EP1957034A2 - Chimäre keratinbindende effektorproteine - Google Patents

Chimäre keratinbindende effektorproteine

Info

Publication number
EP1957034A2
EP1957034A2 EP06819486A EP06819486A EP1957034A2 EP 1957034 A2 EP1957034 A2 EP 1957034A2 EP 06819486 A EP06819486 A EP 06819486A EP 06819486 A EP06819486 A EP 06819486A EP 1957034 A2 EP1957034 A2 EP 1957034A2
Authority
EP
European Patent Office
Prior art keywords
nucleic acid
keratin
binding
protein
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06819486A
Other languages
English (en)
French (fr)
Inventor
Heiko Barg
Burghard Liebmann
Heike Reents
Arne Ptock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP06819486A priority Critical patent/EP1957034A2/de
Publication of EP1957034A2 publication Critical patent/EP1957034A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/64Proteins; Peptides; Derivatives or degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins

Definitions

  • the invention relates to chimeric keratin-binding effector proteins and their use in dermocosmetics.
  • Vertebrate cells contain filaments of which a group is composed of keratins.
  • Specific proteins such as desmoplakin or plakophilin 1 bind to these keratins, which also occur in hair, skin and fingernails and toenails, by means of a special sequence motif, a so-called keratin-binding domain (Fontao L, Favre B, Riou S, Geerts D).
  • Jaunin F Saurat JH, Green KJ, Sonnenberg A, Borradori L., Interaction of the bullous pemphigoid antigen 1 (BP230) and desmoplakin with intermediate filaments is mediated by distinct sequences within their COOH terminus., Mol Biol Cell.
  • Human skin is subject to certain aging processes that are partly due to intrinsic processes (chronoaging) and partly due to exogenous factors (environmental, e.g., photoaging).
  • transient or persistent changes in the appearance of the skin may occur, such as acne, oily or dry skin, keratoses, rosaceae, photosensitive, inflammatory, erythematous, allergic or autoimmune reactions such as dermatoses and photodermatoses.
  • the exogenous factors include, in particular, sunlight or artificial radiation sources with a comparable spectrum as well as free-radical or ionic compounds which can be formed by the radiation. These factors include cigarette smoke and the reactive compounds it contains, such as ozone, free radicals, singlet oxygen, and other reactive oxygen or nitrogen compounds that interfere with the natural physiology or morphology of the skin.
  • proteins and enzymes not only have a wide field of application in the preparation of such agents, but also cause positive physiological changes on the skin and hair due to enzymatic activities or structuring properties.
  • proteins are generally unable to form a firm bond with the surface structures of animal organisms, ie a bond to eg skin, hair is only guaranteed for a few proteins.
  • physiological or decorative properties can not be guaranteed that the proteins reach their site of action and remain there for a sufficient time, which is necessary for the desired physiological or decorative effect.
  • German patent application with the file reference DE 102005011988.3 describes the use of keratin-binding domains in cosmetic preparations. It can be seen from the international patent application with the file reference PCT / EP / 05/005599 that keratin-binding domains can also be coupled with effector molecules.
  • the object of the present invention was therefore to provide novel dermocosmetically usable proteins for application to the skin, hair, fingernails and toenails.
  • proteins or polypeptides should be identified which have a keratin-binding property, exert a dermocosmetic effect and are also suitable for the production of cosmetic and / or dermocosmetic formulations or preparations.
  • a first subject of the invention relates to chimeric keratin-binding effector proteins, comprising (a) at least one keratin-binding polypeptide (i) and (b) at least one further effector polypeptide (ii).
  • these are keratin-binding polypeptides (i), which have a binding affinity to human skin, hair or nail keratin.
  • the keratin-binding polypeptide used in the invention comprises (i)
  • the keratin-binding polypeptide (i) may preferably be encoded by a nucleic acid molecule comprising at least one nucleic acid molecule selected from the group consisting of:
  • nucleic acid molecule which codes for a polypeptide comprising the amino acid sequence shown in SEQ ID No .: 2, 4, 6,
  • Nucleic acid molecule which comprises a polypeptide according to the sequences SEQ ID No .: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 , 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86 , 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134,
  • nucleic acid molecule having a nucleic acid sequence corresponding to at least one of the sequences according to SEQ ID No .: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75,
  • nucleic acid molecule encoding a polypeptide recognized by a monoclonal antibody directed against a polypeptide encoded by the nucleic acid molecules of (c) to (e);
  • nucleic acid molecule encoding a keratin-binding protein that hybridizes under stringent conditions with a nucleic acid molecule according to (c) to (e);
  • Nucleic acid molecule encoding a keratin-binding protein which consists of a DNA library using a nucleic acid molecule according to (c) to (e) or their partial fragments of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt, 200 nt or 500 nt can be isolated as a probe under stringent hybridization conditions, and.
  • a preferred subject matter of the present invention relates to keratin-binding effector proteins, wherein the effector polypeptide (ii) is selected from the group consisting of enzymes, antibodies, effectors-binding proteins, fluorescent proteins, antimicrobial peptides and self-assembling proteins.
  • a particularly preferred subject matter of the present invention are keratin-binding effector proteins containing as effector polypeptides (ii) enzymes selected from the group consisting of oxidases, peroxidases, proteases, tyrosinases, lactoperoxidase, lysozyme, amyloglycosidases, glucose oxidases, superoxide dismutases, photolyases and catalases.
  • enzymes selected from the group consisting of oxidases, peroxidases, proteases, tyrosinases, lactoperoxidase, lysozyme, amyloglycosidases, glucose oxidases, superoxide dismutases, photolyases and catalases.
  • keratin-binding effector proteins containing as effector polypeptide containing as effector polypeptide (ii) a silk protein, particularly preferably silk proteins which comprise at least one of the sequences according to SEQ ID No .: 151, 201, 202, 203, 204, 205, 206, 207, 208, 209 or 210 or correspond to a polypeptide which is at least 40% identical to at least one of the sequences according to SEQ ID No .: 151, 201, 202, 203, 204, 205, 206, 207, 208, 209 or 210 ,
  • the invention relates to such keratin-binding effector proteins containing silk proteins, which are encoded by a nucleic acid molecule comprising at least one nucleic acid molecule selected from the group consisting of:
  • k a nucleic acid molecule encoding a polypeptide comprising the sequence shown in SEQ ID No .: 151, 201, 202, 203, 204, 205, 206, 207, 208, 209 or 210;
  • ID No .: 150 includes;
  • nucleic acid molecule which comprises a polypeptide according to the sequences SEQ ID No .: 151,
  • nucleic acid molecule having a nucleic acid sequence according to SEQ ID No .: 150 or a nucleic acid molecule derived therefrom by substitution, deletion or insertion which encodes a polypeptide which is at least 40% identical to the sequence according to SEQ ID No .: 151
  • nucleic acid molecule encoding a polypeptide recognized by a monoclonal antibody directed against a polypeptide encoded by the nucleic acid molecules of (k) to (m);
  • nucleic acid molecule coding for a keratin-binding protein which hybridizes under stringent conditions with a nucleic acid molecule according to (k) to (m);
  • nucleic acid molecule coding for a keratin-binding protein which can be isolated from a DNA library using a nucleic acid molecule according to (k) to (m) or its partial fragments comprising at least 15 nucleotides as a probe under stringent hybridization conditions.
  • nucleic acid molecule which can be generated by back translation of one of the amino acid sequences shown in the sequences SEQ ID No .: 151, 201, 202, 203, 204, 205, 206, 207, 208, 209 or 210.
  • the chimeric keratin-binding effector proteins according to the invention are proteins in which the above-described polypeptides (i) and (ii) are linked to one another by means of translational fusion.
  • a further preferred subject matter of the invention relates to keratin-binding effector proteins in which the above-described polypeptides (i) and (ii) are linked to one another by means of a chemical coupling reaction.
  • Preferred keratin-binding effector proteins are those in which the effector polypeptide (ii) is covalently bound to side chains of internal amino acids, the C-terminus or the N-terminus of the keratin-binding polypeptide (i).
  • the present invention relates to the keratin-binding effector proteins described above, wherein the effector polypeptide (ii) and the keratin-binding polypeptide (i) are interconnected by means of a spacer element. They are preferably keratin-binding effector proteins, which are connected to one another by means of a spacer element, the spacer element being a crosslinker.
  • keratin-binding effector proteins containing a spacer element, wherein the spacer element is an at least bifunctional linker which covalently binds the keratin-binding polypeptide (i) and the effector polypeptide by binding to side chains of internal amino acids, the C-terminus or the N-terminus of said polypeptides connects with each other.
  • the spacer element linking the polypeptides (i) and (ii) is a polypeptide are also preferred.
  • a further subject of the invention is the use of the keratin-binding effector proteins described above in dermocosmetics, which are preferably skin protection agents, skin care agents, skin cleansers, hair protection agents, hair care products, hair cleaners, hair dyes or products of decorative cosmetics.
  • Another object of the present invention relates to the above-mentioned Dermokosme- tika containing one of the above-described keratin-binding effector molecules.
  • the invention relates to proteins according to the amino acid sequences shown in SEQ ID No .: 168, 176, 182, 188, 194 and 200.
  • nucleic acid molecules according to the sequence shown in SEQ ID No .: 167, 175, 181, 187, 193 or 199.
  • the present invention relates to DNA expression cassettes comprising a nucleic acid molecule having a nucleic acid sequence according to the sequence shown in SEQ ID No .: 167, 175, 181, 187, 193 or 199.
  • the present invention also relates to vectors comprising an expression cassette comprising a nucleic acid molecule having a nucleic acid sequence according to the sequence shown in SEQ ID No .: 167, 175, 181, 187, 193 or 199.
  • the present invention relates to transgenic cells containing s) at least one of the above-mentioned vectors, or t) at least one of the above-mentioned expression cassettes, or u) at least one of the above-mentioned nucleic acid molecules encoding a polypeptide comprising at least one polypeptide which encodes is derived from a nucleic acid molecule according to the sequence shown in SEQ ID No .: 167, 175, 181, 187, 193 or 199.
  • antibodies are proteins which humans and the kite-bearing vertebrates produce to repel antigens (infectious agents or body-foreign biological material) They are a central component of the immune system of higher eukaryotes and are produced by a class of white blood cells, the B Cells are secreted, occurring in the blood and extracellular fluid of the tissues.
  • Back translation in the sense of the present invention means the translation of a protein sequence into a nucleic acid sequence which codes for this protein .
  • the back translation is a process of decoding an amino acid sequence into the nucleic acid sequence corresponding thereto Standard methods are based on the preparation of codon usage tables Using the codon usage tables, the codons most commonly used for a particular organism for a particular amino acid can be determined.
  • Protein back translation can be performed using computer algorithms known to those skilled in the art and purpose-built for this purpose (Andres Moreira and Aleandro Maats, TIP: protein back translation aided by genetic algorithms, Bioinformatics, Volume 20, Number 13, pp. 2148-2149 (2004); G Pesole, M Attimo nelli, and S. Liuni. Nucleic Acids Res. 1988 March 1 1; 16 (5 Pt A): 1715-1728.).
  • Chimeric keratin-binding effector proteins in the sense of the present invention refers to proteins comprising a keratin-binding polypeptide, protein or protein domain (i) and an effector polypeptide, effector protein or effector protein domain (ii), said polypeptides, proteins or protein domains being linked together in an artificial manner.
  • Translational fusion is the generation of a chimeric nucleic acid molecule in which the linkage of at least two nucleic acid molecules coding for a polypeptide, protein or protein domain is realized in such a way that a continuous polypeptide chain can be formed as a result of the translation event of this chimeric nucleic acid molecule.
  • Decorative cosmetics means cosmetic aids which are not primarily used for care purposes but for beautifying or improving the appearance of the skin, hair and / or fingernails. These aids are known to the person skilled in the art and include, for example, kohl pencils, mascara, eye shadows tinted day creams, powders, masking sticks, blushes, lipsticks, lip pencils, make-up, nail polish, glamor gel, etc. Also included are agents suitable for dyeing skin or hair.
  • Dermatacosmetics also referred to as “cosmeceuticals” or “dermocosmetic agents” or “dermocosmetic preparations” are agents or preparations (i) for protection against damage to the skin, hair and / or fingernails or toenails, (ii) Treatment of skin, hair and / or fingernails or toenails which have already occurred, and (iii) the care of the skin, hair and / or fingernails, comprising skin-cosmetic, nail-cosmetic, hair-cosmetic, dermatological, hygienic or pharmaceutical agents, Preparations and formulations and to improve the skin feel (sensory properties).
  • cosmetics for decorative cosmetics.
  • compositions in which the pharmaceutically dermatological application is achieved taking into account cosmetic considerations.
  • agents or preparations are used for the support, the prevention and treatment of skin diseases and develop a biological effect in addition to the cosmetic effect.
  • Dermacosmetics in the sense of the definition given above, containing in a cosmetically acceptable medium suitable auxiliaries and those skilled in the art and manuals of cosmetics, such as Schrader, bases and formulations of cosmetics, Weghig Verlag, Heidelberg, 1989, ISBN 3 -7785-1491-1, or Umbach, cosmetics: development, production and application of cosmetic products, 2nd extended edition, 1995, Georg Thieme Verlag, ISBN 3 13 712 602 9, can be removed.
  • Dermatocosmetic agents or “dermocosmetically active agents” in the context of the present invention are the active ingredients present in dermocosmetics according to the definition given above, which are involved in the realization of the individual mode of action of the dermocosmetics.
  • active substances which provide protection against damage to the skin, hair and / or fingernails or toenails, (ii) can be used for the treatment of already occurring damage to the skin, hair and / or fingernails or toenails (iii) skin, hair and / or toenails have nourishing properties and (iv) are used to decorate or enhance the appearance of the skin, hair and / or fingernails.
  • active ingredients for skin care in which the pharmaceutical dermatological application is achieved taking into account cosmetic considerations.
  • Such agents are used to support, prevent and treat skin diseases and develop in addition to the cosmetic effect of a biological effect.
  • active ingredients are, for example, selected from the group of natural or synthetic polymers, pigments, humectants, oils, waxes, enzymes, minerals, vitamins, sunscreens, dyes, fragrances, antioxidants. tien, Peroxydzersetzer and preservatives and pharmaceutical agents which are used to support, prevent and treat skin diseases and have a healing, damage preventive, regenerating or improving the general condition of the skin biological effect.
  • “Expression cassette” for the purposes of the present invention means a nucleic acid molecule containing a nucleic acid molecule which is functionally functionalized with at least one genetic control element (for example a promoter) expressing eukaryotic expression in a cell or organism, preferably prokaryotic cells, yeasts or cell cultures - Tischer cells guaranteed, is linked.
  • at least one genetic control element for example a promoter
  • “Functional linkage” means, for example, the sequential arrangement of a promoter with the nucleic acid molecule to be expressed (for example coding for a keratin-binding effector protein) and optionally other regulatory elements such as a terminator such that each of the regulatory elements has its function in the This does not necessarily require direct chemical linkage Genetic control sequences, such as enhancer sequences, can also function from more distant locations or even from other DNA molecules on the target sequence.
  • nucleic acid molecule to be transgenically expressed is positioned behind the promoter sequence, so that both sequences are covalently linked to one another, the distance between the promoter sequence and the transgene being preferred Nucleic acid sequence less than 200 base pairs, more preferably less than 100 base pairs, most preferably less than 50 base pairs.
  • sequences can also be positioned between the two sequences, which, for example, have the function of a linker with specific restriction enzyme cleavage sites or of a signal peptide.
  • insertion of sequences may result in the expression of fusion proteins.
  • the expression cassette consisting of a linkage of promoter and nucleic acid sequence to be expressed, can be present integrated in a vector and inserted by, for example, transformation into a plant genome.
  • cell refers to a single cell.
  • the term “cell” refers to a population of cells. This population may be synchronized or out-of-sync.
  • Cell or “cells” include unicellular organisms as well as cells as part of a multicellular complex or organism.
  • Transgene in connection with a cell or an organism means with respect to a nucleic acid molecule, the polypeptide encoded therefrom, an expression cassette or a vector. said nucleic acid molecule or a cell or an organism transformed with said nucleic acid molecule, expression cassette or vector, all such genetically engineered cells or organisms in which either
  • Natural genetic environment means the natural chromosomal locus in the lineage or the presence in a genomic library. In the case of a genomic library, the natural genetic environment of the nucleic acid sequence is at least partially preserved. The environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, more preferably at least 1000 bp, most preferably at least 5000 bp.
  • non-natural, synthetic methods such as mutagenization becomes.
  • Effective polypeptide in the sense of the present invention means proteinogenic dermocosmetic active substances which have a certain predictable effect, preferably a biological or physiological, protective, preventive and / or caring effect on the skin, hair and / or fingernails or toenails.
  • the effector molecules are proteinogenic compounds such as polypeptides, proteins or enzymes, particularly preferred are self-assembling proteins, most preferably silk proteins.
  • Keatin in the sense of the present invention means intermediary filaments constructed from rope-shaped protein complexes. Intermediate filaments are composed of many similar proteins (monomers), which assemble in parallel to a tubular structure. Intermediate filaments are connected to larger bundles (tonofibrils). Intermediate filaments form with the microtubules and actin filaments the cytoskeleton of the cell. There are five types of intermediate filaments: acidic and basic keratins, desmines, neurofilaments and lamins. Especially preferred for the purposes of the present invention are the acidic and basic keratins occurring in the epithelia (single or multi-layer cell layers which cover all outer body surfaces of the multicellular animal organisms).
  • Keratin-binding polypeptide means a polypeptide or a protein which has the property of binding to keratin, as defined above: Thus, keratin-binding polypeptides are also intermediate filament-associated proteins These keratin-binding polypeptides have a binding affinity towards the keratin or keratin-binding polypeptide keratin-binding polypeptides are those polypeptides which have a binding affinity to skin, hair and / or fingernails of mammals.
  • Keratin-binding polypeptides are also polypeptides having a biological function associated with the binding of keratin, keratin fibers, skin or hair within a mammalian organism, keratin-binding polypeptides also means that for the actual binding to the keratin, the keratin fibers, skin or hair
  • the binding of the keratin-binding polypeptide (ii) to keratin can be tested under the conditions described in Examples 8, 9 and 10, keratin-binding polypeptides are those polypeptides which in the above-mentioned quantitative keratin binding tests about 10%, 20%.
  • Cosmetically acceptable medium is to be understood broadly and means substances which are suitable for the production of cosmetic or dermocosmetic preparations and mixtures thereof, preferably protein-compatible media.
  • Cosmetically-compatible substances do not cause irritation or damage on contact with human or animal dermal tissue or hair and are incompatible with other substances, and have low allergenic potential and have been approved by state regulatory agencies for use in cosmetics. These substances are familiar to the person skilled in the art and can be found, for example, in handbooks of cosmetics, for example Schrader, bases and formulations of cosmetics, Weghig Verlag, Heidelberg, 1989, ISBN 3-7785-1491-1.
  • Nucleic acid or “nucleic acid molecule” means deoxyribonucleotides, ribonucleotides or polymers or hybrids thereof in single or double stranded form, in sense or antisense orientation.
  • the term nucleic acid or nucleic acid molecule can be used to describe a gene, DNA, cDNA, mRNA, oligonucleotide or polynucleotide.
  • Nucleic acid sequence means a sequential and interlinked sequence of deoxyribonucleotides or ribonucleotides of a nucleic acid molecule as defined above, as determined using available DNA / RNA sequencing techniques and depicted in the form of a list of abbreviations, letters or words representing nucleotides or can be displayed.
  • Polypeptide in the sense of the present invention means a macromolecule composed of amino acid molecules, in which the amino acids are connected in a linear sequence via peptide bonds. are linked.
  • a polypeptide may be composed of a few amino acids (about 10 to 100), but also includes proteins which are usually composed of at least 100 amino acids, but may also comprise several thousand amino acids.
  • polypeptides comprise at least 20, 30, 40 or 50, more preferably at least 60, 70, 80 or 90, most preferably at least 100, 125, 150, 175 or 200, most preferably at least over 200 amino acids, the upper limit being several can be a thousand amino acids.
  • “Homology” or “identity” between two nucleic acid sequences is understood to mean the identity of the nucleic acid sequence over the respective entire sequence length, which is determined by comparison with the aid of the program algorithm GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA; Altschul et al. (1997) Nucleic Acids Res. 25: 3389ff) is calculated by setting the following parameters:
  • Gap Weight 50 Length Weight: 3
  • Gap Weight 8 Length Weight: 2
  • sequence which has a homology of at least 80% polypeptide-based with the sequence SEQ ID NO: 2 a sequence understood that in a comparison with the sequence SEQ ID NO: 2 according to the above program algorithm with the above parameter set a Homology of at least 80%.
  • Hybridization conditions is to be understood broadly and, depending on the application, means stringent as well as less stringent hybridization conditions. Such hybridization conditions are described, inter alia, in Sambrook J, Fritsch EF, Maniatis T et al., In Molecular Cloning (A Laboratory Manual), 2nd edition, CoId Spring Harbor Laboratory Press, 1989, pp. 9.31-9.57) or in Current Protocols in Molecular Biology, John Wiley & Sons, NY (1989), 6.3.1-6.3.6. described. One skilled in the art would select hybridization conditions that enable him to distinguish specific from nonspecific hybridizations.
  • the conditions may be selected during the washing step, from low-stringency conditions (approximately 2X SSC at 50 0 C) and those (preferably about 0.2X SSC at 50 0 C at 65 ° C) with high stringency (2 O x SSC: 0.3M sodium citrate, 3M NaCl, pH 7.0).
  • low stringency conditions approximately 2X SSC at 50 0 C
  • those preferably about 0.2X SSC at 50 0 C at 65 ° C
  • high stringency 2 O x SSC: 0.3M sodium citrate, 3M NaCl, pH 7.0
  • the temperature during the washing step of low stringency conditions at room temperature, about 22 ° C, to more stringent conditions at about 65 ° C. Both parameters, salt concentration and temperature, can be varied simultaneously or individually, keeping the other parameter constant.
  • denaturing agents such as formamide or SDS may also be used. In the presence of 50% formamide, hybridization is preferably carried out at 42 ° C.
  • Hybridization conditions may be selected, for example, from the following conditions: a) 4X SSC at 65 ° C, b) 6X SSC at 45 ° C, c) 6X SSC, 100 ⁇ g / ml denatured, fragmented fish sperm DNA at 68 ° C, d) 6X SSC, 0.5% SDS, 100 ⁇ g / ml denatured salmon sperm DNA at 68 ° C, e) 6X SSC, 0.5% SDS, 100 ⁇ g / ml denatured, fragmented salmon sperm DNA,
  • Wash steps can be selected for example from the following conditions: a) 0.015 M NaCl / 0.0015 M sodium citrate / 0.1% SDS at 50 0 C. b) 0.1X SSC at 65 ° C. c) 0.1X SSC, 0.5% SDS at 68 ° C. d) 0.1 X SSC, 0.5% SDS, 50% formamide at 42 ° C. e) 0.2X SSC, 0.1% SDS at 42 ° C. f) 2X SSC at 65 ° C (weak stringent condition).
  • the stringent hybridization conditions are chosen as follows:
  • a hybridization buffer containing formamide, NaCl and PEG 6000 is chosen.
  • the presence of formamide in the hybridization buffer destabilizes double-stranded nucleic acid molecules, allowing the hybridization temperature to be lowered to 42 ° C without thereby lowering the stringency.
  • the use of salt in the hybridization buffer increases the renaturation rate of a duplex, or the hybridization efficiency.
  • PEG increases the viscosity of the solution, which has a negative influence on renaturation rates, the presence of the polymer in the solution increases the concentration of the probe in the remaining medium, which increases the rate of hybridization.
  • the composition of the buffer is as follows: hybridization buffer
  • the hybridizations are carried out at 42 ° C overnight.
  • the filters will be closest
  • “Hydroxy function” in the context of the description "hydroxy function-carrying effector molecule”, means free OH groups or hydroxyl groups, which make it possible to covalently link these OH-group-carrying molecules via an esterification reaction with other molecules
  • Present invention are also those that can be converted chemically into OH functions such as Derivatives such as methoxy, ethoxy.
  • the effector molecules according to the invention have at least one hydroxyl group. However, it is also possible to use effector molecules with two, three or more hydroxyl functions.
  • amino functions in the context of the description "amino function-carrying effector molecule”, means amino groups which make it possible to covalently link the molecules carrying said amino functions via an amide bond with other molecules. "Amino functions in the context of the present invention are also those which can be converted chemically into amino functions.
  • the effector molecules according to the invention have at least one amino function. However, it is also possible to use effector molecules having two, three or more amino functions and / or secondary amino groups.
  • Coupling in connection with the binding of a linker molecule to an effector molecule or keratin-binding protein means a covalent linkage of said molecules.
  • Coupling functionalities are functional groups of a linker molecule that can covalently bind with functional groups of the effector molecule or keratin-binding protein, by way of example but not limitation: hydroxy groups, carboxyl groups, thio groups, and amino groups "Anchor groups” or “Anchor group” are used synonymously self-assembling proteins
  • Self-assembling proteins are proteins or peptides that can spontaneously assemble into higher-molecular, ordered structures (spheres, films, fibrils, etc.) under suitable conditions. These can be synthetic, biomimetic or proteins and peptides of natural origin. Exemplary but not limiting are structural proteins, ⁇ -sheet-rich proteins and amphiphilic and helical peptides.
  • Spacer element in the sense of the present invention means a molecule or macromolecule which physically separates the keratin-binding polypeptide (i) from the effector polypeptide (ii) Spacer elements comprise both the linker molecules described below and proteinogenic elements such as oligopeptides, polypeptides or protein domains.
  • Vectors are DNA molecules that can be stably established and amplified in a host cell.
  • Vectors are, for example, plasmids, cosmids.
  • vectors are also to be understood as meaning those DNA molecules which can transport DNA elements from one cell to another, which cells do not necessarily have to belong to the same organism (for example phages, viruses or even agrobacteria).
  • Preferred are those vectors which can be established extrachromosomally in a cell or an organism. Stable integration of the expression cassette / vector into the host genome is also possible.
  • expression vector refers to vectors that contain a DNA molecule of interest in functional association with regulatory elements, and thus can ensure expression of the DNA molecule of interest in a target organism.
  • the present invention relates to chimeric keratin-binding effector proteins comprising (a) at least one keratin-binding polypeptide (i) and (b) at least one further effector polypeptide (ii)
  • they are keratin-binding polypeptides (i) which have a binding affinity to human skin, hair or nail keratin.
  • Particular preference is given to those keratin-binding polypeptides (i) which have a) at least one of the sequences according to SEQ ID No .: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 , 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78 , 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 146, 150, 153, 156, 157, 158,
  • the keratin-binding polypeptide (i) used is encoded by a nucleic acid molecule comprising at least one nucleic acid molecule selected from the group consisting of: c) a nucleic acid molecule encoding a polypeptide comprising those shown in SEQ ID No .: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34 , 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84 , 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134 , 136, 138, 140, 146, 150, 153, 156,
  • Nucleic acid molecule which has at least one polynucleotide of the sequence shown in SEQ ID No .: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 , 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83 , 85, 87, 89, 91,
  • Nucleic acid molecule which comprises a polypeptide according to the sequences SEQ ID No .: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36 , 38, 40, 42, 44, 46, 48, 50, 52, 54,
  • nucleic acid molecule having a nucleic acid sequence corresponding to at least one of the sequences according to SEQ ID No .: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131 , 133, 135, 137, 139, 145, 149, 152, 159, 161, 163, 165, 212 or 214, or a nucleic acid molecule derived therefrom by substitution, deletion or insertion, which encodes a polypeptide which is at least 40%
  • nucleic acid molecule encoding a polypeptide recognized by a monoclonal antibody directed against a polypeptide encoded by the nucleic acid molecules of (c) to (e);
  • nucleic acid molecule encoding a keratin-binding protein which consists of a DNA library using a nucleic acid molecule according to (c) to (e) or their partial fragments of at least 15 nt, preferably 20 nt, 30 nt, 50 nt, 100 nt , 200 nt or
  • nucleic acid molecule which, by back translation of one of the sequences shown in the sequences SEQ ID No .: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124,
  • 126, 128, 130, 132, 134, 136, 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 or 215 can be generated.
  • Keratin-binding polypeptide domains suitable according to the invention are present in the polypeptide sequences of desmoplakins, plakophilines, plakoglobins, plectins, periplakines, envoplakins, trichohyalins, epiplakins or hair follicle proteins.
  • desmoplakins or their partial sequences according to the sequences SEQ ID No .: 2, 42, 44, 46, 48, 146, 150, 153, 156, 157, 158, 160, 162, 164 or 166 , and / or Plakophillins or their partial sequences according to the sequences SEQ ID No .: 18, 20, 26, 28, 32, 34, 36, 213, 215 and / or Plakoglobine or their partial sequences according to the sequences with the SEQ ID No .: 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, and / or the periplakin according to the sequence with the SEQ ID No .: 86, and / or Envoplakine or their partial sequences according to the Sequences with the SEQ ID No .: 90, 92, 94, 96, 98, 102, 104, 105 and / or the sequences according to SEQ ID No .:
  • Preferred keratin-binding domains are the desmoplakin polypeptides depicted in the sequences SEQ ID NOs: 4, 6, 8, 10, 12, 14, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 or 215, as well as their functional equivalents.
  • the keratin-binding polypeptides depicted in the sequences SEQ ID No .: 156, 157, 158, 160, 162, 164, 166, 213 and / or 215 are used in the method according to the invention.
  • the keratin-binding protein shown in the sequence SEQ ID No .: 213 is used.
  • this protein can be used both with and without the histidine anchor present in SEQ ID NO: 213.
  • the histidine anchor (or a purification / Detektiossystem to be used analogously) may also be C-terminal.
  • a histidine anchor (or a purification / detection system to be used analogously) is not necessary.
  • the use of said proteins without additional amino acid sequences is preferred
  • “Functional equivalents” or analogues of the specifically disclosed keratin-binding polypeptides are, within the scope of the present invention, different polypeptides which furthermore possess the desired biological activity, such as keratin binding, for example "functional equivalents” of keratin-binding polypeptides
  • Polypeptides which, under otherwise comparable conditions, in the quantitative keratin binding tests described in the examples, comprise about 10%, 20%, 30%, 40% or 50%, preferably 60%, 70%, 80% or 90%, particularly preferably 100% , 125%, 150%, especially at least 200%, 300% or 400%, most preferably 500%, 600%, 700% or 1000% or more of the keratin binding capacity of SEQ ID No .: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78
  • “functional equivalents” are in particular also understood to mean muteins which have an amino acid other than the specified amino acid in at least one sequence position of the abovementioned amino acid sequences but nevertheless possess one of the abovementioned biological activities.
  • “Functional equivalents” thus include those obtainable by a mutation Muteins, wherein said changes can occur in any sequence position, as long as they lead to a mutein with the property profile according to the invention.
  • “Mutation” in the sense of the present invention means the alteration of the nucleic acid sequence of a gene variant in a plasmid or in the genome of an organism Mutations can arise, for example, as a consequence of errors in the replication or caused by mutagens The rate of spontaneous mutations in the cell genome of organisms is very low, however, the skilled person skilled in a variety of biological, chemical or physical mutagens are known.
  • Mutations include substitutions, insertions, deletions of one or more nucleic acid residues. Substitutions are understood as meaning the exchange of individual nucleic acid bases, whereby a distinction is made between transitions (substitution of a purine for a purine base or a pyrimidine for a pyrimidine base) and transversions (substitution of a pancy gene for a pyrimidine base (or vice versa).
  • addition or insertion is meant the incorporation of additional nucleic acid residues into the DNA, which can lead to shifts of the reading frame.
  • frame shifts distinguish between “in frame” insertions / additions and “out of frame” insertions.
  • in-frame insertions / additions the reading frame is retained and a polypeptide increased by the number of amino acids encoded by the inserted nucleic acids is obtained.
  • Out of frame insertions / additions lose the original reading frame and the formation of a complete and functional polypeptide is no longer possible.
  • Deletions describe the loss of one or more base pairs, which also result in "in frame” or “out of frame” shifts of the reading frame and the consequent consequences on the formation of an intact protein.
  • mutagenic agents useful for generating random or targeted mutations and the applicable methods and techniques are known to those skilled in the art.
  • Such methods and mutagens are described, for example, in AM van Harten [(1998), “Mutation breeding: theory and practical applications", Cambridge University Press, Cambridge, UK], E Friedberg, G Walker, W Siede [(1995), “DNA Repair and Mutagenesis", Blackwell Publishing], or K. Sankaranarayanan, JM Gentile, LR Ferguson [(2000) “Protocols in Mutagenesis", Elsevier Health Sciences].
  • Chemical mutagens can be subdivided according to their mechanism of action.
  • base analogues eg 5-bromouracil, 2-amino purine
  • mono- and bifunctional alkylating agents eg monofunctional such as ethyl methyl sulfonate, dimethyl sulfate, or bifunctional such as dichloroethylsulfite, mitomycin, nitrosoguanidines - dialkylnitrosamines, N-nitrosoguanidine derivatives
  • intercalating Substances eg acridine, ethidium bromide.
  • polypeptides for the process according to the invention which are obtained as a result of a mutation of a polypeptide according to the invention, e.g. according to SEQ ID No .: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 146, 150, 153 , 156, 157, 158, 160, 162, 164, 166, 213 and / or 215.
  • Precursors are natural or synthetic precursors of the polypeptides with or without desired biological activity.
  • Salts are understood as meaning both salts of carboxyl groups and acid addition salts of amino groups of the protein molecules of the invention
  • Salts of carboxyl groups can be prepared in a manner known per se and include inorganic salts such as, for example, sodium, calcium, ammonium, iron and zinc salts, as well as salts with organic bases such as amines such as triethylamine, arginine, lysine, piperidine and the like, acid addition salts such as salts with mineral acids such as hydrochloric acid or sulfuric acid and salts with organic acids such as acetic acid and oxalic acid also the subject of the invention.
  • inorganic salts such as, for example, sodium, calcium, ammonium, iron and zinc salts
  • organic bases such as amines such as triethylamine, arginine, lysine, piperidine and the like
  • acid addition salts such as salts with mineral acids such as hydrochloric acid or sulfuric acid and salts with organic acids such as
  • “functional equivalents” also include polypeptides that are accessible from other organisms, as well as naturally occurring variants (alleles) thereof. For example, regions of homologous sequence regions or conserved regions can be determined by sequence comparisons. Using these sequences, DNA databases (e.g., genomic or cDNA databases) can be screened for equivalent enzymes using comparative bioinformatics programs. Suitable computer programs and publicly accessible databases are well known to those skilled in the art.
  • Fusion equivalents are also fusion proteins comprising one of the above-mentioned polypeptide sequences or functional equivalents derived therefrom and at least one other functionally distinct heterologous sequence in functional N- or C-terminal linkage (ie, without mutual substantial functional impairment of the fusion protein moieties)
  • heterologous sequences are, for example, signal peptides or enzymes.
  • Homologues to the specifically disclosed proteins which have at least 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70%, particularly preferably at least 75%, 80%, according to the invention comprising "functional equivalents” 85%, 90%, 91%, 92%, 93% or 94%, most preferably at least 95% or 96% homology to one of specifically disclosed amino acid sequences calculated using the computer programs and computer algorithms disclosed in the definitions.
  • “functional equivalents” include proteins of the abovementioned type in deglycosylated or glycosylated form as well as modified forms obtainable by altering the glycosylation pattern.
  • “functional equivalents” include proteins of the type indicated above in dephosphorylated or phosphorylated form as well as modified forms obtainable by altering the phosphorylation pattern.
  • Homologs of the polypeptides of the invention may be prepared by screening combinatorial libraries of mutants, such as e.g. Shortening mutants, to be identified.
  • a library of protein variants can be generated by combinatorial mutagenesis at the nucleic acid level, e.g. by enzymatic ligation of a mixture of synthetic oligonucleotides.
  • methods that can be used to prepare libraries of potential homologs from a degenerate oligonucleotide sequence. The chemical synthesis of a degenerate gene sequence can be performed in a DNA synthesizer, and the synthetic gene can then be ligated into a suitable expression vector.
  • degenerate gene set allows for the provision of all sequences in a mixture that encode the desired set of potential protein sequences.
  • Methods of synthesizing degenerate oligonucleotides are known to those skilled in the art (eg, Narang, SA (1983) Tetrahedron 39: 3; Itakura et al. (1984) Annu. Rev. Biochem. 53: 323; Itakura et al., (1984) Science 198: 1056; Ike et al. (1983) Nucleic Acids Res. 11: 477).
  • REM Recursive ensemble mutagenesis
  • the probe may also be one or more kilobases long, e.g. 1 Kb, 1, 5 Kb or 3 Kb.
  • For the screening of the libraries can also be one of the under SEQ ID No .: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 , 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73 , 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 15, 17, 119, 121 , 123, 125, 127, 129, 131, 133, 135, 137, 139, 145, 149, 152, 159, 161, 163, 165, 212 and / or 214, most preferably 165, 212 and 214,
  • DNA molecules which, under standard conditions, have the amino acids represented by SEQ ID No .: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27 , 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77 , 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 11, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 145, 149, 152, 159, 161, 163, 165, 212 and / or 214, more preferably 165, 212 and 214, most preferably 214 described and nucleic acid molecules coding for keratin
  • a particularly advantageous embodiment of the invention are keratin-binding polypeptides (i) which contain at least one of the polypeptide sequences as shown in SEQ ID No .: 2, 4, 6, 8, 10, 12, 14,
  • the keratin binding of said polypeptides is at least 10%, 20%, 30%, 40% or 50%, preferably 60%,
  • keratin-binding polypeptides (i) are used which have a highly specific affinity for the desired organism. Accordingly, keratin-binding polypeptides (i) which have a particularly high affinity for the human dermal keratin are preferably used for applications in dermal cosmetics. For applications in hair cosmetics, preference is given to those polypeptide sequences which have a particularly high affinity for human hair keratin.
  • more than one keratin-binding polypeptide (i) can also be used in combination with the effector molecule (i) according to the invention; for example, a keratin-binding polypeptide (i) which has a high binding affinity to human skin keratin can be used in conjunction with another keratin-binding polypeptide (i ), which has a high affinity for human hair keratin, can be combined with an effector molecule. It is also possible to use chimeric polypeptides which contain multiple copies of the same (or also different) keratin-binding polypeptides (i) or their keratin-binding domains. Thus, for example, a particularly effective keratin binding could be achieved.
  • Suitable keratin-binding polypeptides are known.
  • desmoplakins and plectins contain keratin-binding domains (Fontao L, Favre B, Riou S, Geerts D, Jaunin F,
  • the keratin-binding polypeptides (i) according to the invention may also, if desired, again be easily separated from the keratin.
  • a rinse with keratin can be used, whereby the keratin-binding polypeptides (i) are displaced from their existing bond to the keratin and are saturated with the keratin from the rinse.
  • rinse with a high level of detergent e.g., SDS
  • a preferred subject matter of the present invention further relates to the keratin-binding effector proteins described above, wherein the effector polypeptide (ii) is selected from Group consisting of enzymes, antibodies, effectors binding proteins, fluorescent proteins, antimicrobial peptides and self-assembling proteins.
  • enzymes :
  • oxidases preference is given to those selected from the group consisting of oxidases, peroxidases, proteases, tyrosinases, lactoperoxidase, lysozyme, amyloglycosidases, glucose oxidases, superoxide dismutases, photolyases and catalases.
  • carotenoid binding proteins are preferably carotenoid binding proteins (hereinafter also called CBP), vitamin-binding, chromophorbindende, odorantienbindende, sugar-binding and metal-binding proteins.
  • CBP carotenoid binding proteins
  • Particularly preferred among the carotenoid-binding proteins is the carotenoid-binding protein (accession number SWISS-PROT: Q8MYA9) from the silk moth Bombyx mori. The isolation of the protein and the characterization of the carotenoid-binding properties of this protein are described in Tabunoki et al. (2002); Isolation, characterization, and cDNA sequence of a carotenoid binding protein from the silk gland of Bombyx mori larvae; J Biol Chem 277: 32133-32140).
  • ZntA Zinc, cadmium, zinc and mercury transporting ATPase
  • SWISS-PROT P37617
  • the isolation and characterization of the ZntA protein are described, inter alia, in Sofia et DNA sequence of the region from 76.0 to 81.5 minutes, Nucleic Adds Res 22: 2576-2586), Rensing et al., (1997; The zntA gene of Escherichia coli encodes a Zn (II) translocating P-type ATPase; Proc Natl Acad. 94: 14326-14331) and Sharma et al.
  • the fluorescent proteins are preferably selected from the group consisting of green fluorescent protein (GFP), enhanced Green Fluorescent Protein (eGFP), Red Fluorescent Protein (RFP), monomeric Red Fluorescent Protein (mRFP), dsRED, Blue Fluorescent Protein (BFP), Yellow Fluorescent Protein (YFP) and Cyan Fluorescent Protein (CFP). Particularly preferred is the enhanced Green Fluorescent Protein (eGFP).
  • the GFP proteins are proteins produced by some animals that can fluoresce green when irradiated with blue light (UV light).
  • An example of a carrier of the GFP protein is the jellyfish Aequorea victoria. On the northern Pacific coast of the USA and Canada, there are large occurrences of this jellyfish with characteristically green emission during the summer months.
  • the prefixed letter "e” describes an enhanced version of the wild-type GFP, with eGFP characterized by a 35-fold higher intensity of fluorescence.
  • fluorescent proteins are described and marketed, for example, by the HHMI (Howard Hughes Medical Institute) Laboratory.
  • the use of keratin-binding effector proteins containing fluorescent proteins serves to achieve a healthier and brighter-appearing skin tone or for skin-whitening after application to the skin.
  • these fluorescer protein-containing keratin-binding effector proteins can also be used to lighten hair or to create special reflections or shimmer on the hair.
  • the fluorescent protein-containing keratin-binding effector proteins can be used in decorative cosmetics, for example, to produce the effect of a tattoo when exposed to UV light.
  • the antimicrobial peptides are preferably selected from the group consisting of polypeptides which lead to the inhibition of the growth of microorganisms such as bacteria, fungi or protozoa. Particularly preferred is the polypeptide according to SEQ ID No .: 211
  • silk proteins from various organisms e.g. Spiders (e.g., Araneus diadematus), silk spinners (e.g., Bombyx mori), bivalves (e.g., Mytilus edulis).
  • Spiders e.g., Araneus diadematus
  • silk spinners e.g., Bombyx mori
  • bivalves e.g., Mytilus edulis
  • the silk proteins is the C16 spider silk protein, which is a 16-fold repeat of the C module of the Araneus diadematus ADF4 protein.
  • the construction and characterization of the C16 spider silk protein is described in Huemmerich et al. (Primary structure elements of spider dragline silks and their contribution to protein solubility; Biochemistry 43: 13604-13612).
  • silk protein from Nephila clavipes accession number AY855102 and U37520 is particularly preferred.
  • Araneus gemides accession number AY855101 and accession number AY855100 are particularly preferred.
  • Argiope aurantia accession number AY855099 and AY855098 are particularly preferred.
  • effector proteins (ii) are polypeptides which occur naturally in microorganisms, in particular in E. coli or Bacillus subtilis.
  • fusion partners are the sequences YaaD (Accession No. BG10075) (SEQ ID NO: 197 and 198) and thioredoxin (Accession No. EG1 1031) (SEQ ID NO: 185 and 186).
  • Fragments and functional equivalents (as defined above) of the abovementioned proteins and polypeptides are also suitable in principle as effector proteins (ii).
  • a particularly preferred subject matter of the present invention is directed to keratin-binding effector proteins comprising as effector polypeptide (ii) a silk protein, particularly preferably silk proteins which contain at least one of the sequences according to SEQ ID No .: 151, 201, 202, 203, 204, 205, 206, 207, 208, 209 or 210, or correspond to a polypeptide which is at least 40%, 45% or 50%, preferably at least 55%, 60%, 65% or 70%, more preferably at least 75%, 80% , 85%, 90%, 91%, 92%, 93% or 94%, most preferably at least 95% or 96% is identical to at least one of the sequences according to SEQ ID No .: 151, 201, 202, 203, 204 , 205, 206, 207, 208, 209 or 210
  • the invention further relates to such keratin-binding effector proteins containing silk proteins which are encoded by a nucleic acid
  • k a nucleic acid molecule which encodes a polypeptide comprising the amino acid sequence shown in SEQ ID No .: 151,
  • ID No .: 150 includes;
  • nucleic acid molecule which comprises a polypeptide according to the sequences SEQ ID No .: 151,
  • nucleic acid molecule having a nucleic acid sequence according to SEQ ID No .: 150 or a nucleic acid molecule derived therefrom by substitution, deletion or insertion which encodes a polypeptide which is at least 40% identical to the sequence according to SEQ ID No .: 151
  • nucleic acid molecule encoding a polypeptide recognized by a monoclonal antibody directed against a polypeptide encoded by the nucleic acid molecules of (k) to (m);
  • nucleic acid molecule coding for a keratin-binding protein which hybridizes under stringent conditions with a nucleic acid molecule according to (k) to (m);
  • nucleic acid molecule coding for a keratin-binding protein which can be isolated from a DNA library using a nucleic acid molecule according to (k) to (m) or its partial fragments comprising at least 15 nucleotides as a probe under stringent hybridization conditions.
  • nucleic acid molecule which can be generated by back translation of one of the amino acid sequences shown in the sequences SEQ ID No .: 151, 201, 202, 203, 204, 205, 206, 207, 208, 209 or 210.
  • the chimeric keratin-binding effector proteins according to the invention are proteins in which the above-described polypeptides (i) and (ii) are linked to one another by means of translational fusion.
  • effector proteins (ii) apart from the abovementioned effector proteins (ii), it is also possible to use those polypeptides which have been synthesized from at least 3 to 10, preferably at least 11 to 50, particularly preferably at least 51 to 100 and especially preferably at least more than 100 amino acids are (hereinafter also called fusion partners) and which are not naturally linked to a keratin-binding polypeptide (i) as described above.
  • the effector protein (ii) can be selected from a variety of proteins or polypeptides.
  • effector proteins (ii) can also be linked to a keratin-binding polypeptide (i), for example at the amino-terminus and at the carboxy-terminus of the keratin-binding polypeptide moiety.
  • the keratin-binding effector proteins according to the invention or the keratin-binding polypeptides (i) and the effector proteins (ii) contained therein can be prepared chemically by known methods of peptide synthesis, for example by Merrifield solid-phase synthesis (2005, Kimmerlin T, Seebach D., '100 years of peptide "Peptide Res. 2005 Feb; 65 (2): 229-260)."
  • nucleic acid molecules coding for the keratin-binding polypeptides (i) and for the effector proteins (ii) are linked to one another in such a way that, as a result of the translation of the fused nucleic acid molecule, a single continuous translation product is formed (translational fusion).
  • Suitable host organisms for producing the above-described keratin-binding polypeptides (i), effector proteins (ii) or fusion proteins (comprising the amino acid sequences of the polypeptides (i) and (ii)) are prokaryotes (including archaea) and eukaryotes, preferably bacteria including halobacteria and methanococci, fungi, insect cells, plant cells and mammalian cells, more preferably Escherichia coli, Bacillus subtilis, Bacillus.
  • prokaryotes including archaea
  • eukaryotes preferably bacteria including halobacteria and methanococci
  • fungi insect cells
  • plant cells and mammalian cells more preferably Escherichia coli, Bacillus subtilis, Bacillus.
  • Another preferred subject matter of the invention relates to keratin-binding effector proteins in which the above-described polypeptides (i) and (ii) are linked to one another by means of a chemical coupling reaction.
  • bonds can be closed selected from the group of covalent bonds consisting of thioesters, esters, thioethers, ethers, amide bonds, sulfonic acid esters and Sulfonamiditatien.
  • the compounds mentioned can be closed between the side chains of internal amino acids, the N-terminus or the C-terminus of the keratin-binding polypeptide (i) and the side chains of internal amino acids, the N-terminus or the C-terminus of the effector protein.
  • effector molecule (ii) and the keratin-binding domain may be achieved, e.g. by means of carbodiimides, glutaric dialdehyde or other crosslinkers known to the person skilled in the art.
  • a selection of such coupling reactions is available in 2005, Kimmerlin T, Seebach D., '100 years of peptide synthesis': Ligation methods for peptide and protein synthesis with applications to beta-peptide assemblies., J Pept Res., 65 (2): 229 -260, and 2004, David R et al., Expressed protein ligation, Eur. J. Biochem. 271, 663-677.
  • keratin-binding effector proteins are the subject of the present invention, in which the effector polypeptide (ii) and the keratin-binding polypeptide (i) are connected to one another by means of a spacer element.
  • the spacer element can be stable, thermally cleavable, photocleavable or enzymatically cleavable (in particular by lipases, esterases, proteases, Phosphatases, hydrolases, etc.).
  • Corresponding chemical structures are known to the person skilled in the art and are integrated between the moieties (i) and (ii). Examples of enzymatically cleavable linkers which can be used in the molecules according to the invention are mentioned, for example, in WO 98/01406, the entire contents of which are hereby incorporated by reference.
  • the spacer elements may be crosslinkers which are familiar to the person skilled in the art, preferably carbodiimides or glutardialdehyde. This linkage ensures an almost direct link between the keratin-binding polypeptide and the effector protein.
  • Preferred carbodiimides are dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DIC), N '- (3-dimethylaminopropyl) -N-ethylcarbodiimide hydrochloride (EDC), the use of diisopropylcarbodiimide or EDC being particularly preferred
  • a further preferred subject of the invention are keratin-binding effector proteins in which the spacer element linking the polypeptides (i) and (ii) is a polypeptide.
  • the nucleic acid molecules coding for the keratin-binding effector proteins can be modified by suitable biotechnological cloning methods such that the translation fusion also comprises a polypeptide sequence functioning as a spacer element.
  • These polypeptide spacer elements may have cleavage sites for proteases (e.g., cathepsin D skin protease), lipases, esterases, phosphatases, or hydrolases, or polypeptide sequences which permit ready purification of the fusion protein, for example, so-called His-tags, i. Oligohistidinreste.
  • additional amino acids can also be inserted at the linking sites between the polypeptides (i) and (ii) by means of suitable genetic engineering methods. This can be e.g. also result from the fact that at the nucleic acid level recognition sites for restriction endonucleases either newly created or inactivated.
  • additional amino acids can be inserted at the junctions of two fusion partners to create a linker sequence so that both fusion partners can be independently cleaved to functional polypeptide moieties.
  • the proteins of the invention may also be posttranslational, i. modified after translation, for example by glycosylation, phosphorylation or acylation. Such modification may also be done chemically, e.g. a cross-linking with glutaric dialdehyde.
  • the present invention relates to keratin-binding effector proteins which are indirectly connected to each other by means of a spacer element, wherein the spacer element is an at least bifunctional linker which binds the keratin-binding polypeptide (i) and the effector polypeptide by binding to side chains of internal amino acids, the C Terminus or the N-terminus of said polypeptides covalently bind together.
  • the spacer element is an at least bifunctional linker which binds the keratin-binding polypeptide (i) and the effector polypeptide by binding to side chains of internal amino acids, the C Terminus or the N-terminus of said polypeptides covalently bind together.
  • the preparation of a keratin-binding effector protein according to the invention can be carried out by coupling an effector protein ii) to a keratin-binding polypeptide (i) using a linker molecule (iii) which has at least two coupling functionalities which bindings selected from the group consisting of thioester, ester , Thioether, ether, amide, Sulfonklareester- and Sulfonamiditatien can enter, and (A) in a first coupling step, first the effector polypeptide (ii) via one of said bonds to the linker molecule (iii) is bound, and
  • reaction product of (a) via a still free coupling functionality of the linker molecule (iii) to the keratin binding polypeptide (i) is coupled.
  • the coupling functionalities are at least two different functional groups.
  • the binding of the linker molecule with the effector polypeptide (ii) takes place via a chemical coupling reaction.
  • This can take place, for example, via the C- or N-terminal functionality or the side chains of the effector polypeptide, in particular via amino functions, hydroxyl functions, carboxylate functions or thiol functions.
  • Preferred is a linkage via the amino functions of one or more lysine residues, one or more thiol groups of cysteine residues, one or more hydroxyl groups of serine, threonine or tyrosine residues, one or more carboxyl groups of aspartic acid or glutamic acid residues or via the N-terminal residues or C-terminal function of the effector polypeptide (ii). ).
  • amino acids having suitable functions may also be added to the sequence, or amino acids of the polypeptide sequence may be substituted by such amino acid functions.
  • suitable functions e.g., cysteines, lysines, aspartates, glutamates
  • Methods for mutagenesis or manipulation of nucleic acid molecules are well known to those skilled in the art. Some selected methods are described below.
  • step (a) described above The binding of the reaction product resulting from step (a) described above with the keratin-binding polypeptide (i) takes place via the second, still free anchor group of the linker molecule.
  • particularly sulfhydryl-reactive groups for example maleimides, pyrridyl disulfides, ⁇ -haloacetyls, vinyl sulfones, sulfatoalkyl sulfones (preferably sulfatoethyl sulfones or also thiols) are suitable as such anchor groups, by means of which the linker with a cysteine residue of the keratin-binding polypeptide (i) is a covalent bond can go down.
  • linker molecule (iii) with the keratin-binding polypeptide (i).
  • This can take place, for example, via the side chains of the keratin-binding polypeptide (i), in particular via amino functions, hydroxyl functions, carboxylate functions or thiol functions.
  • amino acids with suitable functions eg cysteines, lysines, aspartates, glutamates
  • Methods for the mutagenesis or manipulation of nucleic acid molecules are well known to the person skilled in the art. Some selected methods are described below.
  • the keratin-binding polypeptides (i) according to the invention have a wide field of application in human cosmetics, in particular skin, nail and hair care, animal care, leather care and leather processing.
  • the keratin-binding effector proteins according to the invention are preferably used for skin cosmetics and hair cosmetics. They allow a high concentration and long duration of action of nourishing or protective effector molecules.
  • keratin-binding polypeptides are used which have a binding affinity to human skin, hair or nail keratin.
  • a particularly preferred subject matter of the present invention are keratin-binding effector proteins in which s) the keratin-binding polypeptide used has one of the meanings shown in SEQ ID No .: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24 , 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52,
  • the effector polypeptide (ii) is selected from the group of silk proteins prefers the C16 spider silk protein, which is a 16-fold repeat of the modulus C of the protein ADF4 from Araneus diadematus represents, optionally u), the proteins mentioned under s) and t) can also be coupled to one another via a linker molecule.
  • a further subject of the present invention is the use of the keratin-binding effector molecules according to the invention in dermocosmetic preparations.
  • the keratin-binding effector molecules according to the invention are preferably used in the skin and hair Cosmetics applied. They allow a high concentration and long duration of action of skin-care or skin-protecting effector substances.
  • the keratin-binding effector proteins according to the invention are used in skin protection agents, skin care agents, skin cleansers, hair protection agents, hair care preparations, hair cleaners, hair dyes or in products for decorative cosmetics.
  • the dermocosmetics is a keratin-binding effector protein according to the invention in a concentration of 0.001 to 1 weight percent (wt .-%), preferably 0.01 to 0.9 wt .-%, particularly preferably 0.01 to 0, 8% by weight or 0.01 to 0.7% by weight, most preferably 0.01 to 0.6% by weight or 0.01 to 0.5% by weight, most preferably 0.01 to 0 , 4% by weight or 0.01 to 0.3% by weight, based on the total weight of the composition.
  • wt .-% weight percent
  • the dermocosmetics is a keratin-binding effector protein according to the invention in a concentration of 0.001 to 1 weight percent (wt .-%), preferably 0.01 to 0.9 wt .-%, particularly preferably 0.01 to 0, 8% by weight or 0.01 to 0.7% by weight, most preferably 0.01 to 0.6% by weight or 0.01 to 0.5% by weight, most preferably 0.01 to 0 , 4%
  • compositions contain a keratin-binding effector protein according to the invention in a concentration of 1 to 10% by weight, preferably 2 to 8% by weight, 3 to 7% by weight, 4 to 6% by weight, based on the Total weight of the agent.
  • compositions contain a keratin-binding effector protein according to the invention in a concentration of 10 to 20% by weight, preferably 11 to 19% by weight, 12 to 18% by weight, 13 to 17% by weight, 14 to 16 wt .-% based on the total weight of the composition.
  • compositions contain a keratin-binding effector protein according to the invention in a concentration of 20 to 30 wt.%, Preferably 21 to 29 wt.%, 22 to 28 wt.%, 23 to 27 wt. 24 to 26 wt .-% based on the total weight of the composition.
  • the use of the abovementioned keratin-binding effector molecules according to the invention in dermocosmetics is carried out in combination with (i) cosmetic aids from the field of decorative cosmetics, (ii) dermocosmetics and (iii) suitable auxiliaries and additives.
  • These are preferably active substances or auxiliaries and additives which protect against skin damage, for skin, hair and / or fingernails, for the treatment of skin, hair and / or finger or skin damage already suffered Toenails and for the care of skin, hair and / or fingernails or toenails are used.
  • These active ingredients are preferably selected from the group of natural or synthetic polymers, pigments, humectants, oils, waxes, enzymes, minerals, vitamins, sunscreens, dyes, fragrances, antioxidants, preservatives and / or pharmaceutical agents.
  • auxiliaries and additives for the production of hair cosmetic or skin cosmetic preparations are familiar to the expert and can from manuals of cosmetics, such as Schrader, bases and formulations of cosmetics, Weghig Verlag, Heidberg, 1989, ISBN 3-7785-1491-1 , or Limbach, cosmetics: development, production and application of cosmetic products, 2nd extended edition, 1995, Georg Thieme Verlag, ISBN 3 13 712 602 9 are removed.
  • the use of the keratin-binding effector molecules according to the invention is preferably carried out in dermocosmetics or oral, dental and dental care compositions in combination with at least one different constituent selected from cosmetically active ingredients.
  • active substances emulsifiers, surfactants, preservatives, perfume oils, thickeners, hair polymers, hair and skin conditioners, graft polymers, water-soluble or dispersible silicone-containing polymers, light stabilizers, bleaching agents, gelling agents, conditioners, colorants, tinting agents, tanning agents, dyes, pigments, consistency preparations.
  • the active compounds can also be present in encapsulated form as described in patents / patent applications EP 00974775 B1, DE 2311 712, EP 0278 878, DE 1999 47147, EP 0706822B1 and WO 98/16621, to which reference is expressly made, in the cosmetic preparations be.
  • the antioxidants are selected from the group consisting of amino acids (eg glycine, histidine, tyrosine, tryptophan) and their derivatives, imidazoles (eg uranocynic acid) and derivatives thereof, peptides such as D, L-carnosine, D-carnosine, L-carnosine.
  • amino acids eg glycine, histidine, tyrosine, tryptophan
  • imidazoles eg uranocynic acid
  • peptides such as D, L-carnosine, D-carnosine, L-carnosine.
  • Carnosine and its derivatives eg anserine
  • carotenoids eg .beta.-carotene, lycopene
  • chlorogenic acid and its derivatives lipoic acid and derivatives thereof (eg dihydrolipoic acid), aurothioglucose
  • propylthiouracil and other thiols eg thiorodoxin, glutathione, Cysteine, cystine, cystamine and their glycosyl, N-acetyl, methyl, ethyl, propyl, amyl, butyl, and lauryl, palmitoyl, oleyl, ⁇ -linoleyl, cholesteryl and glyceryl esters
  • salts thereof dilauryl thiodipropionate, distearyl thiodipropionate, thiodipropionic acid and derivatives thereof (esters, ethers, peptides,
  • vitamins, provitamins or vitamin precursors of the vitamin B group or derivatives thereof which are preferably to be used according to the invention and the derivatives of 2-furanone include, inter alia:
  • Vitamin Bi common name thiamin, chemical name 3 - [(4'-amino-2'-methyl-5'-pyrimidinyl) methyl] -5- (2-hydroxyethyl) -4-methylthiazolium chloride.
  • Vitamin B2 trivial name riboflavin, chemical name 7,8-dimethyl-10- (1-D-ribityl) - benzo [g] pteridine-2,4 (3H, 10H) -dione.
  • riboflavin z As in whey, other riboflavin derivatives can be isolated from bacteria and yeasts.
  • a stereoisomer of riboflavin which is likewise suitable according to the invention is loxoflavin which can be isolated from fishmeal or liver and carries a D-arabityl residue instead of the D-ribityl residue.
  • Vitamin B3 Under this name, the compounds nicotinic acid and nicotinamide (niacinamide) are often performed. According to the invention, the nicotinic acid amide is preferred.
  • Vitamin B5 pantothenic acid and panthenol
  • Panthenol is preferably used.
  • Derivatives of panthenol which can be used according to the invention are, in particular, the esters and ethers of panthenol and also cationically derivatized panthenols.
  • Particularly preferred derivatives are the commercially available substances dihydro-3-hydroxy-4,4-dimethyl-2 (3H) -furanone with the trivial name pantolactone (Merck), 4 hydroxymethyl- ⁇ -butyrolactone (Merck), 3 , 3-dimethyl-2-hydroxy- ⁇ -butyrolactone (Aldrich) and 2,5-dihydro-5-methoxy-2-furanone (Merck), expressly including all stereoisomers.
  • these compounds impart moisturizing and soothing properties to the dermocosmetics of the invention.
  • Vitamin Be which is understood hereunder not a uniform substance, but the known under the common names pyridoxine, pyridoxamine and pyridoxal derivatives of 5-hydroxymethyl-2-methylpyridin-3-ols.
  • Vitamin B7 also known as vitamin H or "skin vitamin”.
  • Biotin is (3aS, 4S, 6aR) -2-oxohexahydrothienol [3,4-d] imidazole-4-valeric acid.
  • Panthenol, pantolactone, nicotinamide and biotin are very particularly preferred according to the invention.
  • Dyes which may be used are those which are suitable and approved for cosmetic purposes, as compiled, for example, in the publication "Kosmetician Anlagenrbesch” of the Farbstoffkommission of the Irish Anlagenscade, published by Verlag Chemie, Weinheim, 1984. These dyes are usually used in concentrations of 0.001 to 0.1 wt .-%, based on the total mixture. pigments
  • the compositions according to the invention contain at least one pigment.
  • the pigments are present in undissolved form in the product composition and may be present in an amount of from 0.01 to 25% by weight, particularly preferably from 5 to 15% by weight.
  • the preferred particle size is 1 to 200 .mu.m, in particular 3 to 150 .mu.m, particularly preferably 10 to 100 .mu.m.
  • the pigments are practically insoluble colorants in the application medium and may be inorganic or organic. Also inorganic-organic mixed pigments are possible. Preference is given to inorganic pigments.
  • the advantage of inorganic pigments is their excellent light, weather and temperature resistance.
  • the inorganic pigments may be of natural origin, for example made of chalk, ocher, umber, green soil, terraced terraza or graphite.
  • the pigments may be white pigments such as titanium dioxide or zinc oxide, black pigments such as iron oxide black, colored pigments such as ultramarine or iron oxide red to give luster pigments.
  • white pigments such as titanium dioxide or zinc oxide
  • black pigments such as iron oxide black
  • colored pigments such as ultramarine or iron oxide red to give luster pigments.
  • te metallic effect pigments, pearlescent pigments, as well as fluorescent or Phosphoreszenzpigmente act, wherein preferably at least one pigment is a colored, non-white pigment.
  • Suitable are metal oxides, hydroxides and oxide hydrates, mixed phase pigments, sulfur-containing silicates, metal sulfides, complex metal cyanides, metal sulfates, chromates and molybdates and the metals themselves (bronze pigments).
