EP1970470B1 - Chrom(VI)-freie Schwarzpassivierung für Zink-haltige Oberflächen - Google Patents

Chrom(VI)-freie Schwarzpassivierung für Zink-haltige Oberflächen Download PDF

Info

Publication number
EP1970470B1
EP1970470B1 EP07103538A EP07103538A EP1970470B1 EP 1970470 B1 EP1970470 B1 EP 1970470B1 EP 07103538 A EP07103538 A EP 07103538A EP 07103538 A EP07103538 A EP 07103538A EP 1970470 B1 EP1970470 B1 EP 1970470B1
Authority
EP
European Patent Office
Prior art keywords
acid
treatment solution
carboxylic
carboxylic acid
dicarboxylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07103538A
Other languages
English (en)
French (fr)
Other versions
EP1970470A1 (de
Inventor
Jaroslava Krizova
Vaclav Kriz
Jiri Kloubek
Björn. Dr. Dingwerth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atotech Deutschland GmbH and Co KG
Original Assignee
Atotech Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES07103538T priority Critical patent/ES2361361T3/es
Application filed by Atotech Deutschland GmbH and Co KG filed Critical Atotech Deutschland GmbH and Co KG
Priority to AT07103538T priority patent/ATE509138T1/de
Priority to EP07103538A priority patent/EP1970470B1/de
Priority to KR1020097020494A priority patent/KR101389602B1/ko
Priority to JP2009552080A priority patent/JP5124595B2/ja
Priority to CN2008800068740A priority patent/CN101668882B/zh
Priority to US12/449,930 priority patent/US8460534B2/en
Priority to PCT/EP2008/000259 priority patent/WO2008107039A1/de
Publication of EP1970470A1 publication Critical patent/EP1970470A1/de
Application granted granted Critical
Publication of EP1970470B1 publication Critical patent/EP1970470B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/38Chromatising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/10Use of solutions containing trivalent chromium but free of hexavalent chromium

Definitions

  • the present invention relates to a treatment solution and a method for producing substantially chromium (VI) -free black conversion layers on zinc-containing alloy layers.
  • chromium (VI) compounds whose essential component is chromium (VI) compounds.
  • the generated conversion layer therefore also contains chromium (VI) ions.
  • Chromating layers generally have good corrosion protection and good decorative properties.
  • a disadvantage of the use of chromium (VI) -containing solutions or chromium (VI) -containing coatings are the toxicological properties of chromium (VI).
  • the use of chromium (VI) -containing conversion layers is therefore, e.g. severely restricted by the EC directive 2000/53 / EC (EC end-of-life vehicle directive).
  • chromium (III) -containing, acidic treatment solutions commonly referred to as “passivations” or “passivation solutions”, unlike chromations.
  • passivations or “passivation solutions”
  • These treatment solutions exist as in DE 196 15 664 A1 proposed essentially from a chromium (III) salt in mineral acid solution, a dicarboxylic acid or hydroxycarboxylic acid and a cobalt salt.
  • Such processes known as "thick-film passivation” are used at elevated temperature, about 40-60 ° C., in order to achieve a passivation layer thickness on zinc surfaces which is adequate for corrosion protection.
  • the metal alloyed with the zinc is suitable for zinc alloy surfaces such as zinc-iron or zinc-nickel or zinc-cobalt.
  • zinc alloy surfaces such as zinc-iron or zinc-nickel or zinc-cobalt.
  • the less noble zinc is dissolved out of the layer and the alloying metal finely distributed on the surface enriched.
  • the surface is dark or almost black tinted.
  • an additional oxidizing agent is used for the black passivation of zinc-nickel surfaces in order to promote the etching effect of the acid. The result is a black surface that does not provide significant corrosion protection.
  • WO 03/054249 describes a similar conversion layer which is also made with a chromium (III) -containing, acidic treatment solution which still contains phosphate ions.
  • This surface also has good decorative properties, but does not achieve adequate corrosion protection properties without further post-treatment steps such as sealing.
  • EP 1 484 432 A1 describes chromium (III) -containing black passivation solutions for zinc alloy surfaces containing chromium (III) ions and nitrate as well as carboxylic acids such as tartaric acid, maleic acid, oxalic acid, succinic acid, citric acid, malonic acid or adipic acid. To improve the corrosion protection, the surfaces treated with it must be subjected to a subsequent sealing. The treatment solutions are used at temperatures above normal room temperature.
  • US 2004/156999 also describes a method for black passivation of zinc alloy surfaces.
  • the treatment solutions contain, in addition to chromium (III) ions and phosphorus-containing anions, nitrate and an organic carboxylic acid.
  • organic carboxylic acids include citric, tartaric, maleic, glyceric, lactic, glycolic, malonic, succinic, oxalic and glutaric acids.
  • the US patent application US 2004/173289 A describes a rustproofing agent for galvanized steel sheet containing: (A) an aqueous chromium-containing solution containing an organic substance, and (B) an acidic metal salt such as a metal salt of nitric acid or phosphoric acid.
  • the chromium in the aqueous chromium-containing solution of component (A) is exclusively trivalent chromium.
  • the organic substance of component (A) is preferably at least one kind of oxyacid or an oxide thereof.
  • the metal in the acidic metal salt of component (B) is an alkaline earth metal, cobalt, nickel, iron, zirconium, titanium or the like.
  • the rust inhibitor is used to prevent blackening of the treated metal surface.
  • a zinc surface on a metal substrate can be colored and made corrosion resistant by treating the surface with a solution of a trivalent chromium compound and at least one additional metal salt selected from the group consisting of ferrous salts, nickel salts and cobalt salts capable of coloring the surface together with the chromium compound in the presence of a phosphate at a pH of about 0.5 to 5.
  • the dyed surface is then topcoated to achieve high corrosion resistance.
  • Example 7 of the abovementioned application describes a treatment solution which contains, inter alia: 2 g / l of chromium (III) nitrate, 5 g / l of oxalic acid, 4 g / l of citric acid and 25 g / l of acetic acid.
  • concentration ratio mentioned in claim 1 is 0.8.
  • the European Patent Application EP 1 944 390 A which belongs to the state of the art under Article 54 (3) EPC, describes a treatment solution for use in forming a trivalent chromium black conversion layer of uniformly stable black color, gloss and corrosion resistance, irrespective of the type of acidic, neutral or alkaline zinc bath and regardless of whether a nickel eutectoid is formed or not. Furthermore, a method of forming the trivalent chromium black conversion layer will be described.
  • the treating solution comprises trivalent chromium ions, a chelating agent capable of forming a water-soluble complex with the trivalent chromium, at least one metal ion selected from the group consisting of cobalt ions, nickel ions and iron ions, and formic acid or a salt thereof as a buffer.
  • treatment solutions are described in which the total concentration of carboxylate groups in dicarboxylic acids (oxalic acid and / or malonic acid) is in each case more than 150 mmol / l.
  • black-passivated zinc or zinc alloy surfaces can not yet be produced in a fully satisfactory manner using known processes.
  • a disadvantage of the described method is in particular that it is not possible to produce a black zinc alloy surface, which provides a good base corrosion protection.
  • aftertreatment steps are generally necessary in order to improve the anti-corrosive properties of the layer.
  • the surface should simultaneously be given very good anti-corrosive properties.
  • the invention provides a composition which yields such a treatment solution by dilution with water.
  • the invention provides a method for black passivation of zinc-containing surfaces, wherein the surface to be treated is immersed in such a treatment solution.
  • the invention is based on the empirically discovered finding that good aesthetic properties (appearance, uniformity and coloration) in combination with good anticorrosive properties can be achieved by using at least one first carboxylic acid as defined above together with at least one second carboxylic acid as defined above mentioned concentration conditions.
  • the treatment solution is an acidic, aqueous solution.
  • Their pH is preferably in the range of 1.4 to 2.5, more preferably in the range of 1.5 to 2.0.
  • the first carboxylic acid is preferably an alkyl, aryl, alkenyl or alkynylcarboxylic acid. Apart from the carboxyl group it contains no polar, eg protic, groups. In particular, it contains none of the following groups: -OH, -SO 3 H -NH 2 , -NHR, -NR 2 , -NR 3 + (where R is for a C 1 -C 6 alkyl group is). However, the first carboxylic acid may contain the following groups: halogen, alkyl, aryl, vinyl, alkoxy and nitro groups.
  • acids which are suitable as the first carboxylic acid include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, hexanecarboxylic acid, cyclopentanecarboxylic acid, acetylsalicylic acid, benzoic acid, nitrobenzoic acid, 3,5-dinitrobenzoic acid, sorbic acid, trifluoroacetic acid, 2-ethylhexanoic acid, Acrylic acid, chloroacetic acid, 2-chlorobenzoic acid, 2-chloro-4-nitrobenzoic acid, cyclopropanecarboxylic acid, methacrylic acid, 3-nitrobenzoic acid, 4-nitrobenzoic acid, phenoxyacetic acid, isovaleric acid, pivalic acid, 2-ethylbutyric acid, furan-2-carboxylic acid, bromoacetic acid, crotonic acid, 2- Chloropropionic acid, dichloroacetic acid, cycl
  • the first carboxylic acid is preferably acetic acid.
  • the second carboxylic acid carrying at least one further polar group is preferably a di- or tri-carboxylic acid. Also suitable are amino acids.
  • acids suitable as the second carboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, phthalic acid, terephthalic acid, tartaric acid, citric acid, malic acid, ascorbic acid, ethylenedinitrilotetraacetic acid, tetrahydrofuran-2- carboxylic acid, ethylenediaminetetraacetic acid, diethylenediaminepentaacetic acid, nitrilotriacetic acid, lactic acid, adipic acid, 4-aminohippuric acid, 4-aminobenzoic acid, 5-aminoisophthalic acid, L-aspartic acid, L-glutamine, L-glutamic acid, alanine, beta-alanine, L-arginine, L-asparagine, L-alanine, N, N-bis (2-hydroxye
  • the carboxylic acids can also be introduced into the treatment solution in the form of their salts.
  • the treating solution preferably additionally contains cobalt (II) ions in a concentration in the range of 0.1 g / L to 3 g / L, more preferably in the range of 0.2 g / L to 2 g / L, most preferably in Range from 0.5 g / l to 1 g / l.
  • cobalt (II) ions in a concentration in the range of 0.1 g / L to 3 g / L, more preferably in the range of 0.2 g / L to 2 g / L, most preferably in Range from 0.5 g / l to 1 g / l.
  • the treatment solution according to the invention serves to passivate zinc alloys, such as e.g. Zinc-iron, zinc-nickel or zinc-cobalt alloys.
  • zinc alloys such as e.g. Zinc-iron, zinc-nickel or zinc-cobalt alloys.
  • Zinc-iron alloys preferably contain 0.4 to 1 wt .-% iron, zinc-nickel alloys preferably contain 8 to 20 wt .-% nickel and zinc-cobalt alloys preferably contain 0.5 to 5 wt .-% Cobalt.
  • alloys can be electrochemically deposited on a substrate or applied by other methods such as hot dip galvanizing or make up the material of the article to be treated.
  • the ratio ⁇ c (C1) / c (C2) ⁇ * ⁇ c (Cr 3+ ) / c (NO 3 - ) ⁇ is in the range of 0.1 to 0.2.
  • the surface to be treated is immersed in a treatment solution as described above.
  • the temperature of the treatment solution is preferably in the range of 20 ° C to 60 ° C, more preferably in the range of 20 ° C to 40 ° C, most preferably in the range of 20 ° C to 30 ° C.
  • the treatment time in the treatment solution is preferably between 10 s and 180 s, more preferably between 30 s and 120 s, most preferably between 45 s and 90 s.
  • the passivation treatment is assisted by cathodic switching of the substrate in the passivation solution.
  • the cathodic current density on the substrate is preferably between 0.05 A / dm 2 and 10 A / dm 2 , more preferably between 0.1 A / dm 2 and 5 A / dm 2 , most preferably between 0.1 A / dm 2 and 3 A / dm 2 .
  • chromium (VI) -free passivating solutions for zinc-containing surfaces typically consist of a source of chromium (IIII) ions, one or more complexing agents such as fluoride and / or polybasic carboxylic acids, hydroxycarboxylic acids or aminocarboxylic acids.
  • Chromium (III) is present in the electron configuration 3d 3 of the valence electrons and is known almost exclusively in aqueous solutions as an octahedrally coordinated ion. In this configuration, the ion has high ligand field stabilization energy (LFSE).
  • the Cr (II) ion with the electron configuration 3d 4 has a significantly lower kinetic inhibition and therefore significantly faster ligand exchange reactions.
  • Water ligands on chromium (III) exchange several orders of magnitude more slowly than chromium (II). If the ion is in the high-spin configuration, the reactivity is also accelerated by the Jahn-Teller effect that occurs here.
  • the high-spin arrangement of the electrons in the octahedral complex is observed with ligands that generate a comparatively weak ligand field, such as water, oxide.
  • the low-spin case is only observed for ligands that are very strong Create ligand field.
  • ligands are not included in the treatment solutions according to the invention.
  • Carboxylate ions which are part of the treatment solutions according to the invention, belong to the former class, ie to ligands which generate a weak ligand field and thus form high-spin complexes.
  • the reduction of Cr (III) to Cr (II) can also be carried out electrochemically. That is, by cathodic connection of the part to be passivated in the reaction solution, the layer formation reaction can be supported or carried out entirely by electrochemical means. Optionally, this process, especially on black passivated zinc surfaces, leads to an improvement of the corrosion protection.
  • a dense, low-defect passivation layer is difficult.
  • finely divided alloy metal e.g., cobalt, nickel or iron
  • etching the surface and dissolving away zinc is often generated.
  • oxides of these elements are produced.
  • blackening is accomplished by depositing small amounts of these more precious metals in comparison to the zinc by immersing the zinc surface in an e.g. Solution containing iron, nickel, cobalt, silver or copper ions by cementation.
  • Charge exchange forms a thin layer of finely divided black metals or, depending on the treatment solution of the metal oxides, also non-stoichiometric zinc oxides.
  • the Cr (II) possibly coordinated by these acids or their anions is not converted into a slightly soluble form and can be so the surface no or no sufficient enrichment for the purpose.
  • acetic acid or acetate ions to convert Cr (II) into a sparingly soluble form is used for the preparative preparation of chromium (II) acetate (see the following formula).
  • the binuclear structure as found for the chromium (II) acetate is not a prerequisite for the mode of action described in this invention. Intermediate polynuclear complexes with more than one chromium ion or even mononuclear complexes can also occur.
  • Chromium (II) acetate forms red crystals that are oxidized to Cr (III) species in contact with atmospheric oxygen.
  • the surface-enriched chromium species may undergo partial or complete ligand exchange to form a three-dimensional network.
  • the pH of the solution was adjusted to pH 1.5 each with nitric acid or sodium hydroxide.
  • a steel component was coated in a zinc-nickel alkaline alloy electrolyte (trade name: Reflectalloy ZNA, manufactured by Atotech) with a 5 ⁇ m-thick layer of a nickel-nickel-containing zinc-nickel alloy.
  • the steel member was then immersed in a nitric acid-water mixture (about 0.3% HNO 3) at 20 ° C for 10 seconds to activate the surface, which was then rinsed with demineralized water and immediately poured into the reaction solution 1 above 2 and immersed at 25 ° C. for 60 s, then rinsed with demineralized water and dried, the surface of the part assuming a matte, dark to dark brown color in the salt spray test according to DIN 50021 SS ⁇ 12 h white corrosion.
  • Aqueous reaction solutions having the compositions shown in Table 1 were prepared (the individual components were added in the same form as in Comparative Example 2). The pH of the solution was adjusted to the value shown in Table 1 with nitric acid or sodium hydroxide, respectively.
  • Embodiment 3 was repeated except that the concentrations of acetic acid and oxalic acid were changed as shown in Table 2, respectively.
  • the results of the evaluation of the coloring and the corrosion properties are also shown in Table 2.
  • Table 1 Table 1
  • Comparative example 3 4 Cr 3+ 4.5 g / l 4.5 g / l NO 3 - 17 g / l 17 g / l CO 2+ 0.3 g / l 0.3 g / l formic acid 0g / l 0g / l acetic acid 5 g / l 1 g / l propionic 0g / l 0g / l benzoic acid 0g / l 0g / l Oxalic acid dihydrate 1 g / l 9 g / l maleic 1.5 g / l 1.5 g / l pH 1.5 1.5 temperature 25 ° C 25 ° C exposure time 60 s 60 s Substrate (
  • Comparative Example 3 shows that if the concentration of carboxyl groups from monocarboxylic acids is too high, only poor coloration of the treated surface is achieved.
  • Comparative Example 4 shows that when the concentration of carboxyl groups of polycarboxylic acids is too high, only poor corrosion properties of the treated surface are obtained.

