite, mehrere, beispielsweise zwei Abgabeeinrichtungen axial nebeneinander auf. Bei vier axial nebeneinander auf dem Druckformzylinder befestigten Druckformen oder unmittelbar am Zylinder gebildeten Druckbildern weist die Vorrichtung dementsprechend bei n Abgabeeinrichtungen pro Druckbild 4n Abgabeeinrichtungen, beispielsweise Sprühdüsen, axial nebeneinander auf. Bei sechs-Seiten-breiten Druckmaschinen weist sie entsprechend 6n Abgabeeinrichtungen nebeneinander auf. Die Zeilen des Modells, d. h. die Tabellenzeilen, können pro Druckbild einer sich jeweils über das gesamte Druckbild axial erstreckenden Zeile an der Umfangsfläche des Rotationskörpers entsprechen. In derartigen Ausführungen wird zumindest das jeweilige Druckbild axial nicht nochmals unterteilt. In der genannten Weiterentwicklung können die Druckbilder axial entsprechend der Anzahl der Düsen unterteilt sein. Grundsätzlich genügt es aber, wenn sich die Zeilen im Modell über die gesamte axiale Länge des jeweiligen Rotationskörpers oder Druckbilds, über die Fluid übertragen wird, durchgehend erstrecken.
  • Umfasst das Feuchtwerk oder Farbwerk einen oder mehrere Rotationskörper, um das von der Abgabeeinrichtung abgegebene Fluid über einen oder mehrere Übertragungsspalte auf den Druckformzylinder zu übertragen, ist es von Vorteil, wenn wenigstens zwei der Rotationskörper sich im Umfang unterscheiden, vorzugsweise um einen nicht ganzzahligen Faktor. Zu den wenigstens zwei Rotationskörpern wird der Druckformzylinder gerechnet. Weist das Feuchtwerk oder Farbwerk mehrere Rotationskörper auf, unterscheiden sich vorzugsweise mehr als zwei der Rotationskörper, wobei wiederum der Druckformzylinder als Rotationskörper mitgezählt wird, jeweils paarweise im Umfang voneinander, vorzugsweise um jeweils einen nicht ganzzahligen Faktor. Vorteilhaft ist insbesondere, wenn die Rotationskörper, einschließlich des Druckformzylinders, die paarweise miteinander einen Übertragungsspalt für das Fluid bilden, sich jeweils im Umfang unterscheiden, vorzugsweise um einen jeweils nicht ganzzahligen Faktor.
  • Weitere Merkmale der Erfindung werden in den Unteransprüchen und deren Kombinationen beschrieben.
  • Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand von Figuren erläutert. An dem Ausführungsbeispiel offenbar werdende Merkmale bilden je einzeln und in jeder Merkmalskombination die Gegenstände der Ansprüche und auch die vorstehend beschriebenen Ausführungen vorteilhaft weiter. Es zeigen:
  • Figur 1
    einen Druckformzylinder mit einem zugeordneten Feuchtwerk,
    Figur 2
    den Druckformzylinder mit Feuchtwerk und einer schematischen Darstellung eines Modells zur Simulation des Verhaltens des Feuchtwerks im Druckbetrieb und
    Figur 3
    eine Steuerung und Datenverarbeitungseinrichtung des Feuchtwerks.
  • Figur 1 zeigt einen Druckformzylinder 5 einer Rollenrotationsdruckmaschine und ein dem Druckformzylinder 5 zugeordnetes Feuchtwerk. Das Feuchtwerk umfasst eine Abgabeeinrichtung 1 für ein berührungsloses Auftragen eines Feuchtmittels, das im folgenden nur als Fluid bezeichnet wird, und einen Rotationskörper 2, auf dessen äußere Umfangsfläche die Abgabeeinrichtung 1 das Fluid aufträgt Die Abgabeeinrichtung 1 ist eine Sprühdüse. Der Rotationskörper 2 ist eine Walze, im Ausführungsbeispiel eine im Druckbetrieb axial hin und her changierende Reiberwalze, Das Feuchtwerk umfasst ferner zwei weitere Rotationskörper 3 und 4. Der Rotationskörper 3 ist im Ausführungsbeispiel eine Übertragungswalze und der Rotationskörper 4 eine Auftragswalze, die das Fluid auf den Druckformzylinder 5 überträgt.
  • Die Rotationsachsen der Rotationskörper 2, 3 und 4 des Feuchtwerks und des Druckformzylinders 5 als weiteren Rotationskörper sind mit R bezeichnet.
  • Der Druckformzylinder 5 kann eine Druckbreite von beispielsweise vier oder sechs Zeitungsseiten aufweisen und an seinem äußeren Umfang entsprechend axial nebeneinander vier oder sechs Druckbilder tragen, nämlich ein Druckbild pro Zeitungsseite. Der Druckformzylinder 5 kann einen so genannten einfachen oder doppelten oder auch größeren Umfang aufweisen, wobei einfach und doppelt in diesem Zusammenhang bedeuten, dass der Umfang des Druckformzylinders im Wesentlichen der in Umfangsrichtung gemessenen Länge eines einzigen Druckbilds oder der addierten Länge zweier Druckbilder entspricht, im Ausführungsbeispiel der Höhe einer Zeitungsseite oder zweier Zeitungsseiten. Die Rotationskörper 2, ,3 und 4 haben jeweils einen kleineren Umfang als der Druckformzylinder 5. Die Rotationskörper 2 und 4 sind im Umfang gleich, und der Rotationskörper 3 hat einen kleineren Umfang als die Rotationskörper 2 und 4. Die Umfänge derjenigen Rotationskörper 2 bis 5, die miteinander jeweils einen Übertragungsspalt für das Fluid bilden, unterscheiden sich paarweise um einen nicht ganzzahligen Faktor,