  • Titanium dioxide (Cl 77891), black iron oxide (Cl 77499), yellow iron oxide (Cl 77492), red and brown iron oxide (Cl 77491), manganese violet (Cl 77742), ultramarines (sodium aluminum sulfosilicates, Cl 77007, Pigment Blue 29 ), Chromium oxide hydrate (C177289), iron blue (Ferric Ferro-Cyanide, CI7751 0), Carmine (Cochineal).
  • pearlescent and color pigments based on mica or mica which are coated with a metal oxide or a metal oxychloride such as titanium dioxide or bismuth oxychloride and optionally further coloring substances such as iron oxides, iron blue, ultramarines, carmines, etc., and the color is determined by varying the layer thickness can be.
  • a metal oxide or a metal oxychloride such as titanium dioxide or bismuth oxychloride and optionally further coloring substances such as iron oxides, iron blue, ultramarines, carmines, etc.
  • Such pigments are sold, for example under the trade names Rona ®, Colorona ®, Dichrona and Timiron ® ® (Merck).
  • Organic pigments include, for example, the natural pigments sepia, cambogia, bone charcoal, brown Kasseler, indigo, chlorophyll and other plant pigments.
  • Synthetic organic pigments are, for example, azo pigments, anthraquinoids, indigoids, dioxazine, quinacridone, phthalocyanine, isoindolinone, perylene and perinone, metal complex, alkali blue and diketopyrrolopyrrole pigments.
  • the keratin-binding effector molecules according to the invention or keratin-binding effector molecules produced according to the invention are used with at least one particulate substance which is present in the composition in a proportion of 0.01 to 10, preferably 0.05 to 5,% by weight.
  • Suitable substances are e.g. Substances which are solid at room temperature (25 ° C) and in the form of particles. Suitable examples are silica, silicates, aluminates, clays, mica, salts, in particular inorganic metal salts, metal oxides, e.g. Titanium dioxide, minerals and polymer particles.
  • the particles are present in the agent undissolved, preferably stably dispersed form and can be deposited in solid form after application to the application surface and evaporation of the solvent.
  • Preferred particulate substances are silica (silica gel, silica) and metal salts, in particular inorganic metal salts, with silica being particularly preferred.
  • Metal salts are e.g. Alkali or alkaline earth halides, such as sodium chloride or potassium chloride; Alkali or alkaline earth sulfates such as sodium sulfate or magnesium sulfate. pearlizing
  • Suitable pearlescing agents are, for example: alkylene glycol esters, special ethylene glycol cold esterate; Fatty acid alkanolamides, especially coconut fatty acid diethanoamide; Partial glycerides, especially stearic acid monoglyceride; Esters of polybasic, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms, especially long-chain esters of tartaric acid; Fatty substances, such as fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which in total have at least 24 carbon atoms, especially lauron and distearyl ether; Fatty acids such as stearic acid, hydroxystearic acid or behenic acid, ring-opening products of olefin epoxides having 12 to 22 carbon atoms with fatty alcohols having 12 to 22 carbon atoms and / or polyols having 2 to 15 carbon atoms and 2
  • Suitable cosmetically and / or dermocosmetically active agents are e.g. coloring active ingredients, skin and hair pigmenting agents, tinting agents, suntanning agents, bleaching agents, keratin-hardening substances, antimicrobial agents, light filter active ingredients, repellent active ingredients, hyperemic substances, keratolytic and keratoplastic substances, antidandruff active ingredients, antiphlogistics, keratinizing substances, antioxidant or radical scavenger active Active ingredients, skin-moisturizing or moisturizing substances, moisturizing agents, anti-erythematous or anti-allergic active ingredients, branched fatty acids such as 18-methyl eicosanoic acid, and mixtures thereof.
  • coloring active ingredients e.g. coloring active ingredients, skin and hair pigmenting agents, tinting agents, suntanning agents, bleaching agents, keratin-hardening substances, antimicrobial agents, light filter active ingredients, repellent active ingredients, hyperemic substances, keratolytic and kerato
  • Artificial skin tanning agents which are suitable for tanning the skin without natural or artificial irradiation with UV rays are e.g. Dihydroxyacetone, alloxan and walnut shell extract.
  • Suitable keratin-hardening substances are, as a rule, active ingredients as are also used in antiperspirants, such as, for example, antiperspirants. Potassium aluminum sulfate, aluminum hydroxy chloride, aluminum lactate, etc.
  • Antimicrobial agents are used to destroy microorganisms or to inhibit their growth and thus serve both as a preservative and as a deodorizing substance, which reduces the formation or intensity of body odor.
  • These include e.g. customary preservatives known to the person skilled in the art, such as p-hydroxybenzoic acid esters, imidazolidinyl urea, formaldehyde, sorbic acid, benzoic acid, salicylic acid, etc.
  • deodorizing substances are known, for example. Zinc ricinoleate, triclosan, undecylenic acid alkylolamides, triethyl citrate, chlorhexidine, etc.
  • Table 3 suitable preservatives.
  • the E-numbers listed in the above table are the names used in Directive 95/2 / EEC.
  • preservatives or preservatives which are customary in cosmetics according to the invention are dibromodicyanobutane (2-bromo-2-bromomethyl-glutarodinitrile), 3-iodo-2-propynyl-butylcarbamate, 2-bromo-2-nitro-propane-1,3-diol, imidazolidinyl urea , 5-chloro-2-methyl-4-isothiazolin-3-one, 2-chloroacetamide, benzalkonium chloride and benzyl alcohol.
  • phenylhydroxyalkyl ethers in particular the compounds known as phenoxyethanol, are suitable as preservatives because of their bactericidal and fungicidal effects on a number of microorganisms.
  • germ-inhibiting agents are also suitable for incorporation into the preparations according to the invention.
  • Advantageous substances are, for example, 2,4,4'-trichloro-2'-hydroxydiphenyl ether (Irgasan), 1, 6-di- (4-chlorphenylbiguanido) hexane (chlorhexidine), 3,4,4'-trichlorocarbanilide, quaternary ammonium compounds , Clove oil, mint oil, thyme oil, triethyl citrate, farnesol (3,7,11-trimethyl-2,6,10-dodecatrien-1-ol) and in the patent publications DE-37 40 186, DE-39 38 140, DE- 42 04 321, DE-42 29 707, DE-43 09 372, DE-44 11 664, DE-195 41 967, DE-195 43 695, DE-195 43 696, DE-195 47 160, DE-196 02 108, DE-196 02 110, DE-196 02 111, DE-196 31
  • the cosmetic compositions may contain perfume oils.
  • perfume oils for example, mixtures of natural and synthetic fragrances may be mentioned.
  • Natural fragrances are extracts of flowers (lily, lavender, rose, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (anise, corian, caraway, juniper), fruit peel (bergamot, Lemon, orange), roots (macis, angelica, celery, cardamom, costus, iris, calmus), woods (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage , Thyme), needles and twigs (spruce, fir, pine, pines), resins and balsams (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Typical synthetic fragrance compounds are ester type products, ethers, aldehydes, ketones, alcohols and hydrocarbons. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, 4-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzylformate, ethylmethylphenylglycinate, allylcyclohexylpropionate, styrallylpropionate and benzylsalicylate.
  • the ethers include, for example, benzyl ethyl ether, to the aldehydes, for example, the alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclic to the ketones eg the Jonone, ⁇ -Isomethylionen and Methylcedrylketon, to the alcohols Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol and Terpeneol, to the hydrocarbons belong mainly the Terpene and balsams. However, preference is given to using mixtures of different fragrances which together produce an appealing scent.
  • perfume oils eg sage oil, camomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, lime blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, Labolanumöl and La vandinöl.
  • bergamot oil, dihydromyrcenol, lilial, lyral, citronellol, phenylethyl be lethylalkohol, ⁇ -hexyl cinnamic aldehyde, geraniol, benzyl acetone, cyclamen aldehyde, linalool, BOI sambrene ® Forte, Ambroxan, indole, hedione, Sandelice, lemon oil, mandarin oil, orange oil, allyl amyl glycolate, Cyclovertal, lavandin oil, muscatel sage oil, beta-damascone, geranium oil bourbon, cyclohexyl salicylate, Vertofix ® Coeur, Iso-e-Super ®, Fixolide ® NP, Evernyl, Iraldein gamma, phenylacetic acid, geranyl a
  • compositions according to the invention preferably contain oils, fats and / or waxes.
  • Ingredients of the oil and / or fat phase of the compositions of the invention are advantageously selected from the group of lecithins and fatty acid triglycerides, namely the triglycerol esters of saturated and / or unsaturated, branched and / or unbranched alkanecarboxylic acids having a chain length of 8 to 24, in particular 12 to 18 C. -atoms.
  • the fatty acid triglycerides can be selected, for example, advantageously from the group of synthetic, semisynthetic and natural oils, such as olive oil, sunflower oil, soybean oil, peanut oil, rapeseed oil, almond oil, palm oil, coconut oil, castor oil, wheat germ oil, grape seed oil, thistle oil, evening primrose oil, macadamia nut oil and such more.
  • synthetic, semisynthetic and natural oils such as olive oil, sunflower oil, soybean oil, peanut oil, rapeseed oil, almond oil, palm oil, coconut oil, castor oil, wheat germ oil, grape seed oil, thistle oil, evening primrose oil, macadamia nut oil and such more.
  • polar oil components can be selected from the group of esters of saturated and / or unsaturated, branched and / or unbranched alkanecarboxylic acids having a chain length of 3 to 30 carbon atoms and saturated and / or unsaturated, branched and / or unbranched alcohols a chain length of 3 to 30 carbon atoms and from the group of esters of aromatic carboxylic acids and saturated and / or unsaturated, branched and / or unbranched alcohols having a chain length of 3 to 30 carbon atoms.
  • ester oils can then advantageously be selected from the group isopropyl myristate, isopropyl palmitate, isopropyl stearate, isopropyl oleate, n-butyl stearate, n-hexyl laurate, n-decyl oleate, isooctyl stearate, isononyl stearate, isononyl isononanoate, 2-ethylhexyl palmitate, 2-ethylhexyl laurate, 2-hexyldecyl stearate, 2-octyldodecyl palmitate, oleyl oleate, oleyl erucate, erucyl oleate, erucyl erucate dicaprylyl carbonate (Cetiol CC) and cocoglycerides (Myritol 331), butylene glycol dicaprylate / dicap
  • one or more oil components can advantageously be selected from the group of branched and unbranched hydrocarbons and waxes, the silicone oils, the dialky ether, the group of saturated or unsaturated, branched or unbranched alcohols. Any mixtures of such oil and wax components are also advantageous to use in the context of the present invention. It may also be advantageous, if appropriate, to use waxes, for example cetylphenyl, as the sole lipid component of the oil phase.
  • the oil component is advantageously selected from the group consisting of 2-ethylhexyl isostearate, octyldodecanol, isotridecyl isononanoate, isoeicosane, 2-ethylhexyl cocoate, C 12-15 -alkyl benzoate, Caprylic capric acid triglyceride, dicaprylyl ether.
  • the oil phase can be advantageously selected from the group of Guerbet alcohols.
  • Guerbet alcohols are named after Marcel Guerbet, who first described their production. They arise according to the reaction equation
  • Guerbet alcohols Catalyst by oxidation of an alcohol to an aldehyde, by aldol condensation of the aldehyde, elimination of water from the aldol and hydrogenation of allyl aldehyde.
  • Guerbet alcohols are fluid even at low temperatures and cause virtually no skin irritation.
  • they can be used as greasing, overfatting and also moisturizing ingredients in cosmetic compositions.
  • Ri and R2 are generally unbranched alkyl radicals.
  • the Guerbet alcohol or alcohols are selected from the group, where
  • Guerbet alcohols are 2-butyl (for example commercially available as iso- fol ® 12 (Condea)) and 2-hexyl decanol (for example commercially available as lsofol ® 16 (Condea)).
  • mixtures of Guerbet alcohols are according to the invention may advantageously be used such as mixtures of 2-butyloctanol and 2-hexyl decanol (for example as lsofol ® 14 (Condea) commercially available). Any mixtures of such oil and wax components are also advantageous to use in the context of the present invention.
  • polyolefins polydecenes are the preferred substances.
  • the oil component may further comprise a content of cyclic or linear silicone oils or consist entirely of such oils, although it is preferred, in addition to the silicone oil or silicone oils, an additional content of other oil phase component to use.
  • Low molecular weight silicones or silicone oils are generally defined by the following general formula:
  • silane atoms may be substituted with identical or different alkyl radicals and / or aryl radicals, which are here generalized by the radicals Ri to R4.
  • the number of different radicals is not necessarily limited to 4, m may assume values of 2 to 200,000.
  • silane atoms can be substituted with identical or different alkyl radicals and / or aryl radicals, which are here generalized by the radicals Ri to R4.
  • the number of different radicals is not necessarily limited to 4, n may assume values of 3/2 to 20. Broken values for n take into account that odd numbers of siloxyl groups may be present in the cycle.
  • phenyltrimethicone is chosen as the silicone oil.
  • silicone oils for example dimethicone, hexamethylcyclotrisiloxane, phenyldimethicone, cyclomethicone (octamethylcyclo tetrasiloxane), hexamethylcyclotrisiloxane, polydimethylsiloxane, poly (methylphenylsiloxane), cetyl dimethicone, behenoxydimethicone, are to be used advantageously in the context of the present invention. Also advantageous are mixtures of cyclomethicone and Isotridecylisononanoat, and those of cyclomethicone and 2-Ethylhexylisostearat.
  • silicone oils of similar constitution as the compounds described above whose organic side chains are derivatized, for example polyethoxylated and / or polypropoxylated.
  • These include, for example Polysiloxanpolyalkyl-polyether copolymers such as cetyl dimethicone copolyol.
  • cyclomethicone octamethylcyclo-tetrasiloxane
  • Fat and / or wax components which can advantageously be used according to the invention can be selected from the group of vegetable waxes, animal waxes, mineral waxes and petrochemical waxes.
  • candelilla wax, carnauba wax, Japan wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, berry wax, ouricury wax, montan wax, jojoba wax, shea butter, beeswax, shellac wax, spermaceti, lanolin (wool wax), crepe fat, ceresin, ozokerite (earth wax) are advantageous ), Paraffin waxes and microwaxes.
  • fat and / or wax components are chemically modified waxes and synthetic waxes, such as Syncrowax HRC ® (glyceryl tribehenate), and Syncrowax ® AW 1 C (Cis-36 fatty acid) as well as Montanesterwachse, sasol waxes, hydrogenated jojoba waxes, synthetic or modified beeswaxes (z. B. dimethicone copolyol beeswax and / or C3o-so-alkyl bees wax), Cetyl Ricinoleate such as Tegosoft ® CR, polyalkylene kylenwachse, polyethylene glycol waxes, but also chemically modified fats such.
  • Syncrowax HRC ® glycol tribehenate
  • Syncrowax ® AW 1 C Cis-36 fatty acid
  • Hydrogenated vegetable oils for example hydrogenated castor oil and / or hydrogenated coconut fat glycerides
  • triglycerides such as hydrogenated soy glyceride, trihydroxystearin, fatty acids, fatty acid esters and glycol esters such as C2o-4o-alkyl stearate, C2o-4o-alkylhydroxy-stearyl stearate and / or glycol montanate.
  • organosilicon compounds which have similar physical properties to the fatty and / or wax components mentioned, for example stearoxytrimethylsilane.
  • the fat and / or wax components can be used both individually and as a mixture in the compositions.
  • the oil phase is selected from the group consisting of 2-ethylhexyl isostearate, octyldodecanol, isotridecyl isononanoate, butylene glycol dicaprylate / dicaprate, 2-ethyl hexyl cocoate, C12-15 alkyl benzoate, caprylic capric acid triglyceride, dicaprylyl ether.
  • Particularly advantageous are mixtures of octyldodecanol, caprylic-capric acid triglyceride, dicaprylyl ether, dicaprylyl carbonate, cocoglycerides or mixtures of C 12-18 -alkyl benzoate and 2-ethylhexyl isostearate, mixtures of C 12-18 -alkyl benzoate and butylene glycol dicaprylate / dicaprate and mixtures of C 12-15 -alkyl benzoate, 2-ethylhexyl isostearate and isotridecyl isononanoate.
  • hydrocarbons paraffin oil, cycloparaffin, squalane, squalene, hydrogenated polyisobutene or polydecene are to be used advantageously in the context of the present invention.
  • the oil component is also advantageously selected from the group of phospholipids.
  • the phospholipids are phosphoric acid esters of acylated glycerols.
  • the Ledthine which are characterized by the general structure
  • R 'and R are typically unbranched aliphatic radicals having 15 or 17 carbon atoms and up to 4 cis double bonds.
  • advantageous paraffin oil according to the invention Mercury Weissoel Pharma 40 from Merkur Vaseline, Shell Ondina ® 917, Shell Ondina ® 927, Shell Oil 4222, Shell Ondina ® 933 from Shell & DEA OiI, Pioneer ® 6301 S, Pioneer ® 2071 (Hansen & Rosenthal).
  • Suitable cosmetically acceptable oil and fat components are described in Karl-Heinz Schrader, Fundamentals and formulations of cosmetics, 2nd edition, Verlag Wegig, Heidelberg, p. 319-355, which is incorporated herein by reference in its entirety.
  • the solvents used can be:
  • Oils such as triglycerides of capric or caprylic acid, but preferably castor oil
  • Fats, waxes and other natural and synthetic fats preferably esters of fatty acids with lower C-number alcohols, e.g.
  • Alcohols, diols or polyols of low C number, and their ethers preferably ethanol, isopropanol, propylene glycol, glycerol, ethylene glycol, ethylene glycol monoethyl or monobutyl ether, propylene glycol monomethyl, monoethyl or monobutyl ether, diethylene glycol monomethyl or monoethyl ether and analogous products ,
  • ethanol isopropanol
  • propylene glycol, glycerol ethylene glycol, ethylene glycol monoethyl or monobutyl ether, propylene glycol monomethyl, monoethyl or monobutyl ether, diethylene glycol monomethyl or monoethyl ether and analogous products
  • mixtures of the abovementioned solvents are used.
  • water can be another ingredient.
  • compositions may also contain surfactants.
  • surfactants are, for example:
  • Phosphoric acid esters and salts such as DEA-oleth-10 phosphate and dilaureth-4 phosphate, alkylsulfonates, for example sodium coconut monoglyceride sulfate, sodium C12-14 olefinsulfonate, sodium lauryl sulfoacetate and magnesium PEG-3 cocamide sulfate,
  • Carboxylic acids and derivatives such as, for example, lauric acid, aluminum stearate, magnesium alkanolate and zinc undecylenate, ester carboxylic acids, for example calcium stearoyl lactylate, laureth-6 citrate and sodium PEG-4 lauramide carboxylate, esters which are obtained by esterification of carboxylic acids with ethylene oxide, glycerol, sorbitan or other alcohols are formed,
  • Ethers for example ethoxylated alcohols, ethoxylated lanolin, ethoxylated polysiloxanes, propoxylated POE ethers and alkylpolyglycosides such as lauryl glucoside, decyl glycoside and co-glycoside.
  • compositions may also contain polysorbates.
  • advantageous polysorbates are the
  • Polyoxyethylene (4) sorbitan monolaurate (Tween 21, CAS No. 9005-64-5)
  • Polyoxyethylene (4) sorbitan monostearate (Tween 61, CAS No. 9005-67-8)
  • the compositions also contain conditioning agents.
  • Conditioning agents which are preferred according to the invention are, for example, all compounds disclosed in section 4 of the International Cosmetic Ingredient Dictionary and Handbook (Volume 4, published by: RC Pepe, JA Wenninger, GN McEwen, The Cosmetic, Toiletry, and Fragrance Association, 9th Edition, 2002) the terms Hair Conditioning Agents, Humectants, Skin-Conditioning Agents, Skin-Conditioning Agents-Emollient, Skin- Conditioning Agents-Humectant, Skin-Conditioning Agents-Miscellaneous, Skin-Conditioning Agents-Occlusive, and Skin Protectans are listed as well as all in EP-A 934 956 (S.11-13) under "water-soluble conditioning agent” and "oil-soluble conditioning agent.”
  • Further advantageous conditioning agents are, for example, the compounds designated as polyquaternium according to INCI (in particular Polyquaternium-1 to Polyqua - ternium-56).
  • Suitable conditioning agents include, for example, polymeric quaternary ammonium compounds, cationic cellulose derivatives and polysaccharides. Conditioning agents which are advantageous according to the invention can be chosen from the compounds shown in the following table.
  • conditioners advantageous cellulose derivatives and quaternized guar gum derivatives, in particular guar hydroxypropylammonium chloride (for example, Jaguar Excel ®, Jaguar ® C 162 (Rhodia), CAS 65497-29-2, CAS 39421-75-5).
  • guar hydroxypropylammonium chloride for example, Jaguar Excel ®, Jaguar ® C 162 (Rhodia), CAS 65497-29-2, CAS 39421-75-5.
  • nonionic poly-N vinyl pyrrolidone / polyvinyl acetate copolymers for example, Luviskol ® VA 64 (BASF Aktiengesellschaft)
  • anionic acrylate copolymers eg Luviflex ® soft (BASF Aktiengesellschaft)
  • amphoteric amide / acrylate / methacrylate copolymers for example, Amphomer ® (National Starch)
  • powder raw materials can be generally advantageous. Particularly preferred is the
  • optionally ethoxylated oils selected from the group of ethoxylated glycerol fatty acid esters, more preferably PEG-10 olive oil glycerides, PEG-11 avocado oil glycerides, PEG-11 kaobutterglyceride, PEG 13 Sunflower Oil Glycerides, PEG-15 Glyceryl Isostearate, PEG-9 Coconut Fatty Acid Glycerides, PEG-54 Hydrogenated Castor Oil, PEG-7 Hydrogenated Castor Oil, PEG-60 Hydrogenated Castor Oil, Jojoba Oil Ethoxylate (PEG-26 Jojoba Grease Acids, PEG-26 Jojoba Alcohol) , Glycereth-5 cocoate, PEG-9 coconut fatty acid glycerides, PEG-7 glyceryl cocoate, PEG-45 palm oil glycerides, PEG-35 castor oil, olive oil PEG-10 olive oil glycerides, PEG-11 avocado oil glycerides, PEG-11 kaobutterg
  • Preferred ethoxylated oils are PEG-7 glyceryl cocoate, PEG-9 coconut glycerides, PEG-40 hydrogenated castor oil, PEG-200 hydrogenated glyceryl palmat.
  • Ethoxylated glycerol fatty acid esters are used in aqueous cleaning formulations for various purposes.
  • Low ethoxylated glycerol fatty acid esters (3-12 ethylene oxide units) are usually used as a moisturizer to improve the skin feel after drying, glycerol fatty acid esters with a degree of ethoxylation of about 30-50 serve as solubilizers for non-polar substances such as perfume oils.
  • Highly ethoxylated glycerol fatty acid esters are used as thickeners. All these substances have in common that they produce on the skin when used in dilution with water, a special skin feel.
  • the invention likewise relates to the use of the keratin-binding effector molecules according to the invention or keratin-binding effector molecules prepared in accordance with the inventive method in combination with light stabilizers in dermocosmetic preparations.
  • These cosmetic and / or dermatological sunscreen compositions are used for cosmetic and / or dermatological light protection, furthermore for the treatment and care of the skin and / or the hair and as a make-up product in the decorative cosmetics.
  • sunscreens include, for example, sunscreens, lotions, milks, oils, baisams, gels, lip care and lipsticks, masking creams and sticks, moisturizers, lotions, emulsions, face, body and hand creams, hair treatments and conditioners, Hair fixatives, styling gels, hair sprays, deodorants or eye wrinkle creams, tropicals, sunblocks, aftersun preparations. All preparations contain at least one keratin-binding effector molecule and one of the UV filter substances mentioned.
  • Sun oils are usually mixtures of various oils with one or more sunscreen filters and perfume oils. The oil components are selected according to different cosmetic properties.
  • Oils that give good fat and soft feel such as mineral oils (eg, paraffin oils) and fatty acid triglycerides (eg, peanut oil, sesame oil, avocado oil, medium chain triglycerides) are mixed with oils that enhance dispersibility and absorption of sun oils improve the skin, reduce the stickiness and make the oil film for air and water vapor (sweat) permeable.
  • oils that enhance dispersibility and absorption of sun oils improve the skin, reduce the stickiness and make the oil film for air and water vapor (sweat) permeable.
  • oils that enhance dispersibility and absorption of sun oils improve the skin, reduce the stickiness and make the oil film for air and water vapor (sweat) permeable.
  • oils that enhance dispersibility and absorption of sun oils improve the skin, reduce the stickiness and make the oil film for air and water vapor (sweat) permeable.
  • These include branched-chain fatty acid esters (eg isopropyl palmitate) and silicone oils (e
  • Sunmilk and creams are made as oil-in-water (O / W) emulsions and as water-in-oil (W / O) emulsions.
  • O / W emulsions are easily distributed on the skin, they are usually absorbed quickly and are almost always readily washable with water.
  • W / O emulsions are harder to rub in, they make the skin stronger and thus look a bit stickier, but on the other hand they better protect the skin from drying out.
  • W / O emulsions are mostly waterproof.
  • the emulsion base determines the degree of water resistance.
  • the bases of liquid and cream-like O / W emulsions are similar in composition to other emulsions customary in skin care.
  • Sunmilk should sufficiently grease the skin dried up by sun, water and wind. They must not be sticky, as they are particularly unpleasant in the heat and when in contact with sand.
  • the light stabilizers are usually based on a carrier which contains at least one oil phase. However, compositions based on water are also possible.
  • oils, oil-in-water and water-in-oil emulsions, creams and pastes, lip balm sticks or fat-free gels are contemplated.
  • Suitable emulsions include O / W macroemulsions, O / W microemulsions or O / W / O emulsions with surface-coated titanium dioxide particles present in dispersed form, the emulsions being obtainable by phase inversion technology, according to DE-A-197 26 121 .
  • Typical cosmetic auxiliaries which can be considered as additives are, for example, (co-) emulsifiers, fats and waxes, stabilizers, thickeners, biogenic active ingredients, film formers, fragrances, dyes, pearlescing agents, preservatives, pigments, electrolytes (for example magnesium sulfate) and pH -Regulatoren.
  • metal salts of fatty acids such as magnesium, aluminum and / or zinc stearate can be used.
  • Biogenic active ingredients are, for example, plant extracts, protein hydrolysates and vitamin complexes.
  • Typical film formers are, for example, hydrocolloids such as chitosan, microcrystalline chitosan or quaternized chitosan, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives and similar compounds.
  • Suitable light filter active substances are substances which absorb UV rays in the UV-B and / or UV-A range. By this are meant organic substances capable of absorbing ultraviolet rays and absorbing the absorbed energy in the form of longer wavelength radiation, e.g. Heat, give it up again.
  • the organic substances may be oil-soluble or water-soluble.
  • Suitable UV filters are e.g. 2,4,6-triaryl-1, 3,5-triazines, in which the aryl groups can each carry at least one substituent, which is preferably selected from hydroxy, alkoxy, especially methoxy, alkoxycarbonyl, especially methoxycarbonyl and ethoxycarbonyl.
  • p-aminobenzoic acid esters p-aminobenzoic acid esters, cinnamic acid esters, benzophenones, camphor derivatives and UV-radiation-stopping pigments, such as titanium dioxide, talc and zinc oxide. Particular preference is given to pigments based on titanium dioxide.
  • UV-B filters for example, the following substances can be used: 3-Benzylidencampher and its derivatives, for example 3- (4-methylbenzylidene) camphor; 4-aminobenzoic acid derivatives, preferably 2-ethylhexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and 4- (dimethylamino) benzoic acid ester;
  • Esters of cinnamic acid preferably 4-methoxycinnamic acid 2-ethylhexyl ester, 4-methoxycinnamic acid propyl ester, isoamyl 4-methoxycinnamate, 4-isopentyl methoxycinnamate, 2-cyano-3-phenylcinnamic acid 2-ethylhexyl ester (octocrylene);
  • Esters of salicylic acid preferably 2-ethylhexyl salicylate, 4-isopropylbenzyl salicylate, homomenthyl salicylate;
  • benzophenone preferably 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone;
  • Esters of benzalmalonic acid preferably di-2-ethylhexyl 4-methoxybenzmalonate
  • Triazine derivatives such as 2,4,6-trianilino- (p-carbo-2'-ethyl-1 '-hexyloxy) -1, 3,5-triazine (Octyltriazo- ne) and Dioctyl Butamido Triazone (Uvasorb HEB ®):
  • Propane-1,3-diones e.g. 1- (4-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1,3-dione.
  • Suitable water-soluble substances are:
  • Sulfonic acid derivatives of benzophenones preferably 2-hydroxy-4-methoxybenzo-phenone-5-sulfonic acid and its salts;
  • Sulfonic acid derivatives of the 3-benzylidene camphor e.g. 4- (2-Oxo-3-bornylidenemethyl) benzenesulfonic acid and 2-methyl-5- (2-oxo-3-bomylidene) -sulfonic acid and its salts.
  • esters of cinnamic acid preferably 4-methoxycinnamic acid 2-ethylhexyl ester, 4-methoxycinnamic acid isopentyl ester, 2-cyano-3-phenylcinnamic acid 2-ethylhexyl ester (octocrylene).
  • Typical UV-A filters are:
  • benzoylmethane such as 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1,3-dione, 4-tert. Butyl 4'-methoxydibenzoylmethane or 1-phenyl-3- (4'-isopropylphenyl) propane-1,3-dione; Amino-hydroxy-substituted derivatives of benzophenones such as N, N-diethylamino hydroxybenzoyl-n-hexyl benzoate.
  • UV-A and UV-B filters can also be used in mixtures.
  • UV filter substances are mentioned in the following table.
  • secondary light stabilizers of the antioxidant type which interrupt the photochemical reaction chain which is triggered when UV radiation penetrates into the skin.
  • these are superoxide dismutase, catalase, tocopherols (vitamin E) and ascorbic acid (vitamin C).
  • anti-irritants which have an anti-inflammatory effect on UV-damaged skin.
  • anti-irritants which have an anti-inflammatory effect on UV-damaged skin.
  • Such substances are, for example, bisabolol, phytol and phytantriol.
  • the invention likewise relates to the use of the keratin-binding effector molecules according to the invention or keratin-binding effector molecules prepared in accordance with the inventive method in combination with UV-blocking inorganic pigments in dermocosmetic preparations.
  • pigments based on metal oxides and / or other sparingly water-soluble or insoluble metal compounds selected from the group of the oxides of zinc (ZnO), titanium (TiO.sub.2), iron (eg Fe.sub.2O.sub.2), zirconium (ZrO.sub.2), silicon (SiO ⁇ ), manganese (eg MnO), Aluminum (AI2O3), Cers (eg Ce ⁇ Os), mixed oxides of the corresponding metals and mixtures of such oxides.
  • the inorganic pigments may be present in coated form, i. that they are treated superficially.
  • This surface treatment can be, for example, that the pigments are provided in a manner known per se, as described in DE-A-33 14 742, with a thin hydrophobic layer.
  • Suitable repellent agents are compounds which are capable of preventing or repelling certain animals, especially insects, from humans. This includes e.g. 2-ethyl-1,3-hexanediol, N, N-diethyl-m-toluamide, etc.
  • Suitable hyperemic substances which stimulate the perfusion of the skin are e.g. essential oils, such as mountain pine extract, lavender extract, rosemary extract, juniper berry extract, horse chestnut extract, birch leaf extract, hay flower extract, ethyl acetate, camphor, menthol, peppermint oil, eucalyptus oil, etc.
  • Suitable keratolytic and keratoplastic substances are e.g.
  • Salicylic acid calcium thioglycolate, thioglycolic acid and its salts, sulfur, etc.
  • Suitable anti-dandruff agents are e.g. Sulfur, sulfur polyethylene glycol sorbitan monooleate, sulfur ricinol polyethoxylate, zinc pyrithione, aluminum pyrithione, etc.
  • Suitable antiphlogistic agents which counteract skin irritation are e.g. Allantoin, bisabolol, dragosantol, chamomile extract, panthenol, etc.
  • the invention likewise relates to the use of the keratin-binding effector molecules according to the invention or keratin-binding effector molecules prepared in accordance with the inventive method in combination with at least one cosmetically or pharmaceutically acceptable polymer.
  • Suitable polymers are e.g. cationic polymers named Polyquater-nium according to INCI, e.g. Copolymers of vinylpyrrolidone / N-vinylimidazolium salts (Luviquat FC, Luviquat HM, Luviquat MS, Luviquat), copolymers of
  • N-vinylpyrrolidone / dimethylaminoethyl methacrylate, quaternized with diethyl sulfate (Luviquat PQ 11)
  • copolymers of N-vinylcaprolactam / N-vinylpyrrolidone / N-vinylimidazolium salts (Luviquat E Hold)
  • cationic cellulose derivatives (Polyquaternium-4 and -10)
  • acrylamidocopolymers Polyquaternium-7) and chitosan.
  • Suitable cationic (quaternized) polymers are also Merquat (polymer based on dimethyldiallylammonium chloride), gafquat (quaternary polymers which are formed by reaction of polyvinylpyrrolidone with quaternary ammonium compounds), polymer JR (hydroxyethylcellulose with cationic groups) and cationic polymers on vegetable Base, eg Guarpolymers, such as the Jaguar brands of Rhodia.
  • polystyrene resins are also neutral polymers, such as polyvinylpyrrolidones, copolymers of N-vinylpyrrolidone and vinyl acetate and / or vinyl propionate, polysiloxanes, polyvinylcaprolactam and other copolymers with N-vinylpyrrolidone, polyethyleneimines and their salts, polyvinylamines and their salts, Cellulose derivatives, polyaspartic acid salts and derivatives.
  • neutral polymers such as polyvinylpyrrolidones, copolymers of N-vinylpyrrolidone and vinyl acetate and / or vinyl propionate, polysiloxanes, polyvinylcaprolactam and other copolymers with N-vinylpyrrolidone, polyethyleneimines and their salts, polyvinylamines and their salts, Cellulose derivatives, polyaspartic acid salts and derivatives.
  • Luviflex 0 Swing
  • Suitable polymers are also nonionic, water-soluble or water-dispersible polymers or oligomers, such as polyvinylcaprolactam, for example Luviskol 0 Plus (BASF), or polyvinylpyrrolidone and their copolymers, in particular with vinyl esters, such as vinyl acetate, for example Luviskol 0 VA 37 (BASF), polyamides , For example, based on itaconic acid and aliphatic diamines, as described for example in DE-A-43 33 238.
  • polyvinylcaprolactam for example Luviskol 0 Plus (BASF)
  • BASF Luviskol 0 VA 37
  • BASF Luviskol 0 VA 37
  • polyamides For example, based on itaconic acid and aliphatic diamines, as described for example in DE-A-43 33 238.
  • Suitable polymers are also amphoteric or zwitterionic polymers, such as those available under the names Amphomer (National Starch) octylacrylamide / methyl methacrylate / tert-butylaminoethyl methacrylate hydroxypropyl methacrylate copolymers and zwitterionic polymers, as described for example in German patent applications DE39 29 973, DE 21 50 557, DE28 17 369 and DE 3708 451 are disclosed. Acrylamidopropyltrimethylammoniumchloride / acrylic acid resp. Methacrylic acid copolymers and their alkali metal and ammonium salts are preferred zwitterionic polymers.
  • zwitterionic polymers are methacroylethylbetaine / methacrylate copolymers, which are commercially available under the name Amersette (AMERCHOL), and copolymers of hydroxyethyl methacrylate, methyl methacrylate, N, N-dimethylaminoethyl methacrylate and acrylic acid (Jordapon (D)).
  • Suitable polymers are also nonionic, siloxane-containing, water-soluble or -dispersible polymers, e.g. Polyether siloxanes, such as Tegopren 0 (Goldschmidt) or Besi & commat (Wacker).
  • Polyether siloxanes such as Tegopren 0 (Goldschmidt) or Besi & commat (Wacker).
  • the use of the keratin-binding effector molecules according to the invention or produced according to the inventive method in combination with dermocosmetician agents is also advantageously selected from the group consisting of acetylsalicylic acid, atropine, azulene, hydrocortisone and its derivatives, eg.
  • vitamins of the B and D series especially vitamin Bi, vitamin B12, vitamin D, vitamin A or its derivatives such as retinyl palmitate, vitamin E or its derivatives such as tocopheryl acetate, vitamin C and its Derivatives such as ascorbyl glucoside but also niadnamide, panthenol, bisabolol, polydocanol, unsaturated fatty acids such as the essential fatty acids (commonly referred to as vitamin F), in particular ⁇ -linolenic acid, oleic acid, eicosapentaenoic acid, docosahexaenoic acid and its derivatives, ChIo - ramphenicol, caffeine, prostaglandins, thymol, camphor, squalene, extracts or other products of plant and animal origin, e.g.
  • the active compound or agents are furthermore advantageously selected from the group of NO synthase inhibitors, in particular when the preparations according to the invention are used for the treatment and prophylaxis of the symptoms of intrinsic and / or extrinsic skin aging and for the treatment and prophylaxis of the harmful effects of ultraviolet radiation on the skin and the skin Hair should serve.
  • Preferred NO synthase inhibitor is nitroarginine.
  • the active substance (s) are selected from the group comprising catechins and bile acid esters of catechins and aqueous or organic extracts from plants or parts of plants which have a content of catechins or bile acid esters of catechins, such as the leaves of the plant family Theaceae, in particular the species Camellia sinensis (green tea). Particularly advantageous are their typical ingredients (eg polyphenols or catechins, caffeine, vitamins, sugars, minerals, amino acids, lipids).
  • Catechins represent a group of compounds which are to be regarded as hydrogenated flavones or anthocyanidins and derivatives of "catechin” (catechol, 3, 3 ', 4', 5,7-flavanpentaol, 2- (3,4-dihydroxyphenyl) -chroman
  • epicatechin ((2R, 3R) -3,3 ', 4', 5,7-flavanpentaol) is an advantageous active ingredient in the context of the present invention a content of catechins, in particular extracts of green tea, such as extracts from leaves of the plants of the species Camellia spe ⁇ , especially the teas Camellia sinenis, C. assamica, C. taliensis or C.
  • Camellia japonica.Preferred drugs are also polyphenols or catechins from the group (-) - catechin, (+) - catechin, (-) -Catechingallat, (-) - Gallocatechingallat, (+) - epicatechin, (-) - epicatechin , (-) - epicatechin gallate, (-) - epigallocatechin, (-) - epigallocatechin gallate.
  • flavone and its derivatives are advantageous active ingredients in the sense of the present invention and are characterized by the following basic structure (substitution positions indicated):
  • flavones usually occur in glycosidated form.
  • the flavonoids are preferably selected from the group of substances of the general formula
  • Zi to Zj independently of one another, are selected from the group consisting of H, OH, alkoxy and hydroxyalkoxy, where the alkoxy or hydroxyalkoxy groups may be branched and unbranched and have 1 to 18 C atoms, and where GIy is selected from among Group of mono- and oligoglycoside residues.
  • the active ingredients can also be chosen very advantageously from the group of hydrophilic active ingredients, in particular from the following group: ⁇ -hydroxy acids such as lactic acid or salicylic acid or salts thereof, such as. Na-lactate, Ca-lactate, TEA-lactate, urea, allantoin, serine, sorbitol, glycerine, milk proteins, panthenol, chitosan.
  • ⁇ -hydroxy acids such as lactic acid or salicylic acid or salts thereof, such as. Na-lactate, Ca-lactate, TEA-lactate, urea, allantoin, serine, sorbitol, glycerine, milk proteins, panthenol, chitosan.
  • the amount of such active ingredients (one or more compounds) in the preparations according to the invention is preferably 0.001 to 30 wt .-%, particularly preferably 0.05 to 20 wt .-%, in particular 1 to 10 wt .-%, based on the Total weight of the preparation.
  • the above-mentioned and other active substances which can be used in the preparations according to the invention are specified in DE 103 18 526 A1 on pages 12 to 17, to which reference is made at this point in its entirety.
  • the present invention relates to the use of the o.g. Preparations for the prevention of unwanted changes in the appearance of the skin, e.g. Acne or oily skin, keratoses, rosaceae, photosensitive, inflammatory, erythematous, allergic or autoimmune reactive reactions.
  • the cosmetic preparations according to the invention are applied to the skin, hair, fingernails or toenails in the manner customary for cosmetics or dermocosmetics.
  • a further subject matter of the present invention relates to dermocosmetics containing one of the keratin-binding effector proteins described above, particularly preferably keratin-binding effector proteins selected from the group consisting of enzymes, antibodies, effectors binding proteins, fluorescence proteins, antimicrobial peptides and self-assembling proteins. Particular preference is given to dermocosmetics containing a keratin-binding effector molecule as described in Example 3.
  • dermocosmetics containing keratin-binding effector proteins which contain at least one keratin-binding polypeptide (ii) according to SEQ ID No .: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126 , 128, 130, 132, 134, 136, 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 164 or 166, preferably in SEQ ID No: 2, 4, 6, 8, 10 , 12, 14, 40, 42, 44, 46, preferably
  • the dermocosmetics preferably skin and hair treatment agents, contain a keratin-binding effector protein according to the invention in a concentration of 0.001 to 1% by weight (preferably from 0.01 to 0.9% by weight).
  • % particularly preferably 0.01 to 0.8 wt .-% or 0.01 to 0.7 wt.%, Very particularly preferably 0.01 to 0.6 wt.% or 0.01 to 0.5 wt. %, most preferably 0.01 to 0.4% by weight or 0.01 to 0.3% by weight, based on the total weight of the composition.
  • compositions contain a keratin-binding effector protein according to the invention in a concentration of 1 to 10% by weight, preferably 2 to 8% by weight, 3 to 7% by weight, 4 to 6% by weight, based on the Total weight of the agent.
  • compositions contain a keratin-binding effector protein according to the invention in a concentration of 10 to 20% by weight, preferably 11 to 19% by weight, 12 to 18% by weight, 13 to 17% by weight, 14 to 16 wt .-% based on the total weight of the composition.
  • compositions contain a keratin-binding effector protein according to the invention in a concentration of 20 to 30% by weight, preferably 21 to 29% by weight, 22 to 28% by weight, 23 to 27% by weight. %, 24 to 26 wt .-% based on the total weight of the composition.
  • compositions according to the invention are preferably skin protection agents, skin care agents, skin cleansing agents, hair protection agents, hair care preparations, hair cleaners, hair dyes, mouthwashes and mouthwashes, or preparations for decorative cosmetics, preferably in the form of ointments, creams, emulsions, Suspensions, lotions, as milk, pastes, gels, foams or sprays can be applied.
  • the dermocosmetics according to the invention may contain, in addition to the keratin-binding effector proteins, all the polymers already mentioned above, pigments, humectants, oils, waxes, enzymes, minerals, vitamins, sunscreens, dyes, fragrances, antioxidants, preservatives and / or pharmaceutical active ingredients.
  • the formulation base of compositions according to the invention preferably contains cosmetically or dermocosmetically / pharmaceutically acceptable excipients.
  • Pharmaceutically acceptable excipients known to be useful in the pharmaceutical, food technology and related fields, in particular those listed in relevant pharmacopoeias (eg DAB Ph. Eur. BP NF) and other excipients whose properties do not preclude physiological application.
  • Suitable auxiliaries may be: lubricants, wetting agents, emulsifying and suspending agents, preserving agents, antioxidants, anti-irritants, chelating agents, emulsion stabilizers, film formers, gelling agents, odor masking agents, resins, hydrocolloids, solvents, solubilizers, neutralizing agents, permeation enhancers, pigments, quaternary ammonium compounds, refatting agents. and superfatting agents, ointment, cream or oil bases, silicone derivatives, stabilizers, sterilants, blowing agents, drying agents, opacifiers, thickeners, waxes, plasticizers, white oil.
  • the active ingredients may be mixed or diluted with a suitable excipient (excipient).
  • Excipients may be solid, semi-solid or liquid materials which may serve as a vehicle, carrier or medium for the active ingredient. If desired, the admixing of further auxiliaries takes place in the manner known to the person skilled in the art.
  • the polymers and dispersions are suitable as auxiliaries in pharmacy, preferably as or in coating agent (s) or binder (s) for solid dosage forms. They can also be used in creams and as tablet coatings and tablet binders.
  • the agents according to the invention are cosmetic agents for the care and protection of the skin and hair, nail care preparations or preparations for decorative cosmetics.
  • Suitable skin cosmetic agents are e.g. Face lotions, face masks, deodorants and other cosmetic lotions.
  • Means for use in decorative cosmetics include, for example, masking pens, theatrical paints, mascara and eye shadows, lipsticks, jalallows, eyeliners, blushes, powders and eyebrow pencils.
  • the keratin-binding effector molecules according to the invention or produced according to the inventive method can be used in Nose Strips for pore cleansing, in Antiakneschn, repellents, shaving, After and Pre Shave care products, After Sun care products, hair removal agents, hair dyes, Intimate care products, foot care products and in the baby care.
  • the skin care compositions according to the invention are in particular W / O or O / W skin creams, day and night creams, eye creams, face creams, anti-wrinkle creams, sunscreen creams, moisturizing creams, bleaching creams, self-tanning creams, vitamin creams, skin lotions, skin lotions and moisturizing lotions.
  • Skin-cosmetic and dermatological compositions according to the invention may further contain, as protection against oxidative processes and the associated aging processes or damage to the skin and / or hair, in addition to the keratin-binding effector molecule prepared according to the invention or according to the inventive method, a radical-decomposing active ingredient these are preferably the substances described in the patent applications WO / 0207698 and WO / 03059312, the contents of which are hereby incorporated by reference, preferably the boron-containing compounds described there, which reduce peroxides or hydroperoxides to the corresponding alcohols without formation of radical subsequent stages can. Furthermore, sterically hindered amines according to the general formula 3 can be used for this purpose,
  • radical Z has the following meaning: H, C1-C22 alkyl group, preferably C1-C12 alkyl group such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec. butyl, tert. Butyl, pentyl, isopentyl, neopentyl, tert.
  • Cio-aryl group such as phenyl and naphthyl, wherein the phenyl radical may be substituted by Ci to C4 alkyl radicals may, Ce to Cio-O-aryl group which may be substituted by a C1-C22 alkyl or Ci-C22-alkoxyl group, preferably with a C1-C12 alkyl or Ci-Ci2-alkoxyl group as described above, substituted.
  • sterically hindered amines 3-dodecyl-N- (2,2,6,6-tetramethyl-4-piperidinyl) succinimide, 3-dodecyl-N- (1, 2,2,6,6-penta -methyl-4-piperidinyl) succinimide, 3-octyl-N- (2,2,6,6-tetramethyl-4-piperidinyl) succinimide, 3-octyl-N- (1, 2,2,6,6-pentamethyl 4-piperidinyl) succinimide, 3-octenyl-N- (2,2,6,6-tetramethyl-4-piperidinyl) succinimide, 3-octenyl-N- (1, 2,2,6,6-pentamethyl-4 piperidinyl) succinimide and / or
  • Uvinul®5050H in a proportion of 0.001 to 1 weight percent (wt .-%), preferably 0.01 to 0.1 wt .-%, 0.1 to 1 wt .-% based on the total weight of the composition.
  • the skin cosmetic preparations may contain, in addition to the abovementioned compounds of the invention and suitable carriers, other active ingredients and adjuvants customary in skin cosmetics, as described above. These preferably include emulsifiers, preservatives, perfume oils, cosmetic active ingredients such as phytantriol, vitamins A, E and C, retinol, bisabolol, panthenol, light stabilizers, bleaching agents, colorants, tinting agents, tanning agents, collagen, protein hydrolysates, stabilizers, pH regulators, dyes , Salts, thickeners, gel formers, bodying agents, silicones, humectants, moisturizers and / or other customary additives.
  • emulsifiers emulsifiers, preservatives, perfume oils, cosmetic active ingredients such as phytantriol, vitamins A, E and C, retinol, bisabolol, panthenol, light stabilizers, bleaching agents, colorants, tinting agents, tanning agents,
  • Preferred oil and fat components of the skin cosmetic and dermocosmetic agents are the aforementioned mineral and synthetic oils, e.g. Paraffins, silicone oils and aliphatic hydrocarbons having more than 8 carbon atoms, animal and vegetable oils, such as e.g. Sunflower oil, coconut oil, avocado oil, olive oil, lanolin, or waxes, fatty acids, fatty acid esters, e.g. Triglycerides of C6-C30 fatty acids, wax esters, e.g. Jojoba oil, fatty alcohols, petrolatum, hydrogenated lanolin and acetylated lanolin, and mixtures thereof.
  • mineral and synthetic oils e.g. Paraffins, silicone oils and aliphatic hydrocarbons having more than 8 carbon atoms
  • animal and vegetable oils such as e.g. Sunflower oil, coconut oil, avocado oil, olive oil, lanolin, or waxes, fatty acids, fatty acid esters, e.g. Triglycerides of C6
  • the skin cosmetic and dermocosmetic preparations may additionally contain conditioning substances based on silicone compounds.
  • Suitable silicone compounds are, for example, polyalkylsiloxanes, polyarylsiloxanes, polyarylalkylsiloxanes, polyethersiloxanes or silicone resins.
  • the preparation of the cosmetic or dermocosmetic preparations is carried out according to customary methods known to the person skilled in the art.
  • the cosmetic and dermocosmetic agents are preferably in the form of emulsions, in particular as water-in-oil (W / O) or oil-in-water (O / W) emulsions.
  • formulations for example, gels, oils, oleogels, multiple emulsions, for example in the form of W / O / W or O / W / O emulsions, anhydrous ointments, etc.
  • emulsifier-free formulations such as hydrodispersions, hydrogels or a Pickering emulsion are advantageous embodiments.
  • Emulsions are prepared by known methods.
  • the emulsions contain, in addition to at least one keratin-binding effector molecule, as a rule, customary constituents, such as fatty alcohols, fatty acid esters and especially fatty acid triglycerides, fatty acids, lanolin and derivatives thereof, natural or synthetic oils or waxes and emulsifiers in the presence of water.
  • a suitable emulsion as W / O emulsion for example for a skin cream etc., generally contains an aqueous phase which is emulsified by means of a suitable emulsifier system in an oil or fat phase. To provide the aqueous phase, a polyelectrolyte complex can be used.
  • Preferred fat components which may be included in the fat phase of the emulsions are: hydrocarbon oils such as paraffin oil, purcellin oil, perhydrosqualene and solutions of microcrystalline waxes in these oils; animal or vegetable oils, such as sweet almond oil, avocado oil, calophylum, lanolin and derivatives thereof, castor oil, sesame oil, olive oil, jojoba oil, karite oil, hoplostethus oil, mineral oils, their distillation start their under atmospheric pressure at about 250 0 C and Distillation end point at 410 0 C, such as Vaselineöl, esters of saturated or unsaturated fatty acids, such as alkyl myristates, for example i-propyl, butyl or Cetylmyristat, hexadecyl stearate, ethyl or i-propyl palmitate, octanoic or Decankladriglyceride and Cetylricinoleat.
  • hydrocarbon oils such as par
  • the fatty phase may also contain silicone oils which are soluble in other oils, such as dimethylpolysiloxane, methylphenylpolysiloxane and the silicone glycol copolymer, fatty acids and fatty alcohols.
  • silicone oils which are soluble in other oils, such as dimethylpolysiloxane, methylphenylpolysiloxane and the silicone glycol copolymer, fatty acids and fatty alcohols.
  • the skin care agents may also contain waxes, e.g. Carnauba wax, candililla wax, beeswax, microcrystalline wax, ozokerite wax and Ca, Mg and Al oleates, myristates, linoleates and stearates.
  • waxes e.g. Carnauba wax, candililla wax, beeswax, microcrystalline wax, ozokerite wax and Ca, Mg and Al oleates, myristates, linoleates and stearates.
  • an emulsion of the invention may be present as O / W emulsion.
  • Such an emulsion usually contains an oil phase, emulsifiers that stabilize the oil phase in the water phase, and an aqueous phase that is usually thickened.
  • Suitable emulsifiers are preferably O / W emulsifiers, such as polyglycerol esters, sorbitan esters or partially esterified glycerides.
  • the agents according to the invention are a light scent agent, a shower gel, a shampoo formulation or a bath preparation, light protection preparations being particularly preferred.
  • Such formulations comprise at least one keratin-binding effector molecule according to the invention or prepared according to the inventive process, and usually anionic surfactants as base surfactants and amphoteric and / or nonionic surfactants as cosurfactants.
  • Other suitable active ingredients and / or auxiliaries are generally selected from lipids, perfume oils, dyes, organic acids, preservatives and antioxidants, as well as thickeners / gel formers, skin conditioners and moisturizers.
  • These formulations preferably contain from 2 to 50% by weight, preferably from 5 to 40% by weight, particularly preferably from 8 to 30% by weight of surfactants, based on the total weight of the formulation.
  • Suitable anionic surfactants are, for example, alkyl sulfates, alkyl ether sulfates, alkyl sulfonates, alkylaryl sulfonates, alkyl succinates, alkyl sulfosuccinates, N-alkoyl sarcosinates, acyl taurates, acyl isothionates, alkyl phosphates, alkyl ether phosphates, alkyl ether carboxylates, alpha-olefin sulfonates, especially the alkali and alkaline earth metal salts, e.g. Sodium, potassium, magnesium, calcium, as well as ammonium and triethanolamine salts.
  • the alkyl ether sulfates, alkyl ether phosphates and alkyl ether carboxylates can have between 1 to 10 ethylene oxide or propylene oxide units, preferably 1 to 3 ethylene oxide units in the molecule.
  • Suitable amphoteric surfactants are e.g. Alkylbetaines, alkylamidopropylbetaines, alkylsulfobetaines, alkylglycnates, alkylcarboxyglycinates, alkylamphoacetates or -propionates, alkylamphodiacetates or -dipropionates.
  • cocodimethylsulfopropyl betaine cocodimethylsulfopropyl betaine, lauryl betaine, cocamidopropyl betaine or sodium cocamphopropionate can be used.
  • Suitable nonionic surfactants are, for example, the reaction products of aliphatic alcohols or alkylphenols having 6 to 20 C atoms in the alkyl chain, which may be linear or branched, with ethylene oxide and / or propylene oxide.
  • the amount of alkylene oxide is about 6 to 60 moles per mole of alcohol.
  • alkylamine oxides, mono- or dialkylalkanolamides, fatty acid esters of polyethylene glycols, ethoxylated fatty acid amides, alkylpolyglycosides or sorbitan ether esters are also suitable.
  • washing, showering and bathing preparations may contain conventional cationic surfactants, e.g. quaternary ammonium compounds, for example cetyltrimethylammonium chloride.
  • conventional cationic surfactants e.g. quaternary ammonium compounds, for example cetyltrimethylammonium chloride.
  • shower gel / shampoo formulations may contain thickeners, e.g. Common salt, PEG-55, propylene glycol oleate, PEG-120 methyl glucose dioleate and others, as well as preservatives, other active ingredients and auxiliaries and water.
  • thickeners e.g. Common salt, PEG-55, propylene glycol oleate, PEG-120 methyl glucose dioleate and others, as well as preservatives, other active ingredients and auxiliaries and water.
  • the dermocosmetics according to the invention are hair treatment agents.
  • the hair treatment compositions according to the invention are in the form of a mousse, hair mousse, hair gel, shampoos, hair sprays, hair mousse, top fluids, permanent wetting, hair dyeing and bleaching or hot oil treatments.
  • the hair cosmetic preparations can be applied as (aerosol) spray, (aerosol) foam, gel, gel spray, cream, lotion or wax.
  • Hairsprays include both aerosol sprays and pump sprays without propellant gas.
  • Hair foams include both aerosol foams and pump foams without propellant gas.
  • Hair sprays and hair foams preferably comprise predominantly or exclusively water-soluble or water-dispersible components.
  • the compounds used in the hair sprays and hair foams according to the invention are water-dispersible, they can be used in the form of aqueous microdispersions with particle diameters of usually from 1 to 350 nm, preferably from 1 to 250 nm.
  • the solids contents of these preparations are usually in a range of about 0.5 to 20 wt .-%.
  • these microdispersions do not require emulsifiers or surfactants for their stabilization.
  • ingredients are understood to include the additives customary in cosmetics, for example propellants, defoamers, surface-active compounds, i. Surfactants, emulsifiers, foaming agents and solubilizers.
  • the surface-active compounds used can be anionic, cationic, amphoteric or neutral.
  • Other common ingredients may also be e.g. Preservatives, perfume oils, opacifiers, active ingredients, UV filters, care agents such as panthenol, collagen, vitamins, protein hydrolysates, alpha and beta hydroxycarboxylic acids, stabilizers, pH regulators, dyes, viscosity regulators, gel formers, salts, humectants, moisturizers, complexing agents and other common additives.
  • this includes all known in cosmetics styling and conditioner polymers that can be used in combination with the keratin-binding effector molecules according to the invention, if very special properties are to be set.
  • Suitable conventional hair cosmetic polymers include, for example, the abovementioned cationic, anionic, neutral, nonionic and amphoteric polymers, to which reference is hereby made.
  • the preparations may additionally contain conditioning substances based on silicone compounds.
  • Suitable silicone compounds are, for example, polyalkylsiloxanes, polyarylsiloxanes, polyarylalkylsiloxanes, polyethersiloxanes, silicone resins or dimethicone copolyols (CTFA) and amino-functional silicone compounds such as amodimethicones (CTFA).
  • Blowing agents are the blowing agents commonly used for hairsprays or aerosol foams. Preference is given to mixtures of propane / butane, pentane, dimethyl ether, 1,1-difluoroethane (HFC-152a), carbon dioxide, nitrogen or compressed air.
  • emulsifiers all emulsifiers commonly used in hair foams can be used. Suitable emulsifiers may be nonionic, cationic or anionic or amphoteric. Examples of nonionic emulsifiers (INCI nomenclature) are Laurethe, for example Laureth-4; Cetethe, eg Cetheth-1, polyethylene glycol cetyl ether, ceteareth, eg cetheareth- 25, polyglycol fatty acid glycerides, hydroxylated lecithin, lactyl esters of fatty acids, alkyl polyglycosides.
  • cationic emulsifiers are cetyldimethyl-2-hydroxyethylammonium dihydrogen phosphate, cetyltrimonium chloride, cetyltrimmonium bromide, cocotrimonium methylsulfate, quaternium-1 to x (INCI).
  • Anionic emulsifiers may, for example, be selected from the group of alkyl sulfates, alkyl ether sulfates, alkyl sulfonates, alkylaryl sulfonates, alkyl succinates, alkyl sulfosuccinates, N-alkoyl sarcosinates, acyl taurates, acyl isethionates, alkyl phosphates, alkyl ether phosphates, alkyl ether carboxylates, alpha-olefin sulfonates, in particular the alkali metal and alkaline earth metal salts , eg Sodium, potassium, magnesium, calcium, as well as ammonium and triethanolamine salts.
  • the alkyl ether sulfates, alkyl ether phosphates and alkyl ether carboxylates can have between 1 to 10 ethylene oxide or propylene oxide units, preferably 1 to 3 ethylene oxide
  • gel formers all gel formers customary in cosmetics can be used. These include lightly crosslinked polyacrylic acid, for example carbomer (INCI), cellulose derivatives, e.g. Hydroxypropyl cellulose, hydroxyethyl cellulose, cationic modified celluloses, polysaccharides, e.g.
  • Xanthan gum caprylic / capric triglyceride, sodium acrylate copolymers, polyquaternium-32 (and) paraffin liquidum (INCI), sodium acrylate copolymers (and) paraffin liquidum (and) PPG-1 trideceth-6, acrylamidopropyltrimonium chloride / acrylamide copolymers, Steareth-10-allyl ether, acrylate copolymers, polyquaternium-37 (and) paraffin liquidum (and) PPG-1 trideceth-6, polyquaternium 37 (and) propylene glycol dicaprate dicaprylate (and) PPG-1 trideceth-6, polyquaternium-7, polyquaternium 44th
  • Suitable anionic surfactants are, for example, alkyl sulfates, alkyl ether sulfates, alkyl sulfonates, alkylaryl sulfonates, alkyl succinates, alkyl sulfosuccinates, N-alkoyl sarcosinates, acyl taurates, acyl isothionates, alkyl phosphates, alkyl ether phosphates, alkyl ether carboxylates, alpha-olefin sulfonates, especially the alkali and alkaline earth metal salts, e.g. Sodium, potassium, magnesium, calcium, as well as ammonium and triethanolamine salts.
  • the alkyl ether sulfates, alkyl ether phosphates and alkyl ether carboxylates can have between 1 to 10 ethylene oxide or propylene oxide units, preferably 1 to 3 ethylene oxide units in the molecule.
  • Suitable examples are sodium lauryl sulfate, ammonium lauryl sulfate, sodium lauryl ether sulfate, ammonium lauryl ether sulfate, sodium lauroyl sarcosinate, sodium oleyl succinate, ammonium lauryl sulfosuccinate, sodium dodecyl benzene sulfonate, triethanolamine dodecyl benzene sulfonate.
  • Suitable amphoteric surfactants are, for example, alkylbetaines, alkylamidopropylbetaines, alkylsulfobetaines, alkylglycinates, alkylcarboxyglycinates, alkylamphoacetates or -propionates, alkylamphodiacetates or -dipropionates.
  • cocodimethylsulfopropyl betaine, lauryl betaine, cocamidopropyl betaine or sodium cocamphopropionate can be used.
  • Suitable nonionic surfactants are, for example, the reaction products of aliphatic alcohols or alkylphenols having 6 to 20 C atoms in the alkyl chain, which may be linear or branched, with ethylene oxide and / or propylene oxide. The amount of alkylene oxide is about 6 to 60 moles per mole of alcohol.
  • alkylamine oxides, mono- or dialkylalkanolamides, fatty acid esters of polyethylene glycols, alkyl polyglycosides or sorbitan ether esters are also suitable.
  • the shampoo formulations may contain conventional cationic surfactants, e.g. quaternary ammonium compounds, for example cetyltrimethylammonium chloride.
  • conventional cationic surfactants e.g. quaternary ammonium compounds, for example cetyltrimethylammonium chloride.
  • customary conditioning agents can be used in combination with the keratin-binding effector molecules according to the invention to achieve certain effects.
  • cationic polymers with the name Polyquaternium according to INCI, in particular copolymers of vinylpyrrolidone / N-vinylimidazolium salts (Luviquat FC, HM, Luviquat MS, Luviquat Care), copolymers of N-vinylpyrrolidone / dimethylaminoethyl methacrylate, quaternized with diethyl sulfate (Luviquat D PQ 11), copolymers of N-vinylcaprolactam / N-vinylpyrrolidone / N-vinylimidazolium salts (Luviquat D Hold), cationic cellulose derivatives (Polyquaternium-4 and -10), acrylamide copolymers (Polyquaternium-7).
  • protein hydrolysates can be used, as well as conditioning substances based on silicone compounds, for example polyalkylsiloxanes, polyarylsiloxanes, polyarylalkylsiloxanes, polyethersiloxanes or silicone resins.
  • silicone compounds for example polyalkylsiloxanes, polyarylsiloxanes, polyarylalkylsiloxanes, polyethersiloxanes or silicone resins.
  • suitable silicone compounds are dimethicone copolyols (CTFA) and amino-functional silicone compounds such as amodimethicones (CTFA).
  • CTFA dimethicone copolyols
  • CTFA amino-functional silicone compounds
  • cationic guar derivatives such as guar hydroxypropyltrimium chloride (INCI).
  • this hair-cosmetic or skin-cosmetic preparation is for the care or protection of the skin or hair and is in the form of an emulsion, a dispersion, a suspension, an aqueous surfactant preparation, a milk, a lotion, a cream, a balm, an ointment, a gel, a granule, a powder, a stick preparation, such as a lipstick, a foam, an aerosol or a spray.