Description

    GEBIET DER ERFINDUNG
  • Die vorliegende Erfindung betrifft eine Behandlungslösung und ein Verfahren zur Erzeugung von im wesentlichen Chrom(VI)-freien schwarzen Konversionsschichten auf Zink-haltigen Legierungsschichten.
  • HINTERGRUND DER ERFINDUNG
  • Die Verwendung von Konversionsschichten zur Steigerung der Schutzwirkung von kathodischen Korrosionsschutzsystemen und als Haftgrund für Lacke und Farben ist sei langer Zeit bekannt. Speziell auf Zink-, Cadmium- und Aluminium-haltigen Untergründen hat sich neben Phosphatierungsmethoden die Methode des Chromatierens der Oberflächen etabliert.
  • Hierbei wird die zu behandelnde Oberfläche einer Behandlungslösung ausgesetzt, deren wesentlicher Bestandteil Chrom(VI)-Verbindungen sind. Die erzeugte Konversionsschicht enthält daher auch Chrom(VI)-lonen. Chromatierungsschichten weisen in der Regel einen guten Korrosionsschutz und gute dekorative Eigenschaften auf. Nachteilig an der Anwendung von Chrom(VI)-haltigen Lösungen bzw. Chrom(VI)-haltigen Beschichtungen sind die toxikologischen Eigenschaften von Chrom(VI). Der Einsatz Chrom(VI)-haltiger Konversionsschichten ist daher z.B. durch die EG-Richtlinie 2000/53/EG (EG-Altfahrzeugrichtlinie) stark eingeschränkt.
  • Als Alternative für Chromatierungslösungen wurden Chrom(III)-haltige, sauere Behandlungslösungen, im Unterschied zu Chromatierungen gemeinhin als "Passivierungen" bzw. "Passivierungslösungen" bezeichnet, vorgeschlagen. Diese Behandlungslösungen bestehen wie z.B. in DE 196 15 664 A1 vorgeschlagen im wesentlichen aus einem Chrom(III)-Salz in mineralsaurer Lösung, einer Dicarbonsäure oder Hydroxycarbonsäure und einem Kobaltsalz. Derartige als "Dickschichtpassivierungen" bekannte Verfahren werden bei erhöhter Temperatur, etwa 40 - 60 °C angewandt, um eine für den Korrosionsschutz hinreichende Passivierungsschichtdicke auf Zinkoberflächen zu erzielen. Die Notwendigkeit, das Verfahren bei gegenüber Raumtemperatur erhöhter Temperatur einzusetzen, resultiert aus der großen Reaktionsträgheit, die für das Chrom(III)-lon im Gegensatz zum Chrom(VI)-Ion charakteristisch ist. Eine wesentliche Verlängerung der Reaktionszeiten als Alternative zur Temperaturerhöhung ist aus wirtschaftlichen Gründen in der Regel nicht umsetzbar.
  • Als einfach zu erzeugendes Schwarzpigment eignet sich bei Zink-Legierungsoberflächen wie Zink-Eisen bzw. Zink-Nickel oder Zink-Kobalt das mit dem Zink legierte Metall. Durch Behandeln in einer sauren Lösung wird das unedlere Zink aus der Schicht gelöst und das Legierungsmetall feinverteilt auf der Oberfläche angereichert. Hierdurch wird die Oberfläche dunkel bzw. nahezu schwarz getönt. Ein solches Verfahren ist beispielsweise in DE 199 05 134 A1 beschrieben. Hier wird zur Schwarzpassivierung von Zink-Nickel-Oberflächen zusätzlich ein Oxidationsmittel eingesetzt, um die Ätzwirkung der Säure zu unterstützen. Das Resultat ist eine schwarze Oberfläche, die aber keinen signifikanten Korrosionsschutz bietet.
  • Alternativ können gemäß US 5 415 702 Cr(VI)-freie schwarze Konversionsschichten auf Zink-Nickel-Legierungsschichten durch Behandeln mit sauren, Chrom(III)-haltigen Lösungen die weiterhin Sauerstoffsäuren des Phosphors enthalten, hergestellt werden. Bei diesem Verfahren werden homogen schwarze Konversionsschichten mit guten dekorativen Eigenschaften ausgebildet. In Laborversuchen ist es uns aber nicht gelungen, den dort beschriebenen Korrosionsschutz nachzuvollziehen.
  • WO 03/054249 beschreibt eine ähnliche Konversionsschicht, die gleichfalls mit einer Chrom(III)-haltigen, sauren Behandlungslösung, die weiterhin Phosphationen enthält, hergestellt wird. Auch diese Oberfläche weist gute dekorative Eigenschaften auf, erzielt aber ohne weitere Nachbehandlungsschritte wie Versiegelung keine hinreichenden Korrosionsschutzeigenschaften.
  • EP 1 484 432 A1 beschreibt Chrom(III)-haltige Schwarzpassivierungslösungen für Zink-Legierungsoberflächen, die Chrom(III)-lonen und Nitrat sowie Carbonsäuren wie z.B. Weinsäure, Maleinsäure, Oxalsäure, Bernsteinsäure, Zitronensäure, Malonsäure oder Adipinsäure enthalten. Zur Verbesserung des Korrosionsschutzes müssen die hiermit behandelten Oberflächen einer anschließenden Versiegelung unterzogen werden. Die Behandlungslösungen werden bei Temperaturen oberhalb der normalen Raumtemperatur angewandt.
  • US 2004/156999 beschreibt gleichfalls ein Verfahren zur Schwarzpassivierung von Zink-Legierungsoberflächen. Die Behandlungslösungen enthalten neben Chrom(III)-lonen und phosphorhaltigen Anionen Nitrat und eine organische Carbonsäure. Als Beispiele für die organischen Carbonsäuren werden Zitronensäure, Weinsäure, Maleinsäure, Glycerinsäure, Milchsäure, Glykolsäure, Malonsäure, Bernsteinsäure, Oxalsäure und Glutarsäure genannt.
  • Mit den beschriebenen Behandlungslösungen war es uns nicht möglich, den dort beschriebenen Korrosionsschutz zu erzielen.
  • Die US-Patentanmeldung US 2004/173289 A beschreibt ein Rostschutzmittel für verzinktes Stahlblech, welches enthält: (A) eine wässrige chromhaltige Lösung, die eine organische Substanz enthält, und (B) ein saures Metallsalz, wie z.B. ein Metallsalz der Salpetersäure oder der Phosphorsäure. Bei dem Chrom in der wässrigen chromhaltigen Lösung der Komponente (A) handelt es sich ausschließlich um dreiwertiges Chrom. Bei der organischen Substanz der Komponente (A) handelt es sich bevorzugt um mindestens eine Art von Oxysäure oder ein Oxid davon. Das Metall in dem sauren Metallsalz der Komponente (B) ist ein Erdalkalimetall, Kobalt, Nickel, Eisen, Zirkonium, Titan oder dergleichen. Das Rostschutzmittel wird verwendet, um eine Schwarzfärbung der behandelten Metalloberfläche zu verhindern.
  • Die US-Patentanmeldung US 2006/054248 A beschreibt, dass eine Zinkoberfläche auf einem Metallsubstrat dadurch gefärbt und korrosionsbeständig gemacht werden kann, dass die Oberfläche behandelt wird mit einer Lösung einer Verbindung des dreiwertigen Chroms und mindestens eines zusätzlichen Metallsalzes, ausgewählt aus der Gruppe, bestehend aus Eisen(II)-salzen, Nickelsalzen und Kobaltsalzen, die in der Lage sind, die Oberfläche zusammen mit der Chromverbindung in Gegenwart eines Phosphats bei einem pH-Wert von etwa 0,5 bis 5 einzufärben. Die eingefärbte Oberfläche wird anschließend mit einem Decküberzug versehen, um eine hohe Korrosionsbeständigkeit zu erzielen. In Beispiel 7 der genannten Anmeldung wird eine Behandlungslösung beschreiben, die u.a. enthält: 2 g/l Chrom(III)-nitrat, 5 g/l Oxalsäure, 4 g/l Citronensäure und 25 g/l Essigsäure. Damit beträgt das in Anspruch 1 genannte Konzentrationsverhältnis 0,8.
  • Die Europäische Patentanmeldung EP 1 944 390 A , die zum Stand der Technik nach Artikel 54(3) EPÜ gehört, beschreibt eine Behandlungslösung zur Verwendung bei der Bildung einer schwarzen Konversionsschicht aus dreiwertigem Chrom mit gleichförmig stabiler schwarzer Farbe, Glanz und Korrosionsbeständigkeit, und zwar unabhängig von der Art des verwendeten, sauren, neutralen oder alkalischen Zinkbads und unabhängig davon, ob ein Nickel-Eutektoid gebildet wird oder nicht. Des Weiteren wird ein Verfahren zur Bildung der schwarzen Konversionsschicht aus dreiwertigem Chrom beschrieben. Die Behandlungslösung umfasst dreiwertige Chromionen, ein Chelatisierungsmittel, das mit dem dreiwertigen Chrom einen wasserlöslichen Komplex bilden kann, mindestens ein Metallion, ausgewählt aus der Gruppe, bestehend aus Kobaltionen, Nickelionen und Eisenionen, und Ameisensäure oder ein Salz davon als Puffer. In den Beispielen der genannten Anmeldung werden Behandlungslösungen beschreiben, bei denen die Gesamtkonzentration an Carboxylatgruppen in Dicarbonsäuren (Oxalsäure und/oder Malonsäure) jeweils mehr als 150 mmol/l beträgt.