  • Längs des Rotationskörpers 2 sind mehrere der Abgabeeinrichtungen 1 axial voneinander beabstandet so angeordnet, dass sie über die gesamte, der Übertragung des Fluids dienenden Länge des Rotationskörpers 2 das Fluid auftragen können, vorzugsweise gleichmäßig. Im Ausführungsbeispiel sind pro Druckbild jeweils zwei Abgabeeinrichtungen 1 vorgesehen. Im Falle eines beispielsweise vier Seiten breiten Druckformzylinders 5 umfasst das Feuchtwerk somit axial nebeneinander acht Abgabeeinrichtungen 1, und im Falle eines beispielsweise sechs Seiten breiten Druckformzylinders 5 weist es zwölf Abgabeeinrichtungen 1 nebeneinander auf.
  • Dem Druckformzylinder 5 ist ferner ein nicht dargestellter Übertragungszylinder zugeordnet, der von dem Druckformzylinder 5 Fluid und Farbe entsprechend den Druckbildern des Druckformzylinders 5 erhält. Der Übertragungszylinder überträgt die Farbe bildgemäß auf ein zu bedruckendes Druckmaterial, im Ausführungsbeispiel eine Papierbahn. Er bildet mit einem auf der anderen Seite der Bahn angeordneten ebensolchen Übertragungszylinder oder mit einem nicht druckenden Gegendruckzylinder einen Druckspalt für einen beidseitigen oder nur einseitigen Druck auf das durchlaufende Druckmaterial.
  • Im Druckbetrieb gibt die Abgabeeinrichtung 1 und geben die weiteren Abgabeeinrichtungen 1 Fluid entsprechend dem Bedarf an den Rotationskörper 2 ab, im Ausführungsbeispiel durch Sprühen. Der Rotationskörper 2 gibt in einem mit dem Rotationskörper 3 gebildeten Übertragungsspalt N1 einen Teil des seine äußere Umfangsfläche benetzenden Fluids ab. Der Rotationskörper 3 überträgt Fluid in einem mit dem Rotationskörper 4 gebildeten Übertragungsspalt N2 auf den Rotationskörper 4, und dieser überträgt Fluid in einen mit dem Druckformzylinder 5 gebildeten Übertragungsspalt N3 auf den Druckformzylinder 5. Das Fluid, im Ausführungsbeispiel Feuchtmittel, belegt in den Druckbildern des Druckformzylinders 5 die das Fluid annehmenden Stellen und verhindert so, dass diese Stellen mit Farbe belegt werden können. In Drehrichtung des Druckformzylinders 5 ist abwärts von dem Feuchtwerk 1-4 ein Farbwerk angeordnet, das Farbe auf den Druckformzylinder 5 überträgt. Fluid wird nicht nur vom Rotationskörper 2 in Richtung auf den Druckformzylinder 5 transportiert, sondern durch Rückspaltung auch in die Gegenrichtung. Im jeweiligen Übertragungsspalt N1, N2 oder N3 findet eine Filmspaltung mit einer Hin- und Rückübertragung von Fluid statt.
  • Die Abgabeeinrichtung 1 gibt das Fluid intermittierend in Fluidpulsen ab. Die Zeitdauer der einzelnen Pulse ist einstellbar, d. h. mittels einer Steuerung veränderbar. Die Abgabeeinrichtung 1 arbeitet mit einer konstanten Periodendauer, in der jeweils ein einziger Puls abgegeben wird. Die Periodendauer kann beispielsweise 100 msec und die Pulsdauer zwischen 0 und beispielsweise 20 msec betragen. Innerhalb einer Periode kann der Puls verschoben werden, vorzugsweise ist der Zeitpunkt des Pulsbeginns in jeder Periode unabhängig von dem Beginn des Pulses der vorhergehenden Periode wählbar. Grundsätzlich ist auch denkbar, dass die Periodendauer entsprechend dem Fluidbedarf eingestellt wird, d. h. verändert wird, bei entweder konstanter Pulsdauer oder konstantem Pulsabstand oder unter Änderung auch dieser beiden Parameter.
  • Der Fluidbedarf des Druckwerks, zu dem der Druckformzylinder 5 und das Feuchtwerk 1-4 gehören, kann der sogenannten Feuchtkurve entnommen werden, die den Zusammenhang zwischen der Maschinengeschwindigkeit und somit der Drehgeschwindigkeit des Druckformzylinders 5 und der bei der jeweiligen Maschinengeschwindigkeit benötigten Fluidmenge wiedergibt.
  • Eine dem Bedarf entsprechende Abgabe von Fluid, die gleichzeitig auch eine gleichmäßige Belegung des Druckformzylinders 5 mit Fluid sicherstellt, wird durch Simulation des Verhaltens des Feuchtwerks 1-4 und des Druckformzylinders 5 in einem mathematischen Modell sichergestellt Die Pulsdauer und der Pulsabstand der Abgabeeinrichtung 1 und jeder weiteren Abgabeeinrichtung 1 des Feuchtwerks 1-4 werden in Abhängigkeit von einer im Modell ermittelten topographischen Fluidbelegung des Druckformzylinders 5 eingestellt. Die in der Simulation ermittelte Fluidbelegung kann mit einer Sollbelegung, beispielsweise einer gleichmäßigen Sollbelegung verglichen und die Pulsdauer in Abhängigkeit vom Ergebnis des Vergleichs eingestellt werden. Anstatt eine Sollbelegung vorzugeben, wird in einer alternativen Ausführung nur die in der Simulation ermittelte Fluidbelegung für einen Vergleich und die Einstellung des Fluidauftrags herangezogen. Dabei wird ein absolutes Minimum oder werden mehrere lokale Minima der Fluidbelegung ermittelt und das Fluid gezielt im Minimum oder den Minima aufgetragen.
  • Das Modell "läuft" während des gesamten Druckprozesses, auch in Phasen der Beschleunigung oder Verzögerung, parallel zum Druckprozess in Echtzeit mit.