  • Suitable emulsions are oil-in-water emulsions and water-in-oil emulsions or microemulsions.
  • the hair cosmetic or skin cosmetic preparation is used for application on the skin (topically) or hair.
  • Topical preparations are to be understood as meaning those preparations which are suitable for applying the active ingredients to the skin in fine distribution and preferably in a form absorbable by the skin.
  • aqueous and aqueous-alcoholic solutions, sprays, foams, foam aerosols, ointments, aqueous gels, emulsions of the O / W or W / O type, microemulsions or cosmetic stick preparations are suitable.
  • the agent contains a carrier.
  • Preferred as a carrier is water, a gas, a water-based liquid, an oil, a gel, an emulsion or microemulsion, a dispersion or a mixture from that.
  • the mentioned carriers show good skin tolerance.
  • Particularly advantageous for topical preparations are aqueous gels, emulsions or microemulsions.
  • Nonionic surfactants, zwitterionic surfactants, ampholytic surfactants or anionic emulsifiers can be used as emulsifiers.
  • the emulsifiers may be present in the composition according to the invention in amounts of 0.1 to 10, preferably 1 to 5 wt .-%, based on the composition.
  • a surfactant of at least one of the following groups may be used:
  • Polyglycerol polyricinoleate polyglycerol poly-12-hydroxystearate or polyglycerol dimerate. Also suitable are mixtures of compounds of several of these classes of substances; Addition products of 2 to 15 moles of ethylene oxide with castor oil and / or hydrogenated castor oil; Partial esters based on linear, branched, unsaturated or saturated C ⁇ / 22-fatty acids, ricinoleic acid and 12-hydroxystearic acid and glycerol, polyglycerol, pentaerythritol, dipentaerythritol, sugar alcohols (for example sorbitol), alkylglucosides (for example methylglucoside, butylglucoside, lauryl - glucoside) as well as polyglucosides (eg cellulose); Mono-, di- and trialkyl phosphates and mono-, di- and / or tri-PEG-alkyl phosphates and their salts;
  • zwitterionic surfactants can be used as emulsifiers.
  • Zwitterionic surfactants are those surface-active compounds which carry at least one quaternary ammonium group and at least one carboxylate or one sulfonate group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines, such as N-alkyl-N, N-dimethylammonium glycinates, for example cocoalkyldimethylammonium glycidate, N-acylamino-propyl-N, N-dimethylammonium glycidate, for example cocoacylaminopropyldimethylammonium glycinate, and 2-alkyl-3-ylcinate.
  • Carboxylmethyl-3-hydroxyethyl imidazolines having in each case 8 to 18 carbon atoms in the alkyl or acyl group, and the coco cylaminoethylhydroxyethyl carboxymethylglycinat.
  • Particularly preferred is the known under the CTFA name Cocamidopropyl Betaine fatty acid amide derivative.
  • suitable emulsifiers are ampholytic surfactants.
  • Ampholytic surfactants are to be understood as meaning those surface-active compounds which, apart from a C 1-6 -alkyl or -acyl group in the molecule, contain at least one free amino group and at least one -COOH or-SCbH group and are capable of forming internal salts.
  • ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylamino-butanoic acids, N-alkyliminodipropionic acids, N-hydroxyethyl-N-alkylamido-propylglycines, N-alkyltaurines, N-alkylsarcosines, 2-alkylaminopropionic acids and alkylaminoacetic acids each having about 8 to 18 C atoms in the alkyl group.
  • ampholytic surfactants are N-cocoalkylaminopropionate, cocoacylaminoethylaminopropionate and C 12 / is acylsarcosine.
  • quaternary emulsifiers are also suitable, those of the esterquat type, preferably methyl-quaternized difatty acid triethanolamine ester salts, being particularly preferred.
  • alkyl ether sulfates, monoglyceride sulfates, fatty acid sulfates, sulfosuccinates and / or ether carboxylic acids can be used as anionic emulsifiers.
  • silicone compounds can furthermore also be used, for example dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and amino, fatty acid, alcohol, polyether, epoxy, fluorine, alkyl and / or glycoside-modified silicone compounds which are both liquid at room temperature may be present as well as resinous.
  • the oil bodies may be present in the compositions according to the invention in amounts of from 1 to 90, preferably from 5 to 80, and in particular from 10 to 50,% by weight, based on the composition.
  • the invention relates to the keratin-binding effector proteins shown in the sequences SEQ ID No .: 168, 176, 182, 188, 194 and 200.
  • nucleic acid molecules according to SEQ ID No .: 167, 175, 181, 187, 193 and 199 and nucleic acid molecules which code for polypeptides, comprising at least one polypeptide according to SEQ ID No .: 168, 176, 182, 188, 194 and 200 sequences shown.
  • the present invention furthermore relates to DNA expression cassettes containing at least one nucleic acid molecule having a nucleic acid sequence which codes for a polypeptide comprising at least one polypeptide which is encoded by a nucleic acid molecule according to SEQ ID NOS: 167, 175, 181, 187, 193 or 199 sequence shown.
  • Preferred according to the invention are DNA expression cassettes containing a nucleic acid molecule with a nucleic acid sequence according to the sequence shown in SEQ ID No .: 167.
  • Such constructs according to the invention preferably comprise a promoter 5'-upstream of the respective coding sequence and a terminator sequence 3'-downstream and optionally further customary regulatory elements, in each case operatively linked to the coding sequence.
  • Regulatory elements include enhancers, targeting sequences, polyadenylation signals, selectable markers, amplification signals, origins of replication, and the like. Suitable regulatory sequences are for. As described in Goeddel, Gene Expression Technolgy: Methods in Enzymology 185, Academic Press, San Diego, CA (1990).
  • a preferred nucleic acid construct advantageously also contains one or more of the already mentioned “enhancer” sequences, functionally linked to the promoter, which allow increased expression of the nucleic acid sequence. Additional advantageous sequences can also be inserted at the 3 'end of the DNA sequences, such as further regulatory elements or terminators.
  • the nucleic acids of the invention may be contained in one or more copies in the construct.
  • the construct may also contain further markers, such as antibiotic resistances or genes that complement xanthropy, optionally for selection on the construct.
  • Advantageous regulatory sequences for the process according to the invention are, for example, in promoters such as cos, tac, trp, tet, trp tet, lpp, lac, lpp, laclq T7, T5, T3, gal, trc, ara, rhaP (rhaPBAD) SP6, lambda PR or imlambda P promoter, which are advantageously used in gram-negative bacteria.
  • Further advantageous regulatory sequences are contained, for example, in the gram-positive promoters amy and SP02, in the yeast or fungal promoters ADC1, MFalpha, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH.
  • the nucleic acid construct is advantageously expressed for expression in a host organism insert a vector, such as a plasmid or a phage, which allows for optimal expression of the genes in the host.
  • a vector such as a plasmid or a phage
  • all other vectors known to the person skilled in the art ie, z.
  • viruses such as SV40, CMV, baculovirus and adenovirus, transposons, IS elements, phasmids, cosmids, and linear or circular DNA, as well as the Agrobacterium system.
  • an expression cassette can be carried out by means of customary recombinant and cloning techniques known to the person skilled in the art, as described, for example, in Maniatis T, Fritsch EF and Sambrook J (1989) Molecular Cloning: A Laboratory Manual, ColD Spring Harbor Laboratory, ColD Spring Harbor (US Pat. NY), in Silhavy TJ, Berman ML and Enquist LW (1984) Experiments with Gene Fusions, ColD Spring Harbor Laboratory, ColD Spring Harbor (NY), in Ausubel FM et al. (1987) Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience.
  • sequences can also be positioned between the two sequences, for example having the function of a linker with certain restriction enzyme cleavage sites, a signal peptide or a protein anchor (for example His tag).
  • insertion of sequences may result in the expression of fusion proteins.
  • the expression cassette consisting of a linkage of promoter and nucleic acid sequence to be expressed, integrated in a vector and be inserted by, for example, transformation into the genome of a cell.
  • the expression cassette inhibited in a vector can also exist and be propagated extrachromosomally in a cell.
  • the nucleic acid sequences contained in the expression cassettes or vectors according to the invention can be functionally linked to further genetic control sequences in addition to a promoter.
  • the term "genetic control sequences" is to be understood broadly and means all those sequences which have an influence on the production or the function of the expression cassette according to the invention. Genetic control sequences, for example, modify transcription and translation in prokaryotic or eukaryotic organisms.
  • the expression cassettes according to the invention preferably comprise a promoter upstream of the respective transgenic nucleic acid sequence and a terminator sequence as an additional genetic control sequence 3'-downstream, and optionally further conventional regulatory elements, in each case functionally linked to the transgenic nucleic acid sequence to be expressed.
  • Genetic control sequences also include other promoters, promoter elements or minimal promoters that can modify the expression-controlling properties.
  • all natural promoters can be used with their regulatory sequences capable of directing, in the preferred organisms, gene expression of a nucleic acid molecule.
  • synthetic promoters can also be used to advantage.
  • Genetic control sequences also include the 5 'untranslated regions, introns or non-coding 3' region of genes. It has been shown that 5'-untranslated sequences can enhance the transient expression of heterologous genes.
  • the expression cassette may advantageously contain one or more so-called enhancer sequences functionally linked to the promoter, which allow increased transgenic expression of the nucleic acid sequence. Additional advantageous sequences may also be inserted at the 3 'end of the nucleic acid sequences to be transgenically expressed be like other regulatory elements or terminators.
  • the transgenic nucleic acid sequences to be expressed can be contained in one or more copies in the gene construct.
  • Control sequences are furthermore to be understood as meaning those which permit homologous recombination or insertion into the genome of a host organism or permit removal from the genome.
  • the natural promoter of a particular gene can be changed to a promoter with other properties.
  • an expression cassette and the vectors derived from it can contain further functional elements.
  • the term functional element is to be understood broadly and means all those elements which have an influence on the production, multiplication or function of the expression cassettes, vectors or transgenic organisms according to the invention.
  • functional element is to be understood broadly and means all those elements which have an influence on the production, multiplication or function of the expression cassettes, vectors or transgenic organisms according to the invention.
  • Selection markers In order to select successfully transformed cells, it is usually necessary to additionally introduce a selectable marker which confers resistance to a biocide (for example a herbicide), a metabolism inhibitor or an antibiotic to the successfully transformed cells.
  • a biocide for example a herbicide
  • a metabolism inhibitor for example an antibiotic
  • Selection markers confer e.g. a resistance to a metabolism inhibitor such as 2-deoxyglucose-6-phosphate (WO 98/45456), antibiotics or biocides, preferably herbicides, such as kanamycin, G 418, bleomycin, hygromycin or kanamycin etc.
  • a selection marker is the aasa gene conferring resistance to the antibiotic apectinomycin, streptomycin phosphotransferase (SPT)
  • a gene conferring resistance to streptomycin the neomycin phosphotransferase (NPTII) gene conferring resistance to kanamycin or geneticin, the hygromycin phosphotransferase (HPT) gene conferring resistance to hygromycin, the acetolactate synthase gene (ALS) conferring resistance to Sulfonylurea herbicides confers (eg mutant ALS variants with eg the S4 and / or Hra mutation).
  • NPTII neomycin phosphotransferase
  • HPT hygromycin phosphotransferase
  • ALS acetolactate synthase gene conferring resistance to Sulfonylurea herbicides confers (eg mutant ALS variants with eg the S4 and / or Hra mutation).
  • Reporter genes which code for easily quantifiable proteins and ensure an evaluation of the transformation efficiency or of the expression site or time point via intrinsic color or enzyme activity. Very particularly preferred are reporter
  • Proteins such as the "green fluorescence protein" (GFP) (Sheen et al. (1995) Plant Journal 8 (5) 777-784; Haseloff et al., (1997) Proc Natl Acad., USA 94 (6): 2122-2127; Reichel et al. (1996) Proc Natl Acad. See, USA 93 (12): 5888-5893; Tian et al. (1997) Plant Cell Rep 16: 267-271; WO 97/41228; Chui WL et al. (1996) Curr Biol 6: 325-330; Leffel SM et al. (1997) Biotechniques.
  • GFP green fluorescence protein
  • Replication origins that ensure an increase of the expression cassettes or vectors according to the invention in, for example, E. coli.
  • examples include ORI (origin of DNA replication), the pBR322 ori or the P15A ori (Sambrook et al .: Molecular Cloning, A Laboratory Manual, 2 nd ed., Coed Spring Harbor Laboratory Press, Col d Spring Harbor, NY, 1989).
  • an expression cassette according to the invention into a cell or an organism can be advantageously realized by using vectors in which the expression cassettes are contained.
  • the expression cassette can be introduced into the vector (for example a plasmid) via a suitable restriction site.
  • the resulting plasmid is first introduced into E. coli. Correctly transformed E. coli are selected, grown and recovered the recombinant plasmid by methods familiar to those skilled in the art. Restriction analysis and sequencing may serve to verify the cloning step.
  • the present invention also relates to vectors comprising an expression cassette comprising a nucleic acid molecule having a nucleic acid sequence according to the sequence shown in SEQ ID No .: 167, 175, 181, 187, 193 or 199.
  • the nucleic acid construct is advantageously inserted into a host organism for expression in a vector, such as a plasmid or a phage, which allows optimal expression of the genes in the host.
  • a vector such as a plasmid or a phage
  • all other vectors known to the person skilled in the art ie, z.
  • viruses such as SV40, CMV, baculovirus and adenovirus, transposons, IS elements, phasmids, cosmids, and linear or circular DNA, as well as the Agrobacterium system to understand.
  • vectors can be autonomously replicated in the host organism or replicated chromosomally. These vectors represent a further embodiment of the invention.
  • Suitable plasmids are described, for example, in E. coli pLG338, pQE30, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pHS1, pKK223-3, pDHE19.2, pHS2, pPLc236, pMBL24, pLG200, pUR290, plN-III3-B1, tgt11 or pBdCI, in Streptomycespl J101, pIJ364, pIJ702 or pIJ361, in Bacillus pUB110, pC194, pWH320, pMM1520, pMM1525 or pBD214, in Corynebacterium pSA77 or pAJ667, in fungi pALS1, pLL
  • Nucleic acid constructs according to the invention or the vectors containing the nucleic acid molecules according to the invention can also advantageously be introduced into the microorganisms in the form of a linear DNA and integrated into the genome of the host organism via heterologous or homologous recombination.
  • This linear DNA can consist of a linearized vector such as a plasmid or only of the nucleic acid construct or of the nucleic acid according to the invention.
  • nucleic acid For optimal expression of heterologous genes in organisms, it is advantageous to prepare the nucleic acid To change sequences according to the specific "codon usage” used in the organism.
  • the "codon usage” can be easily determined by computer evaluations of other known genes of the organism concerned. (eg: Codon usage tabulated from the international DNA sequence databases: Status for the year 2000. Nakamura, Y., Gojobori, T. and Ikemura, T. (2000) Nucl. Acids Res. 28, 292., http: // /www.kazusa.or.jp/codon/index.html).
  • the recombinant nucleic acid construct or gene construct is advantageously inserted into a host-specific vector for expression in a suitable host organism, which enables optimal expression of the genes in the host.
  • Vectors are well known to those skilled in the art and can be found, for example, in "Cloning Vectors” (Pouweis P.H. et al., Eds. Elsevier, Amsterdam-New York-Oxford, 1985).
  • recombinant microorganisms can be produced, which are transformed, for example, with at least one vector according to the invention and can be used to produce the polypeptides according to the invention.
  • the above-described recombinant constructs according to the invention are introduced into a suitable host system and expressed.
  • a vector is prepared which contains at least a portion of a gene of the invention or a coding sequence, wherein optionally at least one amino acid deletion, - addition or substitution has been introduced to alter the sequence of the invention, for. B. functionally disrupted ("knockout" - vector).
  • the introduced sequence can, for.
  • homologues from a related microorganism may be derived from a mammalian, yeast or insect source.
  • the vector used for homologous recombination may be such that the endogenous gene is mutated or otherwise altered upon homologous recombination, but still encodes the functional protein (eg, the upstream regulatory region may be altered such that expression the endogenous protein is changed).
  • the altered portion of the gene of the invention is in the homologous recombination vector.
  • suitable vectors for homologous recombination is e.g. As described in Thomas, K.R. and Capecchi, M.R. (1987) Cell 51: 503.
  • prokaryotic including archaea
  • eukaryotic organisms are suitable as transgenic, recombinant host organisms for the nucleic acid or the nucleic acid construct according to the invention.
  • bacteria including halobacteria and methanococci, fungi, insect cells, plant cells and mammalian cells.
  • microorganisms such as bacteria, fungi or yeast are used as host organisms.
  • fungi Gram-positive or Gram-negative bacteria, preferably bacteria of the families Enterobacteriaceae, Pseudomonadaceae, Rhizobiaceae, Streptomycetaceae or Nocardiaceae, particularly preferably bacteria of the genera Escherichia, Pseudomonas, Streptomyces, Nocardia, Burkholderia, Salmonella, Agrobacterium or Rhodococcus. Most preferred are Escherichia coli, Bacillus subtilis, Badllus.
  • the organisms used to produce the keratin-binding effector proteins of the invention are grown or cultured in a manner known to those skilled in the art, depending on the host organism.
  • Microorganisms are usually in a liquid medium containing a carbon source usually in the form of sugars, a nitrogen source usually in the form of organic nitrogen sources such as yeast extract or salts such as ammonium sulfate, trace elements such as iron, manganese, magnesium salts and optionally vitamins, at temperatures between 0 ° C and 100 ° C, preferably between 10 ° C to 60 ° C attracted under oxygen fumigation.
  • the pH of the nutrient fluid can be kept at a fixed value, that is regulated during the cultivation or not.
  • the cultivation can be done batchwise, semi-batchwise or continuously.
  • Nutrients can be presented at the beginning of the fermentation or fed in semi-continuously or continuously.
  • the enzymes may be isolated from the organisms by the method described in the Examples or used as crude extract for the reaction.
  • the polypeptides can thus also be produced on an industrial scale, if desired.
  • the recombinant microorganism can be cultured and fermented by known methods. Bacteria can be propagated for example in TB or LB medium and at a temperature of 20 0 C to 40 0 C and a pH of 6 to 9. Specifically, suitable culturing conditions are described, for example, in T. Maniatis, EF Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, Colard Spring Harbor Laboratory, ColD Spring Harbor, NY (1989).
  • the cells are then disrupted if the polypeptides are not secreted into the culture medium and the product recovered from the lysate by known protein isolation techniques.
  • the cells can optionally by high-frequency ultrasound, by high pressure, such as. B. in a French pressure cell, by osmolysis, by the action of detergents, lytic enzymes or organic solvents, by homogenizers or by combining several of the listed methods are digested.
  • Purification of the polypeptides may be accomplished by known chromatographic techniques such as molecular sieve chromatography (gel filtration) such as Q-sepharose chromatography, ion exchange chromatography and hydrophobic chromatography, as well as other conventional techniques such as ultrafiltration, crystallization, salting out, dialysis and native gel electrophoresis - rese. Suitable methods are described, for example, in Cooper, F.G., Biochemische Harvey Méen, Verlag Water de Gruyter, Berlin, New York or in Scopes, R., Protein Purification, Springer Verlag, New York, Heidelberg, Berlin.
  • Such suitable modifications are, for example, acting as anchors- de so-called "tags" such.
  • tags such as the modification or epitope known as hexa-histidine anchors, which can be recognized as antigens of antibodies (described, for example, Harlow, E. and Lane, D., 1988, Antibodies: A Laboratory Manual, Col Spring Harbor (NY) Press).
  • Other suitable tags include HA, calmodulin BD, GST, MBD; Chitin-BD, Steptavidin-BD-Avi-Tag, Flag-Tag, T7 etc.
  • These anchors can be used to attach the proteins to a solid support, such as.
  • As a polymer matrix serve, which may be filled for example in a chromatography column, or may be used on a microtiter plate or other carrier. The corresponding purification protocols are available from the commercial affinity tag providers.
  • the keratin-binding effector proteins of the invention possess both in their fused form, i. together with the fusion partner portion, as well as in isolated form, the desirable properties of keratin-binding proteins. It is therefore possible to use the proteins according to the invention both as fusion proteins and after cleavage and separation of the fusion partner as "pure" keratin-binding proteins.
  • a potential cleavage site (specific recognition site for proteases) into the fusion protein between the keratin-binding protein part and the fusion partner part.
  • Suitable cleavage sites are, in particular, those peptide sequences which are otherwise found neither in the keratin-binding protein part nor in the fusion partner part, which can be easily determined with bioinformatic tools.
  • Particularly suitable are, for example, BrCN cleavage on methionine, or protease-mediated cleavage with factor Xa, Enteroki nose, thrombin, TEV cleavage (Tobacco etch virus protease).
  • the present invention relates to transgenic cells containing v) at least one of the abovementioned vectors, or w) at least one of the abovementioned expression cassettes, or x) at least one of the abovementioned nucleic acid molecules coding for a polypeptide comprising at least one polypeptide, which is encoded by a nucleic acid molecule according to the sequence shown in SEQ ID No .: 167, 175, 181, 187, 193 or 199.
  • the cells (see above) or organisms (see above) are preferably transgenic cells or organisms which have at least one nucleic acid molecule as shown in SEQ ID Nos .: 167, 175, 181, 187, 193 or 199 Sequence were transformed
  • transgenic organisms are Escherichia coli, Bacillus subtilis, Bacillus. megaterium, Aspergillus oryzea, Aspergillus nidulans, Aspergillus niger, Pichia pastoris, Pseudomonas spe ⁇ , Lactobacilli, Hansenula polymorpha, Trichoderma reesei, and SF9 cells (or related cells).
  • JUP junction plakoglobin
  • transcript variant 2 ACCESSION nucleic acid NM_021991
  • JUP Homo sapiens junction plakoglobin
  • JUP transcript variant 2
  • ACCESSION protein NM_021992 Nucleic acid Mus musculus, plakoglobin
  • gamma-catenin ACCESSION NM_010593 Mus musculus protein, plakoglobin
  • gamma-catenin Nucleic acid Rattus norvegicus gamma-catenin (plakoglobin)
  • ACCESSION NM_031047 Protein Rattus norvegicus gamma-catenin (plakoglobin)
  • ACCESSION NM_031048 Nucleic acid Danio rerio armadillo protein family
  • plakoglobin ACCESSION NM_131177 Protein Danio rerio armadillo protein family
  • plakoglobin Nucleic acid Xenopus tropicalis junction plakoglobin, ACCESSION NM_131178 Nucleic acid
  • ACCESSION BC094116 Nucleic acid Bos taurus junction plakoglobin, ACCESSION NM_001004024 Protein Bos taurus junction plakoglobin, ACCESSION NM_001004025 Nucleic acid Sus scrofa plakoglobin, ACCESSION NM_214323 Protein Sus scrofa plakoglobin, ACCESSION NM_214324 Nucleic acid Danio rerio junction plakoglobin, ACCESSION BC058305 Protein Danio rerio junction plakoglobin, ACCESSION BC058306
  • TRHY Nucleic Acid Human Trichohyalin
  • TRHY Protein human trichohyalin
  • SPRR2B small proline-rich protein 2B
  • SPRR2B small proline-rich protein 2B
  • EPPK1 Nucleic acid Homo sapiens epiplakin 1
  • EPPK1 Protein Homo sapiens epiplakin 1
  • Nucleic acid nucleic acid molecule (SEQ ID No .: 147) coding for the KBD-B protein.
  • CBP carotenoid binding protein
  • nucleic acid sion no. NP_418228 (Accession No. EG 1103)
  • Attacin insect antibacterial protein from Bombyx mori ACCESSION S78369
  • Chimeric nucleic acid molecule consisting of nucleic acid molecule (SEQ ID No .: 171) coding for the CBP protein (SEQ ID No.:172) fused to the nucleic acid molecule (SEQ ID No .: 165) coding for the KBD-B protein (SEQ ID ,
  • Example 1 Expression vectors and production strains
  • KBD keratin-binding domains
  • promoters e.g., IPTG-inducible, rhamnose-inducible, arabinose-inducible, methanol-inducible, constitutive promoters, etc.
  • constructs were tested in which the KBD were expressed as fusion proteins (eg as a fusion with C16 spider silk protein [Huemmerich et al., 2004, Primary structure elements of spider dragline silks and their contribution to protein solubility; Biochemistry 43: 13604-13612].
  • C16 thioredoxin
  • eGFP YaaD
  • B.subtilis SWISS-PROT: P37527, PDX1
  • carotenoid binding protein [Bombyx mori, SWISS-PROT: Q8MYA9] (hereinafter also referred to as CBP), or Metal binding protein ZntA [E. coli, SWISS-PROT: P37617]).
  • CBP carotenoid binding protein
  • ZntA Metal binding protein ZntA [E. coli, SWISS-PROT: P37617]
  • the vector map of the IPTG-inducible vectors pQE30-KBD-B ( Figure 1), pLibO76 ( Figure 2), and pReeO17 ( Figure 4) and pLibO72 ( Figure 5) is exemplified.
  • KBD-C can also be used.
  • KBD expression in B. megaterium was analogous to: Barg, H., Malten, M. & Jahn, D. (2005). Protein and vitamin production in Bacillus megaterium. Methods in Biotechnology-Micobial Products and Biotransformations (Barredo, J.-L., Ed, 205-224).
  • Fungal production strains also include Pichia pastoris (eg GS115 and KM71 [both Invitrogen] and others) and Aspergillus nidulans (eg RMS011 [Stringer, MA, Dean, RA, Sewall, TC, Timberlake, WE (1991) Rodletless, a new Aspergillus developmental mutant induced by direct gene activation. Genes Dev 5: 1161-1171] and SRF200 [Karos, M, Fischer, R (1999) Molecular characterization of HymA, to evolutionarily highly conserved and highly expressed protein of Aspergillus nidulans. Mol Genetics 260: 510-521], and others).
  • Other fungal production hosts such as Aspergillus niger (KBD expression analogous to EP 0635574A1 and / or WO 98/46772) could also be used for KBD expression.
  • Example 2 KBD expression in E. coli strains with IPTG inducible promoters, e.g. by the expression plasmid pQE30-KBD-B.
  • various production hosts e.g. various E. coli strains (e.g., XHO-GoId [Stratagene], BL21-CodonPlus [Stratagene], and others), Bacillus megaterium, Badllus subtilis, and the like.
  • Lambda maxiDNA (DNA lambda maxi kit, Qiagen company) was prepared from a cDNA library of human keratinocytes (BD Bioscience, Clontech, human keratinocyte cDNA, foreskin, primary culture in the log phase, vector: ⁇ gt11).
  • the PCR was carried out using the following oligonucleotides: Bag 43 (5 '- GGTCAGTTACGTGCAGCTGAAGG -3') (SEQ ID No .: 141) and bag 44 (5 'GCTGAGGCTGCCGGATCG -3') (SEQ ID No .: 142)
  • Oligo Bag 43 (192ng / ⁇ l) 0.5 ⁇ l
  • Oligo Bag 44 (181ng / ⁇ l) 0.5 ⁇ l
  • the resulting approximately 1102 bp PCR product was excised from an agarose gel and purified.
  • Bag 53 (5 '- CGCGCCTCGAGCCACATACTGGTCTGC -3') (SEQ ID No .: 143) and Bag 51 (5-GCTTAGCTGAGGCTGCCGGATCG -3 ') (SEQ ID No .: 144)
  • Oligo Bag 53 (345ng / ⁇ l) 0.5 ⁇ l
  • Oligo Bag 51 (157ng / ⁇ l) 0.5 ⁇ l
  • the resulting approximately 1073 bp PCR product was excised from an agarose gel, purified and cloned into the vector: pCR2.1-TOPO (Invitrogen).
  • the resulting vector pCR2.1-TOPO + KBD-B (5027 bp) was then transformed, amplified in E. coli, then cut with Xhol and EcoRI and the resulting KBD-B fragment in pBAD / HisA (Invitrogen, also cut with Xhol and E-coc).
  • the newly formed vector pBAD / HisA + KBD-B (5171 bp) was again cut with Sacl and Stul and the resulting KBD-B fragment was cloned into pQE30 (Qiagen, cut with Sacl and SmaI).
  • the resulting expression vector pQE30-KBD-B (4321 bp, see also Figure 1) was used for the following KBD-B expressions.
  • the KBD-B expressed by the vector pQE30-KBD-B in E. coli (SEQ ID No .: 4) additionally contained the amino acids MRGSHHHHHHSACEL at the N-terminus and the amino acids GVDLQPSLIS (SEQ ID No .: 166) at the C-terminus. ,
  • Precultures were inoculated from plate or glycerol culture with E. coli strains transformed with pQE30-KBD-B (e.g., XHO-GoId [Stratagene]). Depending on the size of the main culture was inoculated in a tube or a small flask with LB medium (about 1: 100).
  • the main culture was inoculated approximately 1: 100 with preculture, main culture: LB medium or suitable minimal medium with the respective antibiotics. Incubation at 250 rpm and 37 ° C.
  • the induction was carried out with 1 mM IPTG from an OD (600 nm) of 0.5. - The cells were centrifuged after 4 h induction.
  • Example 3 C16-KBD expression in E. coli strains with IPTG inducible promoters, e.g. through the expression plasmid pLib76
  • various production hosts were used, e.g. various E. coli strains (e.g., XHO-GoId [Stratagene], BL21-CodonPlus [Stratagene], and others), Bacillus megaterium, Bacillus subtilis, and the like.
  • E. coli strains e.g., XHO-GoId [Stratagene], BL21-CodonPlus [Stratagene], and others
  • Bacillus megaterium Bacillus subtilis, and the like.
  • Plasmid DNA of the vector pLib50 served as a template for a PCR with the oligonucleotides Lib201 (5 ' - CGTACTGCATGCGGCGGTACCGGAGGAACTGCACAAGAGCTC-
  • GAGCCACATACTGGTCTGCTCTTGC-3 ' (SEQ ID NO: 148) and Lib202 (5 ' - CTGCAGGTCGACCCCCTCCTGAACAGACATTTC-3 ' ) (SEQ ID NO: 149).
  • a Bsgl site was introduced into the fragment via the oligonucleotide Lib201.
  • the PCR were carried out in 50 ⁇ l reaction mixtures which were composed as follows:
  • the PCR reactions were carried out under the following cycling conditions:
  • Step 1 5 minutes 95 ° C (denaturation)
  • Step 2 60 seconds 95 0 C
  • Step 3 45 seconds 50 0 C (annealing)
  • Step 4 2 minutes 72 0 C (elongation) 30 cycles of steps 2-4
  • Step 5 10 minutes 72 0 C (post-elongation)
  • Step 6 4 0 C (Pause)
  • the resulting approximately 924 bp PCR product was excised from an agarose gel, purified and cloned into the vector: pCR2.1-TOPO (Invitrogen).
  • the resulting vector pLib58 was then transformed, amplified in E. coli, then cut with Sphl / SalI and the resulting KBD-B fragment in pQE30-KBD-B
  • This cloning produced a chimeric nucleic acid molecule (SEQ ID No .: 167) coding for the C16 protein (SEQ ID No .: 151) fused to the KBD-B protein (SEQ ID No.:166).
  • the ligation of the coding nucleic acid molecules results in a translation fusion of said proteins and, after translation, leads to a protein according to SEQ ID No.:168.
  • the resulting expression vector pLib76 (see also Figure 2) was used for the following C16-KBD-B expressions.
  • Precultures were inoculated from plate or glycerin culture with pLib76 transformed E. coli strains (e.g., XLIO-Gild [Stratagene]). Depending on the size of the main culture was inoculated in a tube or a small flask with LB medium (about 1: 100). Antibiotics were used depending on the strain used (for pLib76 ampicillin 100 ⁇ g / ml).
  • the main culture was inoculated approximately 1: 100 with preculture, main culture: LB medium or suitable minimal medium with the respective antibiotics. Incubation at 250 rpm and 37 ° C. The induction was carried out with 1 mM IPTG from an OD (600 nm) of 0.5. The cells were then incubated at 32 ° C and 250 rpm.
  • the cells were centrifuged off after 4 h of induction.
  • Figure 6 shows the expression of C16-KBD-B assayed by antibodies directed against the N-terminal His tag of the C16-KBD-B fusion, respectively directed against the KBD-B domain, in a Western blot were.
  • One protein of the same size was detected in each case. This proves that the protein expressed in E. coli actually consists of the C16 domain as well as the KBD B domain.
  • the IPTG concentrations used to induce expression produced comparable results.
  • various production hosts were used, e.g. various E. coli strains (e.g., XHO-GoId [Stratagene], BL21-CodonPlus [Stratagene], BLR (DE3) [Novagen's] and others), Badllus megaterium, Bacillus subtilis, and the like.
  • E. coli strains e.g., XHO-GoId [Stratagene], BL21-CodonPlus [Stratagene], BLR (DE3) [Novagen's] and others
  • Badllus megaterium e.g., Bacillus subtilis, and the like.
  • plasmid DNA of the KBD-B-DNA-sequence-containing vector pLib15 served as the template for a PCR with the oligonucleotides Lib230 (5 '- AGATCTCATCACCATCACCATCACGAGCCACATACT -3') (SEQ ID NO: 225) and Lib231 (5 '-AGATCTAGTTCCTCCGGTACCGCCGCTAATTAAGCTTGGCTGCAGGTC- S- (SEQ ID NO: 226)
  • the PCR was carried out in a 10 ⁇ l reaction mixture which was composed as follows:
  • Herculase polymerase 5 U / ⁇ l, Fa. Stratagene
  • H2O H2O
  • the PCR reaction was carried out under the following cycling conditions:
  • Step 1 5 minutes 95 ° C (denaturation)
  • Step 2 1 minute 95 0 C
  • Step 3 1 minute 60 0 C (annealing)
  • Step 4 1, 5 minutes 72 0 C (elongation)
  • Step 5 10 minutes 72 0 C (post-elongation)
  • Step 6 4 0 C (Pause)
  • the approximately 945 bp PCR product was excised from an agarose gel, purified and cloned into the vector pCR2.1-TOPO (Invitrogen).
  • the newly formed plasmid was named pLib77.
  • pLib77 was then transformed, amplified in E. coli, then cut with Bgl II and the resulting KBD-B fragment into the C16 sequence-containing plasmid pET21a (+) C16 (Hümmerich et al., 2004, Biochemistry 43: 13604-13612
  • the recipient vector was previously cut with BamHI.
  • This cloning produced a chimeric nucleic acid molecule (SEQ ID NO: 227) encoding the KBD-B protein (SEQ ID No .: 166) fused to the C16 protein (SEQ ID NO: 151).
  • the ligation of the coding nucleic acid molecules results in a translational fusion of said proteins and leads to a protein according to SEQ ID No.:228 after the transformation has taken place.
  • the resulting expression vector pLib78 (see also Fig. 11) was used for the following KBD-B-C16 expressions.
  • Precultures were from plate or glycerol culture with pLib78 transformed E. coli
  • Strain BLR (DE3) from the company Novagen. Depending on the size of the main culture was inoculated in a tube or a small flask with LB medium (about 1: 100). As an antibiotic, the vector corresponding to ampicillin 100 ug / ml was used. It was incubated at 250 rpm and 37 ° C. - The main culture was inoculated about 1: 100 with preculture
  • Main culture LB medium with ampicillin 100 ⁇ g / ml. Incubation at 250 rpm and 37 ° C. The induction was carried out with 100 ⁇ M IPTG from an OD (600 nm) of 0.5. The cells were then incubated for a further 3 hours. The cells were centrifuged off after 3 h of induction. - The same procedure was followed in fermenters, but at a much higher OD
  • Figure 12 shows the expression of KBD-B-C16 raised by antibodies directed against the T7 tag, the N-terminal His tag, and against the KBD B domain of the KBD-B-C16 fusion in a Western Blot was examined. One protein of the same size was detected in each case.
  • the purification of the protein was carried out as described in Example 11.
  • the purified fusion protein KBD-B-C16 had the expected relative molecular mass of about 82500. It could be detected with His-tagged antibodies, T7-tagged antibodies and antibodies directed against the KBD-B.
  • a hair binding test was performed (see Example 16). In this case, binding of the fusion protein to hair could be detected. Functionality of the C16 protein moiety in the KBD-B-C16 fusion protein was verified by preparation of microbead and film assembly forms (see example 22a for a method). The KBD-B-C16 fusion protein assembled into films and microbeads and behaved like the C16-KBD-B fusion protein.
  • Example 4 Carotenoid binding protein (CBP) -KBD expression in E. coli strains with IPTG inducible promoters, eg by the expression plasmid pReeO17
  • various production hosts were used, such as various E. coli strains (eg XLIO-GoId [company Stratagene], BL21-CodonPlus [company Stratagene], and others), Bacillus megaterium, Bacillus subtilis and others
  • the DNA of the B. mori CBP-encoding gene (SWISS-PROT: Q8MYA9) was synthetically prepared and ligated into a plasmid vector.
  • the resulting plasmid O51794pPCR-Script served as template for a PCR with the oligonucleotides
  • Lib199 (5 '- GAGCTCGCCGACTCTACGTCGAAAAGC-3') (SEQ ID NO .: 169) and Lib200 (5 '- GAGCTCAGAACCTCCGGTACCACCGATTTCGGCTCTGGCCTTCGCTTCGGC- CAC-3') (SEQ ID NO .: 170).
  • the PCR was performed in 100 ⁇ I reactions, which were composed as follows:
  • the PCR reactions were carried out under the following cycling conditions:
  • Step 1 5 minutes 95 0 C (denaturation)
  • Step 2 1 minute 95 0 C
  • Step 3 1 minute 58 0 C (annealing)
  • Step 4 1, 5 minutes 72 0 C (elongation)
  • the resulting approximately 918 bp PCR product was excised from an agarose gel, purified and cloned into the vector: pCR2.1-TOPO (Invitrogen).
  • the resulting vector pLib54 was subsequently transformed and amplified in E. coli.
  • the CBP gene was used in the next step with the primers
  • HReI (5 ' - AAAGCATGCGCCGACTCTACGTCGAAAAGCGCG-S ' ) (SEQ ID NO: 173) and HRe2 (5 ' - CCTTGAGCTCAGAACCTCCGGTACCACCGATT-3 ' ) (SEQ ID No .: 174) were amplified by PCR.
  • the fragment thus obtained (SEQ ID No .: 171) was cut with Sphl and Sacl and cloned into pQE30-KBD-B (see Example 2, also cut with Sphl and Sacl).
  • This cloning produced a chimeric nucleic acid molecule (SEQ ID No.:175) coding for the CBP protein (SEQ ID No.:172) fused to the KBD-B protein (SEQ ID No.:166).
  • the resulting expression vector pReeO17 ( Figure 4) thus contained the nucleic acid molecule (SEQ ID No.:175) coding for the CBP protein (SEQ ID No.:172) fused to the nucleic acid molecule (SEQ ID No .: 165). coding for the KBD-B protein (SEQ ID No .: 166).
  • the ligation of said nucleic acid molecules results in a translation fusion of said proteins and, after successful translation, results in a protein according to SEQ ID No.:176).
  • a further variant of the chimeric nucleic acid molecule having SEQ ID No.:175 was produced, in which the connection sequence encoding the two nucleic acids encoding the CBP protein (SEQ ID No .: 172) and the KBD protein B protein (SEQ ID NO: 166) was altered by targeted mutagenesis (Quick Change Site Directed Mutagenesis Kit, Stratagene). It was proceeded according to the manufacturer's instructions.
  • the oligonucleotides used were HRe22 (SEQ ID No: 229) and HRe23 (SEQ ID No: 230).
  • the template was pReeO17 ( Figure 4).
  • the expression vector pReeO23 thus obtained thus contained the nucleic acid molecule SEQ ID. No.:222, which encodes a fusion protein consisting of the CBP protein (SEQ ID No.:172) and the KBD-B protein (SEQ ID No: 166), where the protein which binds the two proteins Sequence is a mutagenized linker sequence (SEQ ID No: 224).
  • the ligation of said nucleic acid molecules results in a translational fusion of said proteins and, after translation, leads to a fusion protein according to SEQ ID No.:223, which is distinguished by a particular proteolytic stability in the production strain.
  • the resulting expression vector pReeO17 (see also Figure 4) and pReeO23 were used for the following CBP-KBD-B expressions.
  • Precultures were inoculated from plate or glycerol culture with pReeO17 or pReeO23 transformed E. coli strains. Depending on the size of the main culture, LB medium was inoculated in a tube or a small flask (about 1: 100). Antibiotics were used depending on the used strain (for pReeO17 with or pReeO23 transformed strains 100 ug / ml ampicillin) was at 250 rpm and incubated at 37 0 C.
  • the main culture was inoculated approximately 1: 100 with preculture, main culture: LB medium or suitable minimal medium with the respective antibiotics. Incubation at 250 rpm and
  • the induction was carried out with 1 mM IPTG from an OD (600 nm) of 5. The cells were then incubated at 32 ° C and 250rpm. The cells were centrifuged off after 4 h of induction. The purification of the protein was carried out as described in Example 11.
  • the purified fusion protein CBP-KBD had the expected relative molecular mass of about 70,000. It could be detected with His-tagged antibodies and antibodies directed against KBD.
  • Example 5 Metal-binding protein (ZntA) -KBD expression in E. coli strains with IPTG inducible promoters, e.g. through the expression plasmid pLib72
  • various production hosts were used, e.g. various E. coli strains (e.g., XHO-GoId [Stratagene], BL21-CodonPlus [Stratagene], and others), Bacillus megaterium, Bacillus subtilis, and the like.
  • E. coli strains e.g., XHO-GoId [Stratagene], BL21-CodonPlus [Stratagene], and others
  • Bacillus megaterium Bacillus subtilis, and the like.
  • E. coli DNA was used as template for PCR with the oligonucleotides Lib212 (5 '-GAGCTCTCGACTCCTGACAATCAC-S') (SEQ ID NO: 177) and Lib219 (5 '- GAGCTCGGTTCCTCCGGTACCGCCTCTCCTGCGCAACAATCTTAACG-S') (SEQ ID No: 178).
  • Lib212 5 '-GAGCTCTCGACTCCTGACAATCAC-S'
  • Lib219 5 '- GAGCTCGGTTCCTCCGGTACCGCCTCTCCTGCGCAACAATCTTAACG-S'
  • the resulting approximately 2223 bp PCR product was excised from an agarose gel, purified and cloned into the vector: pCR2.1-TOPO (Invitrogen).
  • the resulting vector pLib71 was subsequently transformed, amplified in E.
  • the resulting expression vector pLib72 ( Figure 5) thus contained a nucleic acid molecule (SEQ ID No.:179) coding for the ZntA protein (SEQ ID No.:180) fused to the nucleic acid molecule (SEQ ID No .: 165) for the KBD-B protein (SEQ ID No .: 166).
  • the ligation of said nucleic acid molecules results in a translation fusion of said proteins and, after successful translation, results in a protein according to SEQ ID No.:182.
  • the resulting expression vector pLib72 (see also Figure 5) was used for the following ZntA-KBD-B expressions.
  • the PCR was carried out in 50 ⁇ l of reactions which were composed as follows: 1 ⁇ l genom. DNA XHO-GoId (1, 7 ⁇ g) 1 ⁇ l dNTP mix (each 10 mM, Eppendorf) 5 ⁇ l 10 ⁇ Herculase buffer (Stratagene)
  • the PCR reactions were carried out under the following cycling conditions:
  • Step 1 5 minutes 95 ° C (denaturation)
  • Step 2 1 minute 95 0 C
  • Step 3 45 seconds 60 0 C (annealing)
  • Step 4 2 minutes 72 0 C (elongation)
  • Step 6 4 0 C (Pause)
  • E. coli strains e.g., XHO-GoId [Stratagene], BL21-CodonPlus [Stratagene], and others
  • Badllus megaterium Bacillus subtilis, and the like.
  • E. coli strains e.g., XHO-GoId [Stratagene], BL21-CodonPlus [Stratagene], and others
  • Badllus megaterium Bacillus subtilis
  • the thioredoxin fragment of interest from the vector pThioHisC was amplified by PCR (PCR reaction conditions analogous to Example 2).
  • PCR reaction conditions analogous to Example 2 the following oligonucleotides were used:
  • Bag 102 (5 '-GTAAGAATGCGGCCGCCTCCTGAACAGACATTTCTTTATTG-S') (SEQ ID No .: 183)
  • Bag 103 (5 '-GCAGATCTAGAGGATCGCATCACCATCACCATCACGGATCC-S') (SEQ ID No .: 184)
  • the amplified PCR product (SEQ ID No .: 185) was excised from an agarose gel, purified, cut with the restriction endonucleases NotI and BglII, and cloned into pQE30-KBD-B (see Example 2).
  • This cloning produced a chimeric nucleic acid molecule (SEQ ID No.:187) encoding the thioredoxin protein (SEQ ID No: 186) fused to KBD-B
  • the resulting expression vector thus contained a nucleic acid molecule (SEQ ID No.:185) coding for the thioredoxin protein (SEQ ID No.:186) fused to the nucleic acid molecule (SEQ ID No .: 165) coding for the KBD-B Protein (SEQ ID No: 166).
  • the ligation of said nucleic acid molecules results in a translational fusion of said proteins and leads, after transduction lation to a protein according to SEQ ID No.:188.
  • the resulting expression vector was used for the following thioredoxin KBD-B expressions.
  • Example 7 eGFP-KBD expression in E. coli strains with IPTG inducible promoters
  • various production hosts were used, e.g. various E. coli strains (e.g., XHO-GoId [Stratagene], BL21-CodonPlus [Stratagene], and others), Bacillus megaterium, Bacillus subtilis, and the like.
  • E. coli strains e.g., XHO-GoId [Stratagene], BL21-CodonPlus [Stratagene], and others
  • Bacillus megaterium Bacillus subtilis, and the like.
  • the eGFP fragment of interest from the vector pEGFP-1 was amplified by PCR (PCR reaction conditions analogous to Example 2).
  • PCR reaction conditions analogous to Example 2 the following oligonucleotides were used:
  • Bag 89 (5 '- GCGAGCTCGTGAGCAAGGGCGAGGAGC -3') Bag 90: (5 '- GCGAGCTCCTTGTACAGCTCGTCCATG -3')
  • the amplified PCR product (SEQ ID No .: 191) was excised from an agarose gel, purified, cut with the restriction endonuclease SacII and cloned into pQE30-KBD-B (see Example 2).
  • This cloning produced a chimeric nucleic acid molecule (SEQ ID No .: 193) encoding the eGFP protein (SEQ ID NO: 192) fused to the KBD-B protein (SEQ ID NO: 166).
  • the resulting expression vector thus contained a nucleic acid molecule (SEQ ID No .: 191) coding for the eGFP protein (SEQ ID No .: 191)
  • Example 8 YaaD-KBD expression in E. coli strains with IPTG inducible promoters
  • various production hosts were used, e.g. various E. coli strains (e.g., XHO-GoId [Stratagene], BL21-CodonPlus [Stratagene], and others), Bacillus megaterium, Bacillus subtilis, and the like.
  • E. coli strains e.g., XHO-GoId [Stratagene], BL21-CodonPlus [Stratagene], and others
  • Bacillus megaterium Bacillus subtilis, and the like.
  • the YaaD fragment of interest was selected from the vector pDX14 (OmniGene).
  • Bag 93 (5 '- GCGAGCTCGCTCAAACAGGTACTGAACG -3') (SEQ ID No .: 195)
  • bag 94 (5 '- GCGAGCTCCCAGCCGCGTTCTTGCATACG -3') (SEQ ID No .: 196)
  • the amplified PCR product (SEQ ID No .: 197) was excised from an agarose gel, purified and ligated into pCR2.1 TOPO (without restriction digestion). From the plasmid pCR2.1 TOPO-YaaD, the YaaD was excised with SacI and cloned into pQE30-KBD-B (see Example 2).
  • This cloning produced a chimeric nucleic acid molecule (SEQ ID NO: 199) encoding the yaaD protein (SEQ ID NO: 198) fused to the KBD-B protein (SEQ ID NO: 166).
  • the resulting expression vector thus contained a nucleic acid molecule (SEQ ID No.:197) coding for the yaaD protein (SEQ ID No.:198) fused to the nucleic acid molecule (SEQ ID No .: 165) coding for the KBD-B Protein (SEQ ID No: 166).
  • the ligation of said nucleic acid molecules results in a translational fusion of said proteins and, after translation, results in a protein according to SEQ ID No .: 200.
  • the resulting expression vector was used for the following yaaD-KBD-B expressions.
  • Example 9 Expression of KBD by Aspergillus nidulans strains using the inducible alcA promoter, e.g. by the expression plasmid pLib 19 (shake flask)
  • A. nidulans wild type strains were used, e.g. RMS011 or SRF200.
  • the expression of KBD-B by A. nidulans, transformed with pLib19 is described.
  • pLib19 For constructing pLib19, a 922 bp (SEQ ID No .: 152) large, KBD-B-encoding DNA fragment by PCR using the oligonucleotides Lib151 (5 ' -CACCATGCATCACCATCACCATCACGAGCCACATACTGGTCTGCT-S ' (SEQ ID No .: 154) and Lib152 (5 ' - GCTAATTAAGCTTGGCTGCA-3 ' (SEQ ID No .: 155) and the vector pQE30-KBD-B (Example 2, Figure 1) as a template amplified.
  • Lib151 5 ' -CACCATGCATCACCATCACCATCACGAGCCACATACTGGTCTGCT-S ' (SEQ ID No .: 154)
  • Lib152 5 ' - GCTAATTAAGCTTGGCTGCA-3 ' (SEQ ID No .: 155) and the vector pQE30-KBD-B (Exa
  • the PCR were carried out in 50 ⁇ l reaction mixtures which were composed as follows:
  • the PCR reactions were carried out under the following cycling conditions:
  • Step 1 5 minutes 95 0 C (denaturation)
  • Step 2 45 seconds 95 0 C
  • Step 3 45 seconds 53 0 C (annealing)
  • Step 4 2 minutes 72 0 C (elongation)
  • the PCR product was ligated into the vector pENTR / D (pENTR TM Directional TOPO ® Cloning Kit, version E, Invitrogen). The correct KBD-B amplification was checked by sequencing.
  • the recombination of the DNA fragment coding for KBD-B was carried out in the vector pMT-OvE (Toews MW, Warmbold J, Konzack S, Rischitor P, Veith D, Vienken K, Vinuesa C, Wei H, Fischer R, Establishment of mRFP1 as a fluorescent marker in Aspergillus nidulans and construction of expression vectors for high-throughput protein tagging using re-combination in vitro (GATEWAY) (2004) Curr Genet 45: 383-389) using the vector pMT-OvE (Toews MW, Warmbold J, Konzack S, Rischitor P, Veith D, Vienken K, Vinuesa C, Wei H, Fischer R, Establishment of mRFP1 as a fluorescent marker in Aspergillus nidulans and construction of expression vectors for high-throughput protein tagging using re-combination in vitro (
  • Protoplasts of the A. nidulans wild-type strains were transformed with the circular vector pLib19 (Yelton MM, Hamer JE, Timberlake WE, Transformation of Aspergillus nidulans by using a trpC plasmid., (1984) Proc Natl Acad Sci USA 81: 1479-1474 ). Analysis of the transformants was by PCR and Southern blot using chromosomal DNA.
  • the fungal mycelium was harvested by filtration, washed with distilled water, and transferred to flasks containing 100-500 mL of fresh minimal medium.
  • 0.1% fructose was used as the C source instead of glucose.
  • ethanol 1% final concentration
  • glycerol 50 mM
  • sodium acetate 50 mM
  • ethylamine or threonine was added to the medium to induce KBD expression.
  • the mentioned additives for expression induction are not limiting for the stress.
  • the main culture was incubated for a further 5-48 h at 200-250 rpm and 37 ° C.
  • the fungal mycelium was harvested at 1500-3000 x g for 5 min at room temperature and disrupted using a Menton Gaulin.
  • the KBD-B expressed in A. nidulans (SEQ ID No .: 152) (pLib19) contained in addition to the polypeptide sequence SEQ ID No .: 4 additionally at the N-terminus the amino acids MHHHHHH and at the C-terminus the amino acids GVDLQPSLISKGGRADPAFLYKVV- MIRLLTKPERKLLEGGPGTQLLFPLVRVNCALGVIMVIAVSCVKLLSAHNSTQHTSRKHKV.
  • Example 10 Cell disruption and inclusion body purification (pQE30-KBD-B).
  • Soluble expressed KBD or fusion protein-KBD could be used directly after cell disruption (eg by means of Menton-Gaulin) or purified chromatographically (see Example 11).
  • Insoluble KBD or fusion protein-KBD (eg in inclusion bodies) was purified as follows:
  • the digest was recentrifuged (15000g), the pellet added with 20mM phosphate, 500mM NaCl and 8M urea and stirred. (Release of inclusion bodies)
  • the pH of the supernatant was adjusted to 7.5. Thereafter, it was again centrifuged and the supernatant was applied to a Ni-chelate Sepharose column and purified as described in Example 6.
  • Example 1 1 Purification of keratin-binding domain B or fusion protein-KBD via Ni- chelate-Sepharose. Purification of the KBD or fusion protein-KBD could be purified chromatographically by the attached His-tag on a Ni column.
  • the material was packed in a column (e.g., diameter 2.6 cm, height 10 cm) and equilibrated with Buffer A + 4% Buffer B (equivalent to 20 mM imidazole).
  • the protein extract (see, e.g., cell digestion and inclusion body purification) was applied to the column at pH 7.5 via a Superloop ( ⁇ KTA system) (flow about 5 ml / min).
  • the eluate could be desalted (advantageous for samples to be concentrated).
  • the eluate was e.g. desalted over a Sephadex G25 medium column (Amersham Company). Thereafter, it was possible to concentrate, for example, an Amicon chamber (Stirred Ultrafiltration Cell, Millipore). be used.
  • Buffer A 20 mM sodium dihydrogen phosphate

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dermatology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Toxicology (AREA)
  • Microbiology (AREA)
  • Birds (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Peptides Or Proteins (AREA)
  • Cosmetics (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Die Erfindung betrifft chimäre keratinbindende Effektorproteine und deren Verwendung in Dermokosmetika.

Description

Chimäre keratinbindende Effektorproteine
Beschreibung
Die Erfindung betrifft chimäre keratinbindende Effektorproteine und deren Verwendung in Der- mokosmetika.
Vertebratenzellen enthalten Filamente, von denen eine Gruppe aus Keratinen aufgebaut ist. An diese Keratine, die auch in Haaren, Haut und Finger- und Fußnägeln vorkommen, binden spezi- fische Proteine wie beispielsweise Desmoplakin oder Plakophilin 1 mittels eines speziellen Sequenzmotivs, einer sogenannten keratinbindenden Domäne (Fontao L, Favre B, Riou S, Geerts D, Jaunin F, Saurat JH, Green KJ, Sonnenberg A, Borradori L., Interaction of the bullous pemphigoid antigen 1 (BP230) and desmoplakin with intermediate filaments is mediated by distinct sequences within their COOH terminus., Mol Biol Cell. 2003 May; 14(5): 1978-92. Epub 2003 Jan 26; Hopkinson SB, Jones JC, The N terminus of the transmembrane protein BP180 interacts with the N-terminal domain of BP230, thereby mediating keratin cytoskeleton anchorage to the cell surface at the site of the hemidesmosome, Mol Biol Cell. 2000 Jan;11 (1 ):277-86; Smith E.A., Fuchs E., Defining the Interactions Betweeen Intermediate Filaments and Desmosomes, The Journal of Cell Biology, Volume 141 , 1998).
Die menschliche Haut unterliegt gewissen Alterungsprozessen, die teilweise auf intrinsische Prozesse (chronoaging) und teilweise auf exogene Faktoren (environmental, z.B. photoaging) zurückzuführen sind. Zusätzlich können vorübergehende oder auch andauernde Veränderungen des Hautbildes auftreten, wie Akne, fettige oder trockene Haut, Keratosen, Rosaceae, lichtempfindliche, entzündliche, erythematöse, allergische oder autoimmunreaktive Reaktionen wie Dermatosen und Photodermatosen.
Zu den exogenen Faktoren zählen insbesondere das Sonnenlicht oder künstliche Strahlungsquellen mit vergleichbarem Spektrum sowie radikalische oder ionische Verbindungen, die durch die Strahlung entstehen können. Zu diesen Faktoren zählen auch Zigarettenrauch und die darin enthaltenen reaktiven Verbindungen wie Ozon, freie Radikale, Singulettsauerstoff und andere reaktive Sauerstoff- oder Stickstoffverbindungen, die die natürliche Physiologie oder Morphologie der Haut stören.
Zur Vermeidung und Behandlung der oben genannten Schädigungen, Erkrankungen sowie der Pflege und dekorativen Behandlung und Verschönerung von Haut, Haaren, Finger- und Fußnägeln, wurden von der kosmetischen und pharmakologischen Industrie eine Vielzahl von kosmetischen und pharmazeutischen Zubereitungen zur Verfügung gestellt. Die Verwendung von Proteinen als Bestandteil dieser Zubereitungen ist seit langem bekannt. Proteine und Enzyme haben aufgrund ihrer speziellen Eigenschaften nicht nur ein weites Anwendungsfeld in der Herstellung derartiger Mittel, vielmehr bewirken sie aufgrund enzymatischer Aktivitäten oder strukturgebenden Eigenschaften positive physiologische Veränderungen an Haut und Haar. Proteine sind allerdings in der Regel nicht in der Lage, eine feste Bindung mit den Oberflächenstrukturen tierischer Organismen einzugehen, sprich eine Bindung an z.B. Haut, Haar ist nur bei wenigen Proteinen gewährleistet. Somit kann infolge der Applikation eines Proteins mit be- stimmte physiologischen oder dekorativen Eigenschaften nicht gewährleistet werden, dass die Proteine an ihren Wirkort gelangen und dort für eine ausreichende Zeit verbleiben, die für die gewünschte physiologische oder dekorative Wirkung notwendig ist.
In der Deutschen Patentanmeldung mit dem Aktenzeichen DE 102005011988.3 ist die Verwendung von keratinbindenden Domänen in kosmetischen Zubereitungen beschrieben. Der internationalen Patentanmeldung mit dem Aktenzeichen PCT/EP/05/005599 kann entnommen werden, dass keratinbindende Domänen auch mit Effektormolekülen gekoppelt werden können.
Aufgabe der vorliegenden Erfindung war es daher, neuartige dermokosmetisch verwendbare Proteine zur Applikation auf Haut, Haar, Finger- und Fußnägel bereitzustellen. Vorteilhafterweise sollten Proteine oder Polypeptide identifiziert werden, die über eine keratinbindende Eigenschaft verfügen, einen dermokosmetischen Effekt ausüben und zudem zur Herstellung von kosmetischen und/oder dermokosmetischen Formulierungen oder Zubereitungen geeignet sind.
Zusammenfassung der Erfindung
Ein erster Gegenstand der Erfindung betrifft chimäre keratinbindende Effektorproteine, umfassend (a) mindestens ein keratinbindendes Polypeptid (i) und (b) mindestens ein weiteres Effek- torpolypeptid (ii), In einer besonders bevorzugten Ausführungsform handelt es sich um keratinbindende Polypeptide (i), die eine Bindungsaffinität zu menschlichen Haut-, Haar- oder Nagelkeratin aufweisen. Vorzugsweise umfaßt das erfindungsgemäß verwendete keratinbindende Polypeptid (i)
a) mindestens eine der Sequenzen gemäß SEQ ID No.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66,
68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 112, 1 14, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 oder 215 oder b) ein Polypeptid, welches mindestens zu 40% identisch ist mit wenigstens einer der Se- quenzen gemäß SEQ ID No.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32,
34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 1 12, 1 14, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 oder 215 und in der Lage ist Keratin zu binden.
Das keratinbindende Polypeptid (i) kann vorzugsweise kodiert sein von einem Nukleinsäuremo- lekül umfassend mindestens ein Nukleinsäuremolekül ausgewählt aus der Gruppe bestehend aus:
c) Nukleinsäuremolekül, das ein Polypeptid kodiert, umfassend die in SEQ ID No.: 2, 4, 6,
8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 1 10, 112, 114, 116, 1 18, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 oder 215 gezeigte Sequenz; d) Nukleinsäuremolekül, das zumindest ein Polynukleotid der Sequenz gezeigt in SEQ ID No.: 1 , 3, 5, 7, 9, 11 , 13, 15, 17, 19, 21 , 23, 25, 27, 29, 31 , 33, 35, 37, 39, 41 , 43, 45, 47, 49, 51 , 53, 55, 57, 59, 61 , 63, 65, 67, 69, 71 , 73, 75, 77, 79, 81 , 83, 85, 87, 89, 91 , 93, 95, 97, 99, 101 , 103, 105, 107, 109, 111 , 113, 115, 117, 119, 121 , 123, 125, 127, 129, 131 , 133, 135, 137, 139, 145, 149, 152, 159, 161 , 163, 165, 212 oder 214 umfasst;
e) Nukleinsäuremolekül, das ein Polypeptid gemäß der Sequenzen SEQ ID No.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134,
136, 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 oder 215 kodiert;
f) Nukleinsäuremolekül, mit einer Nukleinsäuresequenz entsprechend wenigstens einer der Sequenzen gemäß SEQ ID No.: 1 , 3, 5, 7, 9, 11 , 13, 15, 17, 19, 21 , 23, 25, 27, 29, 31 , 33, 35, 37, 39, 41 , 43, 45, 47, 49, 51 , 53, 55, 57, 59, 61 , 63, 65, 67, 69, 71 , 73, 75,
77, 79, 81 , 83, 85, 87, 89, 91 , 93, 95, 97, 99, 101 , 103, 105, 107, 109, 111 , 1 13, 115, 117, 1 19, 121 , 123, 125, 127, 129, 131 , 133, 135, 137, 139, 145, 149, 152, 159, 161 , 163, 165, 212 oder 214 oder ein davon durch Substitution, Deletion oder Insertion abgeleitetes Nukleinsäuremolekül, das ein Polypeptid kodiert, welches mindestens zu 40% identisch ist mit wenigstens einer der Sequenzen gemäß SEQ ID No.: 2, 4, 6, 8,
10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 oder 215 und in der Lage ist an Keratin zu binden;
g) Nukleinsäuremolekül, das ein Polypeptid kodiert, welches von einem monoklonalen Antikörper, gerichtet gegen ein Polypeptid, welches durch die Nukleinsäuremoleküle gemäß (c) bis (e) kodiert wird, erkannt wird;
h) Nukleinsäuremolekül, kodierend für ein keratinbindendes Protein, das unter stringenten Bedingungen mit einem Nukleinsäuremolekül gemäß (c) bis (e) hybridisiert;
i) Nukleinsäuremolekül, kodierend für ein keratinbindendes Protein, das aus einer DNA- Bank unter Verwendung eines Nukleinsäuremoleküls gemäß (c) bis (e) oder deren Teilfragmente von mindestens 15 nt, vorzugsweise 20 nt, 30 nt, 50 nt, 100 nt, 200 nt oder 500 nt als Sonde unter stringenten Hybridisierungsbedingungen isoliert werden kann, und.
j) Nukleinsäuremolekül welches durch Rückübersetzung einer der in den Sequenzen
SEQ ID No.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 166, 213 oder 215 gezeigten Aminosäuresequenzen erzeugt werden kann. Ein bevorzugter Gegenstand der vorliegenden Erfindung betrifft keratinbindende Effektorproteine, wobei das Effektorpolypeptid (ii) ausgewählt ist aus der Gruppe bestehend aus Enzymen, Antikörpern, Effektoren bindende Proteine, Fluoreszenzproteinen, Antimikrobiellen-Peptiden und selbstassemblierenden Proteinen.