  • Schwarz passivierte Zink- bzw. Zink-Legierungsoberflächen lassen sich mit bekannten Verfahren demnach noch nicht in voll befriedigender Weise erzeugen. Nachteilig an den beschriebenen Verfahren ist insbesondere, dass es nicht gelingt, eine schwarze Zink-Legierungsoberfläche herzustellen, die einen guten Grundkorrosionsschutz bereitstellt. Es sind daher grundsätzlich Nachbehandlungsschritte notwendig, um die korrosionsschützenden Eigenschaften der Schicht zu verbessern.
  • BESCHREIBUNG DER ERFINDUNG
  • Der Erfindung liegt die Aufgabe zugrunde, eine Behandlungslösung und ein Verfahren zur Chrom(VI)-freien Schwarzpassivierung von Zinklegierungen bereitzustellen, die den Anforderungen an die dekorativen Eigenschaften, wie sie durch die mit konventionellen Chrom(VI)-enthaltenden Schwarzchromatierungen erzeugten Resultate geprägt sind, genügen. Darüber hinaus sollen der Oberfläche gleichzeitig sehr gut korrosionsschützende Eigenschaften verliehen werden.
  • Diese Aufgabe wird gelöst durch eine Behandlungslösung zur Erzeugung von im wesentlichen Chrom(VI)-freien schwarzen Konversionsschichten auf Zink-haltigen Legierungsschichten, wobei die Lösung enthält:
    • mindestens eine erste Carbonsäure mit 1 bis 8 Kohlenstoffatomen, die außer der Carboxylgruppe keine polaren Gruppen enthält und eine Monocarbonsäure ist,
    • mindestens eine zweite Carbonsäure mit 1 bis 8 Kohlenstoffatomen, die mindestens eine weitere polare Gruppe enthält, die ausgewählt ist aus -OH, -SO3H, -NH2, -NHR, -NR2, -NR3 + und -COOH (wobei R für eine C1-C6-Alkylgruppe steht),
    • 20 bis 400 mmol/l Cr3+ und
    • 50 bis 2000 mmol/l NO3 -,
    und wobei
    • die Gesamtkonzentration an Carboxylgruppen der ersten Carbonsäure(n) im Bereich von 5 bis 150 mmol/l, bevorzugt 10 bis 50 mmol/l liegt,
    • die Gesamtkonzentration an Carboxylgruppen der zweiten Carbonsäure(n) im Bereich von 5 bis 150 mmol/l, bevorzugt 10 bis 75 mmol/l liegt,
    • das Verhältnis der Konzentration (in mol/l) von NO3 - zu Cr3+ ≥ 1 ist und
    • folgende Bedingung erfüllt ist: 0 , 05 c C 1 c C 1 * c Cr 3 + c NO 3 - 0 , 5
      Figure imgb0001
    wobei,
    c(C1)
    die Gesamtkonzentration (in mol/l) an Carboxylgruppen der ersten Carbonsäure(n) ist,
    c(C2)
    die Gesamtkonzentration (in mol/l) an Carboxylgruppen der zweiten Carbonsäure(n) ist,
    c(Cr3+)
    die Konzentration (in mol/l) an Cr3+ ist, und
    c(NO3 -)
    die Konzentration (in mol/l) an NO3 - ist.
  • Außerdem stellt die Erfindung eine Zusammensetzung bereit, die durch Verdünnen mit Wasser eine solche Behandlungslösung ergibt.
  • Des weiteren stellt die Erfindung ein Verfahren zur Schwarzpassivierung zinkhaltiger Oberflächen bereit, wobei die zu behandelnde Oberfläche in eine solche Behandlungslösung eingetaucht wird.
  • Die Erfindung beruht auf der empirisch aufgefundenen Erkenntnis, dass sich gute ästhetische Eigenschaften (Aussehen, Gleichmäßigkeit und Färbung) in Kombination mit guten Korrosionsschutzeigenschaften erzielen lassen durch die Verwendung mindestens einer ersten Carbonsäure wie oben definiert zusammen mit mindestens einer zweiten Carbonsäure wie oben definiert unter den oben genannten Konzentrationsbedingungen.
  • Die Behandlungslösung ist eine saure, wässrige Lösung. Ihr pH-Wert liegt bevorzugt im Bereich von 1,4 bis 2,5, mehr bevorzugt im Bereich von 1,5 bis 2,0.
  • Die erste Carbonsäure ist bevorzugt eine Alkyl-, Aryl-, Alkenyl- oder Alkinyl-carbonsäure. Sie enthält außer der Carboxylgruppe keine polaren, z.B. protischen, Gruppen. Insbesondere enthält sie keine der folgenden Gruppen: -OH, -SO3H -NH2, -NHR, -NR2, -NR3 + (wobei R für eine C1-C6-Alkylgruppe steht). Die erste Carbonsäure kann jedoch folgende Gruppen enthalten: Halogen-, Alkyl-, Aryl-, Vinyl-, Alkoxy- und Nitro-Gruppen.
  • Beispiele für Säuren, die als erste Carbonsäure geeignet sind, umfassen Ameisensäure, Essigsäure, Propionsäure, Buttersäure, iso-Buttersäure, Valeriansäure, Hexancarbonsäure, Cyclopentancarbonsäure, Acetylsalicylsäure, Benzoesäure, Nitrobenzoesäure, 3,5-Dinitrobenzoesäure, Sorbinsäure, Trifluoressigsäure, 2-Ethylhexansäure, Acrylsäure, Chloressigsäure, 2-Chlorbenzoesäure, 2-Chlor-4-nitrobenzoesäure, Cyclopropancarbonsäure, Methacrylsäure, 3-Nitrobenzoesäure, 4-Nitrobenzoesäure, Phenoxyessigsäure, Isovaleriansäure, Pivelinsäure, 2-Ethylbuttersäure, Furan-2-carbonsäure, Bromessigsäure, Crotonsäure, 2-Chlorpropionsäure, Dichloressigsäure, Glyoxylsäure, 4-Methoxybenzoesäure, 3,4-Dimethoxybenzoesäure, Lävulinsäure, Pentensäure, Phenylessigsäure, Tiglinsäure, Vinylessigsäure, Heptansäure, Propargylsäure, Ethacrylsäure, Cyclohexensäure, Cyclohexansäure, Cyclopentensäure und 2-Butinsäure.
  • Die erste Carbonsäure ist bevorzugt Essigsäure.
  • Die zweite Carbonsäure, die mindestens eine weitere polare Gruppe trägt, ist bevorzugt eine Di- oder Tri-carbonsäure. Ebenfalls geeignet sind Aminosäuren.
  • Beispiele für Säuren, die als zweite Carbonsäure geeignet sind, umfassen Oxalsäure, Malonsäure, Bersteinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure, Sebazinsäure, Maleinsäure, Phthalsäure, Terephthalsäure, Weinsäure, Citronensäure, Äpfelsäure, Ascorbinsäure, Ethylendinitrilotetraessigsäure, Tetrahydrofuran-2-carbonsäure, Ethylendiamintetraessigsäure, Diethylendiaminpentaessigsäure, Nitrilotriessigsäure, Milchsäure, Adipinsäure, 4-Aminohippursäure, 4-Aminobezoesäure, 5-Aminoisophthalsäure, L-Asparaginsäure, L-Glutamin, L-Glutaminsäure, Alanin, beta-Alanin, L-Arginin, L-Asparagin, L-Alanin, N,N-Bis(2-hydroxyethyl)-glycin, L-Cystein, L-Cystin, Glutathion, Glycin, Glycylglycin, L-Histidin, L-Hydroxyprolin, L-Isoleucin, L-Leucin, L-Lysin, L-Methionin, L-Ornithin, L-Phenylalanin, L-Prolin, L-Serin, L-Tyrosin, L-Tryptophan, L-Threonin, L-Valin, N-[Tris(hydroxymethyl)-methyl]-glycin, L-Citrullin, N-Acetyl-L-cystein, N-(2-Acetamindo)-iminodiessigsäure, 1,2-Cyclohexeylen-dinitrilotetraessigsäure, D(+)-Biotin, L-Norleucin, 5-Aminolävulinsäure, DL-Methionin, 3-Aminobenzoesäure, 6-Aminohexansäure, Acetylendicarbonsäure, Pyridin-2,3-dicarbonsäure, (-)-Chinasäure, 4-Amino-2-hydroxybenzoesäure, Pyridin-2,6-dicarbonsäure, Pyridin-2-carbonsäure, Pyrazin-2,3-dicarbonsäure, Pyrazin-2-carbonsäure, Pyridin-4-carbonsäure, 3,5-Diyhdroxybenzoesäure, 2,4-Dihydroxybenzoesäure, Sebacinsäure, Benzol-1,3,5-tricarbonsäure, Furan-2-carbonsäure, Methylenbernsteinsäure, DL-Mandelsäure, DL-alpha-Aminophenylessigsäure, DL-Tropasäure, 2,2'-Thiodiessigsäure, 3,3'-Thiodipropionsäure, 3-(2-Furyl)-acrylsäure, Piperidin-4-carbonsäure, 4-Guanidinobenzoesäure, L-Homoserin, trans-Propen-1,2,3-tricarbonsäure, (R)-(-)-Citramalsäure, (3-Hydroxyphenyl)-essigsäure, 4-Hydroxychinolin-2-carbonsäure, N-Acetyl-L-glutaminsäure, N-Acetyl-DL-valin, 4-Aminohippursäure, 2,6-Dihydroxybenzoesäure, 4-(Dimethylamino)-benzoesäure, Glucuronsäure, Citrazinsäure, Indol-3-carbonsäure, Indol-5-carbonsäure, Butan-1,2,3,4-tetracarbonsäure, DL-Leucin, 2,2-Bis-(hydroxymethyl)-propionsäure, Chinlin-2,4-dicarbonsäure, 2-Aminopyridin-3-carbonsäure, 5-Amino-2-hydroxybenzoesäure, Anthranilsäure, Benzol-1,2,4-tricarbonsäure, 3,5-Diaminobenzoesäure, 4,8-Dihydroxychinolin-2-carbonsäure, 3,3-Dimethylglutarsäure, trans,trans-2,4-Haxadiensäure, 3-Hydroxybuttersäure, o-Hydroxyhippursäure, (4-Hydroxyphenyl)-essigsäure, Imidazol-4-acrylsäure, Indol-2-carbonsäure, Indol-3-propionsäure, Mercaptobernsteinsäure, 3-Oxoglutarsäure, Pyridin-2,4-dicarbonsäure, Pyridin-3,5-dicarbonsäure, 2-Methylalanin, 2-Sulfobenzoesäure, Pyridin-2,5-dicarbonsäure, Gluconsäure, 4-Aminobenzoesäure, (-)-Shikiminsäure, Chinaldinsäure, 5-Hydroxyisophthalsäure, Pyrazol-3,5-dicarbonsäuren, Pyridin-3,4-dicarbonsäure,1,2-Diaminopropan-tetraessigsäure, 2-Pyridylessigsäure,D-Norvalin, 2-Methylglutarsäure, 2,3-Dibrombernsteinsäure, 3-Methylglutarsäure, (2-Hydroxyphenyl)essigsäure, 3,4-Dihydroxybenzoesäure, Diglycolsäure, Propan-1,2,3-tricarbonsäure, 2,3-Dimethylaminopropionsäure, 2,5-Dihydroxybenzoesäure, 2-Hydroxyisobuttersäure, Phenylbernsteinsäure, N-Phenylglycin, 1-Aminocylcohexancarbonsäure, Sarcosin, Tropasäure, Brenzschleimsäure, Schleimsäure.