  • Im Modell ist die äußere Umfangsfläche jedes der Rotationskörper 2 bis 5 in axial gerade Zeilen Zi unterteilt, die in Umfangsrichtung aufeinander folgen und jeweils die gleiche Breite haben, beispielsweise 1 mm gemessen in Umfangsrichtung des jeweiligen Rotationskörpers 2, 3, 4 oder 5. In Figur 1 ist diese Topographie für die Rotationskörper 2 bis 5 angedeutet. Jeder der Rotationskörper 2 bis 5 ist somit in Zeilen Zi gleicher Breite unterteilt. Die äußere Umfangsfläche jedes der Rotationskörper 2 bis 5 ist ferner in Spalten Sj unterteilt, die sich in Umfangsrichtung erstrecken, axial aufeinander folgen und jeweils die gleiche axiale Breite haben. Die Zeilen Zi und Spalten Sj bilden ein Oberflächengitter mit Gitterplätzen Gij. Jeweils einer der Abgabeeinrichtungen 1 ist genau eine der Spalten Sj zugeordnet, indem jede der Abgabeeinrichtungen 1 ihrer zugeordneten Spalte Sj gegenüberliegt. Die Anzahl der Spalten Sj ist für jeden der Rotationskörper 2 bis 5 gleich der Anzahl der axial versetzt zueinander angeordneten Abgabeeinrichtungen 1.
  • Im Modell werden die Drehbewegungen der Rotationskörper 2 bis 5 entsprechend der tatsächlichen Maschinengeschwindigkeit simuliert. In der Simulation gelangt im jeweils gleichen Übertragungsspalt N1, N2 oder N3 jeweils eine der Zeilen Zi des einen der den Übertragungsspalt bildenden Rotationskörper in die Überlappung mit einer der Zeilen Zi des jeweils anderen den jeweiligen Übertragungsspalt bildenden Rotationskörpers. Das Modell errechnet während jeder Umdrehung des Druckformzylinders 5 oder des im Umfang kleinsten Rotationskörpers, vorzugsweise während jeder Periodendauer der Abgabeeinrichtung 1 wenigstens einmal für jeden der Rotationskörper 2 bis 5 die Flächenbelegung auf der modellierten Topographie der Umfangsfläche des jeweiligen Rotationskörpers. Diese topographische Flächenbelegung entspricht der lokalen Verteilung des Fluids, d. h. sie enthält für jeden Ort der Umfangsfläche die Information über die lokale Filmdicke auf dem jeweiligen Rotationskörper 2, 3, 4 oder 5.
  • Alternativ zum Ausführungsbeispiel könnten die Umfangsflächen der Rotationskörper 2 bis 5 auch nur in die Zeilen Zi, d. h. nur in Umfangsrichtung unterteilt sein. Die Zeilen Zi würden sich über die gesamte mit Fluid benetzte Umfangsfläche des jeweiligen Rotationskörpers 2, 3, 4 oder 5 in axialer Richtung durchgehend erstrecken. Die Filmdicke würde in solch einem vereinfachten Modell zeilenweise nur in Umfangsrichtung variieren und wäre in axialer Richtung der jeweiligen Umfangsfläche konstant. Bevorzugter kann die Filmdicke jedoch auch axial, zumindest von Druckbild zu Druckbild des Druckformzylinders 5 variiert werden. Noch bevorzugter kann sie axial auch innerhalb jedes Druckbilds variiert werden, indem pro Druckbild axial nebeneinander mehrere Abgabeeinrichtungen 1 angeordnet sind und unabhängig voneinander Fluid abgeben können.
  • Figur 2 zeigt die Anordnung der Rotationskörper 2 bis 5 wie in Figur 1. Ferner ist pro Rotationskörper 2 bis 5 eine zugeordnete Tabelle, nämlich eine Tabelle 12 für den Rotationskörper 2, eine Tabelle 1.3 für den Rotationskörper 3, eine Tabelle 14 für den Rotationskörper 4 und eine Tabelle 15 für den Rotationskörper bzw. Druckformzylinder 5 dargestellt. Die Tabellen 12 bis 15 bestehen jeweils aus Zeilen Zi in einer der Anzahl der Zeilen Zi des jeweils zugeordneten Rotationskörpers 2, 3, 4 oder 5 entsprechenden Anzahl und aus Spalten Sj, genau eine Spalte pro Abgabeeinrichtung 1. Die Zeilen Zi der Tabellen 12 bis 15 sind fortlaufend im Drehsinn des jeweils zugeordneten Rotationskörpers 2, 3, 4 oder 5 angeordnet Die Tabellen 12 bis 15 enthalten in ihren den Gitterplätzen Gij entsprechenden Tabellenplätzen jeweils einen Tabellenwert Tij, der die Filmdicke auf dem jeweiligen Gitterplatz Gij der Umfangsfläche des zugeordneten Rotationskörpers 2, 3, 4 oder 5 repräsentiert. Dies kann die auf dem Gitterplatz vorhandene Fluidmenge, unmittelbar die Filmdicke oder ein anderes Filmdickenäquivalent sein. Durch die jeweilige Tabelle wird jedem Tabellenwert ein bestimmter Ort auf der Umfangsfläche zugeordnet. Die Tabelle 12 repräsentiert somit die topographische Flächenbelegung des Rotationskörpers 2 und die Tabellen 13 bis 14 repräsentieren entsprechend die topographische Flächenbelegung des Rotationskörpers 3, des Rotationskörpers 4 und des Rotationskörpers 5.