Ein besonders bevorzugter Gegenstand der vorliegenden Erfindung sind keratinbindende Effektorproteine, die als Effektorpolypeptide (ii) Enzyme ausgewählt aus der Gruppe bestehend aus Oxidasen, Peroxidasen, Proteasen, Tyrosinasen, Lactoperoxidase, Lysozym, Amyloglycosida- sen, Glucoseoxidasen, Superoxiddismutasen, Photolyasen und Katalasen enthalten.
Darüber hinaus bevorzugt sind keratinbindende Effektorproteine enthaltend als Effektorpolypeptid (ii) ein Seidenprotein, besonders bevorzugt Seidenproteine welche mindestens eine der Sequenzen gemäß SEQ ID No.: 151 , 201 , 202, 203, 204, 205, 206, 207, 208, 209 oder 210 umfa- ßen, oder einem Polypeptid entsprechen, welches mindestens zu 40% identisch ist mit wenigs- tens einer der Sequenzen gemäß SEQ ID No.: 151 , 201 , 202, 203, 204, 205, 206, 207, 208, 209 oder 210.
Ferner betrifft die Erfindung solche keratinbindenden Effektorproteine, enthaltend Seidenproteine, welche kodiert werden von einem Nukleinsäuremolekül umfassend mindestens ein Nuklein- säuremolekül ausgewählt aus der Gruppe bestehend aus:
k) Nukleinsäuremolekül, das ein Polypeptid kodiert, umfassend die in SEQ ID No.: 151 , 201 , 202, 203, 204, 205, 206, 207, 208, 209 oder 210 gezeigte Sequenz;
I) Nukleinsäuremolekül, das zumindest ein Polynukleotid der Sequenz gezeigt in SEQ
ID No.: 150 umfasst;
m) Nukleinsäuremolekül, das ein Polypeptid gemäß der Sequenzen SEQ ID No.: 151 ,
201 , 202, 203, 204, 205, 206, 207, 208, 209 oder 210 kodiert;
n) Nukleinsäuremolekül, mit einer Nukleinsäuresequenz gemäß SEQ ID No.: 150 oder ein davon durch Substitution, Deletion oder Insertion abgeleitetes Nukleinsäuremolekül, das ein Polypeptid kodiert, welches mindestens zu 40% identisch ist mit der Sequenz gemäß SEQ ID No.: 151
o) Nukleinsäuremolekül, das ein Polypeptid kodiert, welches von einem monoklonalen Antikörper, gerichtet gegen ein Polypeptid welches durch die Nukleinsäuremoleküle gemäß (k) bis (m) kodiert wird, erkannt wird;
p) Nukleinsäuremolekül, kodierend für ein keratinbindendes Protein, das unter stringen- ten Bedingungen mit einem Nukleinsäuremolekül gemäß (k) bis (m) hybridisiert; und
q) Nukleinsäuremolekül, kodierend für ein keratinbindendes Protein, das aus einer DNA-Bank unter Verwendung eines Nukleinsäuremoleküls gemäß (k) bis (m) oder deren Teilfragmente umfassend mindestens 15 Nukleotide als Sonde unter stringen- ten Hybridisierungsbedingungen isoliert werden kann. r) Nukleinsäuremolekül, welches durch Rückübersetzung einer der in den Sequenzen SEQ ID No.: 151 , 201 , 202, 203, 204, 205, 206, 207, 208, 209 oder 210 gezeigten Aminosäuresequenzen erzeugt werden kann.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung handelt es sich bei den erfindungsgemäßen Chimären keratinbindenden Effektorproteinen um Proteine, bei denen die oben beschriebenen Polypeptide (i) und (ii) mittels Translationsfusion miteinander verknüpft sind.
Ein weiterer bevorzugter Gegenstand der Erfindung betrifft keratinbindende Effektorproteine bei denen die oben beschriebenen Polypeptide (i) und (ii) mittels einer chemischen Kopplungsreaktion miteinander verknüpft sind. Dabei sind solche keratinbindenden Effektorproteine bevorzugt, bei denen das Effektorpolypeptid (ii) an Seitenketten interner Aminosäuren, dem C-Terminus oder dem N-Terminus des keratinbindenden Polypeptids (i) kovalent gebunden ist.
Ferner betrifft die vorliegende Erfindung die oben beschriebenen keratinbindenden Effektorproteine, wobei das Effektorpolypeptid (ii) und das keratinbindende Polypeptid (i) mittels eines Spacerelementes miteinander verbunden sind. Bevorzugt handelt es sich um keratinbindende Effektorproteine, die mittels eines Spacerelementes miteinander verbunden sind, wobei das Spacerelement ein Crosslinker ist.
Außerdem bevorzugt sind keratinbindende Effektorproteine enthaltend ein Spacerelemente, wobei das Spacerelement ein mindestens bifunktioneller Linker ist, welcher das keratinbindende Polypeptid (i) und des Effektorpolypeptid durch Bindung an Seitenketten interner Aminosäu- ren, dem C-Terminus oder dem N-Terminus der genannten Polypeptide kovalent miteinander verbindet. Neben den bereits genannten keratinbindenden Effektorproteinen sind auch solche bevorzugt, bei denen es sich bei dem die Polypeptide (i) und (ii) verknüpfenden Spacerelement um ein Polypeptid handelt.
Ein weiterer Erfindungsgegenstand ist die Verwendung der oben beschriebenen keratinbindenden Effektorproteine in Dermokosmetika, bei denen es sich bevorzugt um Hautschutzmittel, Hautpflegemittel, Haut-reinigungsmittel, Haarschutzmittel, Haarpflegemittel, Haarreinigungsmittel, Haarfärbemittel oder um Produkte der dekorativen Kosmetik handelt. Ein weiterer Gegenstand der vorliegenden Erfindung betrifft die oben genannten Dermokosme- tika, enthaltend eines der oben beschriebenen keratinbindenden Effektormoleküle.
Ferner betrifft die Erfindung Proteine gemäß der in den SEQ ID No.: 168, 176, 182, 188, 194 und 200 dargestellten Aminosäuresequenzen.
Ebenfalls Gegenstand der vorliegenden Erfindung sind Nukleinsäuremoleküle gemäß der in SEQ ID No.: 167, 175, 181 , 187, 193 oder 199 gezeigten Sequenz.
Desweiteren betrifft die vorliegende Erfindung DNA Expressionskassetten enthaltend ein Nukleinsäuremolekül mit einer Nukleinsäuresequenz gemäß der in SEQ ID No.: 167, 175, 181 , 187, 193 oder 199 gezeigten Sequenz. Gegenstand der vorliegenden Erfindung sind ebenfalls Vektoren, umfassend eine Expressionskassette enthaltend ein Nukleinsäuremolekül mit einer Nukleinsäuresequenz gemäß der in SEQ ID No.: 167, 175, 181 , 187, 193 oder 199 gezeigten Sequenz.
Darüber hinaus betrifft die vorliegende Erfindung transgene Zellen, enthaltend s) zumindest einen der oben genannten Vektoren, oder t) zumindest eine der oben genannten Expressionskassetten, oder u) zumindest eines der oben genannten Nukleinsäuremoleküle kodierend für ein Polypeptid, umfassend mindestens ein Polypeptid, welches kodiert wird von einem Nukleinsäu- remolekül gemäß der in SEQ ID No.: 167, 175, 181 , 187, 193 oder 199 gezeigten Sequenz.
Definitionen
„Antikörper" im Sinne der vorliegenden Erfindung sind Eiweißstoffe, die der Mensch und die kiefertragenden Wirbeltiere zur Abwehr von Antigenen (Infektionserregern oder körperfremdem biologischem Material) produzieren. Sie sind zentraler Bestandteil des Immunsystems höherer Eukaryonten und werden von einer Klasse von weißen Blutkörperchen, den B-Zellen sezerniert. Sie kommen im Blut und in der extrazellulären Flüssigkeit der Gewebe vor.
„Rückübersetzung" im Sinne der vorliegenden Erfindung meint die Übersetzung einer Proteinsequenz in eine für dieses Protein kodierende Nukleinsäuresequenz. Somit handelt es sich bei der Rückübersetzung um einen Prozess der Dekodierung einer Aminosäuresequenz in die dazu korrespondierende Nukleinsäuresequenz. Übliche Methoden basieren auf der Erstellung von Codon Verwendungstabellen für einen bestimmten Organismus, welche erzeugt werden durch computergestützte Sequenzvergleiche. Unter Verwendung der Codon Verwendungstabellen können die für einen bestimmten Organismus am häufigsten für eine bestimmte Aminosäure verwendeten Codons ermittelt werden. Proteinrückübersetzung kann unter Verwendung von dem Fachmann bekannten und für diesen Zweck speziell erzeugter Computeralgorithmen durchgeführt werden (Andres Moreira and Aleandro Maats. TIP: protein backtranslation aided by genetic algorithms. Bioinformatics, Volume 20, Number 13 Pp. 2148-2149 (2004); G Pesole, M Attimonelli, and S Liuni. A backtranslation method based on codon usage strategy. Nucleic Acids Res. 1988 March 1 1 ; 16(5 Pt A): 1715-1728.).
„Chimäre keratinbindende Effektorproteine" in Sinne der vorliegenden Erfindung meint Proteine umfassend ein keratinbindendes Polypeptid, Protein oder Proteindomäne (i) und ein Effektorpo- lypeptid, Effektorprotein, oder Effektorproteindomäne (ii), wobei die genannten Polypeptide, Proteine oder Proteindomänen artifiziell miteinander verknüpft sind. Artifiziell verknüpft meint, eine unter Verwendung von biotechnologischen oder chemietechnologischen Verfahren erzeug- te Verknüpfung, wie sie in der belebten Umwelt, z.B. den Organismen in denen die genannten Polypeptide, Proteine oder Proteindomänen natürlicherweise vorkommen, nicht realisiert ist. Zur Herstellung der Chimären keratinbindenden Effektorproteine ist bei den biotechnologischen Verfahren die Translationsfusion und bei den chemietechnologischen Verfahren die unter dem Begriff „chemische Kopplungsreaktion" subsumierten Verfahren bevorzugt. Unter „Translationsfusion" versteht man die Erzeugung eines Chimären Nukleinsäuremoleküls, in welchem die Verknüpfung mindestens zweier für ein Polypeptid, Protein oder eine Proteindomäne kodierende Nukleinsäuremoleküle so realisiert ist, dass infolge des Translationsereignisses dieses Chimären Nukleinsäuremoleküls eine durchgehende Polypeptidkette gebildet werden kann.
„Dekorative Kosmetik" meint kosmetische Hilfsmittel die nicht primär zur Pflege, sondern zur Verschönerung oder Verbesserung des Aussehens von Haut, Haar und/oder Finger- bzw. Fußnägeln angewendet werden. Derartige Hilfsmittel sind dem Fachmann einschlägig bekannt und umfassen z.B. Kajalstifte, Mascara, Lidschatten, getönte Tagescremes, Puder, Abdeckstifte, Rouge, Lippenstifte, Lippenkonturenstifte, Make-up, Nagellack, Glamour Gel usw. Ferner umfaßt sind Mittel geeignet zum Färben von Haut oder Haaren.
„Dermokosmetika" auch als „Cosmeceuticals" oder „dermokosmetische Mittel" oder „dermo- kosmetische Zubereitungen" bezeichnet, sind Mittel oder Zubereitungen (i) zum Schutz vor Schädigungen von Haut, Haar und/oder Finger- bzw. Fußnägeln, (ii) zur Behandlung von bereits aufgetretenen Schädigungen von Haut, Haar und/oder Finger- bzw. Fußnägeln und (iii) zur Pflege von Haut, Haar und/oder Finger- bzw. Fußnägeln, umfassend hautkosmetische, nagelkosmetische, haarkosmetische, dermatologische, hygienische oder pharmazeutische Mittel, Zubereitungen und Formulierungen und zur Verbesserung des Hautgefühls (sensorischer Eigenschaften). Explizit umfaßt sind Mittel zur dekorativen Kosmetik. Ferner umfaßt sind Mittel zur Hautpflege, bei denen der pharmazeutisch dermatologische Anwendungszweck unter Mitberücksichtigung kosmetischer Gesichtspunkte erreicht wird. Derartige Mittel oder Zubereitungen werden zur Unterstützung, der Vorbeugung und Behandlung von Hauterkrankungen einge- setzt und entfalten neben dem kosmetischen Effekt eine biologische Wirkung. „Dermokosmetika" im Sinne der oben gegebenen Definition, enthalten in einem kosmetisch verträglichen Medium geeignete Hilfs- und Zusatzstoffe, welche dem Fachmann geläufig sind und Handbüchern der Kosmetik, beispielsweise Schrader, Grundlagen und Rezepturen der Kosmetika, Hüthig Verlag, Heidelberg, 1989, ISBN 3-7785-1491-1 , oder Umbach, Kosmetik: Entwicklung, Herstel- lung und Anwendung kosmetischer Mittel, 2. erweiterte Auflage, 1995, Georg Thieme Verlag, ISBN 3 13 712602 9, entnommen werden können.
„Dermokosmetische Wirkstoffe" oder „dermokosmetisch aktive Wirkstoffe" im Sinne der vorliegenden Erfindung sind die in Dermokosmetika gemäß der oben gegebenen Definition vorhan- denen Wirkstoffe, welche an der Realisierung der individuellen Wirkweise der Dermokosmetika beteiligt sind. Somit handelt es sich um z.B. Wirkstoffe die einen Schutz vor Schädigungen von Haut, Haar und/oder Finger- bzw. Fußnägeln bewirken, (ii) zur Behandlung von bereits aufgetretenen Schädigungen von Haut, Haar und/oder Finger- bzw. Fußnägeln verwendet werden können, (iii) Haut, Haar und/oder Finger- bzw. Fußnägel pflegende Eigenschaften haben und (iv) zur dekorativen Verschönerung oder Verbesserung des Aussehens von Haut, Haar und/oder Finger- bzw. Fußnägeln angewendet werden. Ferner umfaßt sind Wirkstoffe zur Hautpflege, bei denen der pharmazeutisch dermatologische Anwendungszweck unter Mitberücksichtigung kosmetischer Gesichtspunkte erreicht wird. Derartige Wirkstoffe werden zur Unterstützung, Vorbeugung und Behandlung von Hauterkrankungen eingesetzt und entfalten neben dem kosmetischen Effekt eine biologische Wirkung. Derartige Wirkstoffe sind z.B. ausgewählt aus der Gruppe der natürlichen oder synthetischen Polymere, Pigmente, Feuchthaltemittel, Öle, Wachse, Enzyme, Mineralien, Vitamine, Sonnenschutzmittel, Farbstoffe, Duftstoffe, Antioxidan- tien, Peroxydzersetzer und Konservierungsmittel und pharmazeutische Wirkstoffe die zur Unterstützung, Vorbeugung und Behandlung von Hauterkrankungen eingesetzt werden und eine heilende, Schädigungen vorbeugende, regenerierende oder den allgemeinen Zustand der Haut verbessernde biologische Wirkung haben.
„Expressionskassette" im Sinne der vorliegenden Erfindung meint ein Nukleinsäuremolekül, enthaltend ein Nukleinsäuremolekül, welches in funktioneller Weise mit mindestens einem genetischen Kontrollelement (beispielsweise einem Promotor), das eine Expression in einer Zelle oder einem Organismus, bevorzugt prokaryontische Zellen, Hefen, oder Zellkulturen eukaryon- tischer Zellen gewährleistet, verknüpft ist.
„Funktionelle Verknüpfung" meint zum Beispiel die sequentielle Anordnung eines Promotors mit dem zu exprimierenden Nukleinsäuremolekül (zum Beispiel kodierend für ein keratinbinden- des Effektorprotein) und ggf. weiterer regulativer Elemente wie zum Beispiel einem Terminator derart, dass jedes der regulativen Elemente seine Funktion bei der transgenen Expression des Nukleinsäuremoleküls erfüllen kann. Dazu ist nicht unbedingt eine direkte Verknüpfung im chemischen Sinne erforderlich. Genetische Kontrollsequenzen, wie zum Beispiel Enhancer- Sequenzen, können ihre Funktion auch von weiter entfernten Positionen oder gar von anderen DNA-Molekülen aus auf die Zielsequenz ausüben. Bevorzugt sind Anordnungen, in der das transgen zu exprimierende Nukleinsäuremolekül hinter der als Promotor fungierenden Sequenz positioniert wird, so dass beide Sequenzen kovalent miteinander verbunden sind. Bevorzugt ist dabei der Abstand zwischen der Promotorsequenz und der transgen zu exprimierenden Nuk- leinsäuresequenz geringer als 200 Basenpaare, besonders bevorzugt kleiner als 100 Basenpaare, ganz besonders bevorzugt kleiner als 50 Basenpaare.
Die Herstellung einer funktionellen Verknüpfung als auch die Herstellung einer Expressionskassette kann mittels gängiger Rekombinations- und Klonierungstechniken realisiert werden, wie sie beispielsweise in Maniatis T, Fritsch EF und Sambrook J (1989) Molecular Cloning: A Laboratory Manual, CoId Spring Harbor Laboratory, CoId Spring Harbor (NY), in Silhavy TJ, Berman ML und Enquist LW (1984) Experiments with Gene Fusions, CoId Spring Harbor Laboratory, CoId Spring Harbor (NY), in Ausubel FM et al. (1987) Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Intersdence und bei Gelvin et al. (1990) In: Plant Molecular Biology Manual beschrieben sind. Zwischen beide Sequenzen können aber auch weitere Sequenzen positioniert werden, die zum Beispiel die Funktion eines Linkers mit be- stimmten Restriktionsenzymschnittstellen oder eines Signalpeptides haben. Auch kann die Insertion von Sequenzen zur Expression von Fusionsproteinen führen. Bevorzugt kann die Expressionskassette, bestehend aus einer Verknüpfung von Promotor und zu exprimierender Nuk- leinsäuresequenz, integriert in einem Vektor vorliegen und durch zum Beispiel Transformation in ein pflanzliches Genom insertiert werden.
Der Begriff „Zelle" verweist auf eine einzelne Zelle. Der Begriff „Zellen" verweist auf eine Population von Zellen. Diese Population kann synchronisiert oder nicht-synchronisiert vorliegen. „Zelle" oder „Zellen" umfaßt einzellige Organismen als auch Zellen als Bestandteil eines multizellulären Komplexes oder Organismus.
"Transgen" in Verbindung mit einer Zelle oder einem Organismus meint bezüglich einem Nukleinsäuremolekül, dem davon kodierten Polypeptid, einer Expressionskassette oder einem Vek- tor enthaltend besagtes Nukleinsäuremolekül oder einer Zelle oder einem Organismus transformiert mit besagtem Nukleinsäuremolekül, Expressionskassette oder Vektor, alle solche durch gentechnische Methoden zustande gekommenen Zellen oder Organismen, in denen sich entweder
a) das für das kerartinbindende Polypeptid (i), oder b) das Effektorprotein kodierende Nukleinsäuremolekül , oder c) (a) und (b)
nicht in ihrer natürlichen genetischen Umgebung befinden oder durch gentechnische Methoden modifiziert wurden, wobei die Modifikation beispielhaft eine Substitutionen, Additionen, Deletio- nen, oder Insertionen eines oder mehrerer Nukleotidreste sein kann. Natürliche genetische Umgebung meint den natürlichen chromosomalen Locus in dem Herkunftsorganismus oder das Vorliegen in einer genomischen Bibliothek. Im Fall einer genomischen Bibliothek ist die natürli- che, genetische Umgebung der Nukleinsäuresequenz zumindest noch teilweise erhalten. Die Umgebung flankiert die Nukleinsäuresequenz zumindest an einer Seite und hat eine Sequenzlänge von mindestens 50 bp, bevorzugt mindestens 500 bp, besonders bevorzugt mindestens 1000 bp, ganz besonders bevorzugt mindestens 5000 bp. Eine natürlich vorkommende Expressionskassette - beispielsweise die natürlich vorkommende Kombination des keratinbindenden Polypeptid-Promotors mit dem entsprechenden für das keratinbindende Polypeptid kodierende Gen - wird zu einer transgenen Expressionskassette, wenn diese durch nicht-natürliche, synthetische ("künstliche") Verfahren wie beispielsweise einer Mutagenisierung geändert wird. Entsprechende Verfahren sind beschrieben (US 5,565,350; WO 00/15815).
„Effektorpolypeptid " im Sinne der vorliegenden Erfindung meint proteinogene dermokosmeti- sche Wirkstoffe, die eine bestimmte vorhersehbare Wirkung, bevorzugt eine biologische bzw. physiologische, schützende, vorbeugende und/oder pflegende Wirkung auf Haut, Haar und/oder Finger- bzw. Fußnägel aufweisen.. Bevorzugt handelt es sich bei den Effektormolekülen um proteinogene Verbindungen wie Polypeptide, Proteine oder Enzyme. Besonders bevorzugt sind selbstassemblierende Proteine, ganz besonders bevorzugt sind Seidenproteine.
"Keratin" im Sinne der vorliegenden Erfindung meint aus seilförmigen Proteinkomplexen aufgebaute Intermediärfilamente. Intermediärfilamente sind aus vielen gleichartigen Proteinen (Monomeren) aufgebaut, die sich parallel zu einer röhrenförmigen Struktur zusammenlagern. Intermediärfilamente sind zu größeren Bündeln (Tonofibrillen) verbunden. Intermediärfilamente bil- den mit den Mikrotubuli und Actinfilamenten das Cytoskelett der Zelle. Man unterscheidet fünf Typen von Intermediärfilamenten: saure und basische Keratine, Desmine, Neurofilamente und Lamine. Speziell bevorzugt im Sinne der vorliegenden Erfindung sind die in den Epithelien (ein- oder mehrlagige Zellschichten, die alle äußeren Körperoberflächen der vielzelligen tierischen Organismen bedecken) vorkommenden sauren und basischen Keratine. „Keratin" oder "Kerati- ne" (auch: Hornsubstanz, Skieroprotein) meint ein Eiweiß, das für Stabilität und Form der Zellen verantwortlich ist. Dieses Protein ist Bestandteil von Säugetierhaut, -haar und -Nägeln. Die Festigkeit von Keratin wird durch Faserbildung verstärkt: die einzelnen Aminosäureketten bilden eine rechtsgängige Alpha-Helix, je drei dieser Helices bilden eine linksgängige Superhelix (= Protofibrille). Elf Protofibrillen vereinigen sich zu einer Mikrofibrille - diese vereinigen sich ihrer- seits zu Bündeln und bilden Makrofibrillen aus, die z.B. die Zellen des Haares umgeben. „Keratinbindendes Polypeptid" meint ein Polypeptid oder ein Protein, welches die Eigenschaft besitzt an Keratin, im Sinne der oben gegebenen Definition, zu binden. Somit sind keratinbin- dende Polypeptide auch Intermediärfilament-assoziierte Proteine . Diese keratinbindenden Polypeptide haben eine Bindungsaffinität gegenüber dem Keratin bzw. den aus Keratin bestehen- den Makrostrukturen wie Protofibrillen, Mikrofibrillen oder Makrofibrillen. Ferner sind unter kera- tinbindende Polypeptide solche Polypeptide zu verstehen, die eine Bindungsaffinität zu Haut, Haar und/oder Finger- bzw. Fußnägel von Säugetieren besitzen.
„Keratinbindende Polypeptide" sind ferner Polypeptide, die innerhalb eines Säugetierorganis- mus eine mit der Bindung von Keratin, Keratinfasern, Haut oder Haar verbundene biologische Funktion besitzen, keratinbindende Polypeptide meint ebenfalls die für die eigentliche Bindung an das Keratin, die Keratinfasern, Haut oder Haar notwendigen Bindungsmotive oder Proteindomänen. Die Bindung des keratinbindenden Polypeptids (ii) an Keratin kann unter den in Beispiel 8, 9 und 10 beschriebenen Bedingungen getestet werden, keratinbindende Polypeptide sind solche Polypeptide, die in den oben genannten quantitativen Keratinbindungstests ca. 10%, 20%, 30%, 40% oder 50%, bevorzugt 50%, 60%, 70%, 80% oder 90%, besonders bevorzugt 100%, 125%, 150%, ganz besonders bevorzugt 200%, 300% oder 400%, am meisten bevorzugt 500%, 600%, 700% oder 1000% oder mehr der Keratinbindungskapazität des Des- moplakin (SEQ ID No.: 2), bevorzugt der Keratin-Bindedomäne B des Desmoplakin (SEQ ID No.: 4), aufweisen.
„kosmetisch verträgliches Medium" ist breit zu verstehen und meint für die Herstellung von kosmetischen oder dermokosmetischen Zubereitungen geeignete Substanzen und Mischungen derselben. Bevorzugt handelt es sich um Protein verträgliche Medien.
„Kosmetisch verträgliche Substanzen" führen bei Kontakt mit menschlichem bzw. tierischen Hautgewebe oder Haaren zu keinen Irritationen oder Schäden und weisen keine Inkompatibilitäten mit anderen Substanzen auf. Ferner verfügen diese Substanzen über ein geringes allergenes Potential und sind von staatlichen Zulassungsbehörden für die Verwendung in kosmeti- sehe Zubereitungen zugelassen. Diese Substanzen sind dem Fachmann geläufig und können z.B. Handbüchern der Kosmetik, beispielsweise Schrader, Grundlagen und Rezepturen der Kosmetika, Hüthig Verlag, Heidelberg, 1989, ISBN 3-7785-1491-1 , entnommen werden.
„Nukleinsäure" oder „Nukleinsäuremolekül" meint Deoxyribonukleotide, Ribonukleotide oder Polymere oder Hybride derselben in einzel- oder doppelsträngiger Form, in Sense- oder Anti- senseorientierung. Der Begriff Nukleinsäure oder Nukleinsäuremolekül kann verwendet werden um ein Gen, DNA, cDNA, mRNA, Oligonukleotid oder Polynukleotid zu beschreiben.
„Nukleinsäuresequenz" meint eine aufeinanderfolgende und miteinander verknüpfte Abfolge von Deoxyribonukleotiden oder Ribonukleotiden eines Nukleinsäuremoleküls gemäß der oben gegebenen Definition, wie sie durch Verwendung von verfügbaren DNA/RNA Sequenzierungstechniken ermittelt und in Form einer Liste von Abkürzungen, Buchstaben oder Wörtern, welche Nukleotide repräsentieren, abgebildet oder dargestellt werden kann.
„Polypeptid" im Sinne der vorliegenden Erfindung meint ein aus Aminosäuremolekülen aufgebautes Makromolekül, indem die Aminosäuren in linearer Folge über Peptidbindungen mitein- ander verknüpft sind. Ein Polypeptid kann aus wenigen Aminosäuren (ca. 10 bis 100) aufgebaut sein, umfasst aber auch Proteine die in der Regel aus mindestens 100 Aminosäuren aufgebaut sind, aber auch mehrere tausend Aminosäuren umfassen können. Bevorzugt umfassen Polypeptide mindestens 20, 30, 40 oder 50, besonders bevorzugt mindestens 60, 70, 80 oder 90, ganz besonders bevorzugt mindestens 100, 125, 150, 175 oder 200, am meisten bevorzugt mindestens über 200 Aminosäuren, wobei die Obergrenze bei mehreren tausend Aminosäuren liegen kann.
Unter „Homologie" oder „Identität" zwischen zwei Nukleinsäuresequenzen wird die Identität der Nukleinsäuresequenz über die jeweils gesamte Sequenzlänge verstanden, die durch Vergleich mit Hilfe des Programmalgorithmus GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA; Altschul et al. (1997) Nucleic Acids Res. 25:3389ff) unter Einstellung folgender Parameter berechnet wird:
Gap Weight: 50 Length Weight: 3
Average Match: 10 Average Mismatch: 0
Beispielhaft wird unter einer Sequenz, die eine Homologie von mindestens 80 % auf Nuklein- säurebasis mit der Sequenz SEQ ID NO: 1 aufweist, eine Sequenz verstanden, die bei einem Vergleich mit der Sequenz SEQ ID NO: 1 nach obigem Programmalgorithmus mit obigem Parametersatz eine Homologie von mindestens 80 % aufweist.
Unter Homologie zwischen zwei Polypeptiden wird die Identität der Aminosäuresequenz über die jeweils gesamte Sequenzlänge verstanden, die durch Vergleich mit Hilfe des Programmal- gorithmus GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA) unter Einstellung folgender Parameter berechnet wird:
Gap Weight: 8 Length Weight: 2
Average Match: 2,912 Average Mismatch:-2,003
Beispielhaft wird unter einer Sequenz, die eine Homologie von mindestens 80 % auf Polypep- tidbasis mit der Sequenz SEQ ID NO: 2 aufweist, eine Sequenz verstanden, die bei einem Vergleich mit der Sequenz SEQ ID NO: 2 nach obigem Programmalgorithmus mit obigem Parametersatz eine Homologie von mindestens 80 % aufweist.
"Hybridisierungsbedingungen" ist breit zu verstehen und meint je nach Anwendung stringente als auch weniger stringente Hybridisierungsbedingungen. Solche Hybridisierungsbedingungen sind unter anderem bei Sambrook J, Fritsch EF, Maniatis T et al., in Molecular Cloning (A Labo- ratory Manual), 2. Auflage, CoId Spring Harbor Laboratory Press, 1989, Seiten 9.31-9.57) oder in Current Protocols in Molecular Biology, John Wiley &Sons, N.Y. (1989), 6.3.1-6.3.6. beschrieben. Der Fachmann würde Hybridisierungsbedingungen auswählen, die es ihm ermöglichen, spezifische von unspezifischen Hybridisierungen zu unterscheiden. Beispielhaft können die Bedingungen während des Waschschrittes ausgewählt sein, aus Bedingungen mit geringer Stringenz (mit ungefähr 2X SSC bei 500C) und solchen mit hoher Stringenz (mit ungefähr 0.2X SSC bei 500C bevorzugt bei 65°C) (2OX SSC: 0,3M Natriumeitrat, 3M NaCI, pH 7.0). Darüber hinaus kann die Temperatur während des Waschschrittes von niedrig stringenten Bedingungen bei Raumtemperatur, ungefähr 22°C, bis zu stärker stringenten Bedingungen bei ungefähr 65°C angehoben werden. Beide Parameter, Salzkonzentration und Temperatur, können gleichzeitig oder auch einzeln variiert werden, wobei der jeweils andere Parameter konstant gehalten wird. Während der Hybridisierung können auch denaturierende Agenzien wie zum Beispiel Formamid oder SDS eingesetzt werden. In Gegenwart von 50% Formamid wird die Hybridisierung bevorzugt bei 42°C ausgeführt. Einige beispielhafte Bedingungen für Hybridisierung und Waschschritt sind infolge gegeben:
1. Hybridisierungsbedingungen können zum Beispiel aus nachfolgenden Bedingungen aus- gewählt sein: a) 4X SSC bei 65°C, b) 6X SSC bei 45°C, c) 6X SSC, 100 μg/ml denaturierter, fragmentierte Fischsperma-DNA bei 68°C, d) 6X SSC, 0,5 % SDS, 100 μg/ml denaturierter, Lachssperma-DNA bei 68°C, e) 6X SSC, 0,5 % SDS, 100 μg/ml denaturierter, fragmentierte Lachssperma-DNA,
50 % Formamid bei 42°C. f) 50 % Formamid, 4XSSC bei 42°C, oder g) 50 % (vol/vol) Formamid, 0,1 % Rinderserumalbumin, 0,1 % Ficoll, 0,1 % Polyvinyl pyrrolidon, 50 mM Natriumphosphatpuffer pH 6,5, 750 mM NaCI, 75 mM Natrium- citrate bei 42°C, oder h) 2X oder 4X SSC bei 500C (schwach stringente Bedingung), i) 30 bis 40 % Formamid, 2X oder 4X SSC bei 42°C (schwach stringente Bedingung).
500 mN Natriumphosphatpuffer pH 7,2, 7 % SDS (g/V), 1 mM EDTA, 10 μg/ml Single stranded DNA, 0,5% BSA (g/V) (Church und Gilbert, Genomic sequencing. Proc. Natl. Acad.Sci. U.S.A.81 :1991. 1984)
2. Waschschritte können zum Beispiel aus nachfolgenden Bedingungen ausgewählt sein: a) 0,015 M NaCI/0,0015 M Natriumcitrat/0,1 % SDS bei 500C. b) 0.1X SSC bei 65°C. c) 0,1X SSC, 0,5 % SDS bei 68°C. d) 0,1 X SSC, 0,5 % SDS, 50 % Formamid bei 42°C. e) 0,2X SSC, 0,1 % SDS bei 42°C. f) 2X SSC bei 65°C (schwach stringente Bedingung).
In einer Ausführungsform werden die stringenten Hybridisierungsbedingungen wie folgt gewählt:
Es wird ein Hybridisierungspuffer gewählt, der Formamid, NaCI und PEG 6000 enthält. Die Anwesenheit von Formamid im Hybridisierungspuffer destabilisiert Doppelstrang Nukleinsäuremo- leküle, wodurch die Hybridisierungstemperatur auf 42°C gesenkt werden kann, ohne dadurch die Stringenz zu erniedrigen. Die Verwendung von Salz im Hybridisierungspuffer erhöht die Renaturierungsrate einer Duplex, bzw. die Hybridisierungseffizienz. Obwohl PEG die Viskosität der Lösung erhöht, was einen negativen Einfluß auf Renaturierungsraten besitzt, wird durch die Anwesenheit des Polymers in der Lösung die Konzentration der Sonde im verbleibenden Medi- um erhöht, was die Hybridisierungsrate steigert. Die Zusammensetzung des Puffers ist wie folgt: Hybridisierungspuffer
250 mM Natriumphosphat-Puffer pH 7,2
1 mM EDTA
7 % SDS (g/v)
250 mM NaCI
10 μg/ml ssDNA
5 % Polyethylenglykol (PEG) 6000
40 % Formamid
Tabelle 1 : Hybridisierungspuffer
Die Hybridisierungen werden bei 42°C über Nacht durchgeführt. Die Filter werden am nächsten
Morgen 3x mit 2xSSC + 0,1 % SDS für jeweils ca. 10 min. gewaschen.
„Hydroxyfunktion", im Zusammenhang mit der Beschreibung „Hydroxyfunktion tragendes Effektormolekür', meint freie OH-Gruppen bzw. Hydroxylgruppen, die es ermöglichen, diese OH- Gruppen tragenden Moleküle über eine Veresterungsreaktion mit anderen Molekülen kovalent zu verknüpfen. „Hydroxyfunktionen" im Sinne der vorliegenden Erfindung sind auch solche, die sich chemisch in OH-Funktionen überführen lassen wie z.B. Derivate wie Methoxy, Ethoxy. Dabei verfügen die erfindungsgemäßen Effektormoleküle über mindestens eine Hydroxylgruppe. Es können aber auch Effektormoleküle mit zwei, drei oder mehr Hydroxyfunktionen verwendet werden.
„Aminofunktionen", im Zusammenhang mit der Beschreibung „Aminofunktion tragendes Effektormolekül", meint Aminogruppen, die es ermöglichen, die besagten Aminofunktionen tragenden Moleküle über eine Amidbindung mit anderen Molekülen kovalent zu verknüpfen. „Aminofunktionen im Sinne der vorliegenden Erfindung sind auch solche, die sich chemisch in Aminofunktionen überführen lassen. Dabei verfügen die erfindungsgemäßen Effektormoleküle über mindes- tens eine Aminofunktion. Es können aber auch Effektormoleküle mit zwei, drei oder mehr Aminofunktionen und/oder sekundären Aminogruppen verwendet werden.
„Kopplung" im Zusammenhang mit der Bindung eines Linkermoleküls an ein Effektormolekül oder keratinbindendes Protein, meint eine kovalente Verknüpfung der genannten Moleküle.
„Kopplungsfunktionalitäten" sind funktionelle Gruppen eines Linkermoleküls, die mit funktionellen Gruppen des Effektormoleküls oder keratinbindenden Proteins eine kovalente Bindung eingehen können. Beispielhaft, aber nicht einschränkend seinen genannt: Hydroxygruppen, Car- boxylgruppen, Thiogruppen und Aminogruppen. „Kopplungsfunktionalitäten" oder „Kopplungsfunktionalität" und „Ankergruppen" oder „Ankergruppe" werden synonym verwendet. selbstassemblierende Proteine
Selbstassemblierende Proteine sind Proteine oder Peptide, die sich unter geeigneten Bedingungen spontan zu höhermolekularen, geordneten Strukturen (Kugeln, Filme, Fibrillen, u.a.) zusammenfinden können. Dabei kann es sich um synthetische, um biomimetische oder um Proteine und Peptide natürlichen Ursprungs handeln. Beispielhaft aber nicht einschränkend seien Strukturproteine, ß-Faltblatt-reiche Proteine sowie amphiphile und helicale Peptide genannt. „Spacerelement" im Sinne der vorliegenden Erfindung meint ein Molekül oder Makromolekül, welches das keratinbindende Polypeptid (i) von dem Effektorpolypeptid (ii) physikalisch trennt. Spacerelemente umfassen sowohl die unten beschriebenen Linkermoleküle als auch proteinogene Elemente wie z.B. Oligopeptide, Polypeptide oder Proteindomänen.
Vektoren sind DNA Moleküle die in einer Wirtszelle stabil etabliert und vervielfältig werden können. Vektoren sind beispielsweise Plasmide, Cosmide. Ferner sind unter Vektoren auch solche DNA Moleküle zu verstehen, die DNA Elemente von einer Zelle in eine andere transportieren können, wobei diese Zellen nicht notwendigerweise zum gleichen Organismus gehören müssen (z.B. Phagen, Viren oder auch Agrobacterien). In einer vorteilhaften Ausführungsform wird die Einführung einer Expressionskassette enthaltend ein Gen von Interesse mittels Plasmidvekto- ren realisiert. Bevorzugt sind solche Vektoren, die extrachromosomal in einer Zelle oder einem Organismus etabliert werden können. Die stabile Integration der Expressionskassette/Vektor in das Wirtsgenom ist ebenfalls möglich.
Der Begriff "Expressionsvektor" bezieht sich auf Vektoren, die ein DNA Molekül von Interesse in funktioneller Verknüpfung mit regulatorischen Elementen enthalten, und somit die Expression des DNA Moleküls von Interesse in einem Zielorganismus gewährleistet werden kann.
Detaillierte Beschreibung der Erfindung Gegenstand der vorliegenden Erfindung sind chimäre keratinbindende Effektorproteine umfassend (a) mindestens ein keratinbindendes Polypeptid (i) und (b) mindestens ein weiteres Effektorpolypeptid (ii)
In einer besonders bevorzugten Ausführungsform handelt es sich um keratinbindende Polypeptide (i), die eine Bindungsaffinität zu menschlichen Haut-, Haar- oder Nagelkeratin aufweisen. Besonders bevorzugt sind solche keratinbindenden Polypeptide (i), die a) mindestens eine der Sequenzen gemäß SEQ ID No.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 oder 215 umfassen, oder b) einem Polypeptid entsprechen, welches mindestens zu 40%, 45% oder 50%, vorzugsweise mindestens 55%, 60%, 65% oder 70%, besonders bevorzugt mindestens 75%, 80%, 85%, 90%, 91 %, 92%, 93% oder 94%, ganz besonders bevorzugt mindestens 95% oder 96% identisch ist mit wenigstens einer der Sequenzen gemäß SEQ ID No.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50,
52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 oder 215und in der Lage ist Keratin zu binden.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird das verwendete keratinbindende Polypeptid (i) kodiert von einem Nukleinsäuremolekül umfassend mindestens ein Nukleinsäuremolekül ausgewählt aus der Gruppe bestehend aus: c) Nukleinsäuremolekül, das ein Polypeptid kodiert, umfassend die in SEQ ID No.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 112, 1 14, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 oder 215 gezeigte Sequenz;
d) Nukleinsäuremolekül, das zumindest ein Polynukleotid der Sequenz gezeigt in SEQ ID No.: 1 , 3, 5, 7, 9, 11 , 13, 15, 17, 19, 21 , 23, 25, 27, 29, 31 , 33, 35, 37, 39, 41 , 43, 45, 47, 49, 51 , 53, 55, 57, 59, 61 , 63, 65, 67, 69, 71 , 73, 75, 77, 79, 81 , 83, 85, 87, 89, 91 ,
93, 95, 97, 99, 101 , 103, 105, 107, 109, 111 , 113, 115, 117, 119, 121 , 123, 125, 127, 129, 131 , 133, 135, 137, 139, 145, 149, 152, 159, 161 , 163, 165, 212 oder 214 umfasst;
e) Nukleinsäuremolekül, das ein Polypeptid gemäß der Sequenzen SEQ ID No.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54,
56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 1 12, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 oder 215 kodiert;
f) Nukleinsäuremolekül, mit einer Nukleinsäuresequenz entsprechend wenigstens einer der Sequenzen gemäß SEQ ID No.: 1 , 3, 5, 7, 9, 11 , 13, 15, 17, 19, 21 , 23, 25, 27, 29, 31 , 33, 35, 37, 39, 41 , 43, 45, 47, 49, 51 , 53, 55, 57, 59, 61 , 63, 65, 67, 69, 71 , 73, 75, 77, 79, 81 , 83, 85, 87, 89, 91 , 93, 95, 97, 99, 101 , 103, 105, 107, 109, 111 , 1 13, 115, 117, 119, 121 , 123, 125, 127, 129, 131 , 133, 135, 137, 139, 145, 149, 152, 159, 161 , 163, 165, 212 oder 214 oder ein davon durch Substitution, Deletion oder Insertion abgeleitetes Nukleinsäuremolekül, das ein Polypeptid kodiert, welches mindestens zu 40%, 45% oder 50%, vorzugsweise mindestens 55%, 60%, 65% oder 70%, besonders bevorzugt mindestens 75%, 80%, 85%, 90%, 91 %, 92%, 93% oder 94%, ganz besonders bevorzugt mindestens 95% oder 96% identisch ist mit wenigstens einer der Se- quenzen gemäß SEQ ID No.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32,
34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 1 12, 1 14, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 oder 215 und in der Lage ist an Keratin zu binden;
g) Nukleinsäuremolekül, das ein Polypeptid kodiert, welches von einem monoklonalen Antikörper, gerichtet gegen ein Polypeptid welches durch die Nukleinsäuremoleküle gemäß (c) bis (e) kodiert wird, erkannt wird;
h) Nukleinsäuremolekül, kodierend für ein keratinbindendes Protein, das unter stringenten
Bedingungen mit einem Nukleinsäuremolekül gemäß (c) bis (e) hybridisiert; und
i) Nukleinsäuremolekül, kodierend für ein keratinbindendes Protein, das aus einer DNA- Bank unter Verwendung eines Nukleinsäuremoleküls gemäß (c) bis (e) oder deren Teil- fragmente von mindestens 15 nt, vorzugsweise 20 nt, 30 nt, 50 nt, 100 nt, 200 nt oder
500 nt als Sonde unter stringenten Hybridisierungsbedingungen isoliert werden kann. j) Nukleinsäuremolekül welches durch Rückübersetzung einer der in den Sequenzen SEQ ID No.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124,
126, 128, 130, 132, 134, 136, 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 oder 215 gezeigten Aminosäuresequenzen erzeugt werden kann.
Erfindungsgemäß geeignete keratinbindende Polypeptiddomänen sind in den Polypeptidse- quenzen von Desmoplakinen, Plakophilinen, Plakoglobinen, Plectinen, Periplakinen, Envoplaki- nen, Trichohyalinen, Epiplakinen oder Haarfolikelproteinen vorhanden.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung, werden Desmoplakine oder deren Teilsequenzen gemäß der Sequenzen SEQ ID No.: 2, 42, 44, 46, 48, 146, 150, 153, 156, 157, 158, 160, 162, 164 oder 166, und/oder Plakophilline oder deren Teilsequenzen gemäß der Sequenzen SEQ ID No.: 18, 20, 26, 28, 32, 34, 36, 213, 215 und/oder Plakoglobine oder deren Teilsequenzen gemäß der Sequenzen mit der SEQ ID No.: 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, und/oder das Periplakin gemäß der Sequenz mit der SEQ ID No.: 86, und/oder En- voplakine oder deren Teilsequenzen gemäß der Sequenzen mit der SEQ ID No.: 90, 92, 94, 96, 98, 102, 104, 105 und/oder die Sequenzen gemäß SEQ ID No.: 138 und 140 als keratinbindende Polypeptide verwendet. Bevorzugte keratinbindende Domänen sind die in den Sequenzen SEQ ID NOs: 4, 6, 8, 10, 12, 14, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 oder 215abgebildeten Desmoplakin Polypeptide, sowie deren funktionelle Äquivalente. In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung werden im erfindungsgemä- ßen Verfahren die in den Sequenzen SEQ ID No.: 156, 157, 158, 160, 162, 164, 166, 213 und/oder 215 abgebildeten keratinbindenden Polypeptide eingesetzt. In einer am allermeisten bevorzugten Ausführungsform der vorliegenden Erfindung wird das in der Sequenz SEQ ID No.: 213 gezeigte keratinbindende Protein verwendet. Dabei versteht es sich, dass dieses Protein sowohl mit als auch ohne den in der SEQ ID No.: 213 vorhandenen Histidinanker verwendet werden kann. So kann der Histidinanker (oder eine analog zu verwendendes Aufreinigungs- /Detektiossystem) auch C-terminal vorhanden sein. In der praktischen Anwendung der genannten keratinbindenden Proteine (z.B in kosmetischen Zubereitungen) ist ein Histidinanker (oder eine analog zu verwendendes Aufreinigungs-/Detektiossystem) nicht notwendig. Somit ist die Verwendung der genannten Proteine ohne zusätzliche Aminosäuresequenzen bevorzugt
Erfindungsgemäß mit umfasst sind ebenfalls „funktionale Äquivalente" der konkret offenbarten keratinbindenden Polypeptide (i) und die Verwendung dieser in den erfindungsgemäßen Verfahren.
„Funktionale Äquivalente" oder Analoga der konkret offenbarten keratinbindenden Polypeptide (i) sind im Rahmen der vorliegenden Erfindung davon verschiedene Polypeptide, welche weiterhin die gewünschte biologische Aktivität, wie z.B. Keratinbindung, besitzen. So versteht man beispielsweise unter „funktionalen Äquivalenten" von keratinbindenden Polypeptiden solche Polypeptide, die unter ansonsten vergleichbaren Bedingungen, in den in den Beispielen beschriebenen quantitativen Keratinbindungstests ca.10%, 20%, 30%, 40% oder 50%, bevorzugt 60%, 70%, 80% oder 90%, besonders bevorzugt 100%, 125%, 150%, ganz besonders bevor- zugt 200%, 300% oder 400%, am meisten bevorzugt 500%, 600%, 700% oder 1000% oder mehr der Keratinbindungskapazität der unter den SEQ ID No.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 1 10, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 oder 215 dargestellten Polypeptide aufweisen.
Unter „funktionalen Äquivalenten" versteht man erfindungsgemäß insbesondere auch Muteine, welche in wenigstens einer Sequenzposition der oben genannten Aminosäuresequenzen eine andere als die konkret genannte Aminosäure aufweisen aber trotzdem eine der oben genannten biologischen Aktivitäten besitzen. „Funktionale Äquivalente" umfassen somit die durch eine Mutation erhältlichen Muteine, wobei die genannten Veränderungen in jeglicher Sequenzposition auftreten können, solange sie zu einem Mutein mit dem erfindungsgemäßen Eigenschaftsprofil führen.
„Mutation" im Sinne der vorliegenden Erfindung meint die Veränderung der Nukleinsäureabfolge einer Genvariante in einem Plasmid oder im Genom eines Organismus. Mutationen können z.B als Folge von Fehlern bei der Replikation entstehen oder durch Mutagene hervorgerufen werden. Die Rate der Spontanmutationen im Zellgenom von Organismen ist sehr gering, allerdings sind dem kundigen Fachmann eine Vielzahl von biologischen, chemischen oder physikalischen Mutagenen bekannt.
Mutationen umfassen Substitutionen, Insertionen, Deletionen eines oder mehrerer Nukleinsäu- rereste. Unter Substitutionen versteht man den Austausch von einzelnen Nukleinsäurebasen, dabei unterscheidet man zwischen Transitionen (Substitution einer Purin- gegen eine Purinbase bzw. einer Pyrimidin- gegen eine Pyrimidinbase) und Transversionen (Substitution einer Puringegen eine Pyrimidinbase (oder umgekehrt).
Unter Additionen bzw. Insertion versteht man den Einbau von zusätzlichen Nukleinsäureresten in die DNA, wobei es zu Verschiebungen des Leserahmens kommen kann. Bei derartigen Leserahmenverschiebungen unterscheidet man zwischen „in frame" Insertionen/Additionen und „out of frame" Insertionen. Bei den „in-frame" Insertionen/Additionen bleibt der Leserahmen erhalten und ein um die Anzahl der von den insertierten Nukleinsäuren kodierten Aminosäuren vergrößertes Polypeptid entsteht. Bei „out of frame" Insertionen/Additionen geht der ursprüngliche Leserahmen verloren und die Bildung eines vollständigen und funktionstüchtigen Polypeptids ist nicht mehr möglich.
Deletionen beschreiben den Verlust von einem oder mehreren Basenpaaren, die ebenfalls zu „in frame" oder „out of frame" Verschiebungen des Leserahmens und den damit verbundenen Folgen bezüglich der Bildung eines intakten Proteins führen.
Die zur Erzeugung von zufälligen oder gezielten Mutationen verwendbaren mutagenen Agenzien (Mutagene) und die anwendbaren Methoden und Techniken sind dem Fachmann bekannt. Derartige Methoden und Mutagene sind z.B. beschrieben bei A.M. van Harten [(1998), "Mutati- on breeding: theory and practical applications", Cambridge University Press, Cambridge, UK], E Friedberg, G Walker, W Siede [(1995), „DNA Repair and Mutagenesis", Blackwell Publishing], oder K. Sankaranarayanan, J. M. Gentile, L. R. Ferguson [(2000) „Protocols in Mutagenesis", Elsevier Health Sciences].
Für die Einführung von gezielten Mutationen können geläufige molekularbiologische Methoden und Verfahren wie z.B. der in vitro Mutagenese Kit „LA PCR in vitro Mutagenesis Kit" (Takara Shuzo, Kyoto), der QuikChange® Kit der Firma Stratagene oder PCR Mutagenesen unter Verwendung geeigneter Primer angewendet werden.
Wie bereits oben aufgeführt, gibt es eine Vielzahl von chemischen, physikalischen und biologischen Mutagenen.
Die im folgenden aufgeführten Mutagene sind beispielhaft, aber nicht einschränkend genannt.
Chemische Mutagene können gemäß ihres Wirkmechanismus unterteilt werden. So gibt es Basenanaloga (z.B.5-bromouracil, 2-amino purin), mono- und bifunktionale alkylierende Agenzien (z.B. monofunktionale wie Ethylmethylsulfonat, Dimethylsulfat, oder bifunktionale wie Dich- loroethylsulfit, Mitomycin, Nitrosoguanidine - dialkylnitrosamine, N-Nitrosoguanidin Derivate) oder interkalierende Substanzen (z.B. Acridine, Ethidiumbromid).
Somit können beispielsweise auch solche Polypeptide für das erfindungsgemäße Verfahren eingesetzt werden, welche man in Folge einer Mutation eines erfindungsgemäßen Polypeptides z.B. gemäß SEQ ID No.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 112, 114, 116, 1 18, 120, 122, 124, 126, 128, 130, 132, 134, 136 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 und/oder 215 erhält.
Beispiele für geeignete Aminosäuresubstitutionen sind folgender Tabelle zu entnehmen: Ursprünglicher Rest Beispiele der Substitution
AIa Ser
Arg Lys
Asn GIn; His
Asp GIu
Cys Ser oder AIa
GIn Asn
GIu Asp
GIy Pro
His Asn; GIn
He Leu; VaI
Leu He; VaI
Lys Arg; GIn; GIu
Met Leu; He
Phe Met; Leu; Tyr
Ser Thr
Thr Ser
Trp Tyr
Tyr Trp; Phe
VaI He; Leu
Tabelle 2: geeignete Aminosäuresubstitutionen Bekannt ist, dass in SEQ ID NO: 2 das an Position 2849 natürlich vorliegende Serin z.B. gegen Glycin ausgetauscht werden kann, um eine Phosphorylierung an dieser Position zu umgehen (Fontao L, Favre B, Riou S, Geerts D, Jaunin F, Saurat JH, Green KJ, Sonnenberg A, Borradori L., Interaction of the bullous pemphigoid antigen 1 (BP230) and desmoplakin with intermediate filaments is mediated by distinct sequences within their COOH terminus., Mol Biol Cell. 2003 May;14(5):1978-92. Epub 2003 Jan 26).
„Funktionale Äquivalente" im obigen Sinne sind auch „Präkursoren" der beschriebenen Polypeptide sowie „funktionale Derivate" und „Salze" der Polypeptide.
„Präkursoren" sind dabei natürliche oder synthetische Vorstufen der Polypeptide mit oder ohne gewünschte biologische Aktivität.
Unter dem Ausdruck „Salze" versteht man sowohl Salze von Carboxylgruppen als auch Säureadditionssalze von Aminogruppen der erfindungsgemäßen Proteinmoleküle. Salze von Carboxylgruppen können in an sich bekannter Weise hergestellt werden und umfassen anorganische Salze, wie zum Beispiel Natrium-, Calcium-, Ammonium-, Eisen- und Zinksalze, sowie Salze mit organischen Basen, wie zum Beispiel Aminen, wie Triethylamin, Arginin, Lysin, Piperidin und dergleichen. Säureadditionssalze, wie zum Beispiel Salze mit Mineralsäuren, wie Salzsäure oder Schwefelsäure und Salze mit organischen Säuren, wie Essigsäure und Oxalsäure sind ebenfalls Gegenstand der Erfindung.
"Funktionale Äquivalente" umfassen natürlich auch Polypeptide, welche aus anderen Organis- men zugänglich sind, sowie natürlich vorkommende Varianten (Allele) derselben. Beispielsweise lassen sich durch Sequenzvergleiche Bereiche homologer Sequenzregionen bzw. konservierte Bereiche festlegen. Unter Verwendung dieser Sequenzen können DNA Datenbanken (z.B. genomische oder cDNA-Datenbanken) unter Anwendung bioinformatischer Vergleichsprogramme nach äquivalenten Enzymen durchmustert werden. Geeignete Computerprogramme und öffentlich zugängliche Datenbanken sind dem Fachmann hinlänglich bekannt.
Diese Alignments bekannter Proteinsequenzen können beispielsweise mit einem Computerprogramm wie Vector NTI 8 (Version vom 25. September 2002) der Firma InforMax Inc. durchgeführt werden.
„Funktionale Äquivalente" sind außerdem Fusionsproteine, welche eine der oben genannten Polypeptidsequenzen oder davon abgeleitete funktionale Äquivalente und wenigstens eine weitere, davon funktionell verschiedene, heterologe Sequenz in funktioneller N- oder C-terminaler Verknüpfung (d.h. ohne gegenseitige wesentliche funktionelle Beeinträchtigung der Fusionsproteinteile) aufweisen. Nichtlimitierende Beispiele für derartige heterologe Sequenzen sind z.B. Signalpeptide oder Enzyme.
Erfindungsgemäß mit umfasste „funktionale Äquivalente" sind Homologe zu den konkret offenbarten Proteinen. Diese besitzen wenigstens 40%, 45% oder 50%, vorzugsweise mindestens 55%, 60%, 65% oder 70%, besonders bevorzugt mindestens 75%, 80%, 85%, 90%, 91 %, 92%, 93% oder 94%, ganz besonders bevorzugt mindestens 95% oder 96% Homologie zu einer der konkret offenbarten Aminosäuresequenzen, berechnet unter Verwendung der in den Definitionen offenbarten Computerprogrammen und Computeralgorithmen.
Im Falle einer möglichen Proteinglykosylierung umfassen erfindungsgemäße „funktionale Äqui- valente" Proteine des oben bezeichneten Typs in deglykosylierter bzw. glykosylierter Form sowie durch Veränderung des Glykosylierungsmusters erhältliche abgewandelte Formen.
Im Falle einer möglichen Proteinphosphorylierung umfassen erfindungsgemäße „funktionale Äquivalente" Proteine des oben bezeichneten Typs in dephosphorylierter bzw. phosphorylierter Form sowie durch Veränderung des Phosphorylierungsmusters erhältliche abgewandelte Formen.
Homologe der erfindungsgemäßen Polypeptide können durch Screening kombinatorischer Banken von Mutanten, wie z.B. Verkürzungsmutanten, identifiziert werden. Beispielsweise kann eine Bank von Protein-Varianten durch kombinatorische Mutagenese auf Nukleinsäureebene erzeugt werden, wie z.B. durch enzymatisches Ligieren eines Gemisches synthetischer Oligo- nukleotide. Es gibt eine Vielzahl von Verfahren, die zur Herstellung von Banken potentieller Homologer aus einer degenerierten Oligonukleotidsequenz verwendet werden können. Die chemische Synthese einer degenerierten Gensequenz kann in einem DNA-Syntheseautomaten durchgeführt werden, und das synthetische Gen kann dann in einen geeigneten Expressionsvektor ligiert werden. Die Verwendung eines degenerierten Gensatzes ermöglicht die Bereitstellung sämtlicher Sequenzen in einem Gemisch, die den gewünschten Satz an potentiellen Proteinsequenzen kodieren. Verfahren zur Synthese degenerierter Oligonukleotide sind dem Fachmann bekannt (z.B. Narang, S.A. (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al., (1984) Science 198:1056; Ike et al. (1983) Nucleic Acids Res. 11 :477).
Im Stand der Technik sind mehrere Techniken zum Screening von Genprodukten kombinatorischer Banken, die durch Punktmutationen oder Verkürzung hergestellt worden sind, und zum Screening von cDNA-Banken auf Genprodukte mit einer ausgewählten Eigenschaft bekannt. Die am häufigsten verwendeten Techniken zum Screening großer Genbanken, die einer Analyse mit hohem Durchsatz unterliegen, umfassen das Klonieren der Genbank in replizierbare Expressionsvektoren, Transformieren der geeigneten Zellen mit der resultierenden Vektorenbank und Exprimieren der kombinatorischen Gene unter Bedingungen, unter denen der Nach- weis der gewünschten Aktivität die Isolation des Vektors, der das Gen kodiert, dessen Produkt nachgewiesen wurde, erleichtert. Recursive-Ensemble-Mutagenese (REM), eine Technik, die die Häufigkeit funktioneller Mutanten in den Banken vergrößert, kann in Kombination mit den Screeningtests verwendet werden, um Homologe zu identifizieren (Arkin und Yourvan (1992) PNAS 89:7811-7815; Delgrave et al. (1993) Protein Engineering 6(3):327-331).
Auch die Durchmusterung von physikalisch verfügbaren cDNA- oder genomischen-DNA Bibliotheken anderer Organismen unter Verwendung der unter SEQ ID No.: 1 , 3, 5, 7, 9, 11 , 13, 15, 17, 19, 21 , 23, 25, 27, 29, 31 , 33, 35, 37, 39, 41 , 43, 45, 47, 49, 51 , 53, 55, 57, 59, 61 , 63, 65, 67, 69, 71 , 73, 75, 77, 79, 81 , 83, 85, 87, 89, 91 , 93, 95, 97, 99, 101 , 103, 105, 107, 109, 111 , 113, 115, 117, 119, 121 , 123, 125, 127, 129, 131 , 133, 135, 137, 139, 145, 149, 152, 159, 161 , 163, 165, 212 und/oder 214, besonders bevorzugt 165, 212 und 214, am meisten bevorzugt 214 beschriebene Nukleinsäuresequenz oder Teilen derselben als Sonde, ist ein dem Fach- mann geläufiges Verfahren, um Homologe in anderen Arten zu identifizieren. Dabei haben die von der Nukleinsäuresequenz gemäß SEQ ID No.: 1 , 3, 5, 7, 9, 1 1 , 13, 15, 17, 19, 21 , 23, 25,
27, 29, 31 , 33, 35, 37, 39, 41 , 43, 45, 47, 49, 51 , 53, 55, 57, 59, 61 , 63, 65, 67, 69, 71 , 73, 75,
77, 79, 81 , 83, 85, 87, 89, 91 , 93, 95, 97, 99, 101 , 103, 105, 107, 109, 111 , 113, 115, 1 17, 119, 121 , 123, 125, 127, 129, 131 , 133, 135, 137, 139, 145, 149, 152, 159, 161 , 163, 165, 212 und/oder 214, besonders bevorzugt 165, 212 und 214, am meisten bevorzugt 214 abgeleiteten Sonden eine Länge von mindestens 20 bp, bevorzugt mindestens 50 bp, besonders bevorzugt mindestens 100 bp, ganz besonders bevorzugt mindestens 200 bp, am meisten bevorzugt mindestens 400 bp. Die Sonde kann auch ein oder mehrere Kilobasen lang sein, z.B. 1 Kb, 1 ,5 Kb oder 3 Kb. Für die Durchmusterung der Bibliotheken kann auch ein zu den unter SEQ ID No.: 1 , 3, 5, 7, 9, 11 , 13, 15, 17, 19, 21 , 23, 25, 27, 29, 31 , 33, 35, 37, 39, 41 , 43, 45, 47, 49, 51 , 53, 55, 57, 59, 61 , 63, 65, 67, 69, 71 , 73, 75, 77, 79, 81 , 83, 85, 87, 89, 91 , 93, 95, 97, 99, 101 , 103, 105, 107, 109, 111 , 113, 1 15, 1 17, 119, 121 , 123, 125, 127, 129, 131 , 133, 135, 137, 139, 145, 149, 152, 159, 161 , 163, 165, 212 und/oder 214, besonders bevorzugt 165, 212 und 214, am meisten bevorzugt 214 beschriebenen Sequenzen komplementärer DNA-Strang, oder ein Fragment desselben mit einer Länge zwischen 20 Bp und mehreren Kilobasen eingesetzt werden. Die zu verwendenden Hybridisierungsbedingungen sind oben beschrieben.
Im erfindungsgemäßen Verfahren können auch solche DNA Moleküle verwendet werden, die unter Standardbedingungen mit den durch SEQ ID No.: 1 , 3, 5, 7, 9, 1 1 , 13, 15, 17, 19, 21 , 23, 25, 27, 29, 31 , 33, 35, 37, 39, 41 , 43, 45, 47, 49, 51 , 53, 55, 57, 59, 61 , 63, 65, 67, 69, 71 , 73, 75, 77, 79, 81 , 83, 85, 87, 89, 91 , 93, 95, 97, 99, 101 , 103, 105, 107, 109, 1 11 , 113, 115, 117, 119, 121 , 123, 125, 127, 129, 131 , 133, 135, 137, 139, 145, 149, 152, 159, 161 , 163, 165, 212 und/oder 214, besonders bevorzugt 165, 212 und 214, am meisten bevorzugt 214 beschriebe- nen und für keratinbindende Polypeptide kodierenden Nukleinsäuremoleküle, der zu diesen komplementären Nukleinsäuremolekülen oder Teilen der vorgenannten, hybridisieren und als vollständige Sequenzen für Polypeptide kodieren, die über die gleichen Eigenschaften wie die unter SEQ ID No.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 oder 215 beschriebenen Polypeptide verfügen.