  • Die Carbonsäuren können auch in Form ihrer Salze in die Behandlungslösung eingebracht werden.
  • Zur Herstellung der erfindungsgemäßen Behandlungslösung eignen sich auch alle Verbindungen, die in wässriger Lösung als Quelle für die entsprechenden Säuren dienen können, also deren Ester, Säureamide, Säurehalogenide, Säurenitrile sowie Säureanhydride.
  • Die Behandlungslösung enthält bevorzugt zusätzlich Kobalt(II)-lonen in einer Konzentration im Bereich von 0,1 g/l bis 3 g/l, mehr bevorzugt im Bereich von 0,2 g/l bis 2 g/l, am meisten bevorzugt im Bereich von 0,5 g/l bis 1 g/l.
  • Die erfindungsgemäße Behandlungslösung dient zur Passivierung von Zinklegierungen wie z.B. Zink-Eisen-, Zink-Nickel- oder Zink-Kobalt-Legierungen.
  • Zink-Eisen-Legierungen enthalten bevorzugt 0,4 bis 1 Gew.-% Eisen, Zink-Nickel-Legierungen enthalten bevorzugt 8 bis 20 Gew.-% Nickel und Zink-Kobalt-Legierungen enthalten bevorzugt 0,5 bis 5 Gew.-% Kobalt.
  • Diese Legierungen können auf einem Substrat elektrochemisch abgeschieden oder durch andere Verfahren wie Feuerverzinken aufgebracht sein oder den Werkstoff des zu behandelnden Artikels ausmachen.
  • Bevorzugt liegt das Verhältnis {c(C1) / c(C2)} * {c(Cr3+) / c(NO3 -)} im Bereich von 0,1 bis 0,2.
  • Bei dem erfindungsgemäßen Verfahren zur Schwarzpassivierung zinkhaltiger Oberflächen wird die zu behandelnde Oberfläche in eine Behandlungslösung wie oben beschreiben eingetaucht. Die Temperatur der Behandlungslösung liegt dabei bevorzugt im Bereich von 20 °C bis 60 °C, mehr bevorzugt im Bereich von 20 °C bis 40 °C, am meisten bevorzugt im Bereich von 20 °C bis 30 °C. Die Behandlungsdauer in der Behandlungslösung beträgt bevorzugt zwischen 10 s und 180 s, mehr bevorzugt zwischen 30 s und 120 s, am meisten bevorzugt zwischen 45 s und 90 s. In einer bevorzugten Ausführungsform des Verfahrens wird die Passivierungsbehandlung durch kathodische Schaltung des Substrats in der Passivierungslösung unterstützt. Dabei liegt die kathodische Stromdichte auf dem Substrat bevorzugt zwischen 0,05 A/dm2 und 10 A/dm2, mehr bevorzugt zwischen 0,1 A/dm2 und 5 A/dm2, am meisten bevorzugt zwischen 0,1 A/dm2 und 3 A/dm2.
  • Konventionelle, Chrom(VI)-freie Passivierungslösungen für zinkhaltige Oberflächen bestehen in der Regel aus einer Quelle für Chrom(IIII)-Ionen, einem oder mehreren Komplexbildner wie Fluorid und/oder mehrwertigen Carbonsäuren, Hydroxycarbonsäuren oder Aminocarbonsäuren. Chrom(III) liegt in der Elektronenkonfiguration 3d3 der Valenzelektronen vor und ist in wässrigen Lösungen nahezu ausschließlich als oktaedrisch koordiniertes Ion bekannt. In dieser Konfiguration weist das Ion eine hohe Ligandenfeldstabilisierungsenergie (LFSE) auf. Dies führt zu ausgesprochen geringen Reaktionsgeschwindigkeiten am Chrom(III)-lon, was sich z.B. in der Notwendigkeit wider spiegelt, Cr(III)-Komplexe entweder mit langen Reaktionszeiten oder bei erhöhter Temperatur herzustellen. Diesem Punkt wird üblicher Weise bei der Herstellung von Passivierungslösungen durch Verwendung von Heißwasser beim Ansatz bzw. Aufheizen der Reaktionslösung Rechnung getragen.
  • Im Gegensatz zum Cr(III)-lon weist das Cr(II)-lon mit der Elektronenkonfiguration 3d4 eine signifikant geringere kinetische Hemmung und damit wesentlich schnellere Ligandenaustauschreaktionen auf. Wasserliganden an Chrom(III) tauschen um mehrere Größenordnungen langsamer aus, als an Chrom(II). Liegt das Ion in der high-spin Konfiguration vor, wird die Reaktivität zudem noch durch den hier auftretenden Jahn-Teller-Effekt beschleunigt. Die high-spin Anordnung der Elektronen im oktaedrischen Komplex wird mit Liganden beobachtet, die ein vergleichsweise schwaches Ligandenfeld erzeugen, wie z.B. Wasser, Oxid. Der low-spin-Fall wird nur bei Liganden beobachtet, die ein sehr starkes Ligandenfeld erzeugen. Hierzu gehört z.B. das Cyanid-lon. Derartige Liganden sind in den erfindungsgemäßen Behandlungslösungen nicht enthalten. Carboxylat-lonen, die erfindungsgemäß Bestandteil der Behandlungslösungen sind, gehören zur erstgenannten Klasse, also zu Liganden, die ein schwaches Ligandenfeld erzeugen und damit high-spin-Komplexe bilden.
  • Die Reduktion von Cr(III) zu Chrom(II) (Cr2+ → Cr3+ + e-, E0 = - 0,41 V gegenüber Standard-Wasserstoffelektrode) erfolgt bereitwillig in hinreichend saurer Lösung an Zink-Oberflächen. Die Bildung eines mehrdimensionalen Netzwerkes von µ-Hydroxy-verbrückten Chrom(III)-Ionen, wie es generell für die Struktur einer Chrom(III)-haltigen Konversionsschicht angenommen wird, erfolgt höchstwahrscheinlich über den Zwischenschritt der Reduktion von Cr(III) zu Cr(II) mit nachfolgend schnellem Ligandenaustausch. Durch gelösten Luftsauerstoff wird Cr(II) leicht in Gegenwart von Feuchtigkeit wieder zu Chrom(III) oxidiert. Die Reduktion von Cr(III) zu Cr(II) kann auch elektrochemisch erfolgen. D.h., durch kathodische Schaltung des zu passivierenden Teils in der Reaktionslösung kann die Schichtbildungsreaktion unterstützt werden oder gänzlich auf elektrochemischem Wege erfolgen. Dieses Verfahren führt optional angewandt insbesondere auf schwarzpassivierten Zinkoberflächen zu einer Verbesserung des Korrosionsschutzes.
  • Speziell auf schwarzen Oberflächen ist der Aufbau einer dichten, defektarmen Passivierungsschicht erschwert. Als Schwarzpigment wird häufig das durch Anätzen der Oberfläche und Herauslösen von Zink angereicherte, feinverteilte Legierungsmetall (z.B. Kobalt, Nickel oder Eisen) generiert. Alternativ werden je nach Behandlungslösung auch die Oxide dieser Elemente erzeugt.
  • Auf reinen Zink-Oberflächen erfolgt nach dem Stand der Technik die Schwarzfärbung durch Abscheidung geringer Mengen dieser im Vergleich zum Zink edleren Metalle durch Eintauchen der Zink-Oberfläche in eine z.B. Eisen-, Nickel-, Kobalt-, Silber- oder KupferIonen enthaltende Lösung durch Zementation. Durch Ladungsaustausch bildet sich eine dünne Schicht feinverteilter schwarzer Metalle bzw. je nach Behandlungslösung der Metalloxide, auch nicht-stöchiometrische Zinkoxide.
  • Auf den so generierten schwarzen Oberflächen ist die Bildung einer Passivierungsschicht erschwert und resultiert in einer schlechten Korrosionsschutzwirkung der schwarzen Passivierungsschicht.
  • Dieses Problem wird durch die vorliegende Erfindung derart gelöst, dass die intermediär auftretenden Cr(11)-Ionen mit Hilfe von Monocarbonsäuren, die außer der Carboxylgruppe keine weiteren polaren Gruppen enthalten, in eine schwerlösliche Form überführt und so an der Oberfläche fixiert werden. Auf diese Weise wird gegenüber bisherigen Verfahren eine erhöhte Konzentration nur gering-mobilen Chroms erzielt, das für den Aufbau der Passivschicht zur Verfügung steht. Werden demgegenüber hauptsächlich mehrwertige Carbonsäuren wie Oxalsäure, Malonsäure, Bernsteinsäure oder Hydroxycarbonsäuren wie Milchsäure oder mehrwertige Hydroxycarbonsäuren wie Zitronensäure oder Weinsäure eingesetzt, wird das ggf. durch diese Säuren bzw. deren Anionen koordinierte Cr(II) nicht in eine geringlösliche Form überführt und kann so an der Oberfläche keine bzw. keine für den Zweck hinreichende Anreicherung erfahren.
  • Der Einsatz von Essigsäure bzw. Acetat-Ionen zur Überführung von Cr(II) in eine schwerlösliche Form wird zur präparativen Darstellung von Chrom(II)-acetat (siehe nachfolgende Formel) verwendet. Die zweikernige Struktur, wie sie für das Chrom(II)-acetat gefunden wird ist nicht Voraussetzung für die in dieser Erfindung beschriebene Wirkungsweise. Es können auch intermediär mehrkernige Komplexe mit mehr als einem Chrom-lon bzw. auch einkernige Komplexe auftreten.