  • Das Modell ist im Ausführungsbeispiel in einer Datenverarbeitungseinrichtung der Druckmaschine als Tabellenlcallculation implementiert. Die Tabellen 12 bis 15 wälzen bildlich gesprochen bei der Simulation paarweise aneinander ab, d. h. die Tabelle 12 an der Tabelle 13, die Tabelle 13 an der Tabelle 14 und die Tabelle 14 an der Tabelle 15, indem entweder die Zeilen Zi der Tabellen 12 bis 15 entsprechend der Drehgeschwindigkeit und dem Drehsinn des jeweils zugeordneten Rotationskörpers innerhalb der Tabelle verschoben werden, wie dies durch jeweils einen Schleifenpfeil für jede der Tabellen 12 bis 15 angedeutet ist. Alternativ können die Zeilen Zi innerhalb der Tabellen 12 bis 15 ihre Plätze beibehalten und jeweils ein Zeiger pro Tabelle die Zeilen Zi durchlaufen. Jedenfalls wird entsprechend der Drehgeschwindigkeit und dem Drehsinn der Rotationskörper 2 bis 5 der Fluidübertrag in den Übertragungsspalten N1 bis N3 entsprechend der Filmspaltung simuliert. Die Fluidübertragung ist mit Pfeilen, die ebenfalls mit N1, N2 und N3 bezeichnet sind, für die tabellenmäßige Übertragung angedeutet. Der Effekt der Filmspaltung, der der Fluidübertrag zugrunde liegt, wird durch Bildung des arithmetischen Mittels der Filmdicken simuliert, die die gerade im Spalt N1, N2 oder N3 in Überdeckung befindlichen Zeilen Zi der aneinander abwälzenden Umfangsflächen bei dem Einlaufen in den Spalt aufweisen. Im Modell werden die Tabellenwerte Tij der momentan in Überlappung befindlichen Zeilen Zi in jeder der Spalten Sj addiert, und die Summe wird je zur Hälfte auf die beiden Zeilen Zi der bildlich gesprochen aneinander abwälzenden Tabellen 12 und 13, 13 und 14, 14 und 15 aufgeteilt. Es ergibt sich in jedem Rechenschritt, in dem die Fluidübertragung in den einzelnen Übertragungsspalten S1 bis S3 ermittelt wird, die momentane Flächenbelegung sämtlicher Rotationskörper 2 bis 5.
  • Für den Rotationskörper 2, auf den das Fluid direkt abgegeben wird, werden innerhalb jeder seiner Spalten Sj die Tabellenwerte Tij miteinander verglichen, um pro Spalte Sj ein absolutes Minimum oder mehrere lokale Minima des Filmdickenäquivalents zu ermitteln.
  • Figur 3 zeigt in schematischer Darstellung eine Steuerung 11 und eine damit gekoppelte Datenverarbeitungseinrichtung 10 für die mehreren Abgabeeinrichtungen 1. In der Datenverarbeitungseinrichtung 10 ist die Tabellenkalkulation mit ihren Tabellen 12 bis 15 durch Programmierung implementiert. Die Steuerung 11 steuert die Abgabeeinrichtungen 1 so, dass gezielt Fluid auf den Ort des in Umfangsrichtung gesehen absoluten Minimums oder des jeweiligen lokalen Minimums aufgetragen wird. Das Minimum oder die Minima wird oder werden von der Datenverarbeitungseinrichtung 10 ermittelt. In Umfangsrichtung gesehen wird der Ort des Auftrags durch Variation des Zeitpunkts des Pulsbeginns innerhalb des jeweiligen Zeitintervalls bestimmt.
  • In einem Speicher 16 der Datenverarbeitungseinrichtung 10 ist ein Sollwert für das Verhältnis "Pulsdauer / Länge eines Zeitintervalls" für die Abgabeeinrichtung 1 abgelegt. Das Zeitintervall ist die Zeitspanne, innerhalb der die Abgabeeinrichtung 1 genau einen Puls des Fluids abgibt. Im Speicher 16 ist für die anderen Abgabeeinrichtungen 1 jeweils ein eigener Sollwert in gleicher Weise abgelegt. Die Sollwerte können unterschiedlich oder gleich sein. In einer einfachen Ausführung kann für alle Abgabeeinrichtungen 1 von vornherein nur der gleiche Sollwert vorgesehen sein. Eine pro Abgabeeinrichtung oder Druckbild eigene, separate Sollwertvorgabe ermöglicht jedoch eine flexiblere Abstimmung des Fluidauftrags auf den lokalen Bedarf. Der Sollwert ist vorzugsweise als Funktion der Maschinengeschwindigkeit vorgegeben, beispielsweise als Sprungfunktion in Form einiger Sollwerte, die innerhalb bestimmter Geschwindigkeitsbereiche jeweils konstant sind und mit der Geschwindigkeit zunehmen. Der Sollwert entspricht der pro Zeitintervall abzugebenden Fluidmenge, Die Steuerung 11 kann die Abgabeeinrichtungen 1 entsprechend dem jeweiligen Sollwert genau ansteuern, d. h. die Pulsdauer pro Zeitintervall einhalten, oder, sollte dies nicht möglich oder nicht gewünscht sein, den Sollwert vor- oder nacheilend steuern, so dass der Sollwert erst im Mittel nach mehreren aufeinander folgenden Zeitintervallen eingestellt wird oder der Mittelwert sich dem exakten Sollwert annähert ohne ihn exakt zu treffen.
  • Alternativ oder zusätzlich zu der vorstehend beschriebenen Sollwertvorgabe kann beispielsweise für den Druckformzylinder 5 eine Sollbelegung gespeichert sein. Die Datenverarbeitungseinrichtung 10 ermittelt dann durch einen Soll/Ist-Vergleich der Sollbelegung mit der in jedem Rechenschritt oder auch nur in größeren Abständen ermittelten Ist-Belegung, die von den Tabellen 12 bis 15 repräsentiert wird, die von der Abgabeeinrichtung 1 abzugebende Fluidmenge, Die abzugebende Fluidmenge wird der Steuerung 11 aufgegeben, die daraus ein Steuersignal für die Abgabeeinrichtung 1 bildet, mit dem die Pulsdauer der Abgabeeinrichtung 1 entsprechend der abzugebenden Fluidmenge eingestellt wird.
  • Bezugszeichen:
  • 1
    Abgabeeinrichtung
    2
    Rotationskörper, Reiberwalze
    3
    Rotationskörper, Übertragungswalze
    4
    Rotationskörper, Auftragswalze
    5
    Rotationskörper, Druckformzylinder
    6-9
    -
    10
    Datenverarbeitungseinrichtung
    11
    Steuerung
    12
    Tabelle
    13
    Tabelle
    14
    Tabelle
    15
    Tabelle
    16
    Speicher
    N1,2,3
    Übertragungsspalt
    R
    Rotationsachse
    Sj
    Spalte der Umfangsfläche
    Zi
    Zeile der Umfangsfläche
    Gij
    Gitterplatz der Umfangsfläche
    Tij
    Tabellenwert, Filmdickenäquivalent