Eine besonders vorteilhafte Ausgestaltung der Erfindung sind keratinbindende Polypeptide (i), die mindestens eine der Polypeptidsequenzen wie gezeigt in SEQ ID No.: 2, 4, 6, 8, 10, 12, 14,
16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64,
66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110,
112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 146, 150, 153, 156,
157, 158, 160, 162, 164, 166, 213 oder 215 umfassen, mit der Maßgabe, dass die Keratinbin- düng der genannten Polypeptide mindestens 10 %, 20%, 30%, 40% oder 50%, bevorzugt 60%,
70%, 80% oder 90%, besonders bevorzugt 100% des Wertes beträgt, den die entsprechenden
Polypeptidsequenzen wie gezeigt in SEQ ID No.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26,
28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76,
78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 1 12, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 164,
166, 213 oder 215 aufweisen, gemessen in dem Test gemäß Beispiel 9 oder 10. Bevorzugt werden keratinbindende Polypeptide (i) verwendet, die für den gewünschten Organismus eine hochspezifische Affinität besitzen. Für Anwendungen in der Hautkosmetik werden demzufolge keratinbindende Polypeptide (i) bevorzugt eingesetzt, die zu dem humanen Haut- keratin eine besonders hohe Affinität haben. Für Anwendungen in der Haarkosmetik werden solche Polypeptidsequenzen bevorzugt, die zu humanem Haarkeratin eine besonders hohe Affinität haben.
Für Anwendungen auf dem Haustiergebiet werden, neben den beschriebenen Polypeptidse- quenzen (SEQ ID No.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 112, 114, 116, 1 18, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 oder 215, bevorzugt in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 40, 42, 44, 46, 48, 146, 150, 153, 156, 157, 158, 160, 164, 166, 213 oder 215, besonders bevorzugt 166 und 213, am meisten bevorzugt 213), entsprechend solche keratinbindende Polypeptide (i) bevorzugt, die zu dem entsprechenden Keratin, beispielsweise Hundekeratin oder Katzenkeratin eine besonders hohe Affinität besitzen.
Es können aber auch mehr als ein keratinbindendes Polypeptid (i) mit dem erfindungsgemäßen Effektormolekül (i) gekoppelt verwendet werden, beispielsweise kann ein keratinbindendes Polypeptid (i), welches eine hohe Bindungsaffinität zu humanem Hautkeratin besitzt, in Verbindung mit einem anderen keratinbindenden Polypeptid (i), welches eine hohe Affinität zu humanem Haarkeratin besitzt, mit einem Effektormolekül kombiniert werden. Es können auch chimäre Polypeptide verwendet werden, die mehrere Kopien der gleichen (oder auch verschiedene) keratinbindende Polypeptide (i) oder deren keratinbindenden Domänen enthalten. Somit könnte beispielsweise eine besonders effektive Keratinbindung erzielt werden.
Geeignete keratinbindende Polypeptide (i) sind bekannt. Beispielsweise enthalten Desmoplaki- ne und Plectine keratinbindende Domänen (Fontao L, Favre B, Riou S, Geerts D, Jaunin F,
Saurat JH, Green KJ, Sonnenberg A, Borradori L., Interaction of the bullous pemphigoid antigen
1 (BP230) and desmoplakin with intermediate filaments is mediated by distinct sequences within their COOH terminus., Mol Biol Cell. 2003 May;14(5):1978-92. Epub 2003 Jan 26;
Hopkinson SB, Jones JC, The N terminus of the transmembrane protein BP180 interacts with the N-terminal domain of BP230, thereby mediating keratin cytoskeleton anchorage to the cell surface at the Site of the hemidesmosome, Mol Biol Cell. 2000 Jan; 11 (1 ):277-86).
Die erfindungsgemäßen keratinbindenden Polypeptide (i) können auch - falls gewünscht - wieder leicht vom Keratin getrennt werden. Hierzu kann beispielsweise eine Spülung mit Keratin eingesetzt werden, wodurch die keratinbindenden Polypeptide (i) aus ihrer bestehenden Bindung zum Keratin verdrängt werden und mit dem Keratin aus der Spülung abgesättigt werden. Alternativ ist auch eine Spülung mit einem hohen Anteil an Detergenz (z.B. SDS) zum Abwaschen möglich.
Ein bevorzugter Gegenstand der vorliegenden Erfindung betrifft ferner die oben beschriebenen keratinbindenden Effektorproteine, wobei das Effektorpolypeptid (ii) ausgewählt ist aus der Gruppe bestehend aus Enzymen, Antikörpern, Effektoren bindende Proteine, Fluoreszenzproteinen, Antimikrobiellen-Peptiden und selbstassemblierenden Proteinen. Enzyme:
Bei den Enzymen sind bevorzugt solche zu nennen ausgewählt aus der Gruppe bestehend aus Oxidasen, Peroxidasen, Proteasen, Tyrosinasen, Lactoperoxidase, Lysozym, Amyloglycosida- sen, Glucoseoxidasen, Superoxiddismutasen, Photolyasen und Katalasen.
Antikörper
Bei den Antikörpern sind bevorzugt solche zu nennen, welche einen positiven kosmetischen Nutzen mit sich bringen können, z.B. Antikörper, die gegen Hautpathogene gerichtet sind.
Bei den Effektoren bindenden Proteinen sind bevorzugt carotinoidbindende Proteine (nachfolgend auch CBP genannt), vitaminbindende, chromophorbindende, odorantienbindende, zuckerbindende und metallbindende Proteine zu nennen. Besonders bevorzugt unter den caroti- noidbindenden Proteinen ist das carotinoid-binding protein (Accession number SWISS-PROT: Q8MYA9) aus dem Seidenspinner Bombyx mori. Die Isolierung des Proteins und die Charakterisierung der carotinoidbindenden Eigenschaften dieses Proteins ist in Tabunoki et al. (2002; Isolation, characterization, and cDNA sequence of a Carotinoid binding protein from the silk gland of Bombyx mori larvae.; J Biol Chem 277: 32133-32140) beschrieben. Besonders bevor- zugt unter den metallbindenden Proteinen ist die „Lead, cadmium, zinc and mercury transpor- ting ATPase" ZntA (SWISS-PROT: P37617) aus E. coli. Die Isolierung und Charakterisierung des ZntA-Proteins sind unter anderem in Sofia et al. (1994; Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes.; Nucleic Adds Res 22: 2576-2586), Rensing et al. (1997; The zntA gene of Escherichia coli encodes a Zn(II)- translocating P-type ATPase.; Proc Natl Acad Sei 94: 14326-14331) und Sharma et al. (2000; The ATP hydrolytic activity of purified ZntA, a Pb(ll)/Cd(ll)/Zn(ll)-translocating ATPase from Escherichia coli.; J Biol Chem 275: 3873-3878) beschrieben.
Fluoreszenzproteine: Bei den Fluoreszenzproteinen sind bevorzugt solche zu nennen ausgewählt aus der Gruppe bestehend aus Green Fluorescent Protein (GFP), enhanced Green Fluorescent Protein (eGFP), Red Fluorescent Protein (RFP), monomeres Red Fluorescent Protein (mRFP), dsRED, Blue Fluorescent Protein (BFP), Yellow Fluorescent Protein (YFP) und Cyan Fluorescent Protein (CFP). Besonders bevorzugt ist das enhanced Green Fluorescent Protein (eGFP). Es handelt sich bei den GFP-Proteinen um Proteine, die von einigen Tieren produziert werden, die grün fluoreszieren können, wenn sie mit blauem Licht (UV-Licht) bestrahlt werden. Ein Beispiel für einen Träger des GFP-Proteins ist die Qualle Aequorea victoria. An der nördlichen Pazifikküste der USA und Kanadas finden sich in den Sommermonaten große Vorkommen von dieser Qualle mit charakteristisch grüner Emission. Der vorgesetzte Buchstabe „e" beschreibt eine verbesserte (enhanced) Version des Wildtyps GFP. Das eGFP zeichnet sich durch eine 35-fach höhere Intensität der Fluoreszenz aus.
Solche Fluoreszenzproteine werden z.B. vom HHMI (Howard Hughes Medical Institute) Labor beschrieben und vertrieben. Die Verwendung von Fluoreszenzproteinen enthaltenden keratinbindenden Effektorproteine dient zur Erzielung eines gesünder und leuchtender wirkenden Hauttons oder zur optischen Aufhellung der Haut („skin whitening") nach Applikation auf der Haut. Ferner können diese Fluoreszenzprotein enthaltenden keratinbindenden Effektorproteine auch zur Aufhellung von Haaren oder zur Erzeugung spezieller Refelxe oder Schimmer auf dem Haar verwendet werden. Weiterhin können die Fluoreszenzprotein enthaltenden keratinbindenden Effektorproteine in der dekorativen Kosmetik eingesetzt werden um z.B. bei der Bestrahlung mit UV-Licht den Effekt eines Tatoos zu erzeugen.
AM P 's Bei den Antimikrobiellen-Peptiden sind bevorzugt solche zu nennen ausgewählt aus der Gruppe bestehend aus Polypeptiden die zur Hemmung des Wachstums von Mikroorganismen, wie Bakterien, Pilze oder Protozoen führen. Besonders bevorzugt ist das Polypeptid gemäß SEQ ID No.: 211
Selbstassemblierende Proteine:
Bei den selbstassemblierenden Proteinen sind bevorzugt zu nennen Seidenproteine aus verschiedenen Organismen, wie z.B. Spinnen (z.B. Araneus diadematus), Seidenspinnern (z.B. Bombyx mori), Muscheln (z.B. Mytilus edulis). Besonders bevorzugt unter den Seidenproteinen ist das C16-Spinnenseidenprotein, welches eine 16-fache Wiederholung des Moduls C des Proteins ADF4 aus Araneus diadematus darstellt. Die Konstruktion und Charakterisierung des C16- Spinnenseidenproteins ist in Huemmerich et al. (2004; Primary structure elements of spider dragline silks and their contribution to protein solubility; Biochemistry 43: 13604-13612) beschrieben. Besonders bevorzugt sind die folgenden Seidenproteine: Seidenprotein aus Nephila clavipes accession number AY855102 und U37520, Araneus gem- moides accession number AY855101 und accession number AY855100, Argiope aurantia accession number AY855099 und AY855098, das synthetische Spinnenseindenprotein accession number DQ001900 und accession number DQ186903
Weitere gut geeignete Effektorproteine (ii) sind Polypeptide, die natürlicherweise in Mikroorganismen, insbesondere in E. coli oder Bacillus subtilis vorkommen. Beispiele für solche Fusions- partner sind die Sequenzen YaaD (Accession No. BG10075) (SEQ ID NO:197 und 198) und Thioredoxin (Accession No. EG1 1031) (SEQ ID NO:185 und 186)
Auch Fragmente und funktionelle Äquivalente (gemäß der oben gegebenen Definition) der oben genannten Proteine und Polypeptide eignen sich prinzipiell als Effektorproteine (ii).
Ein besonders bevorzugter Gegenstand der vorliegenden Erfindung richtet sich auf keratinbin- dende Effektorproteine, enthaltend als Effektorpolypeptid (ii) ein Seidenprotein, besonders bevorzugt Seidenproteine welche mindestens eine der Sequenzen gemäß SEQ ID No.: 151 , 201 , 202, 203, 204, 205, 206, 207, 208, 209 oder 210 umfaßen, oder einem Polypeptid entsprechen, welches mindestens zu 40%, 45% oder 50%, vorzugsweise mindestens 55%, 60%, 65% oder 70%, besonders bevorzugt mindestens 75%, 80%, 85%, 90%, 91 %, 92%, 93% oder 94%, ganz besonders bevorzugt mindestens 95% oder 96% identisch ist mit wenigstens einer der Sequenzen gemäß SEQ ID No.: 151 , 201 , 202, 203, 204, 205, 206, 207, 208, 209 oder 210 Ferner betrifft die Erfindung solche keratinbindenden Effektorproteine, enthaltend Seidenproteine welche kodiert werden von einem Nukleinsäuremolekül umfassend mindestens ein Nuklein- säuremolekül ausgewählt aus der Gruppe bestehend aus:
k) Nukleinsäuremolekül, das ein Polypeptid kodiert, umfassend die in SEQ ID No.: 151 ,
201 , 202, 203, 204, 205, 206, 207, 208, 209 oder 210 gezeigte Sequenz;
I) Nukleinsäuremolekül, das zumindest ein Polynukleotid der Sequenz gezeigt in SEQ
ID No.: 150 umfasst;
m) Nukleinsäuremolekül, das ein Polypeptid gemäß der Sequenzen SEQ ID No.: 151 ,
201 , 202, 203, 204, 205, 206, 207, 208, 209 oder 210 kodiert;
n) Nukleinsäuremolekül, mit einer Nukleinsäuresequenz gemäß SEQ ID No.: 150 oder ein davon durch Substitution, Deletion oder Insertion abgeleitetes Nukleinsäuremolekül, das ein Polypeptid kodiert, welches mindestens zu 40% identisch ist mit der Sequenz gemäß SEQ ID No.: 151
o) Nukleinsäuremolekül, das ein Polypeptid kodiert, welches von einem monoklonalen Antikörper, gerichtet gegen ein Polypeptid welches durch die Nukleinsäuremoleküle gemäß (k) bis (m) kodiert wird, erkannt wird;
p) Nukleinsäuremolekül, kodierend für ein keratinbindendes Protein, das unter stringen- ten Bedingungen mit einem Nukleinsäuremolekül gemäß (k) bis (m) hybridisiert; und
q) Nukleinsäuremolekül, kodierend für ein keratinbindendes Protein, das aus einer DNA-Bank unter Verwendung eines Nukleinsäuremoleküls gemäß (k) bis (m) oder deren Teilfragmente umfassend mindestens 15 Nukleotide als Sonde unter stringen- ten Hybridisierungsbedingungen isoliert werden kann.
r) Nukleinsäuremolekül, welches durch Rückübersetzung einer der in den Sequenzen SEQ ID No.: 151 , 201 , 202, 203, 204, 205, 206, 207, 208, 209 oder 210 gezeigten Aminosäuresequenzen erzeugt werden kann.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung handelt es sich bei den erfindungsgemäßen Chimären keratinbindenden Effektorproteinen um Proteine, bei denen die oben beschriebenen Polypeptide (i) und (ii) mittels Translationsfusion miteinander verknüpft sind.
Dabei können in einer Form der vorliegenden Erfindung neben den oben genannten Effektorproteinen (ii) auch solche Polypeptide verwendet werden, die aus mindestens 3 bis 10, bevorzugt mindestens 11 bis 50, besonders bevorzugt mindestens 51 bis 100 und insbesondere bevorzugt mindestens mehr als 100 Aminosäuren aufgebaut sind (im folgenden auch Fusionspartner genannt) und welche nicht natürlicherweise mit einem keratinbindenden Polypeptid (i) wie oben beschrieben verknüpft sind. Das Effektorprotein (ii) kann aus einer Vielzahl von Proteinen oder Polypeptiden ausgewählt werden. Es können auch mehrere Effektorproteine (ii) mit einem keratinbindenden Polypeptid (i) verknüpft werden, beispielsweise am Aminoterminus und am Carboxyterminus des keratinbindenden Polypeptidanteils.
Die erfindungsgemäß genannten keratinbindenden Effektorproteine bzw. die darin enthaltenen keratinbindenden Polypeptide (i) und die Effektorproteine (ii) lassen sich chemisch durch bekannte Verfahren der Peptidsynthese beispielsweise durch Festphasensynthese nach Merrifield herstellen (2005, Kimmerlin T, Seebach D., '100 years of peptide synthesis': ligation methods for peptide and protein synthesis with applications to beta-peptide assemblies., J Pept Res. 2005 Feb;65(2):229-260).
Besonders geeignet sind jedoch gentechnische Verfahren, bei denen die für die keratinbindenden Polypeptide (i) und die für die Effektorproteine (ii) kodierenden Nukleinsäuremoleküle funk- tionell so miteinander verknüpft werden, dass infolge der Translation des fusionierten Nuklein- säuremoleküls ein einziges durchgängiges Translationsprodukt gebildet wird (Translationsfusion).
Zur Herstellung der oben beschriebenen keratinbindenden Polypeptide (i), der Effektorproteine (ii) oder der Fusionsproteine (umfassend die Aminosäuresequenzen der Polypeptide (i) und (ii)) geeignete Wirtsorganismen (Produktionsorganismen) sind Prokaryonten (einschließlich der Archaea) und Eukaryonten, bevorzugt Bakterien einschließlich Halobacterien und Methanococ- cen, Pilze, Insektenzellen, Pflanzenzellen und Säugerzellen, besonders bevorzugt Escherichia coli, Bacillus subtilis, Bacillus. megaterium, Aspergillus oryzea, Aspergillus nidulans, Aspergillus niger, Pichia pastoris, Pseudomonas speα, Lactobacillen, Hansenula polymorpha, Trichoderma reesei, und SF9 (bzw. verwandte Zellen).
Chemische Kopplung
Ein weiterer bevorzugter Gegenstand der Erfindung betrifft keratinbindende Effektorproteine bei denen die oben beschriebenen Polypeptide (i) und (ii) mittels einer chemischen Kopplungsreak- tion miteinander verknüpft sind. Bei diesen Kopplungsreaktionen können Bindungen geschlossen werden ausgewählt aus der Gruppe kovalenter Bindungen bestehend aus Thioester, Ester, Thioether, Ether, Amidbindungen, Sulfonsäureester und Sulfonamidbindungen. Dabei können die genannten Verbindungen zwischen den Seitenketten interner Aminosäuren, dem N- Terminus oder dem C-Terminus des keratinbindenden Polypeptides (i) und den Seitenketten interner Aminosäuren, dem N-Terminus oder dem C-Terminus des Effektorproteins geschlossen werden.
Alternativ kann eine direkte Kopplung zwischen Effektormolekül (ii) und der Keratin- Bindedomäne z.B. mittels Carbodiimiden, Glutardialdehyd oder anderen, dem Fachmann bekannten Crosslinkern durchgeführt werden. Eine Auswahl über solche Kopplungsreaktionen gibt 2005, Kimmerlin T, Seebach D., '100 years of peptide synthesis': ligation methods for peptide and protein synthesis with applications to beta-peptide assemblies., J Pept Res., 65(2):229-260, und 2004, David R et al., Expressed protein ligation, Eur. J. Biochem. 271 , 663-677.
Ferner sind keratinbindende Effektorproteine Gegenstand der vorliegenden Erfindung, bei de- nen das Effektorpolypeptid (ii) und das keratinbindende Polypeptid (i) mittels eines Spacerele- mentes miteinander verbunden sind. Das Spacerelement kann stabil, thermospaltbar, photospaltbar oder auch enzymatisch spaltbar sein (besonders durch Lipasen, Esterasen, Proteasen, Phosphatasen, Hydrolasen etc.). Entsprechende chemische Strukturen sind dem Fachmann bekannt und werden zwischen die Molekülteile (i) und (ii) integriert. Beispiele für enzymatisch spaltbare Linker, die bei den erfindungsgemäßen Molekülen eingesetzt werden können, sind beispielsweise in WO 98/01406 genannt, auf deren gesamten Inhalt hiermit ausdrücklich Bezug genommen wird.
Bei den Spacerelementen kann es sich um dem Fachmann prinzipiell geläufige Crosslinker, bevorzugt Carbodiimiden oder Glutardialdehyd, handeln. Bei dieser Verknüpfung wird eine nahezu direkte Verknüpfung zwischen dem keratinbindenden Polypeptid und dem Effektorprotein gewährleistet. Als Carbodiimide sind bevorzugt zu nennen Dicyclohexylcarbodiimid (DCC), Dii- sopropylcarbodiimid (DIC), N'-(3-Dimethylaminopropyl)-N-Ethylcarbodiimid Hydrochlorid (EDC), wobei die Verwendung von Diisopropylcarbodiimid oder EDC als besonders bevorzugt gelten
Ein weiterhin bevorzugter Erfindungsgegenstand sind keratinbindende Effektorproteine bei de- nen das die Polypeptide (i) und (ii) verknüpfende Spacerelement ein Polypeptid ist.
Beispielsweise können die für die keratinbindenden Effektorproteine kodierenden Nukleinsäu- remoleküle durch geeignete biotechnologische Klonierungsverfahren so modifiziert werden, dass die Translationsfusion auch eine als Spacerelement fungierende Polypeptidsequenz umfaßt. Diese Polypeptid-Spacerelemente können Spaltstellen für Proteasen (z.B. Hautprotease Cathepsin D), Lipasen, Esterasen, Phosphatasen oder Hydrolasen besitzen oder Polypeptidse- quenzen, die eine leichte Aufreinigung des Fusionsproteins gestatten, beispielsweise sogenannte His-tags, d.h. Oligohistidinreste.
Weiterhin können auch an den Verknüpfungsstellen zwischen den Polypeptiden (i) und (ii) mit- tels geeigneter gentechnischer Methoden zusätzliche Aminosäuren eingefügt werden. Dies kann sich z.B. auch dadurch ergeben, dass auf der Nukleinsäureebene Erkennungsstellen für Restriktionsendonukleasen entweder neu kreiert oder inaktiviert werden. Außerdem können zusätzliche Aminosäuren an den Verknüpfungsstellen zweier Fusionspartner eingefügt werden, um eine Linkersequenz zu kreieren, damit beide Fusionspartner unabhängig voneinander zu funktionalen Polypeptidanteilen gefaltet werden können. Die erfindungsgemäßen Proteine können auch noch posttranslational, d.h. nach ihrer Translation modifiziert sein, beispielsweise durch Glycosylierung, Phosphorylierung oder Acylierung. Eine solche Modifizierung kann auch auf chemischem Wege erfolgen, z.B. eine Quervernetzung mit Glutardialdehyd.
In einer besonders bevorzugten Ausführungsform betrifft die vorliegende Erfindung keratinbindende Effektorproteine die mittels eines Spacerelementes indirekt miteinander verbunden sind, wobei das Spacerelement ein mindestens bifunktioneller Linker ist, welcher das keratinbindende Polypeptid (i) und des Effektorpolypeptid durch Bindung an Seitenketten interner Aminosäu- ren, dem C-Terminus oder dem N-Terminus der genannten Polypeptide kovalent miteinander verbindet.
Die Herstellung eines erfindungsgemäßen keratinbindenden Effektorproteins kann erfolgen durch Kopplung eines Effektorproteins ii) an ein keratinbindendes Polypeptid (i) unter Verwen- düng eines Linkermoleküls (iii) das über mindestens zwei Kopplungsfunktionalitäten verfügt, welche Bindungen ausgewählt aus der Gruppe bestehend aus Thioester-, Ester-, Thioether-, Ether-, Amid-, Sulfonsäureester- und Sulfonamidbindungen eingehen können, und (a) in einem ersten Kopplungsschritt zunächst das Effektorpolypeptid (ii) über eine der genannten Bindungen an das Linkermolekül (iii) gebunden wird, und
(b) in einem weiteren Kopplungsschritt das Reaktionsprodukt aus (a) über eine noch freie Kopplungsfunktionalität des Linkermoleküls (iii) an das keratinbindende Polypeptid (i) gekoppelt wird.
In einer bevorzugten Ausführungsform handelt es sich bei den Kopplungsfunktionalitäten um mindestens zwei unterschiedliche funktionelle Gruppen.
Die Bindung des Linkermoleküls mit dem Effektorpolypeptid (ii) erfolgt über eine chemische Kopplungsreaktion. Diese kann beispielsweise über die C- oder N-terminale Funktionalität oder die Seitenketten des Effektorpolypeptides erfolgen, insbesondere über Aminofunktionen, Hydroxyfunktionen, Carboxylatfunktionen oder Thiolfunktionen. Bevorzugt ist eine Verknüpfung über die Aminofunktionen von einem oder mehreren Lysinresten, einer oder mehreren Thi- olgruppen von Cysteinresten, einer oder mehrerer Hydroxylgruppen von Serin-, Threonin- oder Tyrosinresten, einer oder mehrerer Carboxylgruppen von Asparaginsäure- oder Glutaminsäureresten oder über die N-terminale oder C-terminale Funktion des Effektorpolypeptides (ii). ). Solche chemischen Kopplungsreaktionen sind dem Fachmann bekannt und beispielsweise beschrieben in: Becker, H.G.O., Organikum, 20. Auflage, 1996, Johann Ambrosius Barth Verlag Heidelberg oder Hermanson, G. T.: Bioconjugate Techniques, 1996, Academic Press, San Diego.
Außer den in der Primärsequenz des Effektorpolypeptides (ii) vorkommenden Aminosäurefunktionen können auch Aminosäuren mit geeigneten Funktionen (z.B. Cysteine, Lysine, Aspartate, Glutamate) an die Sequenz angefügt werden, oder Aminosäuren der Polypeptidsequenz durch solche Aminosäurefunktionen substituiert werden. Methoden zur Mutagenese oder Manipulation von Nukleinsäuremolekülen sind dem Fachmann hinlänglich bekannt. Einige ausgewählte Methoden sind weiter unten beschreiben.
Die Bindung des aus dem oben beschriebenen Schritt (a) hervorgegangenen Reaktionsproduk- tes mit dem keratinbindenden Polypeptid (i) erfolgt über die zweite noch freie Ankergruppe des Linkermoleküls. Neben den oben beschriebenen Kopplungsreaktionen sind als derartige Ankergruppen besonders sulfhydrylreaktive Gruppen (z.B. Maleimide, Pydridyldisulfide, α - Haloacetyle, Vinylsulfone, Sulfatoalkylsulfone (bevorzugt Sulfatoethylsulfone oder auch Thiole) geeignet, mittels derer der Linker mit einem Cysteinrest des keratinbindenden Polypeptids (i) eine kovalente Bindung eingehen kann.
Bevorzugt ist eine kovalente Verknüpfung des Linkermoleküls (iii) mit dem keratinbindenden Polypeptid (i). Diese kann beispielsweise über die Seitenketten des keratinbindenden Polypeptides (i) erfolgen, insbesondere über Aminofunktionen, Hydroxyfunktionen, Carboxylatfunktio- nen oder Thiolfunktionen. Bevorzugt ist eine Verknüpfung über die Aminofunktionen von einem oder mehreren Lysinresten, einer oder mehreren Thiolgruppen von Cysteinresten einer oder mehrerer Hydroxylgruppen von Serin-, Threonin- oder Tyrosinresten, einer oder mehrerer Carboxylgruppen von Asparaginsäure- oder Glutaminsäureresten oder über die N-terminale oder C-terminale Funktion des keratinbindenden Polypeptides (ii). Außer den in der Primärsequenz des keratinbindenden Polypeptides (ii) vorkommenden Aminosäurefunktionen können auch Aminosäuren mit geeigneten Funktionen (z.B. Cysteine, Lysine, Aspartate, Glutamate) an die Sequenz angefügt werden, oder Aminosäuren der Polypeptidsequenz durch solche Aminosäurefunktionen substituiert werden. Methoden zur Mutagenese oder Manipulation von Nukleinsäu- remolekülen sind dem Fachmann hinlänglich bekannt. Einige ausgewählte Methoden sind weiter unten beschreiben.
Der Erfolg der Effektorkopplung kann über drei verschiedene Tests verfolgt werden:
(i) Ellmanntest, bei dem die Anzahl freier Cys-SH-Gruppen im Protein vor und nach der Effektorkopplung bestimmt werden kann. Hier zeigt eine starke Reduzierung der freien SH-Gruppen nach der Kopplung einen guten Reaktionsablauf an (siehe Beispiel 17).
(ii) Aktivitätstest, bei dem die Bindung des keratinbindenden Polypeptides mit und ohne gekoppeltes Linker-Effektorprotein an Haar gemessen werden kann, (siehe Beispiel 16).
(iii) Bestimmung der Molmasse des gekoppelten Proteins
Die erfindungsgemäßen keratinbindenden Polypeptide (i) besitzen ein weites Anwendungsgebiet in der Humankosmetik, insbesondere der Haut-, Nagel- und Haarpflege, der Tierpflege, der Lederpflege und Lederbearbeitung.
Bevorzugt werden die erfindungsgemäßen keratinbindenden Effektorproteine für die Hautkosmetik und Haarkosmetik angewendet. Sie erlauben eine hohe Konzentration und lange Wirkdauer von pflegenden oder schützenden Effektormolekülen.
In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung, werden keratin- bindende Polypeptide verwendet, die eine Bindungsaffinität zu menschlichen Haut-, Haar- oder Nagelkeratin besitzt.
Ein besonders bevorzugter Gegenstand der vorliegenden Erfindung sind keratinbindende Effektorproteine bei denen s) das verwendete keratinbindende Polypeptid eine der in den SEQ ID No.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52,
54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96,
98 100, 102, 104, 106, 108, 1 10, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130,
132, 134, 136, 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 oder
215, bevorzugt in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 40, 42, 44, 46, 48, 146, 150, 153, 156, 157, 158, 160, 164, 166, 213 oder 215, besonders bevorzugt 166 und 213, am meisten bevorzugt 213 dargestellten Sequenz umfasst, und t) das Effektorpolypeptid (ii) ausgewählt ist aus der Gruppe der Seidenproteine bevorzugt das C16-Spinnenseidenprotein, welches eine 16-fache Wiederholung des Moduls C des Proteins ADF4 aus Araneus diadematus darstellt, optional u) können die unter s) und t) genannten Proteine auch über ein Linkermolekül aneinander gekoppelt sein.
Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäß hergestellten keratinbindenden Effektormoleküle in dermokosmetischen Zubereitungen. Bevor- zugt werden die erfindungsgemäßen keratinbindenden Effektormoleküle in der Haut- und Haar- Kosmetik angewendet. Sie erlauben eine hohe Konzentration und lange Wirkdauer von hautpflegenden oder hautschützenden Effektorstoffen.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden die erfindungsge- mäßen keratinbindenden Effektorproteine in Hautschutzmitteln, Hautpflegemitteln, Hautreinigungsmitteln, Haarschutzmitteln, Haarpflegemitteln, Haarreinigungsmitteln, Haarfärbemitteln oder in Produkten zur dekorativen Kosmetik verwendet.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird den Dermokosmetika ein erfindungsgemäßes keratinbindendes Effektorprotein in einer Konzentration von 0,001 bis 1 Gewichtsprozent (Gew.-%), vorzugsweise 0,01 bis 0,9 Gew.-%, besonders bevorzugt 0,01 bis 0,8 Gew.-% oder 0,01 bis 0,7 Gew.%, ganz besonders bevorzugt 0,01 bis 0,6 Gew.% oder 0,01 bis 0,5 Gew.%, am meisten bevorzugt 0,01 bis 0,4 Gew.% oder 0,01 bis 0,3 Gew.% bezogen auf das Gesamtgewicht des Mittels beigefügt. In einer weiteren Ausführungsform enthalten die Mittel ein erfindungsgemäßes keratinbindendes Effektorprotein in einer Konzentration von 1 bis 10 Gew.-%, vorzugsweise 2 bis 8 Gew.-%, 3 bis 7 Gew.-%, 4 bis 6 Gew.-% bezogen auf das Gesamtgewicht des Mittels. In einer ebenfalls bevorzugten Ausführungsform enthalten die Mittel ein erfindungsgemäßes keratinbindendes Effektorprotein in einer Konzentration von 10 bis 20 Gew.-%, vorzugsweise 11 bis 19 Gew.-%, 12 bis 18 Gew.-%, 13 bis 17 Gew.-%, 14 bis 16 Gew.-% bezogen auf das Gesamtgewicht des Mittels. In einer darüber hinaus bevorzugten Ausführungsform enthalten die Mittel ein erfindungsgemäßes keratinbindendes Effektorprotein in einer Konzentration von 20 bis 30 Gew.-%, vorzugsweise 21 bis 29 Gew.-%, 22 bis 28 Gew.-%, 23 bis 27 Gew.-%, 24 bis 26 Gew.-% bezogen auf das Gesamtgewicht des Mittels.
In einer anderen bevorzugten Ausführungsform erfolgt die Verwendung der oben genannten erfindungsgemäßen keratinbindenden Effektormoleküle in Dermokosmetika in Kombination mit (i) kosmetischen Hilfsmitteln aus dem Bereich der dekorativen Kosmetik, (ii) dermokosmeti- schen Wirkstoffen und (iii) geeigneten Hilfs- und Zusatzstoffen. Vorzugsweise handelt es sich dabei um Wirkstoffe bzw. Hilfs- und Zusatzstoffe, die zum Schutz von Haut, Haar und/oder Fin- ger- bzw. Fußnägel vor Schädigungen, zur Behandlung von bereits aufgetretenen Schädigungen von Haut, Haar und/oder Finger- bzw. Fußnägel und zur Pflege von Haut, Haar und/oder Finger- bzw. Fußnägel eingesetzt werden. Diese Wirkstoffe sind vorzugsweise ausgewählt der Gruppe der natürlichen oder synthetischen Polymere, Pigmente, Feuchthaltemittel, Öle, Wachse, Enzyme, Mineralien, Vitamine, Sonnenschutzmittel, Farbstoffe, Duftstoffe, Antioxidantien, Konservierungsmittel und/oder pharmazeutische Wirkstoffe.
Geeignete Hilfs- und Zusatzstoffe für die Herstellung von haarkosmetischen oder hautkosmetischen Zubereitungen sind dem Fachmann geläufig und können aus Handbüchern der Kosmetik, beispielsweise Schrader, Grundlagen und Rezepturen der Kosmetika, Hüthig Verlag, Hei- delberg, 1989, ISBN 3-7785-1491-1 , oder Limbach, Kosmetik: Entwicklung, Herstellung und Anwendung kosmetischer Mittel, 2. erweiterte Auflage, 1995, Georg Thieme Verlag, ISBN 3 13 712602 9 entnommen werden.
Vorzugsweise erfolgt die Verwendung der erfindungsgemäßen keratinbindenden Effektormole- küle in Dermokosmetika bzw. Mittel zur Mund-, Zahn- und Zahnersatzpflege in Kombination mit wenigstens einem davon verschiedenen Bestandteil, der ausgewählt ist unter kosmetisch akti- ven Wirkstoffen, Emulgatoren, Tensiden, Konservierungsmitteln, Parfümölen, Verdickern, Haarpolymeren, Haar- und Hautconditionern, Pfropfpolymeren, wasserlöslichen oder disper- gierbaren silikonhaltigen Polymeren, Lichtschutzmitteln, Bleichmitteln, Gelbildnern, Pflegemitteln, Färbemitteln, Tönungsmitteln, Bräunungsmitteln, Farbstoffen, Pigmenten, Konsistenzge- bern, Feuchthaltemitteln, Rückfettern, Collagen, Eiweißhydrolysaten, Lipiden, Antioxidantien, Entschäumern, Antistatika, Emollienzien und Weichmachern. Die Wirkstoffe können auch in verkapselter Form wie in den Patenten/Patentanmeldungen EP 00974775 B1 , DE 2311 712, EP 0278 878, DE 1999 47147, EP 0706822B1 und WO 98/16621 beschrieben, worauf hiermit ausdrücklich Bezug genommen wird, in den kosmetischen Zubereitungen enthalten sein.
Vorteilhafterweise werden die Antioxidantien gewählt aus der Gruppe bestehend aus Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z.B. Uroca- ninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Carnosin und deren Derivate (z.B. Anserin), Carotinoide, Carotine (z.B. ß-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure), Aurothioglucose, Propylthiouracil und andere Thiole (z.B. Thiorodoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl-, und Lauryl-, Palmitoyl-, Oleyl-, γ-Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilau- rylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, E- ther, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximine, Buthioninsulfone, Penta-, Hexa-, Heptathionin- sulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μmol/kg), ferner (Metall)- Chelatoren (z.B. α-Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α- Hydroxysäuren (z.B. Citronensäure, Milchsäure, Apfelsäure), Huminsäure, Gallensäure, GaI- lenextrakte, Bilirubin, Biliverdin, EDTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. γ-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und deren Derivate (z.B. Natriumascorbat, Ascor- bylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherol und Derivate (z.B. Vitamin-E- Acetat, Tocotrienol), Vitamin A und Derivate (Vitamin-A-Palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäure, Furfurylidengluci- tol, Carnosin, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajakharzsäure, Nordihydro- guajaretsäure, Trihydroxybutyrophenon, Harnsäure und deren Derivate, Mannose und deren Derivate, Zink und dessen Derivate (z.B. ZnO, ZnSθ4), Selen und dessen Derivate (z.B. Se- lenmethionin), Stilbene und deren Derivate (z.B. Stilbenoxid, Trans-Stilbenoxid).
Zu den erfindungsgemäß bevorzugt einzusetzenden Vitaminen, Provitaminen oder Vitaminvorstufen der Vitamin B-Gruppe oder deren Derivaten sowie den Derivaten von 2-Furanon gehören unter anderem:
Vitamin Bi, Trivialname Thiamin, chemische Bezeichnung 3-[(4'-Amino-2'-methyl-5'-pyrimidinyl) methyl]-5-(2-hydroxyethyl)-4-methylthiazoliumchlorid.
Vitamin B2, Trivialname Riboflavin, chemische Bezeichnung 7,8-Dimethyl-10-(1-D-ribityl)- benzo[g]pteridin-2,4(3H,10H)-dion. In freier Form kommt Riboflavin z. B. in Molke vor, andere Riboflavin-Derivate lassen sich aus Bakterien und Hefen isolieren. Ein erfindungsgemäß ebenfalls geeignetes Stereoisomer des Riboflavin ist das aus Fischmehl oder Leber isolierbare Ly- xoflavin, das statt des D-Ribityl-Restes einen D-Arabityl-Rest trägt. Vitamin B3. Unter dieser Bezeichnung werden häufig die Verbindungen Nicotinsäure und Nicotinsäureamid (Niacinamid) geführt. Erfindungsgemäß bevorzugt ist das Nicotinsäureamid.
Vitamin B5 (Pantothensäure und Panthenol). Bevorzugt wird Panthenol eingesetzt. Erfindungsgemäß einsetzbare Derivate des Panthenols sind insbesondere die Ester und Ether des Panthenols sowie kationisch derivatisierte Panthenole. In einer weiteren bevorzugten Ausführungsform der Erfindung können zusätzlich zu Pantothensäure oder Panthenol auch Derivate des 2- Furanon eingesetzt werden. Besonders bevorzugte Derivate sind die auch im Handel erhältli- chen Substanzen Dihydro-3 hydroxy-4,4-dimethyl-2(3H)-furanon mit dem Trivialnamen Panto- lacton (Merck), 4 Hydroxymethyl-γ-butyrolacton (Merck), 3,3-Dimethyl-2-hydroxy-γ-butyrolacton (Aldrich) und 2,5- Dihydro-5-methoxy-2-furanon (Merck), wobei ausdrücklich alle Stereoisomeren eingeschlossen sind.
Vorteilhafterweise verleihen diese Verbindungen den erfindungsgemäßen Dermokosmetika feuchtigkeitsspendende sowie hautberuhigende Eigenschaften.
Vitamin Be, wobei man hierunter keine einheitliche Substanz, sondern die unter den Trivialnamen Pyridoxin, Pyridoxamin und Pyridoxal bekannten Derivate des 5 Hydroxymethyl-2- methylpyridin-3-ols versteht.
Vitamin B7 (Biotin), auch als Vitamin H oder "Hautvitamin" bezeichnet. Bei Biotin handelt es sich um (3aS,4S, 6aR)-2-Oxohexahydrothienol[3,4-d]imidazol-4-valeriansäure.
Panthenol, Pantolacton, Nicotinsäureamid sowie Biotin sind erfindungsgemäß ganz besonders bevorzugt.
Farbstoffe
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, veröffentlicht im Verlag Chemie, Weinheim, 1984, zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentration von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt. Pigmente
In einer bevorzugten Ausführungsform enthalten die erfindungsgemäßen Zusammensetzungen mindestens ein Pigment. Die Pigmente liegen in der Produktmasse in ungelöster Form vor und können in einer Menge von 0,01 bis 25 Gew.%, besonders bevorzugt von 5 bis 15 Gew.% enthalten sein. Die bevorzugte Teilchengröße beträgt 1 bis 200 μm, insbesondere 3 bis 150 μm, besonders bevorzugt 10 bis 100 μm. Die Pigmente sind im Anwendungsmedium praktisch unlösliche Farbmittel und können anorganisch oder organisch sein. Auch anorganisch-organische Mischpigmente sind möglich. Bevorzugt sind anorganische Pigmente. Der Vorteil der anorganischen Pigmente ist deren ausgezeichnete Licht-, Wetter- und Temperaturbeständigkeit. Die anorganischen Pigmente können natürlichen Ursprungs sein, beispielsweise hergestellt aus Kreide, Ocker, Umbra, Grünerde, gebranntem Terra di Siena oder Graphit. Bei den Pigmenten kann es sich um Weißpigmente wie z.B. Titandioxid oder Zinkoxid, um Schwarzpigmente wie z.B. Eisenoxidschwarz, Buntpigmente wie z.B. Ultramarin oder Eisenoxid rot, um Glanzpigmen- te, Metalleffekt-Pigmente, Perlglanzpigmente sowie um Fluoreszenz- oder Phosphoreszenzpigmente handeln, wobei vorzugsweise mindestens ein Pigment ein farbiges, nicht-weißes Pigment ist. Geeignet sind Metalloxide, -hydroxide und -oxidhydrate, Mischphasenpigmente, schwefelhaltige Silicate, Metallsulfide, komplexe Metallcyanide, Metallsulfate, -Chromate und - molybdate sowie die Metalle selbst (Bronze-Pigmente). Geeignet sind insbesondere Titandioxid (Cl 77891), schwarzes Eisenoxid (Cl 77499), gelbes Eisenoxid (Cl 77492), rotes und braunes Eisenoxid (Cl 77491 ), Manganviolett (Cl 77742), Ultramarine (Natrium-Aluminiumsulfosilikate, Cl 77007, Pigment Blue 29), Chromoxidhydrat (C177289), Eisenblau (Ferric Ferro-Cyanide, CI7751 0), Carmine (Cochineal). Besonders bevorzugt sind Perlglanz- und Farbpigmente auf Mica- bzw. Glimmerbasis welche mit einem Metalloxid oder einem Metalloxychlorid wie Titandioxid oder Wismutoxychlorid sowie gegebenenfalls weiteren farbgebenden Stoffen wie Eisenoxiden, Eisenblau, Ultramarine, Carmine etc. beschichtet sind und wobei die Farbe durch Variation der Schichtdicke bestimmt sein kann. Derartige Pigmente werden beispielsweise unter den Handelsbezeichnungen Rona®, Colorona®, Dichrona® und Timiron® (Merck) vertrieben. Organi- sehe Pigmente sind beispielsweise die natürlichen Pigmente Sepia, Gummigutt, Knochenkohle, Kasseler Braun, Indigo, Chlorophyll und andere Pflanzenpigmente. Synthetische organische Pigmente sind beispielsweise Azo-Pigmente, Anthrachinoide, Indigoide, Dioxazin-, Chinacridon- , Phtalocyanin-, Isoindolinon-, Perylen- und Perinon-, Metallkomplex-, Alkaliblau- und Diketopyr- rolopyrrol-Pigmente.
In einer Ausführungsform erfolgt die Verwendung der erfindungsgemäßen bzw. gemäß dem erfinderischen Verfahren hergestellten keratinbindenden Effektormoleküle mit mindestens einem partikelförmigen Stoff, der in der Zusammensetzung in einem Anteil von 0,01 bis 10, bevorzugt von 0,05 bis 5 Gew.% vorliegt. Geeignete Stoffe sind z.B. Stoffe, die bei Raumtempera- tur (25°C) fest sind und in Form von Partikeln vorliegen. Geeignet sind etwa Silica, Silikate, Aluminate, Tonerden, Mica, Salze, insbesondere anorganische Metallsalze, Metalloxide, z.B. Titandioxid, Minerale und Polymerpartikel. Die Partikel liegen in dem Mittel ungelöster, vorzugsweise stabil dispergierter Form vor und können sich nach Aufbringen auf die Anwendungsoberfläche und Verdampfen des Lösungsmittels in fester Form abscheiden. Bevorzugte partikel- förmige Stoffe sind Silica (Kieselgel, Siliciumdioxid) und Metallsalze, insbesondere anorganische Metallsalze, wobei Silica besonders bevorzugt ist. Metallsalze sind z.B. Alkali- oder Erdal- kalihalogenide wie Natriumchlorid oder Kaliumchlorid; Alkali- oder Erdalkalisulfate wie Natriumsulfat oder Magnesiumsulfat. Perlglanzmittel
Als Perlglanzmittel kommen beispielsweise in Frage: Alkylenglycolester, spezielle Ethylengly- coldisterat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanoamid; Partialglyceride, speziell Stearinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen Übliche Verdickungsmittel in derartigen Formulierungen sind vernetzte Polyacrylsäuren und deren Derivate, Polysaccharide und deren Derivate, wie Xanthangum, Agar-Agar, Alginate oder Tylosen, Cellulosederivate, z.B. Carboxymethylcellulose oder Hydroxycarboxymethylcellulose, Fettalkohole, Monoglyceride und Fettsäuren, Polyvinylalkohol und Polyvinylpyrrolidon. Bevor- zugt werden nichtionische Verdicker eingesetzt.
Geeignete kosmetisch und/oder dermokosmetisch aktive Wirkstoffe sind z.B. färbende Wirkstoffe, Haut- und Haarpigmentierungsmittel, Tönungsmittel, Bräunungsmittel, Bleichmittel, Keratin-härtende Stoffe, antimikrobielle Wirkstoffe, Lichtfilterwirkstoffe, Repellentwirkstoffe, hyperemisierend wirkende Stoffe, keratolytisch und keratoplastisch wirkende Stoffe, Antischuppenwirkstoffe, Antiphlogistika, keratinisierend wirkende Stoffe, antioxidativ bzw. als Radikalfänger aktive Wirkstoffe, hautbefeuchtende oder -feuchthaltende Stoffe, rückfettende Wirkstoffe, antierythimatös oder antiallergisch aktive Wirkstoffe, verzweigte Fettsäuren wie 18-Methyleicosansäure, und Mischungen davon.
Künstlich hautbräunende Wirkstoffe, die geeignet sind, die Haut ohne natürliche oder künstliche Bestrahlung mit UV-Strahlen zu bräunen, sind z.B. Dihydroxyaceton, Alloxan und Walnuss- schalenextrakt. Geeignete Keratin-härtende Stoffe sind in der Regel Wirkstoffe, wie sie auch in Antitranspirantien eingesetzt werden, wie z.B. Kaliumaluminiumsulfat, Aluminiumhydroxychlo- rid, Aluminiumlactat, etc.
Antimikrobielle Wirkstoffe werden eingesetzt, um Mikroorganismen zu zerstören bzw. ihr Wachstum zu hemmen und dienen somit sowohl als Konservierungsmittel als auch als desodorierend wirkender Stoff, welcher die Entstehung oder die Intensität von Körpergeruch vermin- dert. Dazu zählen z.B. übliche, dem Fachmann bekannte Konservierungsmittel, wie p- Hydroxybenzoesäureester, Imidazolidinyl-Harnstoff, Formaldehyd, Sorbinsäure, Benzoesäure, Salicylsäure, etc. Derartige desodorierend wirkende Stoffe sind z.B. Zinkricinoleat, Triclosan, Undecylensäurealkylolamide, Citronensäuretriethylester, Chlorhexidin etc.
Als geeignete Konservierungsmittel sind erfindungsgemäß vorteilhaft zu verwenden:
Tabelle 3: geeignete Konservierungsmittel. Bei den in der obigen Tabelle aufgeführten E- Nummern handelt es sich um die im der Richtlinie 95/2/EWG gebräuchlichen Bezeichnungen.
Ferner sind erfindungsgemäß in der Kosmetik gebräuchliche Konservierungsmittel oder Kon- servierungshilfsstoffe Dibromdicyanobutan (2-Brom-2-brommethyl-glutarodinitril), 3-lod-2- propinylbutylcarbamat, 2-Brom-2-nitro-propan-1 ,3-diol, Imidazolidinylharnstoff, 5-Chlor-2- methyl-4-isothiazolin-3-on, 2-Chloracetamid, Benzalkonium- chlorid und Benzylalkohol geeignet. Ferner sind Phenylhydroxyalkylether, insbesondere die unter der Bezeichnung Phenoxye- thanol bekannte Verbindung aufgrund ihrer bakteriziden und fungiziden Wirkungen auf eine Anzahl von Mikroorganismen als Konservierungsmittel geeignet.
Auch andere keimhemmende Mittel sind ebenfalls geeignet, in die erfindungsgemäßen Zubereitungen eingearbeitet zu werden. Vorteilhafte Substanzen sind zum Beispiel 2,4,4'- Trichlor-2'-hydroxydiphenylether (Irgasan), 1 ,6-Di-(4-chlorphenylbiguanido)-hexan (Chlorhexidin), 3,4,4'-Trichlorcarbanilid, quaternäre Ammoniumverbindungen, Nelkenöl, Minzöl, Thymianöl, Triethylcitrat, Farnesol (3,7,11-Trimethyl-2,6,10-dodecatrien-1-ol) sowie die in den Patentoffenlegungsschriften DE-37 40 186, DE-39 38 140, DE-42 04 321 , DE-42 29 707, DE- 43 09 372, DE-44 11 664, DE-195 41 967, DE-195 43 695, DE-195 43 696, DE-195 47 160, DE-196 02 108, DE-196 02 110, DE-196 02 111 , DE-196 31 003, DE-196 31 004 und DE-196 34 019 und den Patentschriften DE-42 29 737, DE-42 37 081 , DE-43 24 219, DE-44 29 467, DE-44 23 410 und DE-195 16 705 beschriebenen Wirkstoffe bzw. Wirkstoffkombinationen. Auch Natrium-hydrogencarbonat ist vorteilhaft zu verwenden. Ebenso können auch mikrobielle Polypeptide eingesetzt werden.
Parfümöle
Gegebenenfalls können die kosmetischen Zusammensetzungen Parfümöle enthalten. Als Parfümöle seien beispielsweise Gemische aus natürlichen und synthetischen Riechstoffen genannt. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rose, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Korian- der, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orange), Wurzeln (Macis, An- gelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, 4-tert.-Butylcyclo- hexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Ben- zylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cycla- menaldehyd, Hydroxydtronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, α- Isomethylionen und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeu- genol, Geraniol, Linalool, Phenylethylalkohol und Terpeneol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschie- dener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzeöl, Zimtblätter- öl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labolanumöl und La- vandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Pheny- lethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boi- sambrene®Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix®Coeur, Iso-E-Super®, Fixolide®NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romillat, Irotyl und Flora- mat allein oder in Mischungen eingesetzt.
Öle, Fette und Wachse
Bevorzugt enthalten die erfindungsgemäßen Zusammensetzungen Öle, Fette und/oder Wachse. Bestandteile der Öl- und/oder Fettphase der erfindungsgemäßen Zusammensetzungen werden vorteilhaft gewählt aus der Gruppe der Lecithine und der Fettsäuretriglyceride, namentlich der Triglycerinester gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter Alkancarbonsäuren einer Kettenlänge von 8 bis 24, insbesondere 12 bis 18 C-Atomen. Die Fettsäuretriglyceride können beispielsweise vorteilhaft gewählt werden aus der Gruppe der synthetischen, halbsynthetischen und natürlichen Öle, wie z.B. Olivenöl, Sonnenblumenöl, So- jaöl, Erdnußöl, Rapsöl, Mandelöl, Palmöl, Kokosöl, Rizinusöl, Weizenkeimöl, Traubenkernöl, Distelöl, Nachtkerzenöl, Macadamianußöl und dergleichen mehr. Weitere polare Ölkomponen- ten können gewählt werden aus der Gruppe der Ester aus gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkancarbonsäuren einer Kettenlänge von 3 bis 30 C- Atomen und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoho- len einer Kettenlänge von 3 bis 30 C-Atomen sowie aus der Gruppe der Ester aus aromatischen Carbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten Alkoholen einer Kettenlänge von 3 bis 30 C-Atomen. Solche Esteröle können dann vorteilhaft gewählt werden aus der Gruppe Isopropylmyristat, Isopropylpalmitat, Isopropylstearat, Isopropyloleat, n-Butylstearat, n-Hexyllaurat, n-Decyloleat, Isooctylstearat, Isononylstearat, Isononylisononanoat, 2-Ethylhexyl-palmitat, 2-Ethylhexyllaurat, 2-Hexyldecylstearat, 2-Octyl- dodecylpalmitat, Oleyloleat, Oleylerucat, Erucyloleat, Erucylerucat Dicaprylyl Carbonat (Cetiol CC) und Cocoglyceride (Myritol 331), Butylen Glycol Dicaprylat/Dicaprat und Dibutyl Adipat sowie synthetische, halbsynthetische und natürliche Gemische solcher Ester, wie z.B. Jojobaöl. Ferner können eine oder mehrere Ölkomponenten vorteilhaft gewählt werden aus der Gruppe der verzweigten und unverzweigten Kohlenwasserstoffe und -wachse, der Silkonöle, der Dialky- lether, der Gruppe der gesättigten oder ungesättigten, verzweigten oder unverzweigten Alkohole. Auch beliebige Abmischungen solcher Öl- und Wachskomponenten sind vorteilhaft im Sinne der vorliegenden Erfindung einzusetzen. Es kann auch gegebenenfalls vorteilhaft sein, Wachse, beispielsweise Cetylpa Imitat, als alleinige Lipidkomponente der Ölphase einzusetzen. Erfin- dungsgemäß vorteilhaft wird die Ölkomponente gewählt aus der Gruppe 2-Ethylhexylisostearat, Octyldodecanol, Isotridecylisononanoat, Isoeicosan, 2-Ethylhexylcocoat, C12-15-Alkylbenzoat, Capryl-Caprinsäure-triglycerid, Dicaprylylether. Erfindungsgemäß vorteilhaft sind Mischungen aus C12-15-Alkylbenzoat und 2-Ethylhexylisostearat, Mischungen aus C12-15-Alkylbenzoat und Isotridecylisononanoat sowie Mischungen aus C12-15-Alkylbenzoat, 2-Ethylhexylisostearat und Isotridecylisononanoat. Erfindungsgemäß besonders bevorzugt werden als Öle mit einer Polarität von 5 bis 50 mN/m Fettsäuretriglyceride, insbesondere Sojaöl und/oder Mandelöl eingesetzt. Von den Kohlenwasserstoffen sind Paraffinöl, Squalan und Squalen vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden.
Ferner kann die Ölphase vorteilhaft gewählt werden aus der Gruppe der Guerbetalkohole. Guerbetalkohole sind benannt nach Marcel Guerbet, der ihre Herstellung erstmalig beschrieb. Sie entstehen nach der Reaktionsgleichung
R
R — C H2-CH2- OH __~1 p. R — CH- CHx- OH
Katalysator durch Oxidation eines Alkohols zu einem Aldehyd, durch Aldol-Kondensation des Aldehyds, Abspaltung von Wasser aus dem Aldol- und Hydrierung des Allylaldehyds. Guerbetalkohole sind selbst bei niederen Temperaturen flüssig und bewirken praktisch keine Hautreizungen. Vorteilhaft können sie als fettende, überfettende und auch rückfettend wirkende Bestandteile in kosmetischen Zusammensetzungen eingesetzt werden.
Die Verwendung von Guerbet-Alkoholen in Kosmetika ist an sich bekannt. Solche Species zeichnen sich dann meistens durch die Struktur
H
R1-C-CH2 OH
** aus. Dabei bedeuten Ri und R2 in der Regel unverzweigte Alkylreste.
Erfindungsgemäß vorteilhaft werden der oder die Guerbet-Alkohole gewählt aus der Gruppe, wobei
Ri = Propyl, Butyl, Pentyl, Hexyl, Heptyl oder Octyl und R2 = Hexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Tridecyl oder Tetradecyl.
Erfindungsgemäß bevorzugte Guerbet-Alkohole sind 2-Butyloctanol (beispielsweise als Iso- fol®12 (Condea) kommerziell erhältlich) und 2-Hexyldecanol (beispielsweise als lsofol®16 (Con- dea) kommerziell erhältlich). Auch Mischungen von erfindungsgemäßen Guerbet-Alkoholen sind erfindungsgemäß vorteilhaft zu verwenden wie beispielsweise Mischungen aus 2- Butyloctanol und 2-Hexyldecanol (beispielsweise als lsofol®14 (Condea) kommerziell erhältlich). Auch beliebige Abmischungen solcher Öl- und Wachskomponenten sind vorteilhaft im Sinne der vorliegenden Erfindung einzusetzen. Unter den Polyolefinen sind Polydecene die bevorzugten Substanzen.
Vorteilhaft kann die Ölkomponente ferner einen Gehalt an cyclischen oder linearen Silikonölen aufweisen oder vollständig aus solchen Ölen bestehen, wobei allerdings bevorzugt wird, außer dem Silikonöl oder den Silikonölen einen zusätzlichen Gehalt an anderen Ölphasenkomponen- ten zu verwenden. Niedermolekulare Silicone oder Siliconöle sind in der Regel durch folgende allgemeine Formel definiert:
-O— S:— O— R;
Höhermolekulare Silicone oder Siliconöle sind in der Regel durch folgende allgemeine Formel definiert,
wobei die Silidumatome mit gleichen oder unterschiedlichen Alkylresten und/oder Arylresten substituiert sein können, welche hier verallgemeinernd durch die Reste Ri bis R4 dargestellt sind. Die Anzahl der unterschiedlichen Reste ist aber nicht notwendigerweise auf bis zu 4 beschränkt, m kann dabei Werte von 2 bis 200.000 annehmen.
Erfindungsgemäß vorteilhaft einzusetzende cyclische Silicone sind in der Regel durch folgende allgemeine Formel definiert
wobei die Silidumatome mit gleichen oder unterschiedlichen Alkylresten und/oder Arylresten substituiert werden können, welche hier verallgemeinernd durch die Reste Ri bis R4 dargestellt sind. Die Anzahl der unterschiedlichen Reste ist aber nicht notwendigerweise auf bis zu 4 beschränkt, n kann dabei Werte von 3/2 bis 20 annehmen. Gebrochene Werte für n berücksichtigen, daß ungeradzahlige Anzahlen von Siloxylgruppen im Zyklus vorhanden sein können. Vorteilhaft wird Phenyltrimethicon als Siliconöl gewählt. Auch andere Silikonöle, beispielsweise Dimethicon, Hexamethylcyclotrisiloxan, Phenyldimethicon, Cyclomethicon (Octamethylcyclo- tetrasiloxan), Hexamethylcyclotrisiloxan, Polydimethylsiloxan, Poly(methylphenylsiloxan), Cetyl- dimethicon, Behenoxydimethicon sind vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden. Vorteilhaft sind ferner Mischungen aus Cyclomethicon und Isotridecylisononanoat, sowie solche aus Cyclomethicon und 2-Ethylhexylisostearat. Es ist aber auch vorteilhaft, Silikonöle ähnlicher Konstitution wie der vorstehend bezeichneten Verbindungen zu wählen, deren organische Seitenketten derivatisiert, beispielsweise polyethoxyliert und/oder polypropoxyliert sind. Dazu zählen beispielsweise Polysiloxanpolyalkyl-Polyether-copolymere wie z.B. Cetyl- Dimethicon-Copolyol. Vorteilhaft wird Cyclomethicon (Octamethylcyclo-tetrasiloxan) als erfin- dungsgemäß zu verwendendes Silikonöl eingesetzt. Erfindungsgemäß vorteilhaft zu verwendende Fett- und/oder Wachskomponenten können aus der Gruppe der pflanzlichen Wachse, tierischen Wachse, Mineralwachse und petrochemischen Wachse gewählt werden. Vorteilhaft sind beispielsweise Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Kork- wachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Beerenwachs, Ouricurywachs, Montanwachs, Jojobawachs, Shea Butter, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs), Paraffinwachse und Mikrowachse. Weitere vorteilhafte Fett- und/oder Wachskomponenten sind chemisch modifzierte Wachse und synthetische Wachse, wie beispielsweise Syncrowax®HRC (Glyceryltribehenat), und Syncro- wax®AW 1 C (Cis-36-Fettsäure) sowie Montanesterwachse, Sasolwachse, hydrierte Jojoba- wachse, synthetische oder modifizierte Bienenwachse (z. B. Dimethicon Copolyol Bienenwachs und/oder C3o-so-Alkyl Bienenwachs), Cetyl Ricinoleate wie beispielsweise Tegosoft®CR, Polyal- kylenwachse, Polyethylenglykolwachse, aber auch chemisch modifzierte Fette, wie z. B. hydrierte Pflanzenöle (beispielsweise hydriertes Ricinusöl und/oder hydrierte Cocosfettglyceride), Triglyceride wie beispielsweise Hydriertes Soy Glycerid, Trihydroxystearin, Fettsäuren, Fettsäureester und Glykolester wie beispielsweise C2o-4o-Alkylstearat, C2o-4o-Alkylhydroxy- stearoylstearat und/oder Glykolmontanat. Weiter vorteilhaft sind auch bestimmte Organosilici- umverbindungen, die ähnliche physikalische Eigenschaften aufweisen wie die genannten Fett- und/oder Wachskomponenten, wie beispielsweise Stearoxytrimethylsilan. Erfindungsgemäß können die Fett- und/oder Wachskomponenten sowohl einzeln als auch als Gemisch in den Zusammensetzungen verwendet werden. Auch beliebige Abmischungen solcher Öl- und Wachskomponenten sind vorteilhaft im Sinne der vorliegenden Erfindung einzusetzen. Vorteilhaft wird die Ölphase gewählt aus der Gruppe 2-Ethylhexylisostearat, Octyldode- canol, Isotridecylisononanoat, Butylen Glycol Dicaprylat/Dicaprat, 2-Ethyl-hexylcocoat, C12-15- Alkylbenzoat, Capryl-Caprin-säure-triglycerid, Dicaprylylether. Besonders vorteilhaft sind Mischungen aus Octyldodecanol, Capryl-Caprinsäure-triglycerid, Dicaprylylether, Dicaprylyl Car- bonat, Cocoglyceriden oder Mischungen aus Ci2-is-Alkylbenzoat und 2-Ethylhexylisostearat, Mischungen aus Ci2-is-Alkylbenzoat und Butylen Glycol Dicaprylat/Dicaprat sowie Mischungen aus Ci2-15-Alkylbenzoat, 2-Ethylhexylisostearat und Isotridecylisononanoat. Von den Kohlen- Wasserstoffen sind Paraffinöl, Cycloparaffin, Squalan, Squalen, hydriertes Polyisobuten bzw. Polydecen vorteilhaft im Sinne der vorliegenden Erfindung zu verwenden.
Die Ölkomponente wird ferner vorteilhaft aus der Gruppe der Phospholipide gewählt. Die Phospholipide sind Phosphorsäureester acylierter Glycerine. Von größter Bedeutung unter den Phosphatidylcholinen sind beispielsweise die Ledthine, welche sich durch die allgemeine Struktur
auszeichnen, wobei R' und R" typischerweise unverzweigte aliphatische Reste mit 15 oder 17 Kohlenstoffatomen und bis zu 4 cis-Doppelbindungen darstellen. Als erfindungsgemäß vorteilhaftes Paraffinöl kann erfindungsgemäß Merkur Weissoel Pharma 40 von Merkur Vaseline, Shell Ondina® 917, Shell Ondina® 927, Shell OiI 4222, Shell Ondi- na®933 von Shell & DEA OiI, Pionier® 6301 S, Pionier® 2071 (Hansen & Rosenthal) eingesetzt werden. Geeignete kosmetisch verträgliche Öl- und Fettkomponenten sind in Karl-Heinz Schrader, Grundlagen und Rezepturen der Kosmetika, 2. Auflage, Verlag Hüthig, Heidelberg, S. 319 - 355, beschrieben, worauf hier in vollem Umfang Bezug genommen wird.