    Figure imgb0002
  • Chrom(II)-acetat bildet rote Kristalle, die in Kontakt mit Luftsauerstoff zu Cr(III)-Spezies oxidiert werden. Analog können unter den in der Passivierungslösung herrschenden Bedingungen an der Grenzfläche Metall-Lösung die so an der Oberfläche angereicherten Chromspezies unter teilweisem oder vollständigem Ligandenaustausch zum Aufbau eines dreidimensionalen Netzwerks stattfinden.
  • Neben einem verbesserten Grundkorrosionsschutz besteht ein weiterer Vorteil der Anwendung von Monocarbonsäuren in deren Einbau in die Konversionsschicht. Durch Koordination an Chrom-lonen im Schichtnetzwerk wird die Oberfläche durch die unpolaren Alkyl-, Aryl-, Alkenyl- oder Alkinyl-reste hydrophob und zeigt eine verbesserte Affinität zu unpolaren Polymeren, wie sie in gebräuchlichen Polymerdispersionen zum Einsatz kommen.
  • Gegenüber konventionellen Chrom(VI)-haltigen Konversionsschichten und gegenüber aus reinen Di-, Tri- bzw. Hydroxycarbonsäure- oder Aminocarbonsäure-haltigen Lösungen erzeugten Konversionsschichten wird erfindungsgemäß eine erhöhte Affinität zu hydrophoben Polymeren erzielt. Diese spiegelt sich in einer Verbesserung des Korrosionsschutzes durch Anwendung von Polymerdispersionen auf die erfindungsgemäß hergestellten Konversionsschichten wider.
  • Die alleinige Anwendung von Monocarbonsäuren als Chelatliganden führt in der Regel infolge des durch die Schwerlöslichkeit des intermediär gebildeten Chrom(II)-Komplexes beschleunigten Schichtwachstums zu einer nicht homogenen Schwarzfärbung der Schicht, da diese zunehmend gegen den Angriff der Reaktionslösung isoliert wird. Durch Wahl geeigneter Kombinationen aus Monocarbonsäuren mit mindestens einer zweiten Carbonsäure (z.B. einer Polycarbonsäure oder Hydroxycarbonsäure) und deren Konzentrationen können die Konzentrationen gut löslicher Chrom(II)-Intermediate und schwerlöslicher Chrom(II)-Reaktionsprodukte an der Oberfläche im Sinne eines guten Korrosionsschutzes bei gleichzeitiger homogener und damit ansprechender Färbung der Oberfläche eingestellt werden. Empirisch ergeben sich hinsichtlich Korrosionsschutz der zinkhaltigen Oberfläche bezüglich Weißkorrosion und homogener, tiefer Einfärbung der Oberfläche günstige Konzentrationsverhältnisse, wenn die Zusammensetzung der Reaktionslösung den oben genannten Bedingungen genügt.
  • Nachfolgend wird die Erfindung anhand von Beispielen näher erläutert.
  • BEISPIELE Vergleichsbeispiele 1 und 2
  • Es wurden wässrige Reaktionslösungen mit folgender Zusammensetzung hergestellt:
    • Reaktionslösung 1:
      • 4,5 g/l Cr3+, zugegeben als Chrom(III)-nitrat-nonahydrat
      • 17 g/l Salpetersäure (65 %)
    • Reaktionslösung 2:
      • 4,5 g/l Cr3+, zugegeben als Kalium-chrom(III)-sulfat
      • 17,1 g/l SO4 2-, zugegeben als Kalium-chrom(III)-sulfat
      • 0,3 g/l CO2+, zugegeben als Kobalt(II)-sulfat-hexahydrat
      • 90 mg/l NO3 -, zugegeben als Salpetersäure
      • 1 g/l Oxalsäure-Dihydrat
      • 1 g/l Essigsäure
      • 1 g/l Maleinsäure
  • Der pH-Wert der Lösung wurde jeweils mit Salpetersäure oder Natriumhydroxid auf pH 1,5 eingestellt.
  • Ein Stahlbauteil wurde in einem alkalischen Zink-Nickel-Legierungselektrolyten (Handelsbezeichnung: Reflectalloy ZNA; Hersteller: Atotech) mit einer 5 µm dicken Schicht einer Zink-Nickel-Legierung mit 14 % Nickel-Anteil beschichtet. Das Stahlbauteil wurde dann bei 20 °C für 10 s in ein Salpetersäure-Wasser-Gemisch (etwa 0,3 % HNO3 getaucht, um die Oberfläche zu aktivieren. Das Teil wurde anschließend mit demineralisiertem Wasser gespült und sofort in die oben angesetzte Reaktionslösung 1 bzw. 2 bei 25 °C für 60 s getaucht, danach mit demineralisiertem Wasser gespült und getrocknet. Die Oberfläche des Teils hatte in beiden Fällen eine matte, dunkel bis dunkelbraune Färbung angenommen. Im Salzsprühnebeltest nach DIN 50021 SS zeigte die Oberfläche im Mittel bereits nach < 12 h Weißkorrosion.
  • Ausführungsbeispiele 1 - 6
  • Es wurden wässrige Reaktionslösungen mit den in Tabelle 1 angegebenen Zusammensetzungen hergestellt (die einzelnen Komponenten wurden in der gleichen Form wie in Vergleichsbeispiel 2 zugegeben). Der pH-Wert der Lösung wurde jeweils mit Salpetersäure oder Natriumhydroxid auf den in Tabelle 1 angegebenen Wert eingestellt.
  • Stahlbauteile wurden mit der in Tabelle 1 unter "Substrat" angegebenen Zn-haltigen Legierung elektrolytisch beschichtet, nach der elektrolytischen Beschichtung mit demineralisiertem Wasser gründlich gespült, dann in 0,3 % Salpetersäure bei 20 - 30 °C für 10 s aktiviert, und danach wiederum gründlich gespült. Die Teile wurden anschließend unter den in der Tabelle 1 angegebenen Bedingungen (Temperatur, Expositionszeit) in die Reaktionslösungen eingetaucht. Danach wurde noch eine Versiegelung mit Corrosil 501 aufgebracht, die aus einer wässrigen Polymerdispersion mit silikatischen Anteilen besteht. Die Resultate der visuellen Beurteilung (Farbe) und der Salzsprühnebelprüfung nach DIN 50021 SS vor und nach Aufbringen der Versiegelung (Dauer bis zum Auftrete von Weißkorrosion) sind ebenfalls in Tabelle 1 angegeben. Tabelle 1
    Beispiel 1# 2 3 4 5 6
    Cr3+ 4,5 g/l 4, 5 g/l 4,5 g/l 4,5 g/l 4,5 g/l 4,5 g/l
    NO3 - 17 g/l 17 g/l 17g/l 17g/l 17g/l 17g/l
    CO2+ 0,3 g/l 0, 3 g/l 0,3 g/l 0,3 g/l 0,3 g/l 0,6 g/l
    Ameisensäure 0 g/l 0 g/l 0 g/l 0 g/l 0 g/l 0,8 g/l
    Essigsäure 3,5 g/l 1 g/l 1 g/l 0 g/l 0 g/l 0 g/l
    Propionsäure 0 g/l 0 g/l 0 g/l 0 g/l 1,3 g/l 0 g/l
    Benzoesäure 0 g/l 0 g/l 0 g/l 2 g/l 0 g/l 0 g/l
    Oxalsäure-Dihydrat 0 g/l 1 g/l 1 g/l 1 g/l 1 g/l 1 g/l
    Maleinsäure 0 g/l 1 g/l 1,5 g/l 1 g/l 1 g/l 1 g/l
    pH 1,5 1,5 1,5 1,5 1,5 1,5
    Temperatur 25 °C 25 °C 25 °C 25 °C 25 °C 25 °C
    Expositionszeit 60 s 60 s 60 s 60 s 60 s 60 s
    Substrat (*) Zn/Ni Zn/Ni Zn/Ni Zn/Ni Zn/Ni Zn/Ni
    Farbe fleckig dunkel glänzend, homogen schwarz gleichmäßig schwarz gleichmäßig schwarz gleichmäßig schwarz schwarz, leicht matt
    DIN 50021 SS 48 h 72 h 72 h 72 h 72 h 48 h
    Versiegelung Corrosil 501 Corrosil 501 Corrosil 501 Corrosil 501 Corrosil 501 Corrosil 501
    DIN 50021 SS 144 h 240 h 240 h 240 h 192 h 144 h
    * Zn/Ni = Zn/Ni-Legierung mit 8 - 15 % Nickelanteil in der Legierung
    # nicht erfindungsgemäß
  • Vergleichsbeispiele 3 und 4
  • Das Ausführungsbeispiel 3 wurde wiederholt, wobei jedoch die Konzentrationen der Essigsäure bzw. der Oxalsäure wie in Tabelle 2 angegeben geändert wurden. Die Ergebnisse der Bewertung der Färbung und der Korrosionseigenschaften sind ebenfalls in Tabelle 2 angegeben. Tabelle 1
    Vergleichsbeispiel 3 4
    Cr3+ 4,5 g/l 4,5 g/l
    NO3 - 17 g/l 17 g/l
    CO2+ 0,3 g/l 0,3 g/l
    Ameisensäure 0 g/l 0 g/l
    Essigsäure 5 g/l 1 g/l
    Propionsäure 0 g/l 0 g/l
    Benzoesäure 0 g/l 0 g/l
    Oxalsäure-Dihydrat 1 g/l 9 g/l
    Maleinsäure 1,5 g/l 1,5 g/l
    pH 1,5 1,5
    Temperatur 25 °C 25 °C
    Expositionszeit 60 s 60 s
    Substrat (*) Zn/Ni Zn/Ni
    Farbe fleckig, braun gleichmäßig schwarz
    DIN 50021 SS 48 h 24 h
    Versiegelung Corrosil 501 Corrosil 501
    DIN 50021 SS 120 h 72 h
    * Zn/Ni = Zn/Ni-Legierung mit 8 - 15 % Nickelanteil in der Legierung
  • Vergleichsbeispiel 3 zeigt, dass, wenn die Konzentration an Carboxylgruppen aus Monocarbonsäuren zu hoch ist, nur eine schlechte Färbung der behandelten Oberfläche erzielt wird.
  • Vergleichsbeispiel 4 zeigt, dass, wenn die Konzentration an Carboxylgruppen aus Polycarbonsäuren zu hoch ist, nur schlechte Korrosionseigenschaften der behandelten Oberfläche erzielt werden.