Claims (19)

  1. Verfahren zum Auftragen eines Fluids, nämlich eines Feuchtmittels oder einer Farbe, auf einen Rotationskörper einer Druckmaschine, bei dem
    a) das Fluid bei drehendem Rotationskörper (2, 3, 4, 5) in Pulsen aufgetragen,
    b) eine topographische Fluidbelegung des drehenden Rotationskörpers (2, 3, 4, 5) nach Flächenbedeckung und Filmdickenäquivalent in einem Modell simuliert
    c) und eine Dauer eines nächsten Pulses oder ein Abstand zwischen aufeinander folgenden Pulsen in Abhängigkeit von der simulierten Fluidbelegung eingestellt wird oder werden.
  2. Verfahren nach Anspruch 1, bei dem der Rotationskörper (2, 3, 4, 5) mit einem weiteren Rotationskörper (2, .3, 4, 5) einen Spalt bildet, über den das Fluid durch Filmspaltung übertragen wird, und für jeden der Rotationskörper (2, 3, 4, 5) die topographische Fluidbelegung unter Berücksichtigung der Filmspaltung in dem Modell simuliert wird.
  3. Verfahren nach einem der vorhergehenden Ansprüche, bei dem eine äußere Umfangsfläche des Rotationskörpers (2, 3, 4, 5) in dem Modell in Zeilen (Zi) unterteilt ist, die in Umfangsrichtung aufeinander folgen, und die Fluidbelegung zeilenweise ermittelt wird.
  4. Verfahren nach einer Kombination der zwei vorhergehenden Ansprüche, bei dem die Drehbewegung der Rotationskörper (2, .3, 4, 5) in dem Modell simuliert und die Fluidbelegung der jeweils im Spalt einander gegenüberliegenden Zeilen (Zi) der Filmspaltung entsprechend simuliert wird.
  5. Verfahren nach dem vorhergehenden Anspruch, bei dem die Flächenbelegungen der im Spalt jeweils einander gegenüberliegenden Zeilen (Zi) addiert und die so erhaltenen Summe in einem der Filmspaltung entsprechenden Verhältnis, vorzugsweise zu gleichen Teilen, als jeweils neue Fluidbelegung auf diese Zeilen (Zi) aufgeteilt wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche und wenigstens einem der folgenden Merkmale:
    - die Fluidbelegung wird mittels einer Tabellenkalkulation simuliert;
    - in dem Modell ist für den Rotationskörper (2, 3, 4, 5) eine Tabelle (12, 13, 14, 15) angelegt mit Zeilen (Zi), die den Zeilen (Zi) des Rotationskörpers (2, 3, 4, 5) nach Anspruch 3 entsprechen, wobei die Zeilen (Zi) der Tabelle (12, 13, 14, 15) jeweils wenigstens einen Tabellenwert (Tij) für das Filmdickenäquivalent der jeweils zugeordneten Zeile (Zi) oder eines Abschnitts der jeweils zugeordneten Zeile (Zi) des Rotationskörpers (2, 3, 4, 5) enthalten.
  7. Verfahren nach einem der vorhergehenden Ansprüche und wenigstens einem der folgenden Merkmale:
    - das Fluid wird aufgesprüht;
    - das Fluid wird mit mehreren axial nebeneinander angeordneten Düsen aufgesprüht.
  8. Verfahren nach einem der vorhergehenden Ansprüche, bei dem eine äußere Umfangsfläche des Rotationskörpers (2, 3, 4, 5) in dem Modell in axial nebeneinander angeordnete, in Umfangsrichtung erstreckte Spalten (Sj) unterteilt ist und die Fluidbelegung spaltenweise ermittelt wird.
  9. Verfahren nach dem vorhergehenden Anspruch und wenigstens einem der folgenden Merkmale:
    - das Fluid wird mit mehreren axial nebeneinander angeordneten Düsen aufgesprüht, den Düsen ist je wenigstens eine der Spalten (Sj), auf die die jeweilige Düse Fluid sprüht, zugeordnet, und die Düsen geben das Fluid in Abhängigkeit von der Fluidbelegung der jeweils wenigstens einen zugeordneten Spalte (Sj) ab;
    - in dem Modell ist für den Rotationskörper (2, 3, 4, 5) eine Tabelle (12, 13, 14, 15) angelegt mit Spalten (Sj), die den Spalten (Sj) des Rotationskörpers (2, 3, 4, 5) entsprechen, und die Spalten (Sj) der Tabelle (12, 13, 14, 15) enthalten jeweils wenigstens einen Tabellenwert (Tij) für das Filmdickenäquivalent der jeweils zugeordneten Spalte (Sj) oder eines Umfangsabschnitts der jeweils zugeordneten Spalte (Sj) des Rotationskörpers (2, 3, 4, 5).