Lösungsmittel
Sofern die erfindungsgemäßen bzw. gemäß dem erfinderischen Verfahren hergestellten kera- tinbindenden Effektormoleküle in kosmetischen oder dermatologischen Zubereitungen verwendet werden, die eine Lösung oder Emulsion oder Dispersion darstellen, können als Lösungsmittel verwendet werden:
Wasser oder wäßrige Lösungen; Öle, wie Triglyceride der Caprin- oder der Caprylsäure, vorzugsweise aber Rizinusöl; Fette, Wachse und andere natürliche und synthetische Fettkörper, vorzugsweise Ester von Fettsäuren mit Alkoholen niedriger C-Zahl, z.B. mit Isopropanol, Propy- lenglykol oder Glycerin, oder Ester von Fettalkoholen mit Alkansäuren niedriger C-Zahl oder mit Fettsäuren; Alkohole, Diole oder Polyole niedriger C-Zahl, sowie deren Ether, vorzugsweise Ethanol, Isopropanol, Propylenglykol, Glycerin, Ethylenglykol, Ethylenglykolmonoethyl- oder - monobutylether, Propylenglykolmonomethyl, -monoethyl- oder -monobutylether, Diethylengly- kolmonomethyl- oder -monoethylether und analoge Produkte. Insbesondere werden Gemische der vorstehend genannten Lösungsmittel verwendet. Bei alkoholischen Lösungsmitteln kann Wasser ein weiterer Bestandteil sein.
Tenside Erfindungsgemäß können Zusammensetzungen neben den erfindungsgemäßen bzw. gemäß dem erfinderischen Verfahren hergestellten keratinbindenden Effektormoleküle auch Tenside enthalten. Solche Tenside sind beispielsweise:
- Phosphorsäureester und Salze, wie beispielsweise DEA-Oleth-10 Phosphat und Dilaureth-4 Phosphat, - Alkylsulfonate, beispielsweise Natriumcocosmonoglyceridsulfat, Natrium C12-14 Olefinsulfonat, Natriumlaurylsulfoacetat und Magnesium PEG-3 Cocamidsulfat,
- Carbonsäuren und Derivate, wie beispielsweise Laurinsäure, Aluminiumstearat, Magnesiu- malkanolat und Zinkundecylenat, Ester-Carbonsäuren, beispielsweise Calciumstearoyllactylat, Laureth-6 Citrat und Natrium PEG-4 Lauramidcarboxylat, - Ester, die durch Veresterung von Carbonsäuren mit Ethylenoxid, Glycerin, Sorbitan oder anderen Alkoholen entstehen,
- Ether, beispielsweise ethoxylierte Alkohole, ethoxyliertes Lanolin, ethoxylierte Polysiloxane, propoxylierte POE Ether und Alkylpolyglycoside wie Laurylglucosid, Decylglycosid und Co- coglycosid.
Polysorbate
Erfindungsgemäß können Zusammensetzungen neben den erfindungsgemäßen bzw. gemäß dem erfinderischen Verfahren hergestellten keratinbindenden Effektormoleküle auch Polysorbate enthalten. Im Sinne der Erfindung vorteilhafte Polysorbate sind dabei das
- Polyoxyethylen(20)sorbitanmonolaurat (Tween 20, CAS-Nr. 9005-64-5)
- Polyoxyethylen(4)sorbitanmonolaurat (Tween 21 , CAS-Nr. 9005-64-5) - Polyoxyethylen(4)sorbitanmonostearat (Tween 61 , CAS-Nr. 9005-67-8)
- Polyoxyethylen(20)sorbitantristearat (Tween 65, CAS-Nr. 9005-71 -4)
- Polyoxyethylen(20)sorbitanmonooleat (Tween 80, CAS-Nr. 9005-65-6)
- Polyoxyethylen(5)sorbitanmonooleat (Tween 81 , CAS-Nr. 9005-65-5)
- Polyoxyethylen(20)sorbitantrioleat (Tween 85, CAS-Nr. 9005-70-3). Besonders vorteilhaft sind insbesondere
- Polyoxyethylen(20)sorbitanmonopalmitat (Tween 40, CAS-Nr. 9005-66-7)
- Polyoxyethylen(20)sorbitanmonostearat (Tween 60, CAS-Nr. 9005-67-8).
Diese werden erfindungsgemäß vorteilhaft in einer Konzentration von 0,1 bis 5 Gewichts-% und insbesondere in einer Konzentration von 1 ,5 bis 2,5 Gewichts-%, bezogen auf das Gesamtgewicht der Zusammensetzung einzeln oder als Mischung mehrer Polysorbate, eingesetzt.
Konditionierungsmittel In einer bevorzugten Ausführungsform der Erfindung enthalten die Zusammensetzungen auch Konditionierungsmittel. Erfindungsgemäß bevorzugte Konditionierungsmittel sind beispielsweise alle Verbindungen, welche im International Cosmetic Ingredient Dictionary and Handbook (Volume 4, Herausgeber: R. C. Pepe, J.A. Wenninger, G. N. McEwen, The Cosmetic, Toiletry, and Fragrance Association, 9. Auflage, 2002) unter Section 4 unter den Stichworten Hair Conditio- ning Agents, Humectants, Skin-Conditioning Agents, Skin-Conditioning Agents-Emollient, Skin- Conditioning Agents-Humectant, Skin-Conditioning Agents-Miscellaneous, Skin-Conditioning Agents-Occlusive und Skin Protectans aufgeführt sind sowie alle in der EP-A 934 956 (S.11-13) unter "water soluble conditioning agent" und „oil soluble conditioning agent" aufgeführten Verbindungen. Weitere vorteilhafte Konditionierungsmittel stellen beispielsweise die nach INCI als Polyquaternium bezeichneten Verbindungen dar (insbesondere Polyquaternium-1 bis Polyqua- ternium-56).
Zu den geeigneten Konditionierungsmitteln zählen beispielsweise auch polymere quaternäre Ammoniumverbindungen, kationische Cellulosederivate und Polysaccharide. Erfindungsgemäß vorteilhafte Konditionierungsmittel können dabei unter den in der folgenden Tabelle dargestellten Verbindungen gewählt werden.
Tabelle 4: Vorteilhaft zu verwendende Konditioniermittel
Weitere erfindungsgemäß vorteilhafte Konditionierer stellen Cellulosederivate und quaternisierte Guargum Derivate, insbesondere Guar Hydroxypropylammoniumchlorid (z.B. Jaguar Excel®, Jaguar C 162® (Rhodia), CAS 65497-29-2, CAS 39421-75-5) dar. Auch nichtionische Poly-N-vinylpyrrolidon/Polyvinylacetat-Copolymere (z.B. Luviskol®VA 64 (BASF Aktiengesellschaft )), anionische Acrylat-Copolymere (z.B. Luviflex®Soft (BASF Aktiengesellschaft )), und/oder amphotere Amid/Acrylat/Methacrylat Copolymere (z.B. Amphomer® (National Starch)) können erfindungsgemäß vorteilhaft als Konditionierer eingesetzt werden.
Puderrohstoffe
Ein Zusatz von Puderrohstoffen kann allgemein vorteilhaft sein. Besonders bevorzugt wird der
Einsatz von Talkum. Ethoxylierte Glycerin-Fettsäureester
Erfindungsgemäß können Zusammensetzungen neben den erfindungsgemäßen bzw. gemäß dem erfinderischen Verfahren hergestellten keratinbindenden Effektormoleküle gegebenenfalls auch ethoxylierte Öle ausgewählt aus der Gruppe der ethoxylierten Glycerin-Fettsäureester, insbesondere bevorzugt PEG-10 Olivenölglyceride, PEG-11 Avocadoölglyceride, PEG-11 Ka- kaobutterglyceride, PEG-13 Sonnenblumenölglyceride, PEG-15 Glycerylisostearat, PEG-9 Ko- kosfettsäureglyceride, PEG-54 Hydriertes Ricinusöl, PEG-7 Hydriertes Ricinusöl, PEG-60 Hydriertes Ricinusöl, Jojobaöl Ethoxylat (PEG-26 Jojoba-Fett-Säuren, PEG-26 Jojobaalkohol), GIy- cereth-5 Cocoat, PEG-9 Kokosfettsäureglyceride, PEG-7 Glycerylcocoat, PEG-45 Palmke- mölglyceride, PEG-35 Ricinusöl, Olivenöl-PEG-7 Ester, PEG-6 Caprylisäure/ Caprinsäureglyce- ride, Hydrierte Palmkernölglycerid-PEG-6 Ester, PEG-20 Maisölglyceride, PEG- 18 Glycerylo- lead-cocoat, PEG-40 Hydriertes Ricinusöl, PEG-40 Ricinusöl, PEG-60 Hydriertes Ricinusöl, PEG-60 Maisölglyceride, PEG-54 Hydriertes Ricinusöl, PEG-45 Palmkernölglyceride, PEG-35 Ricinusöl, PEG-80 Glycerylcocoat, PEG-60 Mandelölglyceride, PEG-60 "Evening Primrose" Glyceride, PEG-200, Hydriertes Glycerylpalmat und PEG-90 Glycerylisostearat enthalten.
Bevorzugte ethoxylierte Öle sind PEG-7 Glycerylcocoat, PEG-9 Kokosglyceride, PEG-40 Hydriertes Rizinusöl, PEG-200 hydriertes Glycerylpalmat. Ethoxylierte Glycerin-Fettsäureester werden in wässrigen Reinigungsrezepturen zu verschiedenen Zwecken eingesetzt. Niedrig ethoxylierte Glycerin-Fettsäureester (3-12 Ethylenoxideinheiten) dienen üblicherweise als Rückfetter zur Verbesserung des Hautgefühls nach dem Abtrocknen, Glycerin-Fettsäureester mit einem Ethoxylierungsgrad von ca. 30-50 dienen als Lösungsvermittler für unpolare Substanzen wie Parfumöle. Hochethoxylierte Glycerin-Fettsäureester werden als Verdicker eingesetzt. Allen diesen Substanzen ist gemeinsam, dass sie auf der Haut bei der Anwendung bei der Verdünnung mit Wasser ein besonderes Hautgefühl erzeugen.
Lichtschutzmittel
Erfindungsgemäß ist ebenfalls die Verwendung der erfindungsgemäßen bzw. gemäß dem erfinderischen Verfahren hergestellten keratinbindenden Effektormoleküle in Kombination mit Lichtschutzmittel in dermokosmetischen Zubereitungen. Diese kosmetischen und/oder dermatologischen Lichtschutzzusammensetzungen dienen dem kosmetischen und/oder dermatologischen Lichtschutz, ferner zur Behandlung und Pflege der Haut und/oder der Haare und als Schminkprodukt in der dekorativen Kosmetik. Dazu zählen beispielsweise Sonnencremes, -lotionen, -milche, -öle, -baisame, -gele, Lippenpflegen und Lippenstifte, Abdeckcremes und -stifte, Feuchtigkeitscremes, -lotionen, -emulsionen, Gesichts-, Körper- und Handcremes, Haarkuren und -Spülungen, Haarfestiger, Styling-Gele, Haarsprays, Deoroller oder Augenfältchencremes, Tropicals, Sunblocker, Aftersun-Präparate. Alle Präparate enthalten wenigstens ein keratinbindendes Effektormolekül und eine der genannten UV- Filtersubstanzen. Sonnenöle sind meist Mischungen verschiedener Öle mit einem oder mehreren Lichtschutzfil- tern und Parfümölen. Die Ölkomponenten werden nach unterschiedlichen kosmetischen Eigenschaften ausgewählt. Öle, die gut fetten und ein weiches Hautgefühl vermitteln, wie Mineralöle (z. B. Paraffinöle) und Fettsäuretriglyceride (z. B. Erdnussöl, Sesamöl, Avocadoöl, mittelkettige Triglyceride), werden mit Ölen gemischt, die die Verteilbarkeit und das Einziehen der Sonnenöle in die Haut verbessern, die Klebrigkeit verringern und den Ölfilm für Luft und Wasserdampf (Schweiß) durchlässig machen. Hierzu zählen verzweigtkettige Fettsäureester (z. B. Isopropyl- palmitat) und Siliconöle (z. B. Dimethylsilicon). Bei Verwendung von Ölen auf Basis ungesättig- ter Fettsäuren werden Antioxidantien, z. B. E-Tocopherol, zugesetzt, um das Ranzigwerden zu verhindern. Sonnenöle enthalten als wasserfreie Formulierungen in der Regel keine Konservierungsmittel. Sonnenmilche und -Cremes werden als Öl-in-wasser- (O/W) Emulsionen und als Wasser-in-ÖI-(W/O-)Emulsionen hergestellt. Je nach Emulsionstyp sind die Eigenschaften der Präparate sehr unterschiedlich: O/W-Emulsionen sind auf der Haut leicht verteilbar, sie ziehen meist schnell ein und sind fast immer mit Wasser leicht abwaschbar. W/O-Emulsionen sind schwerer einzureiben, sie fetten die Haut stärker und wirken dadurch etwas klebriger, bewahren aber andererseits die Haut besser vor dem Austrocknen. W/O-Emulsionen sind meist wasserfest. Bei O/W-Emulsionen entscheiden die Emulsionsbasis, die Auswahl geeigneter Licht- schutzstoffe und ggf. der Einsatz von Hilfsstoffen (z. B. Polymere) über den Grad der Wasserfestigkeit. Die Grundlagen von flüssigen und cremeförmigen O/W-Emulsionen ähneln in ihrer Zusammensetzung den sonstigen in der Hautpflege üblichen Emulsionen. Sonnenmilche sollen die durch Sonne, Wasser und Wind ausgetrocknete Haut ausreichend fetten. Sie dürfen nicht klebrig sein, da dies in der Hitze und bei Kontakt mit Sand als besonders unangenehm empfun- den wird. Die Lichtschutzmittel sind in der Regel auf der Basis eines Trägers, der mindestens eine Ölphase enthält. Es sind aber auch Zusammensetzungen allein auf wässriger Basis möglich. Demgemäss kommen Öle, Öl-in-Wasser- und Wasser-in-ÖI-Emulsionen, Cremes und Pasten, Lippenschutzstiftmassen oder fettfreie Gele in Betracht. Als Emulsionen kommen u.a. auch O/W-Makroemulsionen, O/W-Mikroemulsionen oder O/W/O-Emulsionen mit in dispergierter Form vorliegenden oberflächenbeschichteten Titandioxidpartikeln in Frage, wobei die Emulsionen durch Phaseninversionstechnologie, gemäß DE-A-197 26 121 erhältlich sind. Übliche kosmetische Hilfsstoffe, die als Zusätze in Betracht kommen können, sind z.B. (Co- )Emulgatoren, Fette und Wachse, Stabilisatoren, Verdickungsmittel, biogene Wirkstoffe, Filmbildner, Duftstoffe, Farbstoffe, Perlglanzmittel, Konservierungsmittel, Pigmente, Elektrolyte (z.B. Magnesiumsulfat) und pH-Regulatoren. Als Stabilisatoren können Metallsalze von Fettsäuren wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat eingesetzt werden. Unter biogenen Wirkstoffen sind beispielsweise Pflanzenextrakte, Eiweißhydrolysate und Vitaminkomplexe zu verstehen. Gebräuchliche Filmbildner sind beispielsweise Hydrocolloide wie Chitosan, mikrokristallines Chitosan oder quaterniertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat- Copolymerisate, Polymere der Acrylsäurereihe, quaternäre Cellulose-Derivate und ähnliche Verbindungen.
Geeignete Lichtfilterwirkstoffe sind Stoffe, die UV-Strahlen im UV-B- und/oder UV-A-Bereich absorbieren. Darunter sind organische Substanzen zu verstehen, die in der Lage sind, ultravio- lette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme, wieder abzugeben. Die organischen Substanzen können öllöslich oder wasserlöslich sein. Geeignete UV-Filter sind z.B. 2,4,6-Triaryl-1 ,3,5- triazine, bei denen die Arylgruppen jeweils wenigstens einen Substituenten tragen können, der vorzugsweise ausgewählt ist unter Hydroxy, Alkoxy, speziell Methoxy, Alkoxycarbonyl, speziell Methoxycarbonyl und Ethoxycarbo- nyl. Geeignet sind weiterhin p-Aminobenzoesäureester, Zimtsäureester, Benzophenone, Campherderivate sowie UV-Strahlen abhaltende Pigmente, wie Titandioxid, Talkum und Zinkoxid. Besonders bevorzugt handelt es sich um Pigmente auf der Basis von Titandioxid.
Als öllösliche UV-B-Filter können z.B. folgende Substanzen verwendet werden: 3-Benzylidencampher und dessen Derivate, z.B. 3-(4-Methylbenzyliden)campher; 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2-ethylhexylester, 4-( Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)-benzoesäureamylester;
Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4 Methoxyzimtsäu- repropylester, 4-Methoxyzimtsäureisoamylester, 4 Methoxyzimtsäureisopentylester, 2-Cyano-3- phenyl-zimtsäure-2-ethylhexylester (Octocrylene);
Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4 isopropyl- benzylester, Salicylsäurehomomenthylester;
Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4- methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon;
Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexylester;
Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1 '-hexyloxy)-1 ,3,5-triazin (Octyltriazo- ne) und Dioctyl Butamido Triazon (Uvasorb® HEB):
Propan-1 ,3-dione, wie z.B. 1 -(4-tert. Butylphenyl)-3-(4'-methoxyphenyl)propan-1 ,3-dion.
Als wasserlösliche Substanzen kommen in Frage:
2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammoni- um-, Alkanolammonium- und Glucammoniumsalze;
Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzo-phenon-5- sulfonsäure und ihre Salze;
Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3- bornylidenmethyl)benzolsulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze.
Besonders bevorzugt ist die Verwendung von Estern der Zimtsäure, vorzugsweise 4- Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimtsäureisopentylester, 2-Cyano-3-phenyl- zimtsäure-2-ethylhexylester (Octocrylene).
Des weiteren ist die Verwendung von Derivaten des Benzophenons, insbesondere 2-Hydroxy- 4-methoxybenzophenon, 2-Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4- methoxybenzophenon sowie der Einsatz von Propan-1 ,3-dionen, wie z.B. 1-(4-tert. Butylphe- nyl)-3-(4-'methoxyphenyl)propan-1 ,3-dion bevorzugt.
Als typische UV-A-Filter kommen in Frage:
Derivate des Benzoylmethans, wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl) propan-1 ,3-dion, 4-tert. -Butyl-4'-methoxydibenzoylmethan oder 1-Phenyl-3-(4'-isopropylphenyl)- propan-1 ,3-dion; Amino-hydroxy-substituierte Derivate von Benzophenonen wie z.B. N,N-Diethylamino- hyd roxybenzoyl-n-hexyl benzoat .
Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden.
Weitere geeignete UV-Filtersubstanzen sind in der folgenden Tabelle genannt.
Tabelle 5: geeignete Lichtschutzmittel
Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Lichtschutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reak- tionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Superoxid-Dismutase, Katalase, Tocopherole (Vitamin E) und As- corbinsäure (Vitamin C).
Eine weitere Gruppe sind Antiirritantien, die eine entzündungshemmende Wirkung auf durch UV-Licht geschädigte Haut besitzten. Solche Stoffe sind beispielsweise Bisabolol, Phytol und Phytantriol.
Erfindungsgemäß ist ebenfalls die Verwendung der erfindungsgemäßen bzw. gemäß dem erfinderischen Verfahren hergestellten keratinbindenden Effektormoleküle in Kombination mit UV- Strahlen abhaltenden anorganischen Pigmenten in dermokosmetischen Zubereitungen. Bevorzugt sind Pigmente auf Basis von Metalloxiden und/oder anderen in Wasser schwerlöslichen oder unlöslichen Metallverbindungen ausgewählt aus der Gruppe der Oxide des Zinks (ZnO), Titan (TiO∑), Eisens (z.B. Fe∑Os), Zirkoniums (ZrO∑), Siliciums (SiO∑), Mangans (z.B. MnO), Aluminiums (AI2O3), Cers (z.B. Ce∑Os), Mischoxiden der entsprechenden Metalle und Abmi- schungen aus solchen Oxiden enthalten.
Die anorganischen Pigmente können dabei in gecoateter Form vorliegen, d.h. dass sie ober- flächlich behandelt sind. Diese Oberflächenbehandlung kann beispielsweise darin bestehen, dass die Pigmente nach an sich bekannter Weise, wie in DE-A-33 14 742 beschrieben, mit einer dünnen hydrophoben Schicht versehen sind.
Geeignete Repellentwirkstoffe sind Verbindungen, die in der Lage sind, bestimmte Tiere, ins- besondere Insekten, vom Menschen abzuhalten oder zu vertreiben. Dazu gehört z.B. 2-Ethyl-1 , 3-hexandiol, N, N-Diethyl-m-toluamid etc. Geeignete hyperemisierend wirkende Stoffe, welche die Durchblutung der Haut anregen, sind z.B. ätherische Öle, wie Latschenkieferextrakt, Lavendelextrakt, Rosmarinextrakt, Wacholderbeerextrakt, Rosskastanienextrakt, Birkenblätterextrakt, Heublumenextrakt, Ethylacetat, Campher, Menthol, Pfefferminzöl, Eukalyptusöl, etc. Ge- eignete keratolytisch und keratoplastisch wirkende Stoffe sind z.B. Salicylsäure, Kalziumthi- oglykolat, Thioglykolsäure und ihre Salze, Schwefel, etc. Geeignete Antischuppen-Wirkstoffe sind z.B. Schwefel, Schwefelpolyethylenglykolsorbitanmonooleat, Schwefelricinolpolyethoxylat, Zinkpyrithion, Aluminiumpyrithion, etc. Geeignete Antiphlogistika, die Hautreizungen entgegenwirken, sind z.B. Allantoin, Bisabolol, Dragosantol, Kamillenextrakt, Panthenol, etc.
Erfindungsgemäß ist ebenfalls die Verwendung der erfindungsgemäßen bzw. gemäß dem erfinderischen Verfahren hergestellten keratinbindenden Effektormoleküle in Kombination mit wenigstens einem kosmetisch oder pharmazeutisch akzeptablen Polymer.
Geeignete Polymere sind z.B. kationische Polymere mit der Bezeichnung Polyquater-nium nach INCI, z.B. Copolymere aus Vinylpyrrolidon/N-Vinylimidazoliumsalzen (Luviquat FC, Luvi- quat HM, Luviquat MS, Luviquat), Copolymere aus
N-Vinylpyrrolidon/Dimethylaminoethylmethacrylat, quaternisiert mit Diethylsulfat (Luviquat PQ 11), Copolymere aus N-Vinylcaprolactam/N-Vinylpyrrolidon/N-Vinyl-imidazoliumsalzen (Luvi- quat E Hold), kationische Cellulosederivate (Polyquaternium-4 und -10), Acrylamidocopolymere (Polyquaternium-7) und Chitosan.
Geeignete kationische (quaternisierte) Polymere sind auch Merquat (Polymer auf Basis von Dimethyldiallylammoniumchlorid), Gafquat (quaternäre Polymere, die durch Reaktion von PoIy- vinylpyrrolidon mit quaternären Ammoniumverbindungen entstehen), Polymer JR (Hydroxye- thylcellulose mit kationischen Gruppen) und kationische Polymere auf pflanzlicher Basis, z.B. Guarpolymere, wie die Jaguar-Marken der Firma Rhodia.
Weitere geeignete Polymere sind auch neutrale Polymere, wie Polyvinylpyrrolidone, Copolyme- re aus N-Vinylpyrrolidon und Vinylacetat und/oder Vinylpropionat, Polysiloxane, Polyvinylcapro- lactam und andere Copolymere mit N-Vinylpyrrolidon, Polyethylenimine und deren Salze, PoIy- vinylamine und deren Salze, Cellulosederivate, Polyasparaginsäuresalze und Derivate. Dazu zählt beispielsweise Luviflex 0 Swing (teil verseiftes Copolymerisat von Polyvinylacetat und Po- lyethylenglykol, Firma BASF Aktiengesellschaft). Geeignete Polymere sind auch nichtionische, wasserlösliche bzw. wasserdispergierbare Polymere oder Oligomere, wie Polyvinylcaprolactam, z.B. Luviskol 0 Plus (BASF), oder Polyvinylpyr- rolidon und deren Copolymere, insbesondere mit Vinylestern, wie Vinylacetat, z.B. Luviskol 0 VA 37 (BASF), Polyamide, z.B. auf Basis von Itaconsäure und aliphatischen Diaminen, wie sie z.B. in der DE-A-43 33 238 beschrieben sind.
Geeignete Polymere sind auch amphotere oder zwitterionische Polymere, wie die unter den Bezeichnungen Amphomer (National Starch) erhältlichen Octylacrylamid / Methylmethacrylat / tert.-Butylaminoethylmethacrylat-Hydroxypropylmethacrylat-Copolymere sowie zwitterionische Polymere, wie sie beispielsweise in den deutschen Patentanmeldungen DE39 29 973, DE 21 50 557, DE28 17 369 und DE 3708 451 offenbart sind. Acrylamidopropyltrimethylammoniumch- lorid/Acrylsäure-bzw. -Methacrylsäure-Copolymerisate und deren Alkali-und Ammoniumsalze sind bevorzugte zwitterionische Polymere. Weiterhin geeignete zwitterionische Polymere sind Methacroylethylbetain/Methacrylat-Copolymere, die unter der Bezeichnung Amersette (AMER- CHOL) im Handel erhältlich sind, und Copolymere aus Hydroxyethylmethacrylat, Methylmethacrylat, N, N-Dimethylaminoethylmethacrylat und Acrylsäure (Jordapon (D)).
Geeignete Polymere sind auch nichtionische, siloxanhaltige, wasserlösliche oder - dispergierbare Polymere, z.B. Polyethersiloxane, wie Tegopren 0 (Firma Goldschmidt) oder Besi&commat (Firma Wacker).
Erfindungsgemäß ist ebenfalls die Verwendung der erfindungsgemäßen bzw. gemäß dem erfinderischen Verfahren hergestellten keratinbindenden Effektormoleküle in Kombination mit dermokosmetischen Wirkstoffen (eine oder mehrere Verbindungen) vorteilhaft ausgewählt aus der Gruppe bestehend aus Acetylsalicylsäure, Atropin, Azulen, Hydrocortison und dessen Derivaten, z. B. Hydrocortison-17-valerat, Vitamine der B- und D-Reihe, insbesondere Vitamin Bi, Vitamin B12, Vitamin D, Vitamin A bzw. dessen Derivate wie Retinylpalmitat, Vitamin E oder dessen Derivate wie z.B. Tocopheryl Acetat, Vitamin C und dessen Derivate wie z.B. Ascor- bylglucusid aber auch Niadnamid, Panthenol, Bisabolol, Polydocanol, ungesättigte Fettsäuren, wie z.B. die essentiellen Fettsäuren (üblicherweise als Vitamin F bezeichnet), insbesondere die γ-Linolen-säure, Ölsäure, Eicosapentaensäure, Docosahexaensäure und deren Derivate, ChIo- ramphenicol, Coffein, Prostaglandine, Thymol, Campher, Squalen, Extrakte oder andere Produkte pflanzlicher und tierischer Herkunft, z . B. Nachtkerzenöl, Borretschöl oder Johannisbeer- kernöl, Fischöle, Lebertran aber auch Ceramide und ceramidähnliche Verbindungen, Weih- rauchextrakt, Grünteeextrakt, Wasserlilienextrakt, Süßholzextrakt, Hamamelis, Antischuppen- wirkstoffe (z.B. Selendisulfid, Zinkpyrithion, Pirocton Olamin, Climbazol, Octopirox, Polydocanol und deren Kombinatinen), Komplexwirkstoffen wie z.B. jenen aus γ-Oryzanol und Calciumsal- zen wie Calciumpanthotenat, Calciumchlorid, Calciumacetat. Vorteilhaft ist es auch, die Wirkstoffe aus der Gruppe der rückfettenden Substanzen zu wählen, beispielsweise Purcellinöl, Eucerit® und Neocerit®. Besonders vorteilhaft werden der oder die Wirkstoffe ferner gewählt aus der Gruppe der NO-Synthasehemmer, insbesondere wenn die erfindungsgemäßen Zubereitungen zur Behandlung und Prophylaxe der Symptome der intrinsischen und/oder extrinsischen Hautalterung sowie zur Behandlung und Prophylaxe der schädlichen Auswirkungen ultravioletter Strahlung auf die Haut und die Haare dienen sollen. Bevorzugter NO-Synthasehemmer ist Nitroarginin. Weiter vorteilhaft werden der oder die Wirkstoffe gewählt aus der Gruppe umfassend Catechine und Gallensäureester von Catechinen und wässrige bzw. organische Extrakte aus Pflanzen oder Pflanzenteilen, die einen Gehalt an Catechinen oder Gallensäureestern von Catechinen aufweisen, wie beispielsweise den Blättern der Pflanzenfamilie Theaceae, insbesondere der Spezies Camellia sinensis (grüner Tee). Besonders vorteilhaft sind deren typische Inhaltsstoffe (z.B. Polyphenole bzw. Catechine, Coffein, Vitamine, Zucker, Mineralien, Aminosäuren, Lipide). Catechine stellen eine Gruppe von Verbindungen dar, die als hydrierte Flavone oder Anthocyanidine aufzufassen sind und Derivate des „Catechins" (Catechol, 3, 3', 4', 5,7- Flavanpentaol, 2-(3,4-Dihydroxyphenyl)-chroman-3,5,7-triol) darstellen. Auch Epicatechin ((2R,3R)-3,3',4',5,7-Flavanpentaol) ist ein vorteilhafter Wirkstoff im Sinne der vorliegenden Erfindung. Vorteilhaft sind ferner pflanzliche Auszüge mit einem Gehalt an Catechinen, insbesondere Extrakte des grünen Tees, wie z. B. Extrakte aus Blättern der Pflanzen der Spezies Camellia speα, ganz besonders der Teesorten Camellia sinenis, C. assamica, C. taliensis bzw. C. inawadiensis und Kreuzungen aus diesen mit beispielsweise Camellia japonica. Bevorzugte Wirkstoffe sind ferner Polyphenole bzw. Catechine aus der Gruppe (-)-Catechin, (+)-Catechin, (- )-Catechingallat, (-)-Gallocatechingallat, (+)-Epicatechin, (-)-Epicatechin, (-)-Epicatechin Gallat, (-)-Epigallocatechin, (-)-Epigallocatechingallat.
Auch Flavon und seine Derivate (oft auch kollektiv „Flavone" genannt) sind vorteilhafte Wirkstoffe im Sinne der vorliegenden Erfindung. Sie sind durch folgende Grundstruktur gekennzeichnet (Substitutionspositionen angegeben):
Einige der wichtigeren Flavone, welche auch bevorzugt in erfindungsgemäßen Zubereitungen eingesetzt werden können, sind in der nachstehenden Tabelle 6 aufgeführt.
Tabelle 6: Flavone
In der Natur kommen Flavone in der Regel in glycosidierter Form vor.
Erfindungsgemäß werden die Flavonoide bevorzugt gewählt gewählt aus der Gruppe der Substanzen der allgemeinen Formel,
wobei Zi bis Zj, unabhängig voneinander gewählt werden aus der Gruppe H, OH, Alkoxy- sowie Hydroxyalkoxy-, wobei die Alkoxy- bzw. Hydroxyalkoxygruppen verzweigt und unverzweigt sein und 1 bis 18 C-Atome aufweisen können, und wobei GIy gewählt wird aus der Gruppe der Mono- und Oligoglycosidreste.
Außerdem können die Wirkstoffe (eine oder mehrere Verbindungen) auch sehr vorteilhaft gewählt werden aus der Gruppe der hydrophilen Wirkstoffe, insbesondere aus folgender Gruppe: α-Hydroxysäuren wie Milchsäure oder Salicylsäure bzw. deren Salze wie z.B. Na-Lactat, Ca- Lactat, TEA-Lactat, Harnstoff, Allantoin, Serin, Sorbitol, Glycerin, Milchproteine, Panthenol, Chitosan.
Die Menge solcher Wirkstoffe (eine oder mehrere Verbindungen) in den Zubereitungen gemäß der Erfindung beträgt vorzugsweise 0,001 bis 30 Gew.-%, besonders bevorzugt 0,05 bis 20 Gew.-%, insbesondere 1 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung. Die genannten und weitere Wirkstoffe, die in den erfindungsgemäßen Zubereitungen verwendet werden können, sind in der DE 103 18 526 A1 auf den Seiten 12 bis 17 angegeben, worauf an dieser Stelle in vollem Umfang Bezug genommen wird.
Weiterhin betrifft die vorliegende Erfindung die Verwendung der o.g. Zubereitungen zur Vorbeugung unerwünschter Veränderungen des Hautbildes, wie z.B. Akne oder fettige Haut, Keratosen, Rosaceae, lichtempfindliche, entzündliche, erythematöse, allergische oder autoimmun- reaktive Reaktionen.
Zur Anwendung werden die erfindungsgemäßen kosmetischen Zubereitungen in der für Kosmetika oder Dermokosmetika üblichen Weise auf die Haut, Haare, Finger- oder Fußnägel aufgebracht.
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft Dermokosmetika enthaltend eines der oben beschriebenen keratinbindenden Effektorproteine, besonders bevorzugt keratinbindende Effektorproteine ausgewählt aus der Gruppe bestehend aus Enzymen, Antikörpern, Effektoren bindende Proteine, Fluoreszenzproteinen, Antimikrobiel- len-Peptiden und selbstassemblierenden Proteinen. Besonders bevorzugt sind Dermokosmeti- ka enthaltend ein keratinbindendes Effektormolekül wie in Beispiel 3 beschrieben. Am allermeisten bevorzugt sind Dermokosmetika, enthaltend keratinbindende Effektorproteine, welche mindestens ein keratinbindendes Polypeptid (ii) gemäß der in SEQ ID No.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 164 oder 166, bevorzugt in SEQ ID No: 2, 4, 6, 8, 10, 12, 14, 40, 42, 44, 46, 48, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 oder 215 abgebildeten Sequenzen enthalten und das Effektorpolypeptid (ii) ein Seidenprotein, bevorzugt eines der in den Sequenzen SEQ ID No.: 151 , 201 , 202, 203, 204, 205, 206, 207, 208, 209 oder 210, besonders bevorzugt das C16-Spinnenseidenprotein, welches eine 16-fache Wiederholung des Moduls C des Proteins ADF4 aus Araneus diadematus ist.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung enthalten die Dermokosmetika, bevorzugt Haut- und Haar-Behandlungsmittel ein erfindungsgemäßes keratinbindendes Effektorprotein in einer Konzentration von 0,001 bis 1 Gewichtsprozent (Gew.-%), vorzugswei- se 0,01 bis 0,9 Gew.-%, besonders bevorzugt 0,01 bis 0,8 Gew.-% oder 0,01 bis 0,7 Gew.%, ganz besonders bevorzugt 0,01 bis 0,6 Gew.% oder 0,01 bis 0,5 Gew.%, am meisten bevorzugt 0,01 bis 0,4 Gew.% oder 0,01 bis 0,3 Gew.% bezogen auf das Gesamtgewicht des Mittels. In einer weiteren Ausführungsform enthalten die Mittel ein erfindungsgemäßes keratinbindendes Effektorprotein in einer Konzentration von 1 bis 10 Gew.-%, vorzugsweise 2 bis 8 Gew.-%, 3 bis 7 Gew.-%, 4 bis 6 Gew.-% bezogen auf das Gesamtgewicht des Mittels. In einer ebenfalls bevorzugten Ausführungsform enthalten die Mittel ein erfindungsgemäßes keratinbindendes Effektorprotein in einer Konzentration von 10 bis 20 Gew.-%, vorzugsweise 11 bis 19 Gew.-%, 12 bis 18 Gew.-%, 13 bis 17 Gew.-%, 14 bis 16 Gew.-% bezogen auf das Gesamtgewicht des Mittels. In einer darüber hinaus bevorzugten Ausführungsform enthalten die Mittel ein erfindungsgemä- ßes keratinbindendes Effektorprotein in einer Konzentration von 20 bis 30 Gew.-%, vorzugsweise 21 bis 29 Gew.-%, 22 bis 28 Gew.-%, 23 bis 27 Gew.-%, 24 bis 26 Gew.-% bezogen auf das Gesamtgewicht des Mittels.
Bei den erfindungsgemäßen Mitteln handelt es sich vorzugsweise um Hautschutzmittel, Haut- Pflegemittel, Hautreinigungsmittel, Haarschutzmittel, Haarpflegemittel, Haarreinigungsmittel, Haarfärbemittel, Mundwasser und Mundspülungen, oder Zubereitung für die dekorative Kosmetik, die je nach Anwendungsgebiet vorzugsweise in Form von Salben, Cremes, Emulsionen, Suspensionen, Lotionen, als Milch, Pasten, Gelen, Schäumen oder Sprays angewendet werden.
Die erfindungsgemäßen Dermokosmetika können neben den keratinbindenden Effektorproteinen, alle bereits oben aufgeführten Polymere, Pigmente, Feuchthaltemittel, Öle, Wachse, Enzyme, Mineralien, Vitamine, Sonnenschutzmittel, Farbstoffe, Duftstoffe, Antioxidantien, Konservierungsmittel und/oder pharmazeutischen Wirkstoffen enthalten.
Zudem gilt für die erfindungsgemäßen Dermokosmetika das folgende: Die Formulierungsgrundlage erfindungsgemäßer Mittel enthält bevorzugt kosmetisch oder der- mokosmetisch/pharmazeutisch akzeptable Hilfsstoffe. Pharmazeutisch akzeptabel sind die im Bereich der Pharmazie, der Lebensmitteltechnologie und angrenzenden Gebieten bekanntermaßen verwendbaren Hilfsstoffe, insbesondere die in einschlägigen Arzneibüchern (z.B. DAB Ph. Eur. BP NF) gelisteten sowie andere Hilfsstoffe, deren Eigenschaften einer physiologischen Anwendung nicht entgegenstehen.
Geeignete Hilfsstoffe können sein: Gleitmittel, Netzmittel, emulgierende und suspendierende Mittel, konservierende Mittel, Antioxidantien, Antireizstoffe, Chelatbildner, Emulsionsstabilisatoren, Filmbildner, Gelbildner, Geruchsmaskierungsmittel, Harze, Hydrokolloide, Lösemittel, Lösungsvermittler, Neutralisierungsmittel, Permeationsbeschleuniger, Pigmente, quaternäre Ammoniumverbindungen, Rückfettungs- und Überfettungsmittel, Salben-, Creme- oder Öl-Grundstoffe, Siliconderivate, Stabilisatoren, Sterilantien, Treibmittel, Trocknungsmittel, Trübungsmittel, Verdickungsmittel, Wachse, Weichmacher, Weissöl. Eine diesbe- zügliche Ausgestaltung beruht auf fachmännischem Wissen, wie sie beispielsweise in Fiedler, H. P. Lexikon der Hilfsstoffe für Pharmazie, Kosmetik und angrenzende Gebiete, 4. Aufl., Aulendorf: ECV-Editio-Kantor-Verlag, 1996, dargestellt sind.
Zur Herstellung der erfindungsgemäßen dermokosmetischen Mittel können die Wirkstoffe mit einem geeigneten Hilfsstoff (Exzipient) vermischt oder verdünnt werden. Exzipienten können feste, halb feste oder flüssige Materialien sein, die als Vehikel, Träger oder Medium für den Wirkstoff dienen können. Die Zumischung weiterer Hilfsstoffe erfolgt gewünschtenfalls in der dem Fachmann bekannten Weise. Weiterhin sind die Polymere und Dispersionen geeignet als Hilfsmittel in der Pharmazie, bevorzugt als oder in Beschichtungsmittel(n) oder Bindemittel(n) für feste Arzneiformen. Sie können auch in Cremes und als Tablettenüberzugsmittel und Tablettenbindemittel verwendet werden.
Nach einer weiteren bevorzugten Ausführungsform handelt es sich bei den erfindungsgemäßen Mitteln um kosmetische Mittel zur Pflege und zum Schutz der Haut und Haar, Nagelpflegemittel oder Zubereitungen für die dekorative Kosmetik.
Geeignete hautkosmetische Mittel sind z.B. Gesichtswässer, Gesichtsmasken, Deodorantien und andere kosmetische Lotionen. Mittel für die Verwendung in der dekorativen Kosmetik umfassen beispielsweise Abdeckstifte, Theaterfarben, Mascara und Lidschatten, Lippenstifte, Ka- jalstifte, Eyeliner, Rouges, Puder und Augenbrauenstifte.
Außerdem können die erfindungsgemäßen bzw. gemäß dem erfinderischen Verfahren hergestellten keratinbindenden Effektormoleküle verwendet werden in Nose-Strips zur Porenreinigung, in Antiaknemitteln, Repellents, Rasiermitteln, After- und Pre Shave Pflegemittel, After Sun Pflegemittel, Haarentfernungsmitteln, Haarfärbemitteln, Intimpflegemitteln, Fusspflegemitteln sowie in der Babypflege.
Bei den erfindungsgemäßen Hautpflegemitteln handelt es sich insbesondere um W/O- oder O/W-Hautcremes, Tag- und Nachtcremes, Augencremes, Gesichtscremes, Antifaltencremes, Sonnenschutzcremes, Feuchthaltecremes, Bleichcremes, Selbstbräunungscremes, Vitamin- cremes, Hautlotionen, Pflegelotionen und Feuchthaltelotionen. Erfindungsgemäße hautkosmetische und dermatologische Mittel können ferner als Schutz vor oxidativen Prozessen und den damit verbundenen Alterungsprozessen oder Schädigungen von Haut und/oder Haar, neben den erfindungsgemäßes bzw. gemäß dem erfinderischen Verfahren hergestelltes keratinbindendes Effektormolekül, einen Radikale zersetzenden Wirkstoff enthal- ten. Bei diesen Wirkstoffen handelt es sich bevorzugt um die in den Patentanmeldungen WO/0207698 und WO/03059312, auf deren Inhalt hiermit ausdrücklich bezuggenommen wird, beschriebenen Substanzen, bevorzugt die dort beschriebenen Bor-enthaltenden Verbindungen, die Peroxide oder Hydroperoxide zu den entsprechenden Alkoholen ohne Bildung radikalischer Folgestufen reduzieren können. Ferner können für diesen Zweck sterisch gehinderte Amine gemäß der allgemeinen Formel 3 verwendet werden,
Formel 3
wobei der Rest Z folgende Bedeutung hat: H, C1-C22 Alkylgruppe, bevorzugt C1-C12 Alkylgruppe wie Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sec. Butyl, tert. Butyl, Pentyl, Isopentyl, Neopentyl, tert. Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl.Dodecyl, C1-C22- Alkoxylgruppe, bevorzugt Ci-Ci2-Alkoxylgruppe wie Alkoxy-Methyl, Alkoxy-Ethyl, Alkoxy-Propyl, Alkoxy-Isopropyl, Alkoxy-Butyl, Alkoxy-Isobutyl, Alkoxy-sec. Butyl, Alkoxy-tert. Butyl, Alkoxy- Pentyl, Alkoxy-Isopentyl, Alkoxy-Neopentyl, Alkoxy-tert. Pentyl, Alkoxy-Hexyl, Alkoxy-Heptyl, Alkoxy-Octyl, Alkoxy-Nonyl, Alkoxy-Decyl, Alkoxy-Undecyl, Alkoxy-Dodecyl, Ce bis C10- Arylgruppe wie Phenyl und Naphtyl, wobei der Phenylrest mit Ci bis CA Alkylresten substituiert sein kann, Ce bis Cio-O-Arylgruppe, welche mit einer C1-C22 Alkyl- oder Ci-C22-Alkoxylgruppe, bevorzugt mit mit einer C1-C12 Alkyl- oder Ci-Ci2-Alkoxylgruppe wie oben beschrieben, substituiert sein kann, und die Reste R1 bis R6 unabhängig voneinander folgende Bedeutung haben: H, OH, O, C1-C22 Alkylgruppe, bevorzugt C1-C12 Alkylgruppe wie Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sec. Butyl, tert. Butyl, Pentyl, Isopentyl, Neopentyl, tert. Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Ci-C∑∑-Alkoxylgruppe, bevorzugt Ci-Ci2-Alkoxylgruppe wie Alkoxy- Methyl, Alkoxy-Ethyl, Alkoxy-Propyl, Alkoxy-Isopropyl, Alkoxy-Butyl, Alkoxy-Isobutyl, Alkoxy- sec. Butyl, Alkoxy-tert. Butyl, Alkoxy-Pentyl, Alkoxy-Isopentyl, Alkoxy-Neopentyl, Alkoxy-tert. Pentyl, Alkoxy-Hexyl, Alkoxy-Heptyl, Alkoxy-Octyl, Alkoxy-Nonyl, Alkoxy-Decyl, Alkoxy-Undecyl, Alkoxy-Dodecyl, Ce bis Cio-Arylgruppe wie Phenyl und Naphtyl, wobei der Phenylrest mit Ci bis C4 Alkylresten substituiert sein kann, Ce bis Cio-O-Arylgruppe, welche mit einer C1-C22 Alkyl- oder Ci-C22-Alkoxylgruppe, bevorzugt mit mit einer C1-C12 Alkyl- oder Ci-Ci2-Alkoxylgruppe wie oben beschrieben, substituiert sein kann. Besonders bevorzugt ist die Verwendung der sterisch gehindernten Amine 3-Dodecyl-N- (2,2,6,6-tetramethyl-4-piperidinyl)succinimid, 3-Dodecyl-N-(1 ,2,2,6,6-penta-methyl-4-piperidinyl) succinimid, 3-Octyl-N-(2,2,6,6-tetramethyl-4-piperidinyl) succinimid, 3-Octyl-N-(1 ,2,2,6,6- pentamethyl-4-piperidinyl) succinimid, 3-Octenyl-N-(2,2,6,6-tetramethyl-4-piperidinyl) succinimid, 3-Octenyl-N-(1 ,2,2,6,6-pentamethyl-4-piperidinyl)succinimid und/oder
Uvinul®5050H, in einem Anteil von 0,001 bis 1 Gewichtsprozent (Gew.-%), vorzugsweise 0,01 bis 0,1 Gew.-%, 0,1 bis 1 Gew.-% bezogen auf das Gesamtgewicht des Mittels.
Die hautkosmetischen Zubereitungen können neben den erfindungsgemäßen oben genannten Verbindungen und geeigneten Trägern noch weitere in der Hautkosmetik übliche Wirkstoffe und Hilfsstoffe, wie zuvor beschrieben, enthalten. Dazu zählen vorzugsweise Emulgatoren, Konservierungsmittel, Parfümöle, kosmetische Wirkstoffe wie Phytantriol, Vitamin A, E und C, Retinol, Bisabolol, Panthenol, Lichtschutzmittel, Bleichmittel, Färbemittel, Tönungsmittel, Bräunungsmittel, Collagen, Eiweisshydrolysate, Stabilisatoren, pH-Wert-Regulatoren, Farbstoffe, Salze, Ver- dicker, Gelbildner, Konsistenzgeber, Silicone, Feuchthaltemittel, Rückfetter und/oder weitere übliche Additive.
Bevorzugte Öl- und Fettkomponenten der hautkosmetischen und dermokosmetischen Mittel sind die zuvor genannten mineralischen und synthetischen Öle, wie z.B. Paraffine, SiIi- conöle und aliphatische Kohlenwasserstoffe mit mehr als 8 Kohlenstoffatomen, tierische und pflanzliche Öle, wie z.B. Sonnenblumenöl, Kokosöl, Avocadoöl, Olivenöl, Lanolin, oder Wachse, Fettsäuren, Fettsäureester, wie z.B. Triglyceride von C6-C30- Fettsäuren, Wachsester, wie z.B. Jojobaöl, Fettalkohole, Vaseline, hydriertes Lanolin und acety- liertes Lanolin sowie Mischungen davon.
Zur Einstellung bestimmter Eigenschaften wie z.B. Verbesserung des Anfassgefühls, des Spreitverhaltens, der Wasserresistenz und/oder der Bindung von Wirk- und Hilfsstoffen, wie Pigmenten, können die hautkosmetischen und dermokosmetischen Zubereitungen zusätzlich auch konditionierende Substanzen auf Basis von Siliconverbindungen enthalten.
Geeignete Siliconverbindungen sind beispielsweise Polyalkylsiloxane, Polyarylsiloxane, Polya- rylalkylsiloxane, Polyethersiloxane oder Siliconharze.
Die Herstellung der kosmetischen oder dermokosmetischen Zubereitungen erfolgt nach übli- chen, dem Fachmann bekannten Verfahren.
Bevorzugt liegen die kosmetischen und dermokosmetischen Mittel in Form von Emulsionen insbesondere als Wasser-in-ÖI (W/O)- oder Öl-in-Wasser (O/W)-Emulsionen vor.
Es ist aber auch möglich, andere Formulierungsarten zu wählen, beispielsweise, Gele, Öle, Oleogele, multiple Emulsionen, beispielsweise in Form von W/O/W- oder O/W/O-Emulsionen, wasserfreie Salben bzw. Salbengrundlagen, usw. Auch emulgatorfreie Formulierungen wie Hydrodispersionen, Hydrogele oder eine Pickering-Emulsion sind vorteilhafte Ausführungsformen.
Die Herstellung von Emulsionen erfolgt nach bekannten Methoden. Die Emulsionen enthalten neben wenigstens einem keratinbindenden Effektormolekül in der Regel übliche Bestandteile, wie Fettalkohole, Fettsäureester und insbesondere Fettsäuretriglyceride, Fettsäuren, Lanolin und Derivate davon, natürliche oder synthetische Öle oder Wachse und Emulgatoren in Anwesenheit von Wasser. Die Auswahl der Emulsionstyp-spezifischen Zusätze und die Herstellung geeigneter Emulsionen ist beispielsweise beschrieben in Schrader, Grundlagen und Rezeptu- ren der Kosmetika, Hüthig Buch Verlag, Heidelberg, 2. Auflage, 1989, dritter Teil, oder Limbach, Kosmetik: Entwicklung, Herstellung und Anwendung kosmetischer Mittel, 2. erweiterte Auflage, 1995, Georg Thieme Verlag, ISBN 3 13 712602 9, Seiten 122 ff., worauf hiermit ausdrücklich Bezug genommen wird. Eine geeignete Emulsion als W/O-Emulsion, z.B. für eine Hautcreme etc., enthält im Allgemei- nen eine wässrige Phase, die mittels eines geeigneten Emulgatorsystems in einer Öl- oder Fettphase emulgiert ist. Zur Bereitstellung der wässrigen Phase kann ein Polyelektrolytkomplex eingesetzt werden.
Bevorzugte Fettkomponenten, welche in der Fettphase der Emulsionen enthalten sein können, sind: Kohlenwasserstofföle, wie Paraffinöl, Purcellinöl, Perhydrosqualen und Lösungen mikro- kristalliner Wachse in diesen Ölen; tierische oder pflanzliche Öle, wie Süssmandelöl, Avocado- öl, Calophylumöl, Lanolin und Derivate davon, Ricinusöl, Sesamöl, Olivenöl, Jojobaöl, Karite-Öl, Hoplostethus-Öl, mineralische Öle, deren Destillationsbeginn unter Atmosphärendruck bei ca. 2500C und deren Destillationsendpunkt bei 4100C liegt, wie z.B. Vaselinöl, Ester gesättigter oder ungesättigter Fettsäuren, wie Alkylmyristate, z.B. i-Propyl-, Butyl- oder Cetylmyristat, He- xadecylstearat, Ethyl- oder i-Propylpalmitat, Octan- oder Decansäuretriglyceride und Cetylricinoleat.
Die Fettphase kann auch in anderen Ölen lösliche Siliconöle, wie Dimethylpolysiloxan, Me- thylphenylpolysiloxan und das Siliconglykol-Copolymer, Fettsäuren und Fettalkohole enthalten.
Neben den erfindungsgemäßen oben beschriebenen Verbindungen können die Hautpflegemittel auch Wachse enthalten, wie z.B. Carnaubawachs, Candilillawachs, Bienenwachs, mikrokristallines Wachs, Ozokeritwachs und Ca-, Mg- und Al-Oleate, -Myristate, -Linoleate und - Stearate.
Weiterhin kann eine erfindungsgemäße Emulsion als O/W-Emulsion vorliegen. Eine derartige Emulsion enthält üblicherweise eine Ölphase, Emulgatoren, die die Ölphase in der Wasserphase stabilisieren, und eine wässrige Phase, die üblicherweise verdickt vorliegt. Als Emulgatoren kommen vorzugsweise O/W-Emulgatoren, wie Polyglycerinester, Sorbitanester oder teilve- resterte Glyceride, in Betracht.
Nach einer weiteren bevorzugten Ausführungsform handelt es sich bei den erfindungsgemäßen Mitteln um ein Lichtschuztmittel, ein Duschgel, eine Shampoo-Formulierung oder ein Badepräparat, wobei Lichtschutzpräparate besonders bevorzugt sind.
Solche Formulierungen enthalten wenigstens ein erfindungsgemäßes bzw. gemäß dem erfinderischen Verfahren hergestelltes keratinbindendes Effektormolekül sowie üblicherweise anionische Tenside als Basistenside und amphotere und/oder nichtionische Tenside als Cotenside. Weitere geeignete Wirkstoffe und/oder Hilfsstoffe sind im allgemeinen ausgewählt unter Lipi- den, Parfümölen, Farbstoffen, organischen Säuren, Konservierungsstoffen und Antioxidantien sowie Verdickern/Gelbildnern, Hautkonditioniermitteln und Feuchthaltemitteln. Diese Formulierungen enthalten vorzugsweise 2 bis 50 Gew.-%, bevorzugt 5 bis 40 Gew.-%, besonders bevorzugt 8 bis 30 Gew.-% Tenside, bezogen auf das Gesamtgewicht der Formulierung.
In den Wasch-, Dusch- und Badepräparaten können alle in Körperreinigungsmitteln üblicherweise eingesetzten anionischen, neutralen, amphoteren oder kationischen Tenside verwendet werden.
Geeignete anionische Tenside sind beispielsweise Alkylsulfate, Alkylethersulfate, Alkylsulfona- te, Alkylarylsulfonate, Alkylsuccinate, Alkylsulfosuccinate, N-Alkoylsarkosinate, Acyltaurate, Acylisothionate, Alkylphosphate, Alkyletherphosphate, Alkylethercarboxylate, Alpha- Olefinsulfonate, insbesondere die Alkali- und Erdalkalimetallsalze, z.B. Natrium, Kalium, Magnesium, Calcium, sowie Ammonium- und Triethanolamin-Salze. Die Alkylethersulfate, Alkyletherphosphate und Alkylethercarboxylate können zwischen 1 bis 10 Ethylenoxid- oder Propy- lenoxideinheiten, bevorzugt 1 bis 3 Ethylenoxideinheiten im Molekül aufweisen.
Dazu zählen z.B. Natriumlaurylsulfat, Ammoniumtaurytsulfat, Natriumlaurylethersulfat, Ammo- niumlaurylethersulfat, Natriumlaurylsarkosinat, Natriumoleylsuccinat, Ammoniumlauryl- sulfosucdnat, Natriumdodecylbenzolsulfonat, Triethanolamindodecylbenzol-sulfonat.
Geeignete amphotere Tenside sind z.B. Alkylbetaine, Alkylamidopropylbetaine, Alkylsulfobetai- ne, Alkylglydnate, Alkylcarboxyglycinate, Alkylamphoacetate oder -propionate, Alkylamphodia- cetate oder -dipropionate.
Beispielsweise können Cocodimethylsulfopropylbetain, Laurylbetain, Cocamidopropylbetain oder Natriumcocamphopropionat eingesetzt werden.
Als nichtionische Tenside sind beispielsweise geeignet die Umsetzungsprodukte von aliphati- schen Alkoholen oder Alkylphenolen mit 6 bis 20 C-Atomen in der Alkylkette, die linear oder verzweigt sein kann, mit Ethylenoxid und/oder Propylenoxid. Die Menge Alkylenoxid beträgt ca. 6 bis 60 Mole auf ein Mol Alkohol. Ferner sind Alkylaminoxide, Mono-oder Dialkylalkanolamide, Fettsäureester von Polyethylenglykolen, ethoxylierte Fettsäureamide, Alkylpolyglycoside oder Sorbitanetherester geeignet.
Außerdem können die Wasch-, Dusch- und Badepräparate übliche kationische Tenside enthalten, wie z.B. quaternäre Ammoniumverbindungen, beispielsweise Cetyltrimethylammoniumchlo- rid.
Weiterhin können die Duschgel-/Shampoo-Formulierungen Verdicker, wie z.B. Kochsalz, PEG- 55, Propylenglykol-Oleat, PEG-120-Methylglucosedioleat und andere, so- wie Konservierungsmittel, weitere Wirk- und Hilfsstoffe und Wasser enthalten.
Haarbehandlungsmittel
Nach einer weiteren bevorzugten Ausführungsform handelt es sich bei den erfindungsgemäßen Dermokosmetika um Haarbehandlungsmittel. Vorzugsweise liegen die erfindungsgemäßen Haarbehandlungsmittel in Form eines Schaumfestigers, Haarmousses, Haargels, Shampoos, Haarsprays, Haarschaums, Spitzenfluids, Egalisie- rungsmittels für Dauerwellen, Haarfärbe- und -bleichmittels oder "Hot-Oil-Treatments" vor. Je nach Anwendungsgebiet können die haarkosmetischen Zubereitungen als (Aerosol-) Spray, (Aerosol-) Schaum, Gel, Gelspray, Creme, Lotion oder Wachs appliziert werden. Haarsprays umfassen dabei sowohl Aerosolsprays als auch Pumpsprays ohne Treibgas. Haarschäume umfassen sowohl Aerosolschäume wie auch Pumpschäume ohne Treibgas. Haarsprays und Haarschäume umfassen vorzugsweise überwiegend oder ausschließlich wasserlösliche oder wasserdispergierbare Komponenten. Sind die in den erfindungsgemäßen Haarsprays und Haarschäumen eingesetzten Verbindungen wasserdispergierbar, können sie in Form von wäss- rigen Mikrodispersionen mit Teilchendurchmessern von üblicherweise 1 bis 350 nm, bevorzugt 1 bis 250 nm, zur Anwendung gebracht werden. Die Feststoffgehalte dieser Präparate liegen dabei üblicherweise in einem Bereich von etwa 0,5 bis 20 Gew.-%. Diese Mikrodispersionen benötigen in der Regel keine Emulgatoren oder Tenside zu ihrer Stabilisierung.
Unter weiteren Bestandteilen sind die in der Kosmetik üblichen Zusätze zu verstehen, beispielsweise Treibmittel, Entschäumer, grenzflächenaktive Verbindungen, d.h. Tenside, Emulgatoren, Schaumbildner und Solubilisatoren. Die eingesetzten grenzflächenaktiven Verbindungen können anionisch, kationisch, amphoter oder neutral sein. Weitere übliche Bestandteile können ferner sein z.B. Konservierungsmittel, Parfümöle, Trübungsmittel, Wirkstoffe, UV-Filter, Pflegestoffe wie Panthenol, Collagen, Vitamine, Eiweisshydrolysate, Alpha- und Beta- Hydroxycarbonsäuren, Stabilisatoren, pH-Wert-Regulatoren, Farbstoffe, Viskositätsregulierer, Gelbildner, Salze, Feuchthaltemittel, Rückfetter, Komplexbildner und weitere übliche Additive.
Weiterhin zählen hierzu alle in der Kosmetik bekannten Styling- und Conditioner-Polymere, die in Kombination mit den erfindungsgemäßen keratinbindenden Effektormolekülen eingesetzt werden können, falls ganz spezielle Eigenschaften eingestellt werden sollen.
Als herkömmliche Haarkosmetik-Polymere eignen sich beispielsweise die zuvor genannten kationischen, anionischen, neutralen, nichtionischen und amphoteren Polymere, auf die hier Bezug genommen wird.
Zur Einstellung bestimmter Eigenschaften können die Zubereitungen zusätzlich auch konditio- nierende Substanzen auf Basis von Silikonverbindungen enthalten. Geeignete Silikonverbin- düngen sind beispielsweise Polyalkylsiloxane, Polyarylsiloxane, Polyarylalkylsiloxane, Polye- thersiloxane, Silikonharze oder Dimethicon Copolyole (CTFA) und aminofunktionelle Silikonverbindungen wie Amodimethicone (CTFA).
Treibmittel sind die für Haarsprays oder Aerosolschäume üblich verwendeten Treibmittel. Be- vorzugt sind Gemische aus Propan/Butan, Pentan, Dimethylether, 1 ,1-Difluorethan (HFC-152 a), Kohlendioxid, Stickstoff oder Druckluft.
Als Emulgatoren können alle in Haarschäumen üblicherweise eingesetzten Emulgatoren verwendet werden. Geeignete Emulgatoren können nichtionisch, kationisch bzw. anionisch oder amphoter sein. Beispiele für nichtionische Emulgatoren (INCI-Nomenklatur) sind Laurethe, z.B. Lau- reth-4 ; Cetethe, z.B. Cetheth-1 , Polyethylenglycolcetylether, Cetearethe, z.B. Cetheareth- 25, Polyglycolfettsäureglyceride, hydroxyliertes Lecithin, Lactylester von Fettsäuren, Alkylpo- lyglycoside.
Beispiele für kationische Emulgatoren sind Cetyldimethyl-2-hydroxyethylammonium- dihydro- genphosphat, Cetyltrimoniumchlorid, Cetyltrimmoniumbromid, Cocotrimoniummethylsulfat, Qua- ternium-1 bis x (INCI).
Anionische Emulgatoren können beispielsweise ausgewählt werden aus der Gruppe der Alkyl- sulfate, Alkylethersulfate, Alkylsulfonate, Alkylarylsulfonate, Alkylsuccinate, Alkylsulfosuccinate, N-Alkoylsarkosinate, Acyltaurate, Acylisethionate, Alkylphosphate, Alkyletherphosphate, Alky- lethercarboxylate, Alpha-Olefinsulfonate, insbesondere die Alkali- und Erdalkalimetallsalze, z.B. Natrium, Kalium, Magnesium, Calcium, sowie Ammonium- und Triethanolamin-Salze. Die Alkylethersulfate, Alkyletherphosphate und Alkylethercarboxylate können zwischen 1 bis 10 Ethy- lenoxid oder Propylenoxid-Einheiten, bevorzugt 1 bis 3 Ethylenoxid-Einheiten im Molekül auf- weisen.
Als Gelbildner können alle in der Kosmetik üblichen Gelbildner eingesetzt werden. Hierzu zählen leicht vernetzte Polyacrylsäure, beispielsweise Carbomer (INCI), Cellulosederivate, z.B. Hydroxypropylcellulose, Hydroxyethylcellulose, kationisch modifizierte Cellulosen, Polysaccha- ride, z.B. Xanthangummi, Capryl/Caprin-Triglycerid, Natriumacrylat-Copolymere, Polyquaterni- um-32 (und) Paraffinum Liquidum (INCI), Natriumacrylat-Copolymere (und) Paraffinum Liquidum (und) PPG-1 Trideceth-6, Acrylamidopropyltrimoniumchlorid / Acrylamid-Copolymere, Steareth-10-Allylether, Acrylat-Copolymere, Polyquaternium-37 (und) Paraffinum Liquidum (und) PPG-1 Trideceth-6, Polyquaternium 37 (und) Propylenglycoldicapratdicaprylat (und) PPG- 1 Trideceth-6, Polyquaternium-7, Polyquaternium-44.
In den Shampooformulierungen können alle in Shampoos üblicherweise eingesetzten anionischen, neutralen, amphoteren oder kationischen Tenside verwendet werden.