Claims (22)

  1. Behandlungslösung zur Erzeugung von im wesentlichen Chrom(VI)-freien schwarzen Konversionsschichten auf Zink-haltigen Legierungsschichten, wobei die Lösung enthält:
    - mindestens eine erste Carbonsäure mit 1 bis 8 Kohlenstoffatomen, die außer der Carboxylgruppe keine polaren Gruppen enthält und eine Monocarbonsäure ist,
    - mindestens eine zweite Carbonsäure mit 1 bis 8 Kohlenstoffatomen, die mindestens eine weitere polare Gruppe enthält, die ausgewählt ist aus -OH, -SO3H, -NH2, -NHR, -NR2, -NR3 + und -COOH (wobei R für eine C1-C6-Alkylgruppe steht),
    - 20 bis 400 mmol/l Cr3+ und
    - 50 bis 2000 mmol/l NO3 -,
    und wobei
    - die Gesamtkonzentration an Carboxylgruppen der ersten Carbonsäure(n) im Bereich von 5 bis 150 mmol/l liegt,
    - die Gesamtkonzentration an Carboxylgruppen der zweiten Carbonsäure(n) im Bereich von 5 bis 150 mmol/l liegt,
    - das Verhältnis der Konzentration (in mol/l) von NO3 - zu Cr3+ ≥ 1 ist und
    - folgende Bedingung erfüllt ist: 0 , 05 c C 1 c C 2 * c Cr 3 + c NO 3 - 0 , 5
    Figure imgb0003