  10. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das Fluid in zeitlich aufeinander folgenden Zeitintervallen in pro Zeitintervall jeweils einem Puls einer Pulsdauer aufgetragen und wenigstens eines aus Pulsdauer und Länge des jeweiligen Zeitintervalls, vorzugsweise nur die Pulsdauer, verändert wird.
  11. Verfahren nach dem vorhergehenden Anspruch und wenigstens einem der folgenden Merkmale:
    - die Pulsdauer, vorzugsweise bei gleich bleibender Länge des Zeitintervalls, oder die Länge des Zeitintervalls, vorzugsweise bei gleich bleibender Pulsdauer, wird oder werden auf Einhaltung eines vorgegebenen Sollwerts variiert;
    - das Fluid wird über mehrere aufeinander folgende Zeitintervalle einem für die Pulsdauer oder die Länge des Zeitintervalls vorgegebenen Sollwert vor- oder nacheilend auf Einhaltung des Sollwerts aufgetragen;
    - das Fluid wird durch Variation der Pulsdauer oder der Länge der Zeitintervalle erst über mehrere aufeinander folgende Zeitintervalle im arithmetischen Mittel auf Einhaltung eines vorgegebenen Sollwerts aufgetragen;
    - ein Sollwert wird als Pulsdauer pro Zeitintervall, vorzugsweise in Abhängigkeit von der Maschinengeschwindigkeit, vorgegeben;
    - für einen Druckformzylinder (5), zu dem der Rotationskörper (2, 3, 4) Fluid transportiert oder den der Rotationskörper bildet, wird in dem Modell eine Fluidbelegung vorgegeben und mit der für den Druckformzylinder (5) durch die Simulation ermittelten Fluidbelegung verglichen, und die Pulsdauer oder der Pulsabstand wird oder werden in Abhängigkeit von dem Ergebnis des Vergleichs eingestellt.
  12. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die durch Simulation für das lokale Filmdickenäquivalent ermittelten Werte (Tij) miteinander verglichen werden, ein Minimum oder mehrere Minima des Filmdickenäquivalents mittels des Vergleichs bestimmt und der Pulsabstand oder die Pulsdauer so gewählt wird oder werden, dass das Fluid gezielt in dem Minimum oder den Minima aufgetragen wird.
  13. Verfahren nach einem der vorhergehenden Ansprüche, bei dem
    d) der Rotationskörper (2, 3, 4, 5) ein Druckformzylinder (5) ist oder Fluid zu einem Druckformzylinder (5) transportiert,
    e) dem Modell in Bezug auf die Umfangsrichtung des Druckformzylinders (5) eine lokale Verteilung des von einem zu bedruckenden Druckmaterial pro Umdrehung des Druckformzylinders (5) aufgenommenen Fluids vorgegeben
    f) und die Fluidbelegung in dem Modell in Abhängigkeit von der vorgegebenen Verteilung simuliert wird.
  14. Vorrichtung zum Auftragen eines Fluids, nämlich eines Feuchtmittels oder einer Farbe, auf einen Rotationskörper einer Druckmaschine, die Vorrichtung umfassend
    a) eine Abgabeeinrichtung (1) für eine intermittierende Abgabe des Fluids in Pulsen,
    b) einen um eine Rotationsachse (R) drehbaren Rotationskörper (2, 3, 4, 5) für die Übertragung des von der Abgabeeinrichtung (1) erhaltenen Fluids,
    c) eine Datenverarbeitungseinrichtung (10) mit einem Modell für die Simulation einer topographischen Fluidbelegung des drehenden Rotationskörpers (2, 3, 4, 5) nach Flächenbedeckung und Filmdickenäquivalent
    d) und eine mit der Datenverarbeitungseinrichtung (10) gekoppelte Steuerung (11) für die Abgabeeinrichtung (1), mittels der eine Dauer der Pulse oder ein Abstand zwischen aufeinander folgenden Pulsen einstellbar ist oder sind,
    e) wobei die Steuerung (11) die Pulsdauer oder den Pulsabstand in Abhängigkeit von der durch die Simulation ermittelten Fluidbelegung einstellt.
  15. Vorrichtung nach dem vorhergehenden Anspruch und wenigstens einem der folgenden Merkmale:
    - die Abgabeeinrichtung (1) gibt das Fluid berührungslos ab;
    - die Abgabeeinrichtung (1) ist eine Sprühdüse;
    - es sind mehrere Abgabeeinrichtungen (1) vorgesehen und axial zueinander versetzt längs des Rotationskörpers (2, 3, 4, 5) angeordnet;
    - der Rotationskörper (2, 3, 4, 5) ist einem Druckformzylinder (5) zugeordnet, um das Fluid zu dem Druckformzylinder (5) zu transportieren, oder bildet den Druckformzylinder (5).
  16. Vorrichtung nach einem der vorhergehenden Ansprüche und wenigstens einem der folgenden Merkmale:
    - eine äußere Umfangsfläche des Rotationskörpers (2, 3, 4, 5) ist in Zeilen (Zi) unterteilt, die in Umfangsrichtung aufeinander folgen, und in einem Speicher der Datenverarbeitungseinrichtung (10) ist pro Zeile (Zi) wenigstens ein Speicherplatz für einen Wert (Tij) des Filmdickenäquivalents der jeweiligen Zeile (Zi) oder eines Abschnitts der jeweiligen Zeile (Zi) vorgesehen;
    - eine äußere Umfangsfläche des Rotationskörpers (2, 3, 4, 5) ist in Umfangsrichtung in Zeilen (Zi) unterteilt, das Modell ist in der Datenverarbeitungseinrichtung (10) als Tabellenkalkulation implementiert und eine Tabelle (12, 13, 14, 15) der Tabellenkalkulation weist für die Zeilen (Zi) je wenigstens einen Tabellenplatz für einen Tabellenwert (Tij) für das Filmdickenäquivalent der jeweiligen Zeile (Zi) oder eines Abschnitts der jeweiligen Zeile (Zi) auf.
  17. Vorrichtung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die äußere Umfangsfläche des Rotationskörpers (2, 3, 4, 5) axial in Spalten (Sj) unterteilt ist, die mit den Zeilen (Zi) auf der Umfangsfläche ein Gitter mit Gitterplätzen (Zi, Sj) bilden, und dass die Tabelle (12, 13, 14, 15) Tabellenplätze mit Tabellenwerten (Tij) für das Filmdickenäquivalent am jeweiligen Gitterplatz aufweist.
  18. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Abgabeeinrichtung (1) das Fluid in zeitlich aufeinander folgenden Zeitintervallen in pro Zeitintervall jeweils einem Puls einer Pulsdauer abgibt, in einem Speicher (16) der Datenverarbeitungseinrichtung (10) ein Sollwert für die Pulsdauer oder die Länge der Zeitintervalle als Sollwert gespeichert ist und die Abgabeeinrichtung (1) von der Steuerung (11) so gesteuert wird, dass die Abgabeeinrichtung (1) durch Variation der Pulsdauer oder Länge der Zeitintervalle eine dem Sollwert entsprechende Menge des Fluids erst in einer Kumulation über mehrere aufeinander folgende Zeitintervalle abgibt.
  19. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
    (i) der Rotationskörper (2, 3, 4, 5) einem Druckformzylinder (5) zugeordnet ist, um das Fluid zu dem Druckformzylinder (5) zu transportieren, oder den Druckformzylinder (5) bildet,
    (ii) eine äußere Umfangsfläche des Druckfomzylinders (5) in Umfangsrichtung in Zeilen (Zi) unterteilt ist,
    (iii) in einem Speicher (16) der Datenverarbeitungseinrichtung (10) für jede der Zeilen (Zi) des Druckformzylinders (5) wenigstens ein Sollwert für eine Fluidmenge der jeweiligen Zeile (Zi) oder die in der jeweiligen Zeile (Zi) auf ein zu bedruckendes Druckmaterial (B) zu übertragende Fluidmenge gespeichert ist
    (iv) und die Abgabeeinrichtung (1) von der Steuerung (11) so gesteuert wird, dass der Druckformzylinder (5) in seinen Zeilen (Zi) die Sollmenge aufweist oder auf die Zeilen (Zi) des Druckfomzylinders (5) die auf das Druckmaterial (B) zu übertragende Fluidmenge übertragen wird.
EP08159071A 2007-06-26 2008-06-26 Verfahren und Vorrichtung zum Auftragen eines Feuchtmittels oder einer Farbe Not-in-force EP2008815B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007029341A DE102007029341A1 (de) 2007-06-26 2007-06-26 Verfahren und Vorrichtung zum Auftragen eines Feuchtmittels oder einer Farbe