Geeignete anionische Tenside sind beispielsweise Alkylsulfate, Alkylethersulfate, Alkylsulfonate, Alkylarylsulfonate, Alkylsuccinate, Alkylsulfosuccinate, N-Alkoylsarkosinate, A- cyltaurate, Acylisothionate, Alkylphosphate, Alkyletherphosphate, Alkylethercarboxylate, Alpha- Olefinsulfonate, insbesondere die Alkali- und Erdalkalimetallsalze, z.B. Natrium, Kalium, Magnesium, Calcium, sowie Ammonium- und Triethanolamin-Salze. Die Alkylethersulfate, Alky- letherphosphate und Alkylethercarboxylate können zwischen 1 bis 10 Ethylenoxid- oder Propylenoxid-Einheiten, bevorzugt 1 bis 3 Ethylenoxid-Einheiten im Molekül aufweisen.
Geeignet sind zum Beispiel Natriumlaurylsulfat, Ammoniumlaurysulfat, Natriumlaurylethersulfat, Ammoniumlaurylethersulfat, Natriumlauroylsarkosinat, Natriumoleylsuccinat, Ammoniumlauryl- sulfosucdnat, Natriumdodecylbenzolsulfonat, Triethanolamindodecylbenzolsulfonat.
Geeignete amphotere Tenside sind zum Beispiel Alkylbetaine, Alkylamidopropylbetai- ne, Alkyl- sulfobetaine, Alkylglycinate, Alkylcarboxyglycinate, Alkylamphoacetate oder -propionate, Alky- lamphodiacetate oder -dipropionate.
Beispielsweise können Cocodimethylsulfopropylbetain, Lau ryl betain, Cocamidopropylbetain oder Natriumcocamphopropionat eingesetzt werden. Als nichtionische Tenside sind beispielsweise geeignet die Umsetzungsprodukte von aliphati- schen Alkoholen oder Alkylphenolen mit 6 bis 20 C-Atomen in der Alkylkette, die linear oder verzweigt sein kann, mit Ethylenoxid und/oder Propylenoxid. Die Menge Alkylenoxid beträgt ca. 6 bis 60 Mole auf ein Mol Alkohol. Ferner sind Alkylaminoxide, Mono- oder Dialkylalkanolamide, Fettsäureester von Polyethylenglykolen, Alkylpolyglykoside oder Sorbitanetherester geeignet.
Ausserdem können die Shampooformulierungen übliche kationische Tenside enthalten, wie z.B. quaternäre Ammoniumverbindungen, beispielsweise Cetyltrimethylammoniumchlorid.
In den Shampooformulierungen können zur Erzielung bestimmter Effekte übliche Konditionier- mittel in Kombination mit den erfindungsgemäßen keratinbindenden Effektormolekülen eingesetzt werden.
Hierzu zählen beispielsweise die zuvor genannten kationischen Polymere mit der Bezeichnung Polyquaternium nach INCI, insbesondere Copolymere aus Vinylpyrrolidon/ N-Vinylimidazoliumsalzen (Luviquat FC, HM, Luviquat MS, Luviquat Care), Copolymere aus N- Vinylpyrrolidon/Dimethylaminoethylmethacrylat, quaternisiert mit Diethylsulfat (Luviquat D PQ 11), Copolymere aus N-Vinylcaprolactam/N-Vinylpyrrolidon/N-Vinylimidazoliumsalzen (Luviquat D Hold), kationische Cellulosederivate (Polyquaternium-4 und -10), Acrylamidcopolymere (Po- lyquaternium-7). Ferner können Eiweißhydrolysate verwendet werden, sowie konditionierende Substanzen auf Basis von Silikonverbindungen, beispielsweise Polyalkylsiloxane, Polyarylsilo- xane, Polyarylalkylsiloxane, Polyethersiloxane oder Silikonharze. Weitere geeignete Silikonverbindungen sind Dimethicon Copolyole (CTFA) und aminofunktionelle Silikonverbindungen wie Amodimethicone (CTFA). Ferner können kationische Guarderivate wie Guarhydroxypropyltri- moniumchlorid (INCI) verwendet werden.
Nach einer weiteren Ausführungsform dient diese haarkosmetische oder haut-kosmetische Zubereitung der Pflege oder dem Schutz der Haut oder Haars und liegt in Form einer Emulsion, einer Dispersion, einer Suspension, einer wässrigen Tensidzubereitung, einer Milch, einer Lotion, einer Creme, eines Balsams, einer Salbe, eines Gels, eines Granulats, eines Puders, eines Stiftpräparates, wie z.B. eines Lippenstifts, eines Schaums, eines Aerosols oder eines Sprays vor. Solche Formulierungen sind gut geeignet für topische Zubereitungen. Als Emulsionen kommen ÖI-in-Wasser-Emulsionen und Wasser-in-ÖI-Emulsionen oder Mikroemulsionen in Frage.
Im Regelfall wird die haarkosmetische oder hautkosmetische Zubereitung zur Applikation auf der Haut (topisch) oder Haar verwendet. Unter topischen Zubereitungen sind dabei solche Zubereitungen zu verstehen, die dazu geeignet sind, die Wirkstoffe in feiner Verteilung und bevor- zugt in einer durch die Haut resorbierbaren Form auf die Haut aufzubringen. Hierfür eignen sich z.B. wässrige und wässrig-alkoholische Lösungen, Sprays, Schäume, Schaumaerosole, Salben, wässrige Gele, Emulsionen vom O/W- oder W/O-Typ, Mikroemulsionen oder kosmetische Stiftpräparate. Nach einer bevorzugten Ausführungsform des erfindungsgemäßen kosmetischen Mittels enthält das Mittel einen Träger. Bevorzugt als Träger ist Wasser, ein Gas, eine Wasser-basierte Flüssigkeit, ein Öl, ein Gel, eine Emulsion oder Mikroemulsion, eine Dispersion oder eine Mischung davon. Die genannten Träger zeigen eine gute Hautverträglichkeit. Besonders vorteilhaft für topische Zubereitungen sind wässrige Gele, Emulsionen oder Mikroemulsionen.
Als Emulgatoren können nichtionogene Tenside, zwitterionische Tenside, ampholytische Tensi- de oder anionische Emulgatoren verwendet werden. Die Emulgatoren können in der erfindungsgemäßen Zusammensetzung in Mengen von 0,1 bis 10, vorzugsweise 1 bis 5 Gew.-%, bezogen auf die Zusammensetzung, enthalten sein.
Als nichtionogenes Tensid kann beispielsweise ein Tensid aus mindestens einer der folgenden Gruppen verwendet werden:
Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen und an Alkylphe- nole mit 8 bis 15 C-Atomen in der Alkylgruppe;
Ci2/18-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin; Glycerinmono- und -diester und Sorbitanmono- und -diester von gesättigten und ungesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen und deren Ethylenoxidanlagerungspro- dukte; Alkylmono- und -oligoglycoside mit 8 bis 22 Kohlenstoffatomen im Alkylrest und deren ethoxylierte Analoga; Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl; Polyol- und insbesondere Polyglycerinester, wie z.B. Polyglyce- rinpolyricinoleat, Polygl ycerinpoly-12-hydroxystearat oder Polyglycerindimerat. Ebenfalls geeignet sind Gemische von Verbindungen aus mehreren dieser Substanzklassen; Anlagerungsprodukte von 2 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl; Partialester auf Basis linearer, verzweigter, ungesättigter bzw. gesättigter Cβ/22 -Fettsäuren, Ricinolsäure sowie 12-Hydroxystearinsäure und Glycerin, Polyglycerin, Pentaerythrit, Dipenta- erythrit, Zuckeralkohole (z. B. Sorbit), Alkylglucoside (z.B. Methylglucosid, Butylglucosid, Lauryl- glucosid) sowie Polyglucoside (z.B. Cellulose); Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salze;
Wollwachsalkohole;
Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE PS
1165574 und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin sowie Polyalkylenglycole.
Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- oder eine Sulfo- natgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosalkyldimethyl- ammoniumglydnat, N-Acylamino-propyl-N,N dimethylammoniumglydnate, beispielsweise das Kokosacylaminopropyldimethylammonium-glycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxy- ethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosa- cylaminoethylhydroxyethyl-carboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat. Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktive Verbindungen verstanden, die außer einer Cs.-is-Alkyl- oder - Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder - SCbH-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren , N-Alkylamino-buttersäuren , N Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamido-propylglycine, N-Alkyltaurine, N Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe.
Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, Kokosa- cylaminoethylaminopropionat und das Ci2/is-Acylsarcosin. Neben den ampholytischen kommen auch quartäre Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methyl-quaternierte Difettsäuretriethanolaminester-Salze, besonders bevorzugt sind. Des weiteren können als anionische Emulgatoren Alkylethersulfate, Monoglyceridsulfate, Fettsäuresulfa- te, Sulfosuccinate und/oder Ethercarbonsäuren eingesetzt werden.
Als Ölkörper kommen Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen Cβ-C∑∑-Fettsäuren mit linearen C6-C22- Fettaikohoien, Ester von verzweigten C6-Ci3-Carbonsäuren mit linearen Cβ-C∑∑-Fettalkoholen, Ester von linearen Cβ-C∑∑-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Pro- pylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis Ce- Cio-Fettsäuren, flüssige Mono-/Di-, Triglyceridmischungen auf Basis von Cβ-ds-Fettsäuren, Ester von Cβ-C∑∑-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C∑-Ci∑-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare Cβ-C∑∑-Fettalkoholcarbonate, Guerbetcarbonate, Ester der Benzoesäure mit linearen und/oder verzweigten Cβ-C∑∑-Alkoholen (z.B. Finsolv® TN), Dialkylether, Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle und/oder aliphatische bzw. naphtheni- sche Kohlenwasserstoffe in Betracht. Als Ölkörper können ferner auch Siliconverbindungen eingesetzt werden, beispielsweise Dimethylpolysiloxane, Methylphenylpolysiloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, alkyl- und/oder glykosid- modifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Die Ölkörper können in den erfindungsgemäßen Mitteln in Mengen von 1 bis 90, vorzugsweise 5 bis 80, und insbesondere 10 bis 50 Gew.-%, bezogen auf die Zusammensetzung enthalten sein.
Die Liste der genannten Inhaltstoffe, die gemeinsam mit den erfindungsgemäßen bzw. gemäß dem erfinderischen Verfahren hergestellten keratinbindenden Effektormoleküle verwendet werden können, soll selbstverständlich nicht als abschließend oder limitierend betrachtet werden. Die Inhaltsstoffe können einzelnen oder in beliebigen Kombinationen miteinander verwendet werden.
Ferner betrifft die Erfindung die in den Sequenzen SEQ ID No.: 168, 176, 182, 188, 194 und 200 gezeigten keratinbindende Effektorproteine. Ebenfalls Gegenstand der vorliegenden Erfindung sind Nukleinsäuremoleküle gemäß der SEQ ID No.: 167, 175, 181 , 187, 193 und 199 und Nukleinsäuremoleküle die für Polypeptide kodieren, umfassend mindestens ein Polypeptid gemäß der in SEQ ID No.: 168, 176, 182, 188, 194 und 200 gezeigten Sequenzen. Ferner betrifft die vorliegende Erfindung DNA Expressionskassetten enthaltend mindestens ein Nukleinsäuremolekül mit einer Nukleinsäuresequenz, welches für ein Polypeptid kodiert, umfassend mindestens ein Polypeptid, welches kodiert wird von einem Nukleinsäuremolekül gemäß der in SEQ ID No.: 167, 175, 181 , 187, 193 oder 199 gezeigten Sequenz. Erfindungsgemäß bevorzugt sind DNA Expressionskassetten enthaltend ein Nukleinsäuremolekül mit einer Nukleinsäuresequenz gemäß der in SEQ ID No.: 167 gezeigten Sequenz.
Vorzugsweise umfassen solche erfindungsgemäßen Konstrukte 5'-stromaufwärts von der jeweiligen kodierenden Sequenz einen Promotor und 3'-stromabwärts eine Terminatorsequenz sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils operativ verknüpft mit der kodierenden Sequenz.
Regulative Elemente umfassen Enhancer, Targeting Sequenzen, Polyadenylierungssignale, selektierbare Marker, Amplifikationssignale, Replikationsursprünge und dergleichen. Geeignete regulatorische Sequenzen sind z. B. beschrieben in Goeddel, Gene Expression Techno- logy : Methods in Enzymology 185, Academic Press, San Diego, CA (1990).
Zusätzlich zu diesen Regulationssequenzen kann die natürliche Regulation dieser Sequenzen vor den eigentlichen Strukturgenen noch vorhanden sein und gegebenenfalls genetisch verändert worden sein, so dass die natürliche Regulation ausgeschaltet und die Expression der Gene erhöht wurde.
Ein bevorzugtes Nukleinsäurekonstrukt enthält vorteilhafterweise auch eine oder mehrere der schon erwähnten "Enhancer" Sequenzen, funktionell verknüpft mit dem Promotor, die eine erhöhte Expression der Nukleinsäuresequenz ermöglichen. Auch am 3'-Ende der DNA- Sequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden, wie weitere regulatorische Elemente oder Terminatoren.
Die erfindungsgemäßen Nukleinsäuren können in einer oder mehreren Kopien im Konstrukt enthalten sein. Im Konstrukt können noch weitere Marker, wie Antibiotikaresistenzen oder Au- xotrophien komplementierende Gene, gegebenenfalls zur Selektion auf das Konstrukt enthalten sein.
Vorteilhafte Regulationssequenzen für das erfindungsgemäße Verfahren sind beispielsweise in Promotoren wie cos-, tac-, trp-, tet-, trp-tet-,lpp-, lac-,lpp,laclq-T7-, T5-, T3-, gal-, trc-, ara- ,rhaP(rhaPBAD) SP6-, lambda-PR-oder imlambda-P-Promotor enthalten, die vorteilhafterweise in gram-negativen Bakterien Anwendung finden. Weitere vorteilhafte Regulationssequenzen sind beispielsweise in den gram-positiven Promotoren amy und SP02, in den Hefe-oder Pilzpromotoren ADC1 , MFalpha, AC, P-60, CYC1 , GAPDH, TEF, rp28, ADH enthalten.
Es können auch künstliche Promotoren für die Regulation verwendet werden.
Das Nukleinsäurekonstrukt wird zur Expression in einem Wirtsorganismus vorteilhaft- erweise in einen Vektor, wie beispielsweise einem Plasmid oder einem Phagen inseriert, der eine optimale Expression der Gene im Wirt ermöglicht. Unter Vektoren sind außer Plasmiden und Phagen auch alle anderen dem Fachmann bekannten Vektoren, also z. B. Viren, wie SV40, CMV, Bacu- lovirus und Adenovirus, Transposons, IS- Elemente, Phasmide, Cosmide, und lineare oder zir- kuläre DNA, sowie das Agrobacterium-System zu verstehen.
Die Herstellung einer Expressionskassette kann mittels gängiger, dem Fachmann bekannter, Rekombinations- und Klonierungstechniken realisiert werden, wie sie beispielsweise in Maniatis T, Fritsch EF und Sambrook J (1989) Molecular Cloning: A Laboratory Manual, CoId Spring Harbor Laboratory, CoId Spring Harbor (NY), in Silhavy TJ, Berman ML und Enquist LW (1984) Experiments with Gene Fusions, CoId Spring Harbor Laboratory, CoId Spring Harbor (NY), in Ausubel FM et al. (1987) Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience beschrieben sind. Zwischen beide Sequenzen können aber auch weitere Sequenzen positioniert werden, die zum Beispiel die Funktion eines Linkers mit bestimmten Restriktionsenzymschnittstellen, eines Signalpeptides oder eines Proteinankers (z.B. His-Tag) haben. Auch kann die Insertion von Sequenzen zur Expression von Fusionsproteinen führen. Bevorzugt kann die Expressionskassette, bestehend aus einer Verknüpfung von Promotor und zu exprimierender Nukleinsäuresequenz, integriert in einem Vektor vorliegen und durch zum Beispiel Transformation in das Genom einer Zelle insertiert werden. Die in einem Vektor inse- riertre Expressionskassette kann auch extrachromososomal in einer Zelle existieren und propagiert werden.
Die in den erfindungsgemäßen Expressionskassetten oder Vektoren enthaltenen Nukleinsäure- sequenzen können mit weiteren genetischen Kontrollsequenzen neben einem Promotor funktionell verknüpft sein. Der Begriff der genetischen Kontrollsequenzen ist breit zu verstehen und meint all solche Sequenzen, die einen Einfluss auf das Zustandekommen oder die Funktion der erfindungsgemäßen Expressionskassette haben. Genetische Kontrollsequenzen modifizieren zum Beispiel die Transkription und Translation in prokaryotischen oder eukaryotischen Organismen. Vorzugsweise umfassen die erfindungsgemäßen Expressionskassetten 5'- stromaufwärts von der jeweiligen transgen zu exprimierenden Nukleinsäuresequenz einen Promotor und 3'-stromabwärts eine Terminatorsequenz als zusätzliche genetische Kontrollsequenz, sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils funktionell verknüpft mit der transgen zu exprimierenden Nukleinsäuresequenz.
Genetische Kontrollsequenzen umfassen auch weitere Promotoren, Promotorelemente oder Minimalpromotoren, die die expressionssteuernden Eigenschaften modifizieren können. Prinzipiell können alle natürlichen Promotoren mit ihren Regulationssequenzen verwendet werden, die befähigt sind, in den bevorzugten Organismen, die Genexpression eines Nukleinsäuremole- küls zu steuern. Darüber hinaus können auch synthetische Promotoren vorteilhaft verwendet werden.
Genetische Kontrollsequenzen umfassen ferner auch die 5'-untranslatierte Regionen, Introns oder nicht kodierende 3'-Region von Genen. So wurde gezeigt, dass 5'-untranslatierte Sequenzen die transiente Expression heterologer Gene verstärken können.
Die Expressionskassette kann vorteilhafterweise eine oder mehrere sogenannte "enhancer Sequenzen" funktionell verknüpft mit dem Promotor enthalten, die eine erhöhte transgene Expression der Nukleinsäuresequenz ermöglichen. Auch am 3'-Ende der transgen zu exprimierenden Nukleinsäuresequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden, wie weitere regulatorische Elemente oder Terminatoren. Die transgen zu exprimieren- den Nukleinsäuresequenzen können in einer oder mehreren Kopien im Genkonstrukt enthalten sein.
Als Kontrollsequenzen sind weiterhin solche zu verstehen, die eine homologe Rekombination bzw. Insertion in das Genom eines Wirtsorganismus ermöglichen oder die Entfernung aus dem Genom erlauben. Bei der homologen Rekombination kann zum Beispiel der natürliche Promotor eines bestimmten Gens gegen einen Promotor mit anderen Eigenschaften ausgetauscht werden.
Eine Expressionskassette und die von ihr abgeleiteten Vektoren können weitere Funktionsele- mente enthalten. Der Begriff Funktionselement ist breit zu verstehen und meint all solche Elemente, die einen Einfluss auf Herstellung, Vermehrung oder Funktion der erfindungsgemäßen Expressionskassetten, Vektoren oder transgenen Organismen haben. Beispielhaft aber nicht einschränkend seien zu nennen:
a) Selektionsmarker: Zur Selektion erfolgreich transformierter Zellen ist es in der Regel erforderlich, einen selektionierbaren Marker zusätzlich einzuführen, der den erfolgreich transformierten Zellen eine Resistenz gegen ein Biozid (zum Beispiel ein Herbizid), einen Metabolismusinhibitor, oder ein Antibiotikum verleiht. Der Selektionsmarker erlaubt die Selektion der transformierten Zellen von untransformierten und sind gemäß der gewähl- ten Wirtsorganismen individuell zu wählen und sind als solche dem Fachmann bekannt.
Selektionsmarker verleihen z.B. eine Resistenz gegen einen Metabolismusinhibitor wie 2- Desoxyglucose-6-phosphat (WO 98/45456), Antibiotika oder Biozide, bevorzugt Herbizide, wie zum Beispiel Kanamycin, G 418, Bleomycin, Hygromycin oder Kanamycin etc.. Bevorzugt zu nennen als Selektionsmarker ist das aasa-Gen, das eine Resistenz gegen das Antibiotikum Apectinomycin verleih, das Streptomycinphosphotransferase (SPT)
Gen, das eine Resistenz gegen Streptomycin gewährt, das Neomydnphosphotransferase (NPTII) Gen, das eine Resistenz gegen Kanamycin oder Geneticidin verleiht, das Hygromycinphosphotransferase (HPT) Gen, das eine Resistenz gegen Hygromycin vermittelt, das Acetolactatsynthase Gen (ALS), das eine Resistenz gegen Sulfonylharnstoff- Herbizide verleiht (z.B. mutierte ALS-Varianten mit z.B. der S4 und/oder Hra Mutation).
b) Reportergene, die für leicht quantifizierbare Proteine kodieren und über Eigenfarbe oder Enzymaktivität eine Bewertung der Transformationseffizienz oder des Expressionsortes oder -Zeitpunktes gewährleisten. Ganz besonders bevorzugt sind dabei Reporter-
Proteine (Schenborn E, Groskreutz D. Mol Biotechnol. 1999; 13(1):29-44) wie das "green fluorescence protein" (GFP) (Sheen et al.(1995) Plant Journal 8(5)777-784; Haseloff et al.(1997) Proc Natl Acad Sei USA 94(6) :2122-2127; Reichel et al.(1996) Proc Natl Acad Sei USA 93(12):5888-5893; Tian et al. (1997) Plant Cell Rep 16:267-271 ; WO 97/41228; Chui WL et al. (1996) Curr Biol 6:325-330; Leffel SM et al. (1997) Biotechniques.
23(5):912-8), die Chloramphenicoltransferase, eine Luziferase (Ow et al. (1986) Science 234:856-859; Miliar et al. (1992) Plant Mol Biol Rep 10:324-414), das Aequoringen (Prasher et al. (1985) Biochem Biophys Res Commun 126(3):1259-1268), die ß- Galactosidase).
c) Replikationsursprünge, die eine Vermehrung der erfindungsgemäßen Expressionskassetten oder Vektoren in zum Beispiel E. coli gewährleisten. Beispielhaft seien genannt ORI (origin of DNA replication), der pBR322 ori oder der P15A ori (Sambrook et al.: Molecular Cloning. A Laboratory Manual, 2nd ed. CoId Spring Harbor Laboratory Press, CoId Spring Harbor, NY, 1989).
Die Einführung einer erfindungsgemäßen Expressionskassette in eine Zelle oder einen Organismus kann vorteilhaft unter Verwendung von Vektoren realisiert werden, in denen die Expressionskassetten enthalten sind. Die Expressionskassette kann in den Vektor (zum Beispiel ein Plasmid) über eine geeignete Restriktionsschnittstelle eingeführt werden. Das entstandene Plasmid wird zunächst in E. coli eingeführt. Korrekt transformierte E. coli werden selektioniert, gezüchtet und das rekombinante Plasmid mit dem Fachmann geläufigen Methoden gewonnen. Restriktionsanalyse und Sequenzierung können dazu dienen, den Klonierungsschritt zu überprüfen.
Gegenstand der vorliegenden Erfindung sind ebenfalls Vektoren, umfassend eine Expressionskassette enthaltend ein Nukleinsäuremolekül mit einer Nukleinsäuresequenz gemäß der in SEQ ID No.: 167, 175, 181 , 187, 193 oder 199 gezeigten Sequenz.
Das Nukleinsäurekonstrukt wird zur Expression in einem Wirtsorganismus vorteilhaft- erweise in einen Vektor, wie beispielsweise einem Plasmid oder einem Phagen inseriert, der eine optimale Expression der Gene im Wirt ermöglicht. Unter Vektoren sind außer Plasmiden und Phagen auch alle anderen dem Fachmann bekannten Vektoren, also z. B. Viren, wie SV40, CMV, Bacu- lovirus und Adenovirus, Transposons, IS- Elemente, Phasmide, Cosmide, und lineare oder zirkuläre DNA, sowie das Agrobacterium-System zu verstehen.
Diese Vektoren können autonom im Wirtsorganismus repliziert oder chromosomal repliziert werden. Diese Vektoren stellen eine weitere Ausgestaltung der Erfindung dar. Geeignete Plasmide sind beispielsweise in E. coli pLG338, pQE30, pACYC184, pBR322, pUC18,pUC19, pKC30, pRep4, pHS1 , pKK223-3, pDHE19.2, pHS2, pPLc236, pMBL24, pLG200, pUR290,plN- Ill"3-B1 , tgt11 oder pBdCI, in StreptomycesplJ101 , plJ364,plJ702 oderplJ361 , in Bacillus pUB110, pC194, pWH320, pMM1520, pMM1525 oder pBD214, in Corynebacterium pSA77 oder pAJ667, in Pilzen pALS1 , plL2 oder pBB116, in Hefen 2alpha, pAG-1 , YEp6, YEp13 oder pEMBLYe23 oder in Pflanzen pLGV23,pGHIac+,pBIN19, pAK2004 oder pDH51. Die genannten Plasmide stellen eine kleine Auswahl der möglichen Plasmide dar. Weitere Plasmide sind dem Fachmann wohl bekannt und können beispielsweise aus dem Buch Cloning Vectors (Eds. Pouwels P. H. et al. Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018) entnommen werden.
Erfindungsgemäße Nukleinsäurekonstrukte oder die die erfindungsgemäßen Nukleinsäuremo- leküle enthaltenden Vektoren können auch vorteilhafterweise in Form einer linearen DNA in die Mikroorganismen eingeführt werden und über heterologe oder homologe Rekombination in das Genom des Wirtsorganismus integriert werden. Diese lineare DNA kann aus einem linearisier- ten Vektor wie einem Plasmid oder nur aus dem Nukleinsäurekonstrukt oder der erfindungsgemäßen Nukleinsäure bestehen.
Für eine optimale Expression heterologer Gene in Organismen ist es vorteilhaft die Nukleinsäu- resequenzen entsprechend des im Organismus verwendeten spezifischen "codon usage" zu verändern. Der "codon usage" lässt sich anhand von Computerauswertungen anderer, bekannter Gene des betreffenden Organismus leicht ermitteln. (z.B. über: Codon usage tabulated from the international DNA sequence databases: Status for the year 2000. Nakamura, Y., Gojobori, T. and Ikemura, T. (2000) Nucl. Acids Res. 28, 292., http://www.kazusa.or.jp/codon/index.html).
Das rekombinante Nukleinsäurekonstrukt bzw. Genkonstrukt wird zur Expression in einem geeigneten Wirtsorganismus vorteilhafterweise in einen wirtsspezifischen Vektor insertiert, der eine optimale Expression der Gene im Wirt ermöglicht. Vektoren sind dem Fachmann wohl bekannt und können beispielsweise aus "Cloning Vectors" (Pou- weis P. H. et al., Hrsg, Elsevier, Amsterdam-New York-Oxford, 1985) entnommen werden.
Mit Hilfe der erfindungsgemäßen Vektoren sind rekombinante Mikroorganismen herstellbar, welche beispielsweise mit wenigstens einem erfindungsgemäßen Vektor transformiert sind und zur Produktion der erfindungsgemäßen Polypeptide eingesetzt werden können. Vorteilhafterweise werden die oben beschriebenen erfindungsgemäßen rekombinanten Konstrukte in ein geeignetes Wirtssystem eingebracht und exprimiert. Dabei werden vorzugsweise dem Fachmann bekannte geläufige Klonierungs- und Transfektionsmethoden, wie beispielsweise Co- Präzipitation, Protoplastenfusion, Elektroporation, retrovirale Transfektion und dergleichen, ver- wendet, um die genannten Nukleinsäuren im jeweiligen Expressionssystem zur Expression zu bringen. Geeignete Systeme werden beispielsweise in Current Protocols in Molecular Biology, F.Ausubel et al., Hrsg., Wiley Interscience, New York 1997, oder Sambrook et al. Molecular Cloning : A Laboratory Manual. 2. Aufl., CoId Spring Harbor Laboratory, CoId Spring Harbor Laboratory Press, CoId Spring Harbor, NY, 1989 beschrieben. Erfindungsgemäß sind auch homolog rekombinierte Mikroorganismen herstellbar. Dazu wird ein Vektor hergestellt, der zumindest einen Abschnitt eines erfindungsgemäßen Gens oder einer kodierenden Sequenz enthält, worin gegebenenfalls wenigstens eine Aminosäure-Deletion, - Addition oder -Substitution eingebracht worden ist, um die erfindungsgemäße Sequenz zu verändern, z. B. funktionell zu disruptieren ("Knockout"- Vektor). Die eingebrachte Sequenz kann z. B. auch ein Homologes aus einem verwandten Mikroorganismus sein oder aus einer Säugetier- , Hefe -oder Insektenquelle abgeleitet sein. Der zur homologen Rekombination verwendete Vektor kann alternativ derart ausgestaltet sein, dass das endogene Gen bei homologer Rekombination mutiert oder anderweitig verändert ist, jedoch noch das funktionelle Protein kodiert (z. B. kann der stromaufwärts gelegene regulatorische Bereich derart verändert sein, dass dadurch die Expression des endogenen Proteins verändert wird). Der veränderte Abschnitt des erfindungsgemäßen Gens ist im homologen Rekombinationsvektor. Die Konstruktion geeigneter Vektoren zur homologen Rekombination ist z. B. beschrieben in Thomas, K. R. und Capecchi, M. R. (1987) Cell 51 : 503.
Als transgene, rekombinante Wirtsorganismen für die erfindungsgemäße Nukleinsäure oder dem Nukleinsäurekonstrukt kommen prinzipiell alle prokaryontischen (einschließlich Archaea) oder eukaryontischen Organismen in Frage. Besonders Bakterien einschließlich Halobacterien und Methanococcen, Pilze, Insektenzellen, Pflanzenzellen und Säugerzellen. Vorteilhafterweise werden als Wirtsorganismen Mikroorganismen wie Bakterien, Pilze oder Hefen verwendet. Vorteilhafterweise können Pilze, gram-positive oder gram-negative Bakterien, bevorzugt Bakterien der Familien Enterobacteriaceae, Pseudomonadaceae, Rhizobiaceae, Streptomycetaceae oder Nocardiaceae, besonders bevorzugt Bakterien der Gattungen Escherichia, Pseudomonas, Streptomyces, Nocardia, Burkholderia, Salmonella, Agrobacterium oder Rhodococcus verwendet. Am meisten bevorzugt sind Escherichia coli, Bacillus subtilis, Badllus. megaterium, Pseudomonas speα, Lactobacillen, Hansenula polymorpha, Aspergillus oryzea, Aspergillus nidulans, Aspergillus niger, Pichia pastoris, Trichoderma reesei und SF9-Zellen (bzw. verwandte Zellen).
Die zur Herstellung der erfindungsgemäßen keratinbindenden Effektorproteine verwendeten Organismen werden je nach Wirtsorganismus in dem Fachmann bekannter Weise angezogen bzw. gezüchtet. Mikroorganismen werden in der Regel in einem flüssigen Medium, das eine Kohlenstoffquelle meist in Form von Zuckern, eine Stickstoffquelle meist in Form von organi- sehen Stickstoffquellen wie Hefeextrakt oder Salzen wie Ammoniumsulfat, Spurenelemente wie Eisen-, Mangan-, Magnesiumsalze und gegebenenfalls Vitamine enthält, bei Temperaturen zwischen 0° C und 100° C, bevorzugt zwischen 10° C bis 60° C unter Sauerstoffbegasung angezogen. Dabei kann der pH der Nährflüssigkeit auf einen festen Wert gehalten werden, das heißt während der Anzucht reguliert werden oder nicht. Die Anzucht kann "batch"-weise, "semi batch"-weise oder kontinuierlich erfolgen. Nährstoffe können zu Beginn der Fermentation vorgelegt oder semikontinuierlich oder kontinuierlich nachgefüttert werden. Die Enzyme können nach dem in den Beispielen beschriebenen Verfahren aus den Organismen isoliert werden oder als Rohextrakt für die Reaktion verwendet werden.
Die Polypeptide können so auch in großtechnischem Maßstab produziert werden, falls dies erwünscht ist. Der rekombinante Mikroorganismus kann nach bekannten Verfahren kultiviert und fermentiert werden. Bakterien können beispielsweise in TB-oder LB-Medium und bei einer Temperatur von 200C bis 400C und einem pH-Wert von 6 bis 9 vermehrt werden. Im Einzelnen werden geeignete Kultivierungsbedingungen beispielsweise in T. Maniatis, E. F. Fritsch and J. Sambrook, Molecular Cloning : A Laboratory Manual, CoId Spring Harbor Laboratory, CoId Spring Harbor, NY (1989) beschrieben.
Aufschluss und Reinigung
Die Zellen werden dann, falls die Polypeptide nicht in das Kulturmedium sezerniert werden, aufgeschlossen und das Produkt nach bekannten Proteinisolierungsverfahren aus dem Lysat gewonnen. Die Zellen können wahlweise durch hochfrequenten Ultraschall, durch hohen Druck, wie z. B. in einer French-Druckzelle, durch Osmolyse, durch Einwirkung von Detergenzien, lytischen Enzymen oder organischen Lösungsmitteln, durch Homogenisatoren oder durch Kombination mehrerer der aufgeführten Verfahren aufgeschlossen werden.
Eine Aufreinigung der Polypeptide kann mit bekannten, chromatographischen Verfahren erzielt werden, wie Molekularsieb-Chromatographie (Gelfiltration), wie Q-Sepharose-Chromatographie, lonenaustausch-Chromatographie und hydrophobe Chromatographie, sowie mit anderen üblichen Verfahren wie Ultrafiltration, Kristallisation, Aussalzen, Dialyse und nativerGelelektropho- rese. Geeignete Verfahren werden beispielsweise in Cooper, F. G., Biochemische Arbeitsmethoden, Verlag Water de Gruyter, Berlin, New York oder in Scopes, R., Protein Purification, Springer Verlag, New York, Heidelberg, Berlin beschrieben.
Vorteilhaft kann es sein, zur Isolierung des rekombinanten Proteins Vektorsysteme oder Oligo- nukleotide zu verwenden, die die cDNA um bestimmte Nukleotidsequenzen verlängern und damit für veränderte Polypeptide oder Fusionsproteine kodieren, die z. B. einer einfacheren
Reinigung dienen. Derartige geeignete Modifikationen sind beispielsweise als Anker fungieren- de sogenannte "Tags", wie z. B. die als Hexa-Histidin- Anker bekannte Modifikation oder Epito- pe, die als Antigene von Antikörpern erkannt werden können (beschrieben zum Beispiel in Har- low, E. and Lane, D., 1988, Antibodies : A Laboratory Manual. CoId Spring Harbor (N. Y. ) Press). Weitere geeignete Tags sind z.B. HA, Calmodulin-BD, GST, MBD; Chitin-BD, Steptavidin-BD-Avi-Tag, Flag-Tag, T7 etc. Diese Anker können zur Anheftung der Proteine an einen festen Träger, wie z. B. einer Polymermatrix, dienen, die beispielsweise in einer Chromatographiesäule eingefüllt sein kann, oder an einer Mikrotiterplatte oder an einem sonstigen Träger verwendet werden kann. Die entsprechenden Reinigungsprotokolle sind von den kommerziellen Affinitäts-Tag-Anbietern erhältlich.
Die erfindungsgemäßen keratinbindenden Effektorproteine besitzen sowohl in ihrer fusionierten Form, d.h. zusammen mit dem Fusionspartnerteil, als auch in isolierter Form die wünschenswerten Eigenschaften von keratinbindenden Proteinen. Man kann also die erfindungsgemäßen Proteine sowohl direkt als Fusionsproteine als auch nach Abspaltung und Abtrennung des Fu- sionspartners als „reine" Keratin-bindenden Proteine verwenden.
Wenn eine Abtrennung des Fusionspartners vorgesehen ist, empfiehlt es sich eine potentielle Spaltstelle (spezifische Erkennungsstelle für Proteasen) in das Fusionsprotein zwischen Keratin-bindenden Proteinteil und Fusionspartnerteil einzubauen. Als Spaltstelle geeignet sind ins- besondere solche Peptidsequenzen geeignet, die ansonsten weder im Keratin-bindenden Proteinteil noch im Fusionspartnerteil vorkommen, was sich mit bioinformatischen Tools leicht ermitteln lässt. Besonders geeignet sind beispielsweise BrCN-Spaltung an Methionin, oder durch Protease vermittelte Spaltung mit Faktor Xa-, Enteroki nase-, Thrombin, TEV-Spaltung (Tobacco etch virus Protease).
Darüber hinaus betrifft die vorliegende Erfindung transgene Zellen, enthaltend v) zumindest einen der oben genannten Vektoren, oder w) zumindest eine der oben genannten Expressionskassetten, oder x) zumindest eines der oben genannten Nukleinsäuremoleküle kodierend für ein Polypep- tid, umfassend mindestens ein Polypeptid, welches kodiert wird von einem Nukleinsäu- remolekül gemäß der in SEQ ID No.: 167, 175, 181 , 187, 193 oder 199 gezeigten Sequenz.
Bevorzugt handelt es sich bei den Zellen (s. oben) oder Organismen (s. oben) um transgene Zellen oder Organismen, die mit wenigstens einem Nukleinsäuremolekül gemäß der in SEQ ID No.: 167, 175, 181 , 187, 193 oder 199 gezeigten Sequenz transformiert wurden
Als transgene Organismen besonders bevorzugt sind Escherichia coli, Bacillus subtilis, Bacillus. megaterium, Aspergillus oryzea, Aspergillus nidulans, Aspergillus niger, Pichia pastoris, Pseu- domonas speα, Lactobacillen, Hansenula polymorpha, Trichoderma reesei und SF9-Zellen (bzw. verwandte Zellen) .
Sequenzen SEQ ID
NO.: Sequenztyp Sequenzbeschreibung
1 Nukleinsäure Homo sapiens Desmoplakin_Accession No. NM_004415
2 Protein Homo sapiens Desmoplakin_Accession No. NM_004415
3 Nukleinsäure Homo sapiens Desmoplakin_Accession No. NM_004415 Domäne B
4 Protein Homo sapiens Desmoplakin_Accession No. NM_004415 Domäne B
5 Nukleinsäure Homo sapiens Desmoplakin_Accession No. NM_004415 Domäne B-1
6 Protein Homo sapiens Desmoplakin_Accession No. NM_004415 Domäne B-1
7 Nukleinsäure Homo sapiens Desmoplakin_Accession No. NM_004415 Domäne B-2
8 Protein Homo sapiens Desmoplakin_Accession No. NM_004415 Domäne B-2
9 Nukleinsäure Homo sapiens Desmoplakin_Accession No. NM_004415 Domäne C
10 Protein Homo sapiens Desmoplakin_Accession No. NM_004415 Domäne C
11 Nukleinsäure Homo sapiens Desmoplakin_Accession No. NM_004415 Domäne C-1
12 Protein Homo sapiens Desmoplakin_Accession No. NM_004415 Domäne C-1
13 Nukleinsäure Homo sapiens Desmoplakin_Accession No. NM_004415 Domäne C-2
14 Protein Homo sapiens Desmoplakin_Accession No. NM_004415 Domäne C-2
15 Nukleinsäure H.sapiens_Filaggrin_Accession No. CA119595
16 Protein H.sapiens_Filaggrin_Accession No. CAI19596
17 Nukleinsäure Homo sapiens plakophilin 1 ACCESSION NM_001005337, transcript variant 1a
18 Protein Homo sapiens plakophilin 1 ACCESSION NM_001005337, transcript variant 1a
19 Nukleinsäure Homo sapiens plakophilin 1 ACCESSION NM_000299, transcript variant 1 b
20 Protein Homo sapiens plakophilin 1 ACCESSION NM_000299, transcript variant 1 b
21 Nukleinsäure Mus musculus plakophilin 2 ACCESSION NM_026163 NM_027894
22 Protein Mus musculus plakophilin 2 ACCESSION NM_026163 NM_027895
23 Nukleinsäure Mus musculus plakophilin 1 ACCESSION NM_019645
24 Protein Mus musculus plakophilin 1 ACCESSION NM_019646
25 Nukleinsäure Bos taurus plakophilin 1 partial mRNA, ACCESSION XM_868348
26 Protein Bos taurus plakophilin 1 partial mRNA, ACCESSION XM_868349
27 Nukleinsäure Canis familiaris similar to plakophilin 1 isoform 1a, ACCESSION XM_851528
28 Protein Canis familiaris similar to plakophilin 1 isoform 1a, ACCESSION XM_851529
29 Nukleinsäure Danio rerio similar to Plakophilin 1 ACCESSION XM_695832
30 Protein Danio rerio similar to Plakophilin 1 ACCESSION XM_695833
31 Nukleinsäure Rattus norvegicus similar to plakophilin 1 , ACCESSION XM_222666
32 Protein Rattus norvegicus similar to plakophilin 1 , ACCESSION XM_222667
33 Nukleinsäure Pan troglodytes similar to Plakophilin 1 , ACCESSION XM_514091
34 Protein Pan troglodytes similar to Plakophilin 1 , ACCESSION XM_514092
35 Nukleinsäure Gallus gallus similar to plakophilin 1 , ACCESSION XM_419240
36 Protein Gallus gallus similar to plakophilin 1 , ACCESSION XM_419241
37 Nukleinsäure Xenopus laevis similar to plakophilin 4, ACCESSION BI390496
38 Protein Xenopus laevis similar to plakophilin 4, ACCESSION BI390497
39 Nukleinsäure Homo sapiens desmoplakin, transcript variant 2, ACCESSION NM_001008844
40 Protein Homo sapiens desmoplakin, transcript variant 2, ACCESSION NM_001008845
41 Nukleinsäure Mus musculus desmoplakin, ACCESSION XM_621314
42 Protein Mus musculus desmoplakin, ACCESSION XM_621315
43 Nukleinsäure Rattus norvegicus similar to desmoplakin isoform II, ACCESSION XM_225259
44 Protein Rattus norvegicus similar to desmoplakin isoform II, ACCESSION XM_225260
45 Nukleinsäure Pan troglodytes desmoplakin, ACCESS ION XM_518227
46 Protein Pan troglodytes desmoplakin, ACCESSION XM_518228 Nukleinsäure Gallus gallus similar to Desmoplakin, ACCESSION XM_418957 Protein Gallus gallus similar to Desmoplakin, ACCESSION XM_418958
Homo sapiens junction plakoglobin (JUP), transcript variant 2, ACCESSION Nukleinsäure NM_021991
Homo sapiens junction plakoglobin (JUP), transcript variant 2, ACCESSION Protein NM_021992 Nukleinsäure Mus musculus, plakoglobin; gamma-catenin, ACCESSION NM_010593 Protein Mus musculus, plakoglobin; gamma-catenin, ACCESSION NM_010594 Nukleinsäure Rattus norvegicus gamma-catenin (plakoglobin), ACCESSION NM_031047 Protein Rattus norvegicus gamma-catenin (plakoglobin), ACCESSION NM_031048 Nukleinsäure Danio rerio armadillo protein family; plakoglobin, ACCESSION NM_131177 Protein Danio rerio armadillo protein family; plakoglobin, ACCESSION NM_131178 Nukleinsäure Xenopus tropicalis junction plakoglobin, ACCESSION BC064717 Protein Xenopus tropicalis junction plakoglobin, ACCESSION BC064718
Canis familiaris similar to junction plakoglobin isoform 10, ACCESSION Nukleinsäure XM_856625
Canis familiaris similar to junction plakoglobin isoform 10, ACCESSION Protein XM_856626 Nukleinsäure Xenopus laevis Jup protein, ACCESSION BC094116 Protein Xenopus laevis Jup protein, ACCESSION BC094117 Nukleinsäure Bos taurus junction plakoglobin, ACCESSION NM_001004024 Protein Bos taurus junction plakoglobin, ACCESSION NM_001004025 Nukleinsäure Sus scrofa plakoglobin, ACCESSION NM_214323 Protein Sus scrofa plakoglobin, ACCESSION NM_214324 Nukleinsäure Danio rerio junction plakoglobin, ACCESSION BC058305 Protein Danio rerio junction plakoglobin, ACCESSION BC058306
Saccharomyces cerevisiae, plakoglobin/armadillo/beta-catenin, ACCESSION Nukleinsäure AF005267
Saccharomyces cerevisiae, plakoglobin/armadillo/beta-catenin, ACCESSION Protein AF005268
Homo sapiens plectin 1 , intermediate filament binding protein, ACCESSION Nukleinsäure NM_201380
Homo sapiens plectin 1 , intermediate filament binding protein, ACCESSION Protein NM_201381
Mus musculus plectin 1 (Pled ), transcript variant 11 , mRNA, ACCESSION Nukleinsäure NM_201394 XM
Mus musculus plectin 1 (Pled ), transcript variant 11 , mRNA, ACCESSION Protein NM_201394 XM Nukleinsäure Bos taurus similar to plectin 1 isoform 1 (LOC510991 ), ACCESSION XM_588232 Protein Bos taurus similar to plectin 1 isoform 1 (LOC510991 ), ACCESSION XM_588233 Nukleinsäure Canis familiaris similar to plectin 1 isoform, ACCESSION XM_539204 Protein Canis familiaris similar to plectin 1 isoform, ACCESSION XM_539205 Nukleinsäure Trypanosoma cruzi, plectin-like protein, ACCESSION XM_809849 Protein Trypanosoma cruzi, plectin-like protein, ACCESSION XM_809850 Nukleinsäure Rattus norvegicus plectin, ACCESSION X59601 Protein Rattus norvegicus plectin, ACCESSION X59602 Nukleinsäure Cricetulus griseus plectin, ACCESSION AF260753 Protein Cricetulus griseus plectin, ACCESSION AF260754 Nukleinsäure Homo sapiens periplakin, ACCESSION NM_002705 86 Protein Homo sapiens periplakin, ACCESSION NM_002706
87 Nukleinsäure Mus musculus periplakin , ACCESSION NM_008909 XM_358905
88 Protein Mus musculus periplakin , ACCESSION NM_008909 XM_358906
89 Nukleinsäure Homo sapiens envoplakin, ACCESSION NM_001988
90 Protein Homo sapiens envoplakin, ACCESSION NM_001989
91 Nukleinsäure Mus musculus envoplakin, ACCESSION NM_025276 XM_283024
92 Protein Mus musculus envoplakin, ACCESSION NM_025276 XM_283025
93 Nukleinsäure Bos taurus similar to Envoplakin, ACCESSION XM_587641
94 Protein Bos taurus similar to Envoplakin, ACCESSION XM_587642
95 Nukleinsäure Canis familiaris similar to Envoplakin, ACCESSION XM_540443
96 Protein Canis familiaris similar to Envoplakin, ACCESSION XM_540444
97 Nukleinsäure Danio rerio similar to Envoplakin, ACCESSION XM_687958
98 Protein Danio rerio similar to Envoplakin, ACCESSION XM_687959
99 Nukleinsäure Rattus norvegicus, similar to envoplakin, db_xref GenelD:303687
100 Protein Rattus norvegicus, similar to envoplakin, db_xref GenelD:303688
101 Nukleinsäure Pan troglodytes similar to Envoplakin, ACCESSION XM_511692
102 Protein Pan troglodytes similar to Envoplakin, ACCESSION XM_511693
103 Nukleinsäure Human bullous pemphigoid antigen, ACCESSION M63618
104 Protein Human bullous pemphigoid antigen, ACCESSION M63619
105 Nukleinsäure Mus musculus bullous pemphigoid antigen 1 (Bpagi ), ACCESSION AF396877
106 Protein Mus musculus bullous pemphigoid antigen 1 (Bpagi ), ACCESSION AF396878
107 Nukleinsäure Mus musculus trichohyalin-like 1 , ACCESSION NM_027762
108 Protein Mus musculus trichohyalin-like 1 , ACCESSION NM_027763
109 Nukleinsäure Bos taurus similar to trichohyalin-like 1 , ACCESSION XM_597026
110 Protein Bos taurus similar to trichohyalin-like 1 , ACCESSION XM_597027
111 Nukleinsäure Homo sapiens trichohyalin-like 1 , ACCESSION NM_001008536 XM_060104
112 Protein Homo sapiens trichohyalin-like 1 , ACCESSION NM_001008536 XM_060105
113 Nukleinsäure Strongylocentrotus purpuratus similar to Trichohyalin, ACCESSION XM_793822
114 Protein Strongylocentrotus purpuratus similar to Trichohyalin, ACCESSION XM_793823
115 Nukleinsäure Trypanosoma cruzi trichohyalin, putative, ACCESSION XM_809758
116 Protein Trypanosoma cruzi trichohyalin, putative, ACCESSION XM_809759
117 Nukleinsäure Giardia lamblia ATCC 50803 trichohyalin, ACCESSION XM_765825
118 Protein Giardia lamblia ATCC 50803 trichohyalin, ACCESSION XM_765826
119 Nukleinsäure Aspergillus fumigatus Af293, trichohyalin, ACCESSION XM_748643
120 Protein Aspergillus fumigatus Af293, trichohyalin, ACCESSION XM_748644
121 Nukleinsäure O.cuniculus trichohyalin, ACCESSION Z19092
122 Protein O.cuniculus trichohyalin, ACCESSION Z19093
123 Nukleinsäure Pan troglodytes similar to Trichohyalin, ACCESSION XM_526770
124 Protein Pan troglodytes similar to Trichohyalin, ACCESSION XM_526771
125 Nukleinsäure Human trichohyalin (TRHY), ACCESSION L09190
126 Protein Human trichohyalin (TRHY), ACCESSION L09191
127 Nukleinsäure Mus musculus small proline-rich protein 3, ACCESSION NM_011478
128 Protein Mus musculus small proline-rich protein 3, ACCESSION NM_011479
Homo sapiens small proline-rich protein 2B (SPRR2B), ACCESSION
129 Nukleinsäure NM_001017418
Homo sapiens small proline-rich protein 2B (SPRR2B), ACCESSION
130 Protein NM_001017419
131 Nukleinsäure Mus musculus hair follicle protein AHF, ACCESSION XM_485271 132 Protein Mus musculus hair follicle protein AHF, ACCESSION XM_485272
133 Nukleinsäure Homo sapiens epiplakin 1 (EPPK1 ), ACCESSION NM_031308 XM_372063
134 Protein Homo sapiens epiplakin 1 (EPPK1 ), ACCESSION NM_031308 XM_372064
135 Nukleinsäure Mus musculus epiplakin 1 , ACCESSION NM_144848 NM_173025
136 Protein Mus musculus epiplakin 1 , ACCESSION NM_144848 NM_173026
137 Nukleinsäure Mus musculus structural protein FBF1 , ACCESSION AF241249
138 Protein Mus musculus structural protein FBF1 , ACCESSION AF241250
139 Nukleinsäure Streptococcus mutans spaP gene for antigen l/l I, ACCESSION X17390
140 Protein Streptococcus mutans spaP gene for antigen l/l I, ACCESSION X17391
141 Nukleinsäure Sequenz des PCR-Primers Bag 43
142 Nukleinsäure Sequenz des PCR-Primers Bag 44
143 Nukleinsäure Sequenz des PCR-Primers Bag 53
144 Nukleinsäure Sequenz des PCR-Primers Bag 51
145 Nukleinsäure Sequenz des PCR-Primers Lib197
146 Nukleinsäure Sequenz des PCR-Primers Lib198
Unter Verwendung der PCR-Primer Lib197 (SEQ ID No.:145 ) und Lib198 (SEQ
147 Nukleinsäure ID No.: 146) mutagenisierte Variante der Sequenz gemäß SEQ ID No.: ID 3
148 Nukleinsäure Sequenz des PCR-Primers Lib201
149 Nukleinsäure Sequenz des PCR-Primers Lib202
Nukleinsäure kodierend für ein C16-Modul des Spinnenseidenproteins ADF-4C
150 Nukleinsäure aus Araneus diadematus
151 Protein Translationsprodukt des Nukleinsäuremoleküls SEQ ID No.: 150
Variante der Sequenz gemäß SEQ ID No.: ID 3; DNA-Fragment welches mittels der PCR-Primer Lib151 (SEQ ID No.:154 ) und Lib152 (SEQ ID No.: 155) amplifi-
152 Nukleinsäure ziert
153 Protein Translationsprodukt des Nukleinsäuremoleküls SEQ ID No.: 152
154 Nukleinsäure Sequenz des PCR-Primers Lib151
155 Nukleinsäure Sequenz des PCR-Primers Lib152
156 Protein KBD-B_Homo sapiens Desmoplakin_Accession No. NM_004415 Domäne B-3
157 Protein KBD-B_Homo sapiens Desmoplakin_Accession No. NM_004415 Domäne B-4
158 Protein KBD-B_Homo sapiens Desmoplakin_Accession No. NM_004415 Domäne B-5
159 Nukleinsäure KBD-B_Homo sapiens Desmoplakin_Accession No. NM_004415 Domäne B-6
160 Protein KBD-B_Homo sapiens Desmoplakin_Accession No. NM_004415 Domäne B-6
161 Nukleinsäure Homo sapiens trichoplein, BC004285
162 Protein Homo sapiens trichoplein, BC004285
Homo sapiens Desmoplakin_Accession No. NM_004415 mit Nukleinsäureaustau-
163 Nukleinsäure sehen im Verlgeich zu SEQ ID No.: ID 1
Homo sapiens Desmoplakin_Accession No. NM_004415 mit Aminosäureaustau-
164 Protein sehen an den Positionen 905, 2687 und 2688 im Verlgeich zu SEQ ID No.: ID 2
165 Nukleinsäure KBD-B_Homo sapiens Desmoplakin_Accession No. NM_004415 Domäne B-7
166 Protein KBD-B_Homo sapiens Desmoplakin_Accession No. NM_004415 Domäne B-7
Chimäres Nukleinsäuremolekül kodierend für das C16-Modul des Spinnenseidenproteins ADF-4C aus Araneus diadematus (SEQ ID. No.:150) fusioniert mit dem
167 Nukleinsäure Nukleinsäuremolekül (SEQ ID No.: 147) kodierend für das KBD-B Protein.
168 Protein chimäres Translationsprodukt der SEQ ID No.: 167
169 Nukleinsäure Sequenz des PCR-Primers pLibi 99
170 Nukleinsäure Sequenz des PCR-Primers pLib 200 Nukleinsäuremoleküls des Carotenoid binding protein (CBP) aus B. mori (Swiss
171 Nukleinsäure prot. Q8MYA9_BOMMO)
Translationsprodukt des Nukleinsäuremoleküls SEQ ID No.: 17; 1 CBP aus B.
172 Protein mori kodierenden Gens
173 Nukleinsäure Sequenz des PCR-Primers H Re1
174 Nukleinsäure Sequenz des PCR-Primers H Re2
Chimäres Nukleinsäuremolekül kodierend für das CBP Protein (SEQ ID. No.: 172) fusioniert mit dem Nukleinsäuremolekül (SEQ ID No.: 165) kodierend für das
175 Nukleinsäure KBD-B Protein (SEQ ID. No.: 166)
176 Protein Translationsprodukt des Nukleinsäuremoleküls nach SEQ ID No.: 175
177 Nukleinsäure Sequenz des PCR-Primers Lib 212
178 Nukleinsäure Sequenz des PCR-Primers Lib219
Nukleinsäuremolekül kodierend für das Metall-Bindeprotein (ZntA) aus E. coli Ac-
179 Nukleinsäure cession No. NP_417926
180 Protein Translationsprodukt des Nukleinsäuremoleküls nach SEQ ID No.: 179
Chimäres Nukleinsäuremolekül kodierend für das Metall-Bindeprotein (ZntA) aus E. coli (SEQ ID. No.:179) fusioniert mit dem Nukleinsäuremolekül (SEQ ID No.:
181 Nukleinsäure 165) kodierend für das KBD-B Protein (SEQ ID. No.: 166)
182 Protein Translationsprodukt des Nukleinsäuremoleküls nach SEQ ID No.: 181
183 Nukleinsäure Sequenz des PCR-Primers Bag 102
184 Nukleinsäure Sequenz des PCR-Primers Bag 103
Nukleinsäuremolekül kodierend für das (trxA) Thioredoxin-Gen aus E. coli Acces-
185 Nukleinsäure sion No. NP_418228 (Accession No. EG 1103)
186 Protein Translationsprodukt des Nukleinsäuremoleküls nach SEQ ID No.: 185
Chimäres Nukleinsäuremolekül kodierend für das Thioredoxin-Fragment aus dem Vektor pThioHisC (SEQ ID. No.:185) fusioniert mit dem Nukleinsäuremolekül
187 Nukleinsäure (SEQ ID No.: 165) kodierend für das KBD-B Protein (SEQ ID. No.: 166)
188 Protein Translationsprodukt des Nukleinsäuremoleküls nach SEQ ID No.: 187
189 Nukleinsäure Sequenz des PCR-Primers Bag 89
190 Nukleinsäure Sequenz des PCR-Primers Bag90
Nukleinsäuremolekül kodierend für das eGFP-Fragment aus dem Vektor pEGFP-
191 Nukleinsäure 1 (Firma Clontech)
192 Protein Translationsprodukt des Nukleinsäuremoleküls nach SEQ ID No.: 191
Chimäres Nukleinsäuremolekül kodierend für das eGFP-Fragment aus dem Vektor pEGFP-1 (Firma Clontech) (SEQ ID. No.:191 ) fusioniert mit dem Nukleinsäu-
193 Nukleinsäure remolekül (SEQ ID No.: 165) kodierend für das KBD-B Protein (SEQ ID. No.: 166)
194 Protein Translationsprodukt des Nukleinsäuremoleküls nach SEQ ID No.: 193
195 Nukleinsäure Sequenz des PCR-Primers Bag 93
196 Nukleinsäure Sequenz des PCR-Primers Bag 94
Nukleinsäuremolekül kodierend für das YaaD-Fragment (Accession No.
197 Nukleinsäure BG10075) aus dem Vektor pDX14 (Firma OmniGene Bioproducts)
198 Protein Translationsprodukt des Nukleinsäuremoleküls nach SEQ ID No.: 197
Chimäres Nukleinsäuremolekül kodierend für das YaaD-Fragment aus dem Vektor pDX14 (Firma OmniGene Bioproducts) (SEQ ID. No. :197) fusioniert mit dem Nukleinsäuremolekül (SEQ ID No.: 165) kodierend für das KBD-B Protein (SEQ
199 Nukleinsäure ID. No.: 166)
200 Protein Translationsprodukt des Nukleinsäuremoleküls nach SEQ ID No.: 199
201 Protein AAC4701 1 fibroin-4 aus Araneus diadematus 202 Protein Seidenprotein aus Nephila clavipes ACCESSION AY855102
203 Protein Seidenprotein aus Araneus gemmoides ACCESSION AY855101
204 Protein Seidenprotein aus Araneus gemmoides ACCESSION AY855100
205 Protein Seidenprotein aus Argiope aurantia ACCESSION AY855099
206 Protein Seidenprotein aus Argiope aurantia ACCESSION AY855098
207 Protein Synthetic construct spide silk protein-like protein (SF1 );accession DQ001900
208 Protein Seidenprotein aus Nephila clavipes ACCESSION U37520
209 Protein Synthetic construct RGD-dragline spider silk protein gene; accession DQ186903
210 Protein Seidenprotein aus Latrodectus Hesperus ACCESSION AY994149
211 Protein attacin=insect antibacterial protein aus Bombyx mori ACCESSION S78369
212 KBD-D mit N-terminalem Histidinanker , H. sapiens Plakophilin 1a ACCESSION Nukleinsäure NM_001005337
213 KBD-D mit N-terminalem Histidinanker , H. sapiens Plakophilin IaACCESSION Protein NP_001005337
KBD-D Aminosäuren 1-273 mit C-terminalem Histidinanker , H. sapiens Plakophi-
214 Nukleinsäure lin 1a ACCESSION NM_001005337
BD-D Aminosäuren 1-273 mit C-terminalem Histidinanker , H. sapiens Plakophilin
215 Protein 1a ACCESSION NP_001005337
216 Nukleinsäure Sequenz des PCR-Primers H Re6
217 Nukleinsäure Sequenz des PCR-Primers H Re9
218 Nukleinsäure Sequenz des PCR-Primers H Re7
219 Nukleinsäure Sequenz des PCR-Primers H Re8
220 Nukleinsäure Sequenz des PCR-Primers H Re26
221 Nukleinsäure Sequenz des PCR-Primers H Re27
Chimäres Nukleinsäuremolekül bestehend aus Nukleinsäuremolekül (SEQ ID. No.: 171 ) kodierend für das CBP Protein (SEQ ID. No.:172) fusioniert mit dem Nukleinsäuremolekül (SEQ ID No.: 165) kodierend für das KBD-B Protein (SEQ ID.
222 Nukleinsäure No.: 166), und einer mutierten Linkersequenz
223 Protein Translationsprodukt des Nukleinsäuremoleküls nach SEQ ID No.: 222
Mutagenisierte Linkersequenz des Nukleinsäuremolekül SEQ ID. No.: 222; Verbindungssequenz zwischen den Nukleinsäuremolekülen SEQ ID. No.:165 und 171 ;
224 Protein Mutation der Proteinsequenz GGTGGSELE nach GGTGGSGGG
225 Nukleinsäure Sequenz des PCR Primers Lib 230
226 Nukleinsäure Sequenz des PCR Primers Lib 231
Chimäres Nukleinsäuremolekül kodierend für das KBD-B Protein (SEQ ID No.: 166) fusioniert mit dem C16-Modul des Spinnenseidenproteins ADF-4C aus Ara-
227 Nukleinsäure neus diadematus (SEQ ID. No.:150)
228 Protein Chimäres Translationsprodukt der SEQ ID No.: 227
229 Nukleinsäure Sequenz des Quick Change PCR-Primers HRe22
230 Nukleinsäure Sequenz des Quick Change PCR-Primers HRe23
Experimentelle Beispiele
Die folgenden Beispiele werden offenbart um bevorzugte Ausführungsformen der vorliegenden Erfindung zu illustrieren. Diese Beispiele sind nicht als abschließend oder den Erfindungsgegenstand limitierend zu betrachten. In der experimentellen Beschreibung werden folgende Abkürzungen verwendet: (2-Amino-2-Methyl-Propanol) AMP, (Grad Celsius) C°, (Ethylendiamintetraessigsäure) EDTA, (hindered amine stabilizer) HAS, (1 ,1-Difluorethan) HFC 152, (International Nomenclature of Cosmetic Ingredients) INCI, (Milliliter) ml_, (Minuten) min., (Öl/Wasser) O/W, (Polyethylenglykol) PEG-25, (Para Amino Benzoesäure) PABA, (parts per million) ppm, (quantum satis) q.s, (Vinyl- pyrrolidone) VP, (Wasser/Öl) W/O, (Wirkstoff) WS, (Polyvinylpyrrolydone) PVP, (Keratin bindende Domäne) KBD, (Keratin bindende Domäne B des humanen Desmoplakin) KBD-B , (Keratin bindende Domäne C des humanen Desmoplakin) KBD-C, (ein wie in der Beschreibung erläutertes Konstrukt aus einer KBD mit einem Effektor-Protein/-Peptid, wobei die Verknüpfung durch eine chemischer Reaktion herbeigeführt oder direkt als Fusionsprotein (z.B. durch Expression eines Translationsfusions-DNA Konstruktes in einem Wirtsorganismus) erzeugt worden sein kann) Fusionsprotein-KBD, (Keratin bindende Domäne des humanen Plakophilin) KBD-D.