    wobei,
    c(C1) die Gesamtkonzentration (in mol/l) an Carboxylgruppen der ersten Carbonsäure(n) ist,
    c(C2) die Gesamtkonzentration (in mol/l) an Carboxylgruppen der zweiten Carbonsäure(n) ist,
    c(Cr3+) die Konzentration (in mol/l) an Cr3+ ist, und
    c(NO3 -) die Konzentration (in mol/l) an NO3 - ist.
  2. Behandlungslösung nach Anspruch 1, wobei der pH-Wert der Lösung im Bereich von 1,4 bis 2,5 liegt.
  3. Behandlungslösung nach Anspruch 1, wobei der pH-Wert der Lösung im Bereich von 1,5 bis 2,0 liegt.
  4. Behandlungslösung nach Anspruch 1, wobei die erste Carbonsäure ausgewählt ist aus der Gruppe bestehend aus Ameisensäure, Essigsäure, Propionsäure, Buttersäure, Pentansäure, Hexansäure, Benzoesäure, Heptansäure, Propargylsäure, Acrylsäure, Methacrylsäure, Ethacrylsäure, Crotonsäure, Cyclohexensäure, Cyclohexansäure, Cyclopentansäure, Cyclopentensäure und 2-Butinsäure sowie Isomeren davon.
  5. Behandlungslösung nach Anspruch 1, wobei die zweite Carbonsäure eine Dicarbonsäure ist.
  6. Behandlungslösung nach Anspruch 1, wobei die zweite Carbonsäure ausgewählt ist aus der Gruppe bestehend aus Oxalsäure, Malonsäure, Bersteinsäure, Glutarsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure, Sebazinsäure, Maleinsäure, Phthalsäure, Terephthalsäure, Weinsäure, Citronensäure, Äpfelsäure, Ascorbinsäure, Ethylendinitrilotetraessigsäure, Tetrahydrofuran-2-carbonsäure, Ethylendiamintetraessigsäure, Diethylendiaminpentaessigsäure, Nitrilotriessigsäure, Milchsäure, Adipinsäure, 4-Aminohippursäure, 4-Aminobezoesäure, 5-Aminoisophthalsäure, L-Asparaginsäure, L-Glutamin, L-Glutaminsäure, Alanin, beta-Alanin, L-Arginin, L-Asparagin, L- Alanin, N,N-Bis(2-hydroxyethyl)-glycin, L-Cystein, L-Cystin, Glutathion, Glycin, Glycylglycin, L-Histidin, L-Hydroxyprolin, L-Isoleucin, L-Leucin, L-Lysin, L-Methionin, L-Ornithin, L-Phenylalanin, L-Prolin, L-Serin, L-Tyrosin, L-Tryptophan, L-Threonin, L-Valin, N-[Tris(hydroxymethyl)-methyl]-glycin, L-Citrullin, N-Acetyl-L-cystein, N-(2-Acetamindo)-iminodiessigsäure, 1,2-Cyclohexeylen-dinitrilotetraessigsäure, D(+)-Biotin, L-Norleucin, 5-Aminolävulinsäure, DL-Methionin, 3-Aminobenzoesäure, 6-Aminohexansäure, Acetylendicarbonsäure, Pyridin-2,3-dicarbonsäure, (-)-Chinasäure, 4-Amino-2-hydroxybenzoesäure, Pyridin-2,6-dicarbonsäure, Pyridin-2-carbonsäure, Pyrazin-2,3-dicarbonsäure, Pyrazin-2-carbonsäure, Pyridin-4-carbonsäure, 3,5-Diyhdroxybenzoesäure, 2,4-Dihydroxybenzoesäure, Sebacinsäure, Benzol-1,3,5-tricarbonsäure, Furan-2-carbonsäure, Methylenbernsteinsäure, DL-Mandelsäure, DL-alpha-Aminophenylessigsäure, DL-Tropasäure, 2,2'-Thiodiessigsäure, 3,3'-Thiodipropionsäure, 3-(2-Furyl)-acrylsäure, Piperidin-4-carbonsäure, 4-Guanidinobenzoesäure, L-Homoserin, trans-Propen-1,2,3-tricarbonsäure, (R)-(-)-Citramalsäure, (3-Hydroxyphenyl)-essigsäure, 4-Hydroxychinolin-2-carbonsäure, N-Acetyl-L-glutaminsäure, N-Acetyl-DL-valin, 4-Aminohippursäure, 2,6-Dihydroxybenzoesäure, 4-(Dimethylamino)-benzoesäure, Glucuronsäure, Citrazinsäure, Indol-3-carbonsäure, Indol-5-carbonsäure, Butan-1,2,3,4-tetracarbonsäure, DL-Leucin, 2,2-Bis-(hydroxymethyl)-propionsäure, Chinlin-2,4-dicarbonsäure, 2-Aminopyridin-3-carbonsäure, 5-Amino-2-hydroxybenzoesäure, Anthranilsäure, Benzol-1,2,4-tricarbonsäure, 3,5-Diaminobenzoesäure, 4,8-Dihydroxychinolin-2-carbonsäure, 3,3-Dimethylglutarsäure, trans,trans-2,4-Haxadiensäure, 3-Hydroxybuttersäure, o-Hydroxyhippursäure, (4-Hydroxyphenyl)-essigsäure, Imidazol-4-acrylsäure, Indol-2-carbonsäure, Indol-3-propionsäure, Mercaptobernsteinsäure, 3-Oxoglutarsäure, Pyridin-2,4-dicarbonsäure, Pyridin-3,5-dicarbonsäure, 2-Methylalanin, 2-Sulfobenzoesäure, Pyridin-2,5-dicarbonsäure, Gluconsäure, 4-Aminobenzoesäure, (-)-Shikiminsäure, Chinaldinsäure, 5-Hydroxyisophthalsäure, Pyrazol-3,5-dicarbonsäuren, Pyridin-3,4-dicarbonsäure,1,2-Diaminopropan-tetraessigsäure, 2-Pyridylessigsäure,D-Norvalin, 2-Methylglutarsäure, 2,3-Dibrombernsteinsäure, 3-Methylglutarsäure, (2-Hydroxyphenyl)essigsäure, 3,4-Dihydroxybenzoesäure, Diglycolsäure, Propan-1,2,3-tricarbonsäure, 2,3-Dimethylaminopropionsäure, 2,5-Dihydroxybenzoesäure, 2-Hydroxyisobuttersäure, Phenylbernsteinsäure, N-Phenylglycin, 1-Aminocylcohexancarbonsäure, Sarcosin, Tropasäure, Brenzschleimsäure, Schleimsäure.
  7. Behandlungslösung nach einem der voranstehenden Ansprüche, wobei die Lösung zusätzlich Kobalt(II)-Ionen in einer Konzentration im Bereich von 0,1 g/l bis 3 g/l enthält.
  8. Behandlungslösung nach Anspruch 7, wobei die Konzentration der Kobalt(II)-Ionen im Bereich von 0,2 g/l bis 2 g/l liegt.
  9. Behandlungslösung nach Anspruch 7, wobei die Konzentration der Kobalt(II)-Ionen im Bereich von 0,5 g/l bis 1 g/l liegt.
  10. Zusammensetzung, die durch Verdünnen mit Wasser eine Behandlungslösung nach einem der Ansprüche 1 bis 9 ergibt.
  11. Zusammensetzung nach Anspruch 10, wobei die Zusammensetzung ein Salz, einen Ester, ein Säureamid, ein Säurehalogenid, ein Säurenitril und/oder ein Säureanhydrid der Carbonsäure(n) enthält, das bzw. der die Carbonsäure in der wässrigen Behandlungslösung freisetzt.
  12. Verfahren zur Schwarzpassivierung zinkhaltiger Oberflächen, wobei die zu behandelnde Oberfläche in eine Behandlungslösung gemäß einem der Ansprüche 1 bis 9 eingetaucht wird.
  13. Verfahren nach Anspruch 12, wobei die Temperatur der Behandlungslösung im Bereich von 20 °C bis 60 °C liegt.
  14. Verfahren nach Anspruch 12, wobei die Temperatur der Behandlungslösung im Bereich von 20 °C bis 40 °C liegt.
  15. Verfahren nach Anspruch 12, wobei die Temperatur der Behandlungslösung im Bereich von 20 °C bis 30 °C liegt.
  16. Verfahren nach einem der Ansprüche 12 bis 15, wobei die Behandlungsdauer in der Behandlungslösung zwischen 10 s und 180 s beträgt.
  17. Verfahren nach einem der Ansprüche 12 bis 15, wobei die Behandlungsdauer in der Behandlungslösung zwischen 30 s und 120 s beträgt.
  18. Verfahren nach einem der Ansprüche 12 bis 15, wobei die Behandlungsdauer in der Behandlungslösung zwischen 45 s und 90 s beträgt.
  19. Verfahren nach einem der Ansprüche 12 bis 18, wobei die Passivierungsbehandlung durch kathodische Schaltung des Substrats in der Passivierungslösung unterstützt wird.
  20. Verfahren nach Anspruch 19, wobei die kathodische Stromdichte auf dem Substrat zwischen 0,05 A/dm2 und 10 A/dm2 liegt.
  21. Verfahren nach Anspruch 19, wobei die kathodische Stromdichte auf dem Substrat zwischen 0,1 A/dm2 und 5 A/dm2 liegt.
  22. Verfahren nach Anspruch 19, wobei die kathodische Stromdichte auf dem Substrat zwischen 0,1 A/dm2 und 3 A/dm2 liegt.
EP07103538A 2007-03-05 2007-03-05 Chrom(VI)-freie Schwarzpassivierung für Zink-haltige Oberflächen Active EP1970470B1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AT07103538T ATE509138T1 (de) 2007-03-05 2007-03-05 Chrom(vi)-freie schwarzpassivierung für zink- haltige oberflächen
EP07103538A EP1970470B1 (de) 2007-03-05 2007-03-05 Chrom(VI)-freie Schwarzpassivierung für Zink-haltige Oberflächen
ES07103538T ES2361361T3 (es) 2007-03-05 2007-03-05 Pasivación en negro exenta de cromo (vi) para superficies que contienen zinc.
JP2009552080A JP5124595B2 (ja) 2007-03-05 2008-01-15 クロム(vi)を使用しない、亜鉛含有表面の黒色不動態化
KR1020097020494A KR101389602B1 (ko) 2007-03-05 2008-01-15 아연을 함유한 표면의 크롬(6가)이 없는 흑색 부동태화
CN2008800068740A CN101668882B (zh) 2007-03-05 2008-01-15 含锌表面的无铬(vi)黑色钝化
US12/449,930 US8460534B2 (en) 2007-03-05 2008-01-15 Chromium(VI)-free black passivation of surfaces containing zinc
PCT/EP2008/000259 WO2008107039A1 (de) 2007-03-05 2008-01-15 Chrom(vi)-freie schwarzpassivierung für zinkhaltige oberflächen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07103538A EP1970470B1 (de) 2007-03-05 2007-03-05 Chrom(VI)-freie Schwarzpassivierung für Zink-haltige Oberflächen

Publications (2)

Publication Number Publication Date
EP1970470A1 EP1970470A1 (de) 2008-09-17
EP1970470B1 true EP1970470B1 (de) 2011-05-11

Family

ID=38325410

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07103538A Active EP1970470B1 (de) 2007-03-05 2007-03-05 Chrom(VI)-freie Schwarzpassivierung für Zink-haltige Oberflächen

Country Status (8)

Country Link
US (1) US8460534B2 (de)
EP (1) EP1970470B1 (de)
JP (1) JP5124595B2 (de)
KR (1) KR101389602B1 (de)
CN (1) CN101668882B (de)
AT (1) ATE509138T1 (de)
ES (1) ES2361361T3 (de)
WO (1) WO2008107039A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2792999C1 (ru) * 2022-04-14 2023-03-28 Общество с ограниченной ответственностью "ЭКОТЕХ" Жидкость для химической конверсионной обработки и способ химической конверсионной обработки с ее использованием
EP4269652A1 (de) 2022-04-29 2023-11-01 Atotech Deutschland GmbH & Co. KG Verfahren zur schwarz-passivierung einer zinkschicht, schwarz-passivierungszusammensetzung und jeweilige verwendung