Publications (3)

Publication Number Publication Date
EP2008815A2 EP2008815A2 (de) 2008-12-31
EP2008815A3 EP2008815A3 (de) 2010-04-14
EP2008815B1 true EP2008815B1 (de) 2011-04-20

Family

ID=39870482

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08159071A Not-in-force EP2008815B1 (de) 2007-06-26 2008-06-26 Verfahren und Vorrichtung zum Auftragen eines Feuchtmittels oder einer Farbe

Country Status (3)

Country Link
EP (1) EP2008815B1 (de)
AT (1) ATE506186T1 (de)
DE (2) DE102007029341A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2295248B1 (de) * 2009-09-10 2013-07-31 Windmöller & Hölscher KG Verfahren und Vorrichtung zum Ermittlen des spezifischen Farbtransportverhaltens einer Farbe transportierenden Walze
EP3194170B1 (de) * 2014-09-15 2019-07-31 Koenig & Bauer AG Einstellung und/oder änderung eines profils in der feuchtmittelführung eines druckwerks

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4649818A (en) * 1985-07-22 1987-03-17 Ryco Graphic Manufacturing, Inc. Variable frequency pulsed spray dampening system
DE4436953C1 (de) * 1994-10-15 1996-05-15 Roland Man Druckmasch Verfahren zur Erzeugung einer Farbschichtdickenverteilung auf Farbwerkwalzen eines Farbwerkes einer Druckmaschine
FR2816544B1 (fr) * 2000-11-14 2003-03-21 Associations De Gestion De L E Procede et dispositif de caracterisation du mouillage d'une plaque de machine offset
JP3943873B2 (ja) * 2001-07-26 2007-07-11 大日本スクリーン製造株式会社 印刷機におけるインキおよび水の供給量制御装置、ならびにそれを備えた印刷システム
DE10258325B4 (de) 2002-10-25 2005-08-18 Koenig & Bauer Ag Verfahren zur Einstellung eines Sprühfeuchtwerks
SE528344C2 (sv) 2004-01-12 2006-10-24 Baldwin Jimek Ab Avkänningsorgan för att fastställa en ventilaktuators läge
GB0417586D0 (en) * 2004-08-06 2004-09-08 Goss Graphic Systems Ltd Dampening control for a printing press

Also Published As

Publication number Publication date
DE502008003245D1 (de) 2011-06-01
DE102007029341A1 (de) 2009-01-15
EP2008815A3 (de) 2010-04-14
ATE506186T1 (de) 2011-05-15
EP2008815A2 (de) 2008-12-31

Similar Documents

Publication Publication Date Title
EP0141168B1 (de) Farbwerksvoreinstellung
EP0531675B1 (de) Verfahren und Vorrichtung zum Verstellen von Farbzonenschrauben in jeweilige Positionen
EP2393662B1 (de) Sprühmodul zum besprühen einer mantelfläche eines rotierenden zylinders
DE2443504C3 (de) Farbwerk an Druckmaschinen
DE102005031391B4 (de) Druckerpresse und Verfahren zur Steuerung einer Farbübertragungswalze
EP2396174B1 (de) Verfahren zur einstellung einer flächendeckung und ein entsprechendes verfahren zur durchführung in einer mehrere druckwerke aufweisenden druckmaschine
EP2008815B1 (de) Verfahren und Vorrichtung zum Auftragen eines Feuchtmittels oder einer Farbe
EP3658379A1 (de) Vorrichtung zum beschichten von nutzen, eine druckmaschine und verfahren zum beschichten von nutzen
EP1033245B1 (de) Sprühfeuchtwerk mit hoher effektiver Sprühfrequenz
EP1650151A1 (de) Verfahren zur Schnittregistereinstellung bei einer Rollenrotationsdruckmaschine
DE10056247B4 (de) Verfahren zum Steuern der Farbmenge in einer Druckmaschine
DE3714160A1 (de) Farbwerk fuer eine druckmaschine
DE102005018475B4 (de) Verfahren zum Betrieb einer Druckeinheit und Druckeinheit mit Waschvorrichtung
DE102005013634A1 (de) Verfahren zum Betrieb einer Druckmaschine
DE102007015401A1 (de) Feuchtwerk für ein Druckwerk einer Druckmaschine
DE10258325B4 (de) Verfahren zur Einstellung eines Sprühfeuchtwerks
EP3043995B1 (de) Verfahren für die kontrolle der rotationsgeschwindigkeit für eine antriebsvorrichtung einer druckwalze
DE10009661B4 (de) Verfahren und Einrichtung zum Zuführen von Druckfarbe in Farbkästen von Druckmaschinen
DE10325185B4 (de) Verfahren zum Betrieb eines Druckwerks einer Druckmaschine in Abhängigkeit von der Farbtemperatur sowie nach dem Verfahren arbeitende Druckmaschinensteuerung
EP3177464B1 (de) Hochdynamische farbdichteregelung
DE426634C (de) Rotationsflachdruckmaschine
DE102016205343A1 (de) Farbwerk für eine Druckmaschine
EP1060886A1 (de) Verfahren und Einrichtung zum Zuführen von Druckfarbe in Farbkästen von Druckmaschinen
EP1977892A2 (de) Druckwerk einer Druckmaschine mit einem Feuchtwerk
DE102007001284A1 (de) Vorrichtung und Verfahren zur Steuerung der Flüssigkeitszufuhr

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: B41F 33/00 20060101ALI20100305BHEP

Ipc: B41F 7/30 20060101AFI20081103BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20101012

RIC1 Information provided on ipc code assigned before grant

Ipc: B41F 33/00 20060101ALI20101101BHEP

Ipc: B41F 7/30 20060101AFI20101101BHEP

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502008003245

Country of ref document: DE

Date of ref document: 20110601

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008003245

Country of ref document: DE

Effective date: 20110601

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110420

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110822

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110820

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110731

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110721

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

BERE Be: lapsed

Owner name: WIFAG MASCHINENFABRIK AG

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120229

26N No opposition filed

Effective date: 20120123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008003245

Country of ref document: DE

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120626

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110420

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 506186

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130626