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008044143B4 (de) * 2008-11-27 2011-01-13 Atotech Deutschland Gmbh Wässrige Behandlungslösung und Verfahren zur Erzeugung von Konversionsschichten für zinkhaltige Oberflächen
EP2309027B1 (de) 2009-09-23 2011-09-21 ATOTECH Deutschland GmbH Behandlungslösung zur Erzeugung Chrom- und Cobalt-freier schwarzer Konversionsschichten
CN101818374B (zh) * 2010-05-04 2011-06-08 甘肃锦世化工有限责任公司 太阳能吸热板的生产方法
CN102947486B (zh) * 2010-05-26 2016-03-23 安美特德国有限公司 在金属表面制备防腐层的方法
US8961678B2 (en) * 2012-12-20 2015-02-24 Rohm And Haas Electronic Materials Llc Organic solderability preservative and method
PL2784188T5 (pl) * 2013-03-26 2018-10-31 Atotech Deutschland Gmbh Sposób antykorozyjnego zabezpieczania materiałów zawierających żelazo
CN103698442B (zh) * 2013-12-30 2015-04-08 上海微谱化工技术服务有限公司 金属表面处理剂中丙二酸的定量方法
ES2732264T3 (es) 2014-02-13 2019-11-21 Doerken Ewald Ag Procedimiento para la preparación de un sustrato provisto de una pasivación libre de cobalto y libre de cromo-VI
CN105925971B (zh) * 2016-06-14 2018-02-27 中山市东升镇威尔特表面技术厂 环保型皮膜剂
CN107267970B (zh) * 2017-07-09 2019-08-27 无锡市恒利弘实业有限公司 一种钢制件水性环保防锈剂及其制备方法和应用
CN107299338B (zh) * 2017-07-09 2019-04-12 无锡市恒利弘实业有限公司 一种钢制件水性环保防锈剂及其制备方法和应用
CN108796486A (zh) * 2018-07-31 2018-11-13 广州传福化学技术有限公司 一种镀锌黑色钝化剂及镀锌钝化方法
KR101998606B1 (ko) * 2018-11-21 2019-07-10 주식회사 지에스켐텍 아연-니켈 도금용 3가 크로메이트계 흑색 내식성 향상제 및 이를 이용한 아연-니켈 도금층의 표면처리방법
CN110042380A (zh) * 2019-03-27 2019-07-23 祝亚琴 锌发黑剂
CN110158068B (zh) * 2019-06-17 2021-03-05 上海德修化工有限公司 一种环保型锌镍合金黑色钝化液及其使用方法
EP3771748A1 (de) 2019-07-30 2021-02-03 Dr.Ing. Max Schlötter GmbH & Co. KG Chrom(vi)- und kobalt-freie schwarzpassivierung für zink-nickel-oberflächen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1944390A1 (de) * 2005-10-07 2008-07-16 Dipsol Chemicals Co., Ltd. Behandlungslösung zur bildung eines schwarzen, von sechswertigem chrom freien films durch chemische konversionsbeschichtung auf zink oder zinklegierung

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1580137A (en) * 1977-05-24 1980-11-26 Bnf Metals Tech Centre Electrolytic deposition of protective chromite-containing coatings
CA1228000A (en) * 1981-04-16 1987-10-13 David E. Crotty Chromium appearance passivate solution and process
US5415702A (en) 1993-09-02 1995-05-16 Mcgean-Rohco, Inc. Black chromium-containing conversion coatings on zinc-nickel and zinc-iron alloys
JP3523383B2 (ja) 1995-08-21 2004-04-26 ディップソール株式会社 液体防錆皮膜組成物及び防錆皮膜形成方法
DE19615664A1 (de) 1996-04-19 1997-10-23 Surtec Produkte Und Systeme Fu Chrom(VI)freie Chromatschicht sowie Verfahren zu ihrer Herstellung
DE19905134A1 (de) 1999-02-09 2000-09-28 Hillebrand Walter Gmbh & Co Kg Passivierungsverfahren
US20040173289A1 (en) * 2001-01-31 2004-09-09 Yasuhiro Kinoshita Rustproofing agent for zinc plated steel sheet
KR20030002993A (ko) 2001-06-29 2003-01-09 학교법인 포항공과대학교 저유전체 박막의 제조방법
JP3774415B2 (ja) 2002-03-14 2006-05-17 ディップソール株式会社 亜鉛及び亜鉛合金めっき上に黒色の六価クロムフリー化成皮膜を形成するための処理溶液及び亜鉛及び亜鉛合金めっき上に黒色の六価クロムフリー化成皮膜を形成する方法。
US20040156999A1 (en) 2003-02-07 2004-08-12 Pavco, Inc. Black trivalent chromium chromate conversion coating
DE10305449A1 (de) * 2003-02-11 2004-08-26 Walter Hillebrand Gmbh & Co. Pigmenthaltiges Stoffgemisch zur Erzeugung farbiger Passivierungsschichten
JP4304232B2 (ja) * 2003-05-21 2009-07-29 奥野製薬工業株式会社 黒色化成皮膜形成用組成物
JP4472965B2 (ja) * 2003-10-27 2010-06-02 ディップソール株式会社 3価クロメート液及びそれを用いた亜鉛ニッケル合金めっき上に6価クロムフリー耐食性皮膜を形成する方法
JP4384471B2 (ja) * 2003-10-27 2009-12-16 ディップソール株式会社 亜鉛ニッケル合金めっき上に6価クロムフリー耐食性皮膜を形成する方法
JP4738747B2 (ja) * 2004-01-22 2011-08-03 日本表面化学株式会社 黒色被膜剤及び黒色被膜形成方法
JP4446233B2 (ja) * 2004-03-03 2010-04-07 ディップソール株式会社 3価クロメート処理溶液用の皮膜総合摩擦係数低減剤、3価クロメート処理溶液及びその製造方法、並びに総合摩擦係数が低減した3価クロメート皮膜及びその製造方法
US20060054248A1 (en) * 2004-09-10 2006-03-16 Straus Martin L Colored trivalent chromate coating for zinc
CN1670250A (zh) * 2005-04-26 2005-09-21 汤小卫 三价铬钝化液及其制备方法
US20060266438A1 (en) * 2005-05-26 2006-11-30 Pavco, Inc. Trivalent chromium conversion coating and method of application thereof
JP4429214B2 (ja) * 2005-06-07 2010-03-10 株式会社ムラタ 表面処理液及び化成皮膜の形成方法
US20080169199A1 (en) * 2007-01-17 2008-07-17 Chang Gung University Trivalent chromium electroplating solution and an electroplating process with the solution

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1944390A1 (de) * 2005-10-07 2008-07-16 Dipsol Chemicals Co., Ltd. Behandlungslösung zur bildung eines schwarzen, von sechswertigem chrom freien films durch chemische konversionsbeschichtung auf zink oder zinklegierung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2792999C1 (ru) * 2022-04-14 2023-03-28 Общество с ограниченной ответственностью "ЭКОТЕХ" Жидкость для химической конверсионной обработки и способ химической конверсионной обработки с ее использованием
EP4269652A1 (de) 2022-04-29 2023-11-01 Atotech Deutschland GmbH & Co. KG Verfahren zur schwarz-passivierung einer zinkschicht, schwarz-passivierungszusammensetzung und jeweilige verwendung
WO2023208747A1 (en) 2022-04-29 2023-11-02 Atotech Deutschland GmbH & Co. KG Method for black-passivating a zinc layer, black-passivation composition, and respective use

Also Published As

Publication number Publication date
WO2008107039A1 (de) 2008-09-12
CN101668882B (zh) 2012-07-25
US8460534B2 (en) 2013-06-11
ATE509138T1 (de) 2011-05-15
ES2361361T3 (es) 2011-06-16
JP5124595B2 (ja) 2013-01-23
CN101668882A (zh) 2010-03-10
US20100133113A1 (en) 2010-06-03
EP1970470A1 (de) 2008-09-17
JP2010520373A (ja) 2010-06-10
KR101389602B1 (ko) 2014-05-27
KR20100014710A (ko) 2010-02-10

Similar Documents

Publication Publication Date Title
EP1970470B1 (de) Chrom(VI)-freie Schwarzpassivierung für Zink-haltige Oberflächen
EP2014793B1 (de) Korrosionsschutzbehandlung für Konversionsschichten
EP3093370B1 (de) Vorbehandlung von zinkoberflächen vor einer zinkphosphatierung
EP1816234B1 (de) Wässrige Reaktionslösung und Verfahren zur Passivierung von Zink- und Zinklegierungen
EP2358922B1 (de) Konversionsschichten für zinkhaltige oberflächen
EP3455392A1 (de) Konversionsschichten für metallische oberflächen
EP0149720A2 (de) Verfahren zur Nachpassivierung von phosphatierten Metalloberflächen unter Verwendung von Titan- und/oder Mangan- und/oder Cobalt- und/oder Nickel- und/oder Kupfer-Kationen enthaltenden Lösungen
JP3043336B1 (ja) 耐白錆性に優れる電気Znめっき鋼板およびその製造方法
WO2012137677A1 (ja) 化成処理のための組成物およびその組成物により形成された化成皮膜を備える部材の製造方法
EP2319957B1 (de) Schwarzpassivierung von Zink- und Zinkeisenschichten
KR102077555B1 (ko) 아연-니켈 도금용 3가 크로메이트계 유색 내식성 향상제, 이의 제조방법 및 이를 이용한 아연-니켈 도금층의 표면처리방법
DE10305449A1 (de) Pigmenthaltiges Stoffgemisch zur Erzeugung farbiger Passivierungsschichten
KR101655426B1 (ko) 아연-니켈계 합금의 방청처리용 3가 크로메이트 조성물 및 그의 제조방법
DE1521892B1 (de) Loesung zur Bildung eines korrosionsfesten chromathaltigen UEberzugs auf Metallen
EP3889318B1 (de) Verfahren zur herstellung einer schwarzpassivierungsschicht auf einer zink-eisen-legierung und schwarzpassivierungszusammensetzung
JP3316064B2 (ja) Zn−Ni合金めっき用黒色クロメート処理液及び黒色クロメート皮膜の形成方法
EP4269652A1 (de) Verfahren zur schwarz-passivierung einer zinkschicht, schwarz-passivierungszusammensetzung und jeweilige verwendung
JP3294412B2 (ja) Sn−Zn合金めっき上に高耐食性皮膜を形成する方法
EP3771748A1 (de) Chrom(vi)- und kobalt-freie schwarzpassivierung für zink-nickel-oberflächen
JPH0297682A (ja) 亜鉛・ニッケル合金メッキに黒色クロメート皮膜を化成せしめる処理液
JPH07188944A (ja) Sn−Zn合金めっき上に高耐食性黒色皮膜を形成する方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20090313

17Q First examination report despatched

Effective date: 20090417

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2361361

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110616

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007007169

Country of ref document: DE

Effective date: 20110622

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110912

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110812

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110911

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007007169

Country of ref document: DE

Effective date: 20120214

BERE Be: lapsed

Owner name: ATOTECH DEUTSCHLAND G.M.B.H.

Effective date: 20120331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120305

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 509138

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070305

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230327

Year of fee payment: 17

Ref country code: CZ

Payment date: 20230228

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230328

Year of fee payment: 17

Ref country code: ES

Payment date: 20230527

Year of fee payment: 17