Beispiel 1 : Expressionsvektoren und Produktionsstämme
Es wurden verschiedene Expressionsvektoren für die Expression der keratinbindenden Domänen (KBD) getestet. Dabei kamen verschiedene Promotoren (z.B. IPTG-induzierbar, Rhamno- se-induzierbar, Arabindose-induzierbar, Methanol-induzierbar, konstitutive Promotoren, u.a.) zum Einsatz. Ebenso wurden Konstrukte getestet, bei denen die KBD als Fusionsproteine exprimiert wurden (z.B. als Fusion mit C16-Spinnenseidenprotein [Huemmerich et al.; 2004, Primary structure elements of spider dragline silks and their contribution to protein solubility; Biochemistry 43: 13604-13612] (nachfolgend auch C16 genannt), Thioredoxin, oder eGFP, oder YaaD [B. subtilis, SWISS-PROT: P37527, PDX1], oder Carotinoid-Bindeprotein [Bombyx mori, SWISS-PROT: Q8MYA9] (nachfolgend auch CBP genannt), oder Metall-Bindeprotein ZntA [E. coli, SWISS-PROT: P37617]). u.a.). Dabei wurden sowohl die beschriebene KBD-B (keratinbin- dende Domäne B, SEQ ID No.: 4), als auch KBD-C (keratinbindende Domäne C, SEQ ID No.: 10), sowie die Kombination aus beiden Domänen KBD-BC mit den verschiedenen Expressions- Systemen exprimiert. Die erwähnten Vektor-Konstrukte sind nicht limitierend für die Beanspruchung.
Stellvertretend als Beispiel ist die Vektorkarte der IPTG-induzierbaren Vektoren pQE30-KBD-B (Abbildung 1), pLibO76 (Abbildung 2) und pReeO17 (Abbildung 4) und pLibO72 (Abbildung 5) angegeben. Analog zu den beschriebenen Vektorkonstruktionen und Expressionen kann auch für KBD-C vorgegangen werden.
Für die Expression der KBD wurden verschiedene Produktionswirte genutzt, wie z.B. E. coli- Stämme (siehe Bsp. 2; z.B. XHO-GoId [Firma Stratagene], BL21-CodonPlus [Firma Stratage- ne], und andere). Es wurden aber auch andere bakterielle Produktionswirte, wie z.B. Badllus megaterium oder Bacillus subtilis genutzt. Bei der KBD-Expression in B. megaterium wurde analog zu: Barg, H., Malten, M. & Jahn, D. (2005). Protein and vitamin production in Bacillus megaterium. In Methods in Biotechnology-Micobial Products and Biotransformations (Barredo, J. -L., ed, 205-224) vorgegangen. Als pilzliche Produktionsstämme kommen auch Pichia pastoris (z.B. GS115 und KM71 [beide Firma Invitrogen]; und andere) und Aspergillus nidulans (z.B. RMS011 [Stringer, MA, Dean, RA, Sewall, TC, Timberlake, WE (1991) Rodletless, a new Aspergillus developmental mutant induced by direct gene activation. Genes Dev 5:1161-1171] und SRF200 [Karos, M, Fischer, R (1999) Molecular characterization of HymA, an evolutionarily highly conserved and highly expressed protein of Aspergillus nidulans. Mol Genet Genomics 260:510-521], und andere) in Frage. Es könnten aber auch andere pilzliche Produktionswirte, wie z.B. Aspergillus niger (KBD-Expression analog zu EP 0635574A1 und/oder WO 98/46772) zur KBD-Expression genutzt werden.
Beispiel 2: KBD-Expression in E. coli-Stämmen mit IPTG induzierbaren Promotoren, z.B. durch das Expressionsplasmid pQE30-KBD-B Für die Expression wurden verschiedene Produktionswirte eingesetzt, wie z.B. verschiedene E. coli-Stämme (z.B. XHO-GoId [Firma Stratagene], BL21-CodonPlus [Firma Stratagene], und andere), Bacillus megaterium, Badllus subtilis u.a..
Hier wird - stellvertretend als Beispiel - die Klonierung und Expression von KBD-B durch E. coli, transformiert mit pQE30-KBD-B beschrieben:
Klonierung von pQE30-KBD-B
Lambda-MaxiDNA (DNA-Lambda Maxi Kit, Firma Qiagen) wurde aus einer cDNA-Bank von humanen Keratinozyten hergestellt (Firma BD Bioscience, Clontech, Human Kerati- nocyte cDNA, foreskin, primary culture in log phase, Vektor: λgt11).
Die PCR wurde unter Verwendung der folgenden Oligonukleotide durchgeführt: Bag 43 (5'- GGTCAGTTACGTGCAGCTGAAGG -3') (SEQ ID No.: 141 )und Bag 44 (5' GCTGAGGCTGCCGGATCG -3') (SEQ ID No.: 142)
50 μl PCR-Ansatz:
1Ox PCR-Puffer Pfu Ultra High Fidelity: 5μl
Lambda DNA(744ng/μl) 1 μl (1 :30 Verd.) dNTP's.-Mix (IOmM) 1 μl
Oligo Bag 43 (192ng/μl) 0,5μl Oligo Bag 44 (181 ng/μl) 0,5μl
Pfu Ultra High Fidelity Polymerase 1 μl
H2O 41 μl
Temperaturprogramm: 2 Min. - 95°C f 30 Sek. - 95°C
3Ox i 30 Sek. - Gradient 500C -> 600C
L 2 Min. 30 Sek. - 72°C
10 Min - 72°C
Das entstandene etwa 1102 bp große PCR-Produkt wurde aus einem Agarosegel ausgeschnitten und aufgereinigt.
Anschließend wurde mit dem gereinigten PCR-Produkt als Templat eine 2. PCR durchgeführt:
Verwendete Oligonukleotide:
Bag 53: (5'- CGCGCCTCGAGCCACATACTGGTCTGC -3') (SEQ ID No.: 143) und Bag 51 (5 - GCTTAGCTGAGGCTGCCGGATCG -3') (SEQ ID No.: 144)
50 μl PCR-Ansatz:
10x PCR-Puffer TAQ: 5μl
Template aus obiger PCR 3,5μl dNTP's.-Mix (IOmM) 1 μl
Oligo Bag 53 (345ng/μl) 0,5μl
Oligo Bag 51 (157ng/μl) 0,5μl
TAQ Polymerase 1 μl
H2O 39μl
Temperaturprogramm: 2 Min. - 95°C f 30 Sek. - 95°C
3Ox < 30 Sek. - 58°C
[ 3 Min. - 72°C
10 Min - 72°C
Das entstandene etwa 1073 bp große PCR-Produkt wurde aus einem Agarosegel ausgeschnitten, aufgereinigt und in folgenden Vektor kloniert: pCR2.1-TOPO (Firma Invitrogen).
Der entstehende Vektor pCR2.1-TOPO+KBD-B (5027 bp) wurde anschließend transformiert, amplifiziert in E. coli, dann mit Xhol und EcoRI geschnitten und das entstandene KBD-B-Fragment in pBAD/HisA (Firma Invitrogen; ebenfalls geschnitten mit Xhol und E- coRI) kloniert.
Der neu entstandene Vektor pBAD/HisA+KBD-B (5171 bp) wurde erneut geschnitten mit Sacl und Stul und das entstandene KBD-B-Fragment in pQE30 (Firma Qiagen; geschnitten mit Sacl und Smal) kloniert. Der daraus entstandene Expressionsvektor pQE30-KBD- B (4321 bp; siehe auch Abbildung 1) wurde für die folgenden KBD-B-Expressionen ver- wendet.
Die durch den Vektor pQE30-KBD-B in E. coli expremierte KBD-B (SEQ ID No.: 4) beinhaltete zusätzlich am N-Terminus die Aminosäuren MRGSHHHHHHGSACEL sowie am C-Terminus die Aminosäuren GVDLQPSLIS (SEQ ID No.: 166) .
Expression von KBD-B durch pQE30-KBD-B in E. coli
- Vorkulturen wurden von Platte oder Glycerinkultur mit pQE30-KBD-B transformierten E. coli Stämmen (z.B. XHO-GoId [Firma Stratagene]) angeimpft. Je nach Größe der Hauptkultur wurde in einem Röhrchen oder einem kleinen Kolben mit LB-Medium angeimpft (ca. 1 :100).
- Antibiotika wurden je nach verwendetem Stamm eingesetzt (für pQE30-KBD-B Ampicillin 100 μg/ml).
- Es wurde bei 250 rpm und 37°C inkubiert.
- Die Hauptkultur wurde ca. 1 :100 mit Vorkultur angeimpft, Hauptkultur: LB-Medium oder ge- eignetes Minimalmedium mit den jeweiligen Antibiotika. Inkubation bei 250 rpm und 37°C.
- Die Induktion erfolgte mit 1 mM IPTG ab einer OD(600nm) von 0,5. - Die Zellen wurden nach 4 h Induktion abzentrifugiert.
In Fermentern wurde analog vorgegangen, jedoch konnte bei sehr viel höheren OD-Einheiten induziert werden und damit die Zell- und Protein-Ausbeute erheblich gesteigert werden.
Beispiel 3: C16-KBD-Expression in E. coli-Stämmen mit IPTG induzierbaren Promotoren, z.B. durch das Expressionsplasmid pLib76
Für die Expression wurden verschiedene Produktionswirte eingesetzt, wie z.B. verschiedene E. coli-Stämme (z.B. XHO-GoId [Firma Stratagene], BL21-CodonPlus [Firma Stratagene], und andere), Bacillus megaterium, Bacillus subtilis u.a.
Hier wird - stellvertretend als Beispiel - die Klonierung und Expression von C16-KBD-B durch E. coli, transformiert mit pLib76 beschrieben:
Klonierung von pLib76
Die in der KBD-B-Sequenz des Vektors pQE30-KBD-B (siehe Beispiel 2) enthaltene Bsgl- Schnittstelle wurde mittels Quickchange XL Site-Directed Mutagenesis Kit (Firma Stratagene) unter Verwendung der Oligonukleotide Lib197 (5'- GAGCTCTCGACTCCTGACAATCAC-3') (SEQ ID NO.: 145) und Lib198 (5'-
GAGCTCGGTTCCTCCGGTACCGCCTCTCCTGCGCAACAATCTTAACG-S') (SEQ ID NO.: 146) nach Vorgaben des Herstellers entfernt (SEQ ID No.: 147). Der daraus resultierende Vektor wurde pLib50 benannt. Plasmid-DNA des Vektors pLib50 diente als Matrize für eine PCR mit den Oligonukleoti- den Lib201 (5'- CGTACTGCATGCGGCGGTACCGGAGGAACTGCACAAGAGCTC-
GAGCCACATACTGGTCTGCTCTTGC-3') (SEQ ID NO.: 148) und Lib202 (5'- CTGCAGGTCGACCCCCTCCTGAACAGACATTTC-3') (SEQ ID NO.: 149). Über das O- ligonukleotid Lib201 wurde eine Bsgl-Schnittstelle in das Fragment eingebracht.
Die PCR wurden in 50 μl Reaktionsansätzen durchgeführt, welche wie folgt zusammengesetzt waren:
1 μl Plasmid-DNA pLib50
1 μl dNTP-Mix (jedes 10 mM; Fa. Eppendorf)
5 μl 10 x PCR-Puffer + MgCb (Fa. Roche) 1 μl Lib201 5'Primer (entspricht 50 pmol)
1 μl Lib202 3'Primer (entspricht 50 pmol)
5 U Pwo-Polymerase (Fa. Roche) auf 50μl mit H2O auffüllen
Die PCR-Reaktionen wurden unter folgenden Zyklusbedingungen durchgeführt:
Schritt 1 : 5 Minuten 95 0C (Denaturierung)
Schritt 2: 60 Sekunden 95 0C
Schritt 3: 45 Sekunden 50 0C (Annealing)
Schritt 4: 2 Minuten 72 0C (Elongation) 30 Zyklen der Schritte 2-4
Schritt 5: 10 Minuten 72 0C (Post- Elongation)
Schritt 6: 4 0C (Pause) Das entstandene etwa 924 bp große PCR-Produkt wurde aus einem Agarosegel ausgeschnitten, aufgereinigt und in folgenden Vektor kloniert: pCR2.1-TOPO (Firma Invitrogen). Der entstehende Vektor pLib58 wurde anschließend transformiert, amplifiziert in E. coli, dann mit Sphl/Sall geschnitten und das entstandene KBD-B-Fragment in pQE30-KBD-B
(siehe Beispiel 2; ebenfalls geschnitten mit Sphl/Sall) kloniert.
- In den entstehenden Vektor pLib59 (geschnitten mit Bsgl) wurde ein mit Bsgl/BseRI geschnittenes Fragment des C16-Moduls des Spinnenseidenproteins ADF-4 (SEQ ID No.: 150) (Huemmerich et al. [2004; Primary structure elements of spider dragline silks and their contribution to protein solubility; Biochemistry 43: 13604-13612]) ligiert.
- Durch diese Klonierung wurde ein chimäres Nukleinsäuremolekül (SEQ ID No.: 167) erzeugt, kodierend für das C16 Protein (SEQ ID No.: 151) fusioniert mit dem KBD-B Protein (SEQ ID No.:166). Die Ligation der kodierenden Nukleinsäuremoleküle (SEQ ID No.:150 und SEQ ID No.:147) resultiert in einer Translationsfusion besagter Proteine und führt nach erfolgter Translation zu einem Protein gemäß SEQ ID No.:168. Der somit entstandene Expressionsvektor pLib76 (siehe auch Abbildung 2) wurde für die folgenden C16- KBD-B-Expressionen verwendet.
Expression von C16-KBD-B durch pLib76 in E. coli (siehe auch Abbildung 2)
Vorkulturen wurden von Platte oder Glycerinkultur mit pLib76 transformierten E. coli Stämmen (z.B. XLIO-GoId [Firma Stratagene]) angeimpft. Je nach Größe der Hauptkultur wurde in einem Röhrchen oder einem kleinen Kolben mit LB-Medium angeimpft (ca. 1 :100). Antibiotika wurden je nach verwendetem Stamm eingesetzt (für pLib76 Ampicillin 100 μg/ml).
Es wurde bei 250 rpm und 37°C inkubiert.
Die Hauptkultur wurde ca. 1 :100 mit Vorkultur angeimpft, Hauptkultur: LB-Medium oder geeignetes Minimalmedium mit den jeweiligen Antibiotika. Inkubation bei 250 rpm und 37°C. Die Induktion erfolgte mit 1 mM IPTG ab einer OD(600nm) von 0,5. Die Zellen wurden anschließend bei 32°C und 250 rpm inkubiert.
Die Zellen wurden nach 4 h Induktion abzentrifugiert.
In Fermentern wurde analog vorgegangen, jedoch konnte bei sehr viel höheren OD- Einheiten induziert werden und damit die Zell- und Protein-Ausbeute erheblich gesteigert werden.
Abbildung 6 zeigt die Expression von C16-KBD-B, die durch Antikörper, gerichtet gegen das N- terminale His-Tag der C16-KBD-B Fusion, bzw. gerichtet gegen die KBD-B-Domäne, in einem Western-Blot untersucht wurden. Detektiert wurde jeweils ein Protein der gleichen Größe. Das beweist, dass das in E. coli exprimierte Protein tatsächlich aus der C16-Domäne als auch aus der KBD-B-Domäne besteht. Die zur Induktion der Expression eingesetzten IPTG- Konzentrationen erzielten vergleichbare Ergebnisse.
Insgesamt zeigen die Daten, dass eine erfolgreiche Expression von C16-KBD-B in E. coli erreicht wurde.
3.a KBD-B-C16-Expression in einem E. coli-Stamm mit IPTG induzierbarem Promotor durch das Expressionsplasmid pLib78 Im Gegensatz zu der im Beispiel 3 beschriebenen Fusionsproteinvariante, enthaltend N- terminal das C-16 Seidenprotein und C-terminal das KBD-B Protein, wird in diesem Beispiel die Klonierung und Expression der reversen Variante des genannten Fusionsproteins beschrieben.
Für die Expression wurden verschiedene Produktionswirte eingesetzt, wie z.B. verschiedene E. coli-Stämme (z.B. XHO-GoId [Firma Stratagene], BL21-CodonPlus [Firma Stratagene], BLR(DE3) [Fa. Novagen] und andere), Badllus megaterium, Bacillus subtilis u.a. Hier wird - stellvertretend als Beispiel - die Klonierung und Expression von KBD-B-C16 durch E. coli, transformiert mit pLib78 beschrieben:
Klonierung von pLib78
- Plasmid-DNA des die KBD-B-DNA-Sequenz enthaltenden Vektors pLib15 diente als Matrize für eine PCR mit den Oligonukleotiden Lib230 (5'- AGATCTCATCACCATCACCATCACGAGCCACATACT -3') (SEQ ID NO: 225) und Lib231 (5'-AGATCTAGTTCCTCCGGTACCGCCGCTAATTAAGCTTGGCTGCAGGTC-S-) (SEQ ID NO: 226)
- Über die Oligonukleotide Lib230 und Lib231 wurde jeweils eine Bglll-Schnittstelle sowie über das Oligonukleotid Lib231 eine Linkersequenz in das Fragment eingebracht.
Die PCR wurde im 10Oμl Reaktionsansatz durchgeführt, welcher wie folgt zusammengesetzt war:
5 μl Plasmid-DNA püb15
1 μl dNTP-Mix (10 mM; Fa. Eppendorf) 10 μl Herculase Puffer (1OX; Fa. Stratagene)
4 μl Lib230 5'Primer (entspricht 50 pmol)
4 μl Lib231 3'Primer (entspricht 50 pmol)
1 μl Herculase Polymerase (5 U/μl; Fa. Stratagene) auf 100 μl mit H2O aufgefüllt.
Die PCR-Reaktion wurden unter folgenden Zyklusbedingungen durchgeführt:
Schritt 1 : 5 Minuten 95 0C (Denaturierung)
Schritt 2: 1 Minute 95 0C
Schritt 3: 1 Minute 60 0C (Annealing) Schritt 4: 1 ,5 Minuten 72 0C (Elongation)
30 Zyklen der Schritte 2-4
Schritt 5: 10 Minuten 72 0C (Post- Elongation)
Schritt 6: 4 0C (Pause)
Das etwa 945 bp große PCR-Produkt wurde aus einem Agarosegel ausgeschnitten, aufgereinigt und in den Vektor pCR2.1-TOPO (Firma Invitrogen) kloniert. Das neu entstandene Plasmid wurde pLib77 benannt. pLib77 wurde anschließend transformiert, amplifiziert in E. coli, dann mit BgIII geschnitten und das entstandene KBD-B-Fragment in das die C16-Sequenz enthaltende Plasmid pET21a(+)C16 (Hümmerich et al., 2004, Biochemistry 43: 13604-13612) kloniert.. Der Empfängervektor wurde vorher mit BamHI geschnitten. Durch diese Klonierung wurde ein chimäres Nukleinsäuremolekül (SEQ ID NO: 227) erzeugt, kodierend für das KBD-B Protein (SEQ ID No.: 166) fusioniert mit dem C16 Protein (SEQ ID No.:151). Die Ligation der kodierenden Nukleinsäuremoleküle (SEQ ID No.: 165 und SEQ ID No.: 150) resultiert in einer Translationsfusion besagter Proteine und führt nach erfolgter Trans- lation zu einem Protein gemäß SEQ ID No.:228. Der somit entstandene Expressionsvektor pLib78 (siehe auch Abb. 11) wurde für die folgenden KBD-B-C16-Expressionen verwendet.
Expression von KBD-B-C16 durch pLib78 in E. coli
- Vorkulturen wurden von Platte oder Glycerinkultur mit dem pLib78 transformierten E. coli
Stamm BLR(DE3) der Fa. Novagen angeimpft. Je nach Größe der Hauptkultur wurde in einem Röhrchen oder einem kleinen Kolben mit LB-Medium angeimpft (ca. 1 :100). Als Antibiotikum wurde dem Vektor entsprechend Ampicillin 100 μg/ml eingesetzt. Es wurde bei 250 rpm und 37°C inkubiert. - Die Hauptkultur wurde ca. 1 :100 mit Vorkultur angeimpft
Hauptkultur: LB-Medium mit Ampicillin 100 μg/ml. Inkubation bei 250 rpm und 37°C. Die Induktion erfolgte mit 100 μM IPTG ab einer OD(600nm) von 0,5. Die Zellen wurden anschließend weitere 3 Stunden inkubiert. Die Zellen wurden nach 3 h Induktion abzentrifugiert. - In Fermentern wurde analog vorgegangen, jedoch konnte bei sehr viel höheren OD-
Einheiten induziert werden und damit die Zell- und Protein-Ausbeute erheblich gesteigert werden.
Abbildung 12 zeigt die Expression von KBD-B-C16, die durch Antikörper, gerichtet gegen den T7-Tag, den N-terminalen His-Tag, bzw. gegen die KBD-B-Domäne der KBD-B-C16 Fusion in einem Western-Blot untersucht wurde. Detektiert wurde jeweils ein Protein der gleichen Größe.
Das beweist, dass das in E. coli exprimierte Protein tatsächlich aus der C16-Domäne als auch aus der KBD-B-Domäne besteht.
Insgesamt zeigen die Daten, dass eine erfolgreiche Expression von KBD-B-C16 in E. coli er- reicht wurde.
Die Reinigung des Proteins erfolgte wie in Beispiel 11 beschrieben. Das gereinigte Fusionsprotein KBD-B-C16 hatte die erwartete relative molekulare Masse von etwa 82500. Es konnte mit gegen den His-Tag gerichteten Antikörpern, mit gegen den T7-Tag gerichteten Antikörpern und gegen die KBD-B gerichteten Antikörpern nachgewiesen werden.
Um die Funktionalität des gebildeten Fusionsproteins KBD-B-C16 bezüglich Keratin- Bindedomäne zu überprüfen, wurde ein Haarbindungstest durchgeführt (siehe Beispiel 16). Dabei konnte eine Bindung des Fusionsproteins an Haar nachgewiesen werden. Die Funktiona- lität des C16-Proteinanteils im KBD-B-C16-Fusionsprotein wurde mittels Herstellung von Micro- bead- und Film-Assemblierungsformen überprüft (2uf Methode siehe Beispie! 22a). Das KBD-B- C16-Fusionsprotein assemblierte zu Filmen und Microbeads und verhielt sich damit wie das C16-KBD-B-Fusionsprotein.
Beispiel 4: Carotinoid-Bindeprotein (CBP)-KBD-Expression in E. coli-Stämmen mit IPTG induzierbaren Promotoren, z.B. durch das Expressionsplasmid pReeO17 Für die Expression wurden verschiedene Produktionswirte eingesetzt, wie z.B. verschiedene E. coli-Stämme (z.B. XLIO-GoId [Firma Stratagene], BL21-CodonPlus [Firma Stratagene], und andere), Bacillus megaterium, Bacillus subtilis u.a.
Hier wird - stellvertretend als Beispiel - die Klonierung und Expression von CBP-KBD-B durch E. coli, transformiert mit pReeO17 beschrieben:
Klonierung von pReeO17
Die DNA des für das CBP aus B. mori kodierenden Gens (SWISS-PROT: Q8MYA9) wurde synthetisch hergestellt und in einen Plasmidvektor ligiert. Das daraus resultierende Plasmid O51794pPCR-Script diente als Matrize für eine PCR mit den Oligonukleotiden
Lib199 (5'- GAGCTCGCCGACTCTACGTCGAAAAGC-3') (SEQ ID NO.: 169) und Lib200 (5'- GAGCTCAGAACCTCCGGTACCACCGATTTCGGCTCTGGCCTTCGCTTCGGC- CAC-3') (SEQ ID NO.: 170).
Die PCR wurden in 100μ I Reaktionsansätzen durchgeführt, welche wie folgt zusammengesetzt waren:
1 μl Plasmid-DNA 051794 pPCR-script mit CBP
1 μl dNTP-Mix (jedes 10 mM; Fa. Eppendorf)
10 μl 10 x Herculase-Puffer (Fa. Stratagene) 4 μl Lib199 5'Primer (240μg/ml)
4 μl Lib200 3'Primer (730μg/ml)
5 U Herculase (Fa. Stratagene) auf 100 μl mit H2O auffüllen
Die PCR-Reaktionen wurden unter folgenden Zyklusbedingungen durchgeführt:
Schritt 1 : 5 Minuten 95 0C (Denaturierung) Schritt 2: 1 Minute 95 0C Schritt 3: 1 Minute 58 0C (Annealing) Schritt 4: 1 ,5 Minuten 72 0C (Elongation)
30 Zyklen der Schritte 2-4 Schritt 5: 10 Minuten 72 0C (Post- Elongation) Schritt 6: 4 0C (Pause)
Das entstandene etwa 918 bp große PCR-Produkt wurde aus einem Agarosegel ausgeschnitten, aufgereinigt und in folgenden Vektor kloniert: pCR2.1-TOPO (Firma Invitrogen). Der erhaltene Vektor pLib54 wurde anschließend transformiert und in E. coli amplifiziert.
Das CBP-Gen wurde im nächsten Schritt mit den Primern
HReI (5'- AAAGCATGCGCCGACTCTACGTCGAAAAGCGCG-S') (SEQ ID NO.: 173) und HRe2 (5'- CCTTGAGCTCAGAACCTCCGGTACCACCGATT-3') (SEQ ID No.: 174) durch eine PCR amplifiziert.
50 μl PCR-Ansatz:
1Ox PCR-Puffer für Accu Prime Polymerase (Invitrogen) 5μl püb54 (50 ng) 1 μl dNTP's.-Mix (IOmM) 3μl
Oligo HReI (312ng/μl) 1 μl
Oligo HRe2 (338ng/μl) 1 μl
Accu Prime Polymerase (Invitrogen) 1 μl
H2O 38μl
Temperaturprogramm:
1 Min. - 95°C
8 Min - 72°C
Das so erhaltene Fragment (SEQ ID No.: 171)wurde mit Sphl und Sacl geschnitten und in pQE30-KBD-B (siehe Beispiel 2; ebenfalls geschnitten mit Sphl und Sacl) kloniert. Durch diese Klonierung wurde ein chimäres Nukleinsäuremolekül (SEQ ID No.:175) erzeugt, kodierend für das CBP-Protein (SEQ ID No.:172) fusioniert mit dem KBD-B Protein (SEQ ID No.:166). Der daraus hervorgegangene Expressionsvektor pReeO17 (Abbildung 4) enthielt somit das Nuklein- säuremolekül (SEQ ID. No.:175) kodierend für das CBP Protein (SEQ ID. No.:172) fusioniert mit dem Nukleinsäuremolekül (SEQ ID No.: 165) kodierend für das KBD-B Protein (SEQ ID. No.: 166). Die Ligation der genannten Nukleinsäuremoleküle resultiert in einer Translationsfusion besagter Proteine und führt nach erfolger Translation zu einem Protein gemäß SEQ ID No.:176).
In einer weiteren Ausführungsform wurde eine weitere Variante des Chimären Nukleinsäuremo- leküls mit der SEQ ID No.:175 erzeugt, bei dem die Verbindungssequenz, welche die beiden Nukleinsäuren kodierend für das CBP-Protein (SEQ ID No.: 172) und das KBD-B Protein (SEQ ID No.:166) verbindet, durch gezielte Mutagenese (Quick Change Site Directed Mutagenesis Kit, Fa. Stratagene) verändert wurde. Es wurde nach Vorschrift des Herstellers vorgegangen. Als Oligonukleotide wurden HRe22 (SEQ ID No: 229) und HRe23 (SEQ ID No: 230) eingesetzt. Als Templat diente pReeO17 (Abbildung 4).
Der so erhaltene Expressionsvektor pReeO23 enthielt somit das Nukleinsäuremolekül SEQ ID. No.:222, welches für ein Fusionsprotein kodiert, bestehend aus dem CBP Protein (SEQ ID. No.:172) und dem KBD-B Protein (SEQ ID. No.: 166), wobei es sich bei der die beiden Proteine verbindende Sequenz um eine mutagenisierte Linkersequenz (SEQ ID No: 224) handelt. Die Ligation der genannten Nukleinsäuremoleküle resultiert in einer Translationsfusion besagter Proteine und führt nach erfolgter Translation zu einem Fusionsprotein gemäß SEQ ID No.:223, welches sich durch eine besondere proteolytische Stabilität in dem Produktionsstamm aus- zeichnet. Die somit entstandenen Expressionsvektor pReeO17 (siehe auch Abbildung 4) und pReeO23 wurden für die folgenden CBP-KBD-B-Expressionen verwendet.
Expression von CBP-KBD-B durch pReeO17 bzw. pReeO23 in E. coli
- Vorkulturen wurden von Platte oder Glycerinkultur mit pReeO17 oder pReeO23 transformierten E. coli Stämmen angeimpft. Je nach Größe der Hauptkultur wurde in einem Röhrchen oder einem kleinen Kolben LB-Medium angeimpft (ca. 1 :100) Antibiotika wurden je nach verwendetem Stamm eingesetzt (für mit pReeO17 oder pReeO23 transformierte Stämme 100 μg/ml Ampicillin) Es wurde bei 250 rpm und 37 0C inkubiert.
Die Hauptkultur wurde ca. 1 :100 mit Vorkultur angeimpft, Hauptkultur: LB-Medium oder geeignetes Minimalmedium mit den jeweiligen Antibiotika. Inkubation bei 250 rpm und
37°C.
Die Induktion erfolgte mit 1 mM IPTG ab einer OD(600 nm) von 5. Die Zellen wurden anschließend bei 32°C und 250rpm inkubiert. Die Zellen wurden nach 4 h Induktion abzentrifugiert. - Die Reinigung des Proteins erfolgte wie in Beispiel 11 beschrieben.
Das gereinigte Fusionsprotein CBP-KBD hatte die erwartete relative molekulare Masse von etwa 70 000. Es konnte mit gegen das His-Tag gerichteten Antikörpern und gegen KBD gerichteten Antikörpern nachgewiesen werden.
Beispiel 5: Metall-Bindeprotein (ZntA)-KBD-Expression in E. coli-Stämmen mit IPTG induzierbaren Promotoren, z.B. durch das Expressionsplasmid pLib72
Für die Expression wurden verschiedene Produktionswirte eingesetzt, wie z.B. verschiedene E. coli-Stämme (z.B. XHO-GoId [Firma Stratagene], BL21-CodonPlus [Firma Stratagene], und andere), Bacillus megaterium, Bacillus subtilis u.a.
Hier wird - stellvertretend als Beispiel - die Klonierung und Expression von ZntA-KBD-B durch E. coli, transformiert mit pLib72 beschrieben:
Klonierung von pLib72
Chromosomale E. coli DNA diente als Matrize für eine PCR mit den Oligonukleotiden Lib212 (5'-GAGCTCTCGACTCCTGACAATCAC-S') (SEQ ID NO: 177) und Lib219 (5'- GAGCTCGGTTCCTCCGGTACCGCCTCTCCTGCGCAACAATCTTAACG-S') (SEQ ID No: 178). - Das entstandene etwa 2223 bp große PCR-Produkt wurde aus einem Agarosegel ausgeschnitten, aufgereinigt und in folgenden Vektor kloniert: pCR2.1-TOPO (Firma Invitrogen). Der entstehende Vektor pLib71 wurde anschließend transformiert, amplifiziert in E. coli, dann mit Sacl geschnitten und das entstandene zntA-Fragment (SEQ ID No.: 179) in pQE30-KBD-B (siehe Beispiel 2; ebenfalls geschnitten mit Sacl) kloniert. Durch diese KIo- nierung wurde ein chimäresNukleinsäuremolekül (SEQ ID. No.:181) erzeugt, kodierend für das ZntA Protein (SEQ ID. No.: 180) fusioniert mit dem KBD-B Protein (SEQ ID. No.: 166). Der daraus hervorgegangene Expressionsvektor pLib72 (Abbildung 5) enthielt somit ein Nukleinsäuremolekül (SEQ ID. No.:179) kodierend für das ZntA-Protein (SEQ ID. No.:180) fusioniert mit dem Nukleinsäuremolekül (SEQ ID No.: 165) kodierend für das KBD-B Pro- tein (SEQ ID. No.: 166). Die Ligation der genannten Nukleinsäuremoleküle resultiert in einer Translationsfusion besagter Proteine und führt nach erfolger Translation zu einem Protein gemäß SEQ ID No.:182. Der somit entstandene Expressionsvektor pLib72 (siehe auch Abbildung 5) wurde für die folgenden ZntA-KBD-B-Expressionen verwendet.
Die PCR wurden in 50 μl Reaktionsansätzen durchgeführt, welche wie folgt zusammengesetzt waren: 1 μl genom. DNA XHO-GoId (1 ,7μg) 1 μl dNTP-Mix (jedes 10 mM; Fa. Eppendorf) 5 μl 10 x Herculase-Puffer (Fa.Stratagene)
1 μl Lib212 5'Primer (341 μg/ml)
2 μl Lib219 3'Primer (464μg/ml) 5 U Herculase (Fa. Stratagene) auf 50μl mit H2O auffüllen
Die PCR-Reaktionen wurden unter folgenden Zyklusbedingungen durchgeführt:
Schritt 1 : 5 Minuten 95 0C (Denaturierung)
Schritt 2: 1 Minute 95 0C
Schritt 3: 45 Sekunden 60 0C (Annealing)
Schritt 4: 2 Minuten 72 0C (Elongation)
35 Zyklen der Schritte 2-4 Schritt 5: 10 Minuten 72 0C (Post- Elongation)
Schritt 6: 4 0C (Pause)
Beispiel 6: Thioredoxin-KBD-Expression in E. coli-Stämmen mit IPTG induzierbaren Promotoren
Für die Expression wurden verschiedene Produktionswirte eingesetzt, wie z.B. verschiedene E. coli-Stämme (z.B. XHO-GoId [Firma Stratagene], BL21-CodonPlus [Firma Stratagene], und andere), Badllus megaterium, Bacillus subtilis u.a. Hier wird - stellvertretend als Beispiel - die Klonierung und Expression von Thioredoxin-KBD-B durch E. coli beschrieben:
Zunächst wurde das interessierende Thioredoxin-Fragment aus dem Vektor pThioHisC (Firma Invitrogen) per PCR amplifiziert (PCR-Ansatz-Bedingungen analog Beispiel 2). Dazu wurden die folgenden Oligonukleotide verwendet:
Bag 102: (5'-GTAAGAATGCGGCCGCCTCCTGAACAGACATTTCTTTATTG-S') (SEQ ID No.: 183)
Bag 103: (5'-GCAGATCTAGAGGATCGCATCACCATCACCATCACGGATCC-S') (SEQ ID No.: 184)
Das amplifizierte PCR-Produkt (SEQ ID No.: 185) wurde aus einem Agarosegel ausgeschnitten, aufgereinigt, mit den Restriktionsendoribonucleasen Notl und BgIII geschnitten und in pQE30- KBD-B (siehe Beispiel 2) kloniert.
Durch diese Klonierung wurde ein chimäres Nukleinsäuremolekül (SEQ ID. No.:187) er- zeugt, kodierend für das Thioredoxin-Protein (SEQ ID. No.: 186) fusioniert mit dem KBD-B
Protein (SEQ ID. No.: 166). Der daraus hervorgegangene Expressionsvektor enthielt somit ein Nukleinsäuremolekül (SEQ ID. No.:185) kodierend für das Thioredoxin-Protein (SEQ ID. No.:186) fusioniert mit dem Nukleinsäuremolekül (SEQ ID No.: 165) kodierend für das KBD-B Protein (SEQ ID. No.: 166). Die Ligation der genannten Nukleinsäuremole- küle resultiert in einer Translationsfusion besagter Proteine und führt nach erfolgter Trans- lation zu einem Protein gemäß SEQ ID No.:188. Der somit entstandene Expressionsvektor wurde für die folgenden Thioredoxin-KBD-B-Expressionen verwendet.
Beispiel 7: eGFP-KBD-Expression in E. coli-Stämmen mit IPTG induzierbaren Promotoren
Für die Expression wurden verschiedene Produktionswirte eingesetzt, wie z.B. verschiedene E. coli-Stämme (z.B. XHO-GoId [Firma Stratagene], BL21-CodonPlus [Firma Stratagene], und andere), Bacillus megaterium, Bacillus subtilis u.a.
Hier wird - stellvertretend als Beispiel - die Klonierung und Expression von eGFP-KBD-B durch E. coli beschrieben:
Zunächst wurde das interessierende eGFP-Fragment aus dem Vektor pEGFP-1 (Firma Clon- tech) per PCR amplifiziert (PCR-Ansatz-Bedingungen analog Beispiel 2). Dazu wurden die folgenden Oligonukleotide verwendet:
Bag 89: (5'- GCGAGCTCGTGAGCAAGGGCGAGGAGC -3') Bag 90: (5'- GCGAGCTCCTTGTACAGCTCGTCCATG -3')
Das amplifizierte PCR-Produkt (SEQ ID No.: 191)wurde aus einem Agarosegel ausgeschnitten, aufgereinigt, mit der Restriktionsendoribonuclease Sacl geschnitten und in pQE30-KBD-B (siehe Beispiel 2) kloniert.
Durch diese Klonierung wurde ein chimäres Nukleinsäuremolekül (SEQ ID. No.: 193) erzeugt, kodierend für das eGFP-Protein (SEQ ID. No.: 192) fusioniert mit dem KBD-B Protein (SEQ ID. No.: 166). Der daraus hervorgegangene Expressionsvektor enthielt somit ein Nukleinsäuremolekül (SEQ ID. No.: 191 ) kodierend für das eGFP-Protein (SEQ
ID. No.: 192) fusioniert mit dem Nukleinsäuremolekül (SEQ ID No.: 165) kodierend für das KBD-B Protein (SEQ ID. No.: 166). Die Ligation der genannten Nukleinsäuremoleküle resultiert in einer Translationsfusion besagter Proteine und führt nach erfolgter Translation zu einem Protein gemäß SEQ ID No.:194. Der somit entstandene Expressionsvektor wur- de für die folgenden eGFP-KBD-B-Expressionen verwendet.
Beispiel 8: YaaD-KBD-Expression in E. coli-Stämmen mit IPTG induzierbaren Promotoren
Für die Expression wurden verschiedene Produktionswirte eingesetzt, wie z.B. verschiedene E. coli-Stämme (z.B. XHO-GoId [Firma Stratagene], BL21-CodonPlus [Firma Stratagene], und andere), Bacillus megaterium, Bacillus subtilis u.a.
Hier wird - stellvertretend als Beispiel - die Klonierung und Expression von YaaD-KBD-B durch
E. coli beschrieben:
Zunächst wurde das interessierende YaaD-Fragment aus dem Vektor pDX14 (Firma OmniGene
Bioproducts) per PCR amplifiziert (PCR-Ansatz-Bedingungen analog Beispiel 2). Dazu wurden die folgenden Oligonukleotide verwendet:
Bag 93: (5'- GCGAGCTCGCTCAAACAGGTACTGAACG -3') (SEQ ID No.: 195) Bag 94: (5'- GCGAGCTCCCAGCCGCGTTCTTGCATACG -3') (SEQ ID No.: 196) Das amplifizierte PCR-Produkt (SEQ ID No.: 197) wurde aus einem Agarosegel ausgeschnitten, aufgereinigt und in pCR2.1 TOPO ligiert (ohne Restriktionsverdau). Aus dem Plasmid pCR2.1 TOPO-YaaD wurde das YaaD mit Sacl herausgeschnitten und in pQE30-KBD-B (siehe Beispiel 2) kloniert. Durch diese Klonierung wurde ein chimäres Nukleinsäuremolekül (SEQ ID. No.: 199) erzeugt, kodierend für das yaaD-Protein (SEQ ID. No.: 198) fusioniert mit dem KBD-B Protein (SEQ ID. No.: 166). Der daraus hervorgegangene Expressionsvektor enthielt somit ein Nukleinsäuremolekül (SEQ ID. No.:197) kodierend für das yaaD-Protein (SEQ ID. No.:198) fusioniert mit dem Nukleinsäuremolekül (SEQ ID No.: 165) kodierend für das KBD-B Protein (SEQ ID. No.: 166). Die Ligation der genannten Nukleinsäuremoleküle resultiert in einer Translationsfusion besagter Proteine und führt nach erfolgter Translation zu einem Protein gemäß SEQ ID No.: 200. Der somit entstandene Expressionsvektor wurde für die folgenden yaaD-KBD-B-Expressionen verwendet.
Es ist selbstverständlich, dass die in den Beispielen 3 bis 8 beispielhaft erzeugten DNA- Kontrukte zur Erzeugung von keratinbindenden Fusionsproteinen auch unter Verwendung des Vektors pReeO24 (Abb. 8, Bsp. 18-22) hergestellt werden können. Die somit entstehenden Fusionsproteine enthalten im Falle des pReeO24 das KBD-D Protein (SEQ ID No.: 212). Beispiel 9: Expression von KBD mittels Aspergillus nidulans-Stämmen unter Verwendung des induzierbaren alcA-Promotors, z.B. durch das Expressionsplasmid pLib 19 (Schüttelkolben) Für die Expression wurden A. nidulans-Wildtypstämme eingesetzt, wie z.B. RMS011 oder SRF200. Hier wird - stellvertretend als Beispiel - die Expression von KBD-B durch A. nidulans, transformiert mit pLib19 (Abbildung 6) beschrieben.
- Zur Konstruktion von pLib19 wurde ein 922 bp (SEQ ID No.: 152) großes, KBD-B- kodierendes DNA-Fragment mittels PCR unter Verwendung der Oligonukleotide Lib151 (5'-CACCATGCATCACCATCACCATCACGAGCCACATACTGGTCTGCT-S' (SEQ ID No.: 154) und Lib152 (5'- GCTAATTAAGCTTGGCTGCA-3' (SEQ ID No.: 155) sowie des Vektors pQE30-KBD-B (Beispiel 2, Abbildung 1) als Template amplifiziert .
Die PCR wurden in 50 μl Reaktionsansätzen durchgeführt, welche wie folgt zusammengesetzt waren:
1 μl Plasmid-DNA pQE30-KBD-B 1 μl dNTP-Mix (jedes 10 mM; Fa. Eppendorf) 5 μl 10 x PCR-Puffer + MgCI2 (Fa. Roche)
1 μl Lib151 5'Primer (entspricht 50 pmol) 1 μl Lib152 3'Primer (entspricht 50 pmol) 5 U Pwo-Polymerase (Fa. Roche)
Die PCR-Reaktionen wurden unter folgenden Zyklusbedingungen durchgeführt:
Schritt 1 : 5 Minuten 95 0C (Denaturierung) Schritt 2: 45 Sekunden 95 0C Schritt 3: 45 Sekunden 53 0C (Annealing) Schritt 4: 2 Minuten 72 0C (Elongation)
30 Zyklen der Schritte 2-4 Schritt 5: 10 Minuten 72 0C (Post- Elongation) Schritt 6: 4 0C (Pause)
Das PCR-Produkt wurde in den Vektor pENTR/D (pENTR™ Directional TOPO® Cloning Kit, Version E, Firma Invitrogen) ligiert. Die korrekte KBD-B Amplifizierung wurde durch Sequenzierung überprüft.
Die Rekombination des KBD-B kodierenden DNA-Fragmentes erfolgte in den Vektor pMT- OvE (Toews MW, Warmbold J, Konzack S, Rischitor P, Veith D, Vienken K, Vinuesa C, Wei H, Fischer R; Establishment of mRFP1 as a fluorescent marker in Aspergillus nidu- lans and construction of expression vectors for high-throughput protein tagging using re- combination in vitro (GATEWAY). (2004) Curr Genet 45: 383-389) unter Verwendung des
„Gateway® LR clonase™ enzyme mix" (Firma Invitrogen). Dabei entstand der Vektor püb19 (Abbildung 6).
Protoplasten der A. nidulans Wildtyp-Stämme wurden mit dem zirkulären Vektor pLib19 in transformiert (Yelton MM, Hamer JE, Timberlake WE; Transformation of Aspergillus nidulans by using a trpC plasmid., (1984) Proc Natl Acad Sei USA 81 : 1479-1474). Die Analyse der Transformanten erfolgte mittels PCR und Southern Blot unter Verwendung chromosomaler DNA.
Zur Vorkultur von KBD-B-expremierenden A. nidulans-Transformanten wurden 100 ml Minimalmedium (0,6 % NaNO3; 0,152 % KH2PO4; 0,052 % KCl [pH 6,5]; 0,8 % Glukose;
0,05 % MgSO4; 1 ml Spurenelementelösung [1 g/l FeSO4 x 7 H2O; 8,8 g/l ZnSO4 x 7 H2O;
0,4 g/l CuSO4 x 5 H2O; 0,15 g/l MnSO4 x 4 H2O; 0,1 g/l Na2B4O7 x 10 H2O; 0,05 g/l
(NH4)βMθ7θ24 x 4 H2O], + stammspezifische Supplemente) oder 100 ml Komplettmedium
(2 % Malzextrakt; 0,1 % Pepton; 2 % Glukose; + stammspezifische Supplemente) in 500 ml Kolben mit 106-107 Sporen angeimpft und für 16-24 h bei 200-250 rpm und 37°C inkubiert.
Nach der Vorkultur wurde das Pilzmyzel durch Filtration geerntet, mit destilliertem Wasser gewaschen und in Kolben mit 100-500 ml frischem Minimalmedium überführt. In diesem Hauptkulturmedium wurde 0,1 % Fructose statt Glukose als C-Quelle verwendet. Zur Induktion der KBD-Expression wurde dem Medium zusätzlich Ethanol (1 % Endkonzentration) oder Glycerol (50 mM) oder Natriumacetat (50 mM) oder Ethylamin oder Threonin zugegeben. Die erwähnten Zusätze zur Expressionsinduktion sind nicht limitierend für die Beanspruchung. Die Hauptkultur wurde für weitere 5-48 h bei 200-250 rpm und 37°C in- kubiert.
Nach Kulturende wurde das Pilzmyzel mit 1500-3000 x g für 5 min bei Raumtemperatur geerntet und mittels eines Menton-Gaulin aufgeschlossen.
- Die in A. nidulans expremierte KBD-B (SEQ ID No.: 152) (pLib19) beinhaltete neben der Polypeptidsequenz SEQ ID No.: 4 zusätzlich am N-Terminus die Aminosäuren MHHHHHH sowie am C-Terminus die Aminosäuren GVDLQPSLISKGGRADPAFLYKVV- MIRLLTKPERKLLEGGPGTQLLFPLVRVNCALGVIMVIAVSCVKLLSAHNSTQHTSRKHKV.
Beispiel 10: Zell-Aufschluss und Inclusion-Body-Reinigung (pQE30-KBD-B).
Löslich exprimierte KBD oder auch Fusionsprotein-KBD konnte nach Zellaufschluss (z.B. mittels Menton-Gaulin) direkt verwendet bzw. chromatographisch gereinigt werden (siehe Beispiel 1 1). Unlöslich exprimierte KBD oder auch Fusionsprotein-KBD (z.B. in Inclusion Bodies) wurde folgendermaßen gereinigt:
Der Fermenterinhalt wurde zentrifugiert, das Pellet in 20 mM Phosphatpuffer pH = 7,5 suspendiert und mittels eines Menton-Gaulin aufgeschlossen.
Der Aufschluss wurde erneut zentrifugiert (15000g), das Pellet hiervon mit 20 mM Phosphat, 500 mM NaCI und 8 M Harnstoff versetzt und so gerührt. (Lösen der Inclusion- Bodies)
Der pH-Wert des Überstandes wurde auf 7,5 eingestellt - Danach wurde nochmals zentrifugiert und der Überstandes auf eine Ni-Chelat Sepharose Säule aufgetragen und wie in Beispiel 6 beschrieben aufgereinigt.
Beispiel 1 1 : Reinigung von Keratin-Binde-Domäne B oder auch Fusionsprotein-KBD über Ni- Chelat-Sepharose. Die Reinigung der KBD oder auch Fusionsprotein-KBD konnte durch das angehängte His-Tag über eine Ni-Säule chromatographisch gereinigt werden.
Säulenmaterial: Ni-Sepharose High Performance
Firma Amersham Biosciences Best.Nr.:17-5268-02
Das Material wurde in eine Säule gepackt (z.B. Durchmesser 2,6 cm, Höhe 10 cm) und mit Puffer A + 4 % Puffer B (entspricht 20 mM Imidazol) äquilibriert.
Der Proteinextrakt (siehe z.B. Zell-Aufschluss und Inclusion-Body-Reinigung) wurde mit pH 7,5 über einen Superloop (ÄKTA-System) auf die Säule auftragen (Flow ca. 5 ml/Min).
Nach dem Auftrag wurde mit Puffer A + 2OmM Imidazol gewaschen. Elution erfolgte mit Puffer B (50OmM Imidazol in Puffer A). Das Eluat wurde mittels eines Fraktionssammlers fraktioniert aufgefangen.
Anschließend konnte das Eluat entsalzt werden (vorteilhaft für Proben die konzentriert werden sollen). Dazu wurde das Eluat z.B. über eine Sephadex G25 Medium Säule (Firma Amersham) entsalzt. Danach konnte zum Konzentrieren z.B eine Amicon-Kammer (Stirred Ultrafiltration Cell, Firma Millipore). verwendet werden.
Puffer A: 20 mM Natriumdihydrogenphosphat
500 mM NaCI (es können wahlweise auch Puffer mit geringeren NaCI-
Konzentrationen verwendet werden)
8M Harnstoff (Harnstoff braucht nicht verwendet werden, wenn „aktive" KBD chromatographiert wird, die bereits löslich exprimiert worden ist.
Ohne Harnstoff braucht keine Renaturierung des Proteins folgen.) pH = 7,50
Puffer B: 20 mM Natriumdihydrogenphosphat
500 mM NaCI (es können wahlweise auch Puffer mit geringeren NaCI- Konzentrationen verwendet werden) 8M Harnstoff
500 mM Imidazol pH = 7,50
Beispiel 12: Renaturierung von Keratin-Binde-Domäne B oder auch Fusionsprotein-KBD. Unlöslich exprimierte Keratin-Binde-Domäne oder auch Fusionsprotein-KBD (z.B. aus Inclusion Bodies) kann folgendermaßen renaturiert und damit aktiviert werden:
Methode 1 : diskontinuierliche Dialyse
Zu 6,5 ml KBD-B-Inclusion-Bodies oder auch Fusionsprotein-KBD in 8M Harnstoff (Ni-Chelat- Eluat, HiTrap) wurden 6,5 ml Cellytic IB (Firma Sigma, Bestellnr. C5236) und 5 mM DTT gegeben. Danach wurde die zu renaturierende Lösung in einen Dialyseschlauch gefüllt (Firma Spectrum: Spectra Por MWCO:12-14kD).
Ca. 12 Stunden gegen 1 L 6M Harnstofflsg. bei 4°C unter vorsichtigem Rühren dialysieren.
Es wurden 500 ml 25 mM Tris/HCI pH = 7,50 zugegeben und so für 9 Stunden bei 4°C dialy- siert. Anschließend Zugabe von weiteren 250 ml des Trispuffers (s.o) und weitere 12 Stunden dialysiert.
Anschließend wurden erneut 500 ml 25 mM Tris/HCI pH = 7,50 zugegeben und so für 9 Stunden bei 4°C dialysiert. Anschließend Zugabe von weiteren 250 ml des Trispuffers (s.o.) und weitere 12 Stunden dialysiert.
Anschließend wurden erneut 500 ml 25 mM Tris/HCI pH = 7,50 zugegeben und so für 9 Stunden bei 4°C dialysiert. Dann wurde der Dialyseschlauch mit dem Dialysat in 2L: 25 mM Tris + 150 mM NaCI pH= 7,50 gegeben. So wurde erneut bei 4°C für 12 Stunden dialysiert.
Anschließend wurde der Inhalt des Dialyseschlauches entnommen.
Methode 2: kontinuierliche Dialyse
20 ml KBD-B-Inclusion-Bodies (oder auch Fusionsprotein-KBD) in 8 M Harnstoff (Ni-Chelat- Eluat, HiTrap) wurden mit 10 ml Cellytic IB (Firma Sigma, Bestellnr. C5236) und 5 mM DTT versetzt. Danach wurde die Lösung in eine Dialysekammer: Slide-A-Lyzer Dialyses Cassette Firma PIERCE, MWCO: 10 kD. Bestellnr.: 66830, eingefüllt.
Anschließend wurde für ca. 1 Stunde gegen 1 L 6 M Harnstofflsg. bei 4°C dialysiert.
Danach wurden über einen Zeitraum von 48 h kontinuierlich 2 L des folgenden Puffers mittels einer Schlauchpumpe zudosiert: 25 mM Tris/HCI pH = 7,5.
Anschließend wurde der Dialyseschlauch mit dem Dialysat in 2 L des Endpuffers gegeben:
25 mM Tris + 150 mM NaCI pH= 7,50 und für ca. 12 Stunden bei 4°C dialysiert. Anschließend wurde der Inhalt des Dialyseschlauches entnommen.
Beispiel 13: Bindung an Haut 1 (Qualitativ) Es wurde ein visueller qualitativer Test entwickelt, um zu überprüfen, ob KBD oder auch Fusionsprotein-KBD an Haut bindet.
Verwendete Lösungen:
Blockierungslsg: Western Blocking Reagent 1921673 Roche (10 x Lsg) in TBS verdünnt
TBS: 20 mM Tris; 150 mM NaCI pH 7,5 TTBS: TBS + 0,05% Tween20
Der erste Schritt ist der Transfer der äußeren Keratinschicht von der Haut auf einen stabilen Träger. Dazu wurde ein Klarsichtklebestreifen fest auf enthaarte menschliche Haut aufgebracht und wieder entfernt. Der Test kann direkt auf dem Klarsichtklebestreifen durchgeführt werden oder die anhaftende Keratinschicht durch erneutes Aufkleben auf einen Glasobjektträger überführt werden. Der Nachweis von Bindung wurde wie folgt vorgenommen:
zur Inkubation mit den verschiedenen Reagentien, Transfer in ein Falcongefäß ggf. Zugabe von Ethanol zur Entfettung, Entfernung von Ethanol und Trocknung der Objektträger 1 h bei Raumtemperatur inkubiert mit Blocking Puffer - 2x 5 min gewaschen mit TTBS 1x 5 min gewaschen mit TBS
Inkubation mit der zu testenden KBD oder auch Fusionsprotein-KBD (gekoppelt an tag - z.B. Hise, HA etc.) bzw. Kontrollprotein in TBS / 0,05% Tween 20 während 2-4 h bei Raumtemperatur - Entfernung des Überstands 3x Waschen mit TBS
1 h bei Raumtemperatur Inkubation mit Monoclonal Anti-polyHistidin (oder spezifischen KBD Rabbit) Antikörper, verdünnt 1 :2000 in TBS + 0,01 % Blocking 2x 5min gewaschen mit TTBS - 1x 5 min gewaschen mit TBS
1 h bei Raumtemperatur Inkubation mit Anti-Mouse IgG Alkalische-Phosphatase-Conjugate, verdünnt 1 :5000 in TBS + 0,01 % Blocking 2x 5 min gewaschen mit TTBS 1x 5 min gewaschen mit TBS - Zugabe von Phosphatasesubstrat (NBT-BCIP; Boehringer MA 1Tablette/40 ml Wasser 2,5 min; Stopp: mit Wasser)
Optische Detektion des Farbniederschlages mit bloßem Auge oder im Mikroskop. Ein blauer Farbniederschlag zeigt an, dass KBD bzw. Fusionsprotein-KBD an die Haut gebunden hat.
Beispiel 14: Bindung an Haut 2 (Quantitativ) Es wurde ein quantitativer Test entwickelt, mit dem sich die Haar/Haut-Bindungsstärke der KBD oder auch Fusionsprotein-KBD mit unspezifischen Proteinen vergleichen lässt.
Aus einem aufgetauten trockenen Stück Haut ohne Haare (human oder Schwein), wurde mit einem 5 mm Korkbohrer ein Stück herausgebohrt (bzw. bei einem Oberflächentest ein Stück
Haut in ein Falcondeckel eingepasst). Die Hautprobe wurde dann auf eine Dicke von 2-3 mm gebracht um evt. vorhandenes Gewebe zu entfernen. Die Hautprobe wurde anschließend in ein
Eppendorfgefäß (Protein-Lowbind) überführt, um den Bindungsnachweis durchzuführen (siehe auch Abbildung 7; Alternativ kann auch das Episkin-System [rekonstituierte humane Haut] von L'Oreal verwendet werden):
2 x Waschen mit PBS / 0,05 % Tween 20
Zugabe von 1 ml 1 % BSA in PBS und Inkubation während 1 h bei Raumtemperatur, leichte Schwenkbewegungen (900 rpm). - Entfernung des Überstands
Zugabe von 100 μg KBD oder auch Fusionsprotein-KBD in PBS mit 0,05 % Tween 20;
Inkubation 2 h bei Raumtemperatur und leichten Schwenkbewegungen (900 rpm).
Entfernung des Überstands - 3x Waschen mit PBS / 0,05 % Tween 20
Inkubation mit 1 ml monoklonalen Maus anti-tag-(His6 bzw. HA oder spezifischen KBD)-
Antikörper mit Peroxidase Conjugate (1 :2000 in PBS mit 0,05 % Tween 20) [Monoclonal
AntipolyHistidin Peroxidase Conjugate, produced in mouse, lyophilized powder, Firma
Sigma] während 2-4 h bei Raumtemperatur, leichte Schwenkbewegung (900 rpm) - 3x Waschen mit PBS / 0,05 % Tween 20
Zugabe von Peroxidasesubstrat (1 ml / Eppendorfgefäß; Zusammensetzung s.u.)
Reaktion bis zur Blaufärbung laufen lassen (ca. 90 Sekunden).
Mit 100 μl 2 M H2SO4 die Reaktion abstoppen.
Die Absorption wurde bei 405 nm gemessen
Peroxidasesubstrat (kurz vorher ansetzten): 0,1 ml TMB-Lösung (42 mM TMB in DMSO) + 10 ml Substratpuffer (0,1 M Natriumacetat pH 4,9) + 14,7 μl H2O2 3%ig
Beispiel 15: Bindung an Haar (Quantitativ)
Um die Bindungsstärke der KBD oder auch Fusionsprotein-KBD an Haar auch im Vergleich zu anderen Proteinen nachweisen zu können, wurde ein quantitativer Assay entwickelt (siehe auch Abbildung 7). Bei diesem Test wurde zunächst Haar mit KBD (bzw. Fusionsprotein-KBD) inku- biert und überschüssige KBD (bzw. Fusionsprotein-KBD) abgewaschen. Anschließend wurde eine Antikörper-Peroxidase-Konjugat über das His-Tag der KBD (bzw. Fusionsprotein-KBD) gekoppelt. Nicht gebundene Antikörper-Peroxidase-Konjugat wurde erneut abgewaschen. Das gebundene Antikörper-Peroxidase-Konjugat [Monoclonal AntipolyHistidin Peroxidase Conjugate, produced in mouse, lyophilized powder, Firma Sigma] kann ein farbloses Substrat (TMB) in ein farbiges Produkt umsetzen, das photometrisch bei 405 nm vermessen wurde. Die Stärke der Absorption zeigt die Menge an gebundenem KBD (bzw. Fusionsprotein-KBD) bzw. Vergleichsprotein an. Als Vergleichsprotein wurde z.B. YaaD aus B. subtilis gewählt, das ebenfalls - wie es für diesen Test nötig ist - ein His-Tag zur Detektion aufwies. Anstatt des His-Tag können auch andere, spezifische Antikörper konjugiert mit Peroxidase verwendet werden.
5 mg Haare (human) werden in 5 mm lange Stücke geschnitten und in Eppendorfgefäße (Prote- in-Lowbind) überführt, um den Bindungsnachweis durchzuführen:
Zugabe von 1 ml Ethanol zur Entfettung
Zentrifugation, Entfernung von Ethanol und Waschung der Haare mit H2O
Zugabe von 1 ml 1 % BSA in PBS und Inkubation während 1 h bei Raumtemperatur, leich- te Schwenkbewegungen.
Zentrifugation, Entfernung des Überstands
Zugabe der zu testenden Keratinbindedomäne (bzw. Fusionsprotein-KBD) (gekoppelt an tag - z.B. Hise, HA etc.) bzw. Kontrollprotein in 1 ml PBS / 0,05 % Tween 20; Inkubation für 16 h bei 4°C (oder mindestens 2 h bei Raumtemperatur) bei leichten Schwenkbewe- gungen.
Zentrifugation, Entfernung des Überstands
3x Waschen mit PBS / 0,05 % Tween 20
Inkubation mit 1 ml monoklonalen Maus anti-tag-(His6 bzw. HA)-Antikörper mit Peroxida- se-Konjugat (1 :2000 in PBS / 0,05 % Tween 20) [Monoclonal AntipolyHistidin Peroxidase
Conjugate, produced in mouse, lyophilized powder, Firma Sigma] während 2-4 h bei
Raumtemperatur, leichte Schwenkbewegung
3 x Waschen mit PBS / 0,05 % Tween 20
Zugabe von Peroxidasesubstrat (1 ml / Eppendorfgefäß) - Reaktion bis zur Blaufärbung laufen lassen (ca. 2 Minuten).
Mit 100 μl 2 M H2SO4 die Reaktion abstoppen.
Die Absorption wird bei 405 nm gemessen
Peroxidasesubstrat (kurz vorher ansetzten): 0,1 ml TMB-Lösung (42 mM TMB in DMSO)
+ 10 ml Substratpuffer (0,1 M Natriumacetat pH 4,9) + 14,7 μl H2O2 3%ig
BSA = Bovine serum albumin PBS = Phosphat gepufferte Salzlösung
Tween 20 = Polyoxyethylene sorbitan monolaureate, n ca. 20 TMB = 3,5,3,'5' Tetramethylbenzidin
Ein beispielhaft für KBD-B durchgeführter Bindungs-Test an Haar zeigte eine deutliche Überle- genheit der Bindung von KBD-B (SEQ ID No.: 166) an Haar gegenüber einer wesentlichen schlechteren Bindung des Vergleichsproteins YaaD:
Tabelle 7.: Quantitativer KBD Aktivitäts-Test Haar: 1) Puffer; 2) Vergleichsprotein YaaD; 3) KBD-B denaturiert; 4) KBD-B renaturiert. Die Tabelle zeigt die gemessenen Absorptionswerte bei 405 nm.
Beispiel 16: Haarbindeaktivität von Fusionsprotein-KBD-B
Um zu über prüfen, ob auch das Fusionsprotein-KBD-B an Haar bindet, wurde ein quantitativer Bindungsassay durchgeführt (siehe Abb. 7): Bei diesem Test wurde zunächst Haar mit Fusionsprotein-KBD-B inkubiert und nicht gebundenes Fusionsprotein-KBD-B abgewaschen. An- schließend wurde eine Peroxidase über das His-Tag der KBD-B gekoppelt. Nicht gebundene Peroxidase wurde erneut abgewaschen. Die gebundene Peroxidase kann ein farbloses Substrat (TMB) in ein farbiges Produkt umsetzen, das photometrisch bei 405 nm vermessen wurde. Die Stärke der Absorption zeigt die Menge an gebundenem Fusionsprotein-KBD-B an. Als Vergleichsprobe konnte KBD-B ohne Fusionsprotein gewählt werden.
Messung der Haarbindeaktivität des C16-KBD-B-Fusionsproteins im Verlgeich zur einem KBD-B Referenzprotein. Wie diese Ergebnisse zeigen, ist die Haarbindeaktivität des Fusionsproteins (A405 nm = 0,59) gegenüber dem KBD-B Protein (A405 nm = 0,65) kaum verändert.
Insgesamt zeigen diese Aktivitätstests, dass die verschiedenen Fusionsprotein-KBD-B- Konstrukte, eine gute Haarbindeaktivität, wie auch die KBD-B selbst, aufweisen. In den meisten Fällen sinkt die Haarbindeaktivität gar nicht, zumindest aber sehr selten unter 20% der Haarbindeaktivität von KBD-B ohne Fusionsprotein.
Beispiel 16a: Bindung von Beta-Carotin an das CBP-KBD-Fusionsprotein hergestellt gemäß Beispiel 4.
Ein beispielhaft für das Fusionsprotein CBP-KBD-B (SEQ ID No. 223) durchgeführter Bindungstest an Haar zeigte eine vergleichbare Bindung von CBP-KBD-B (SEQ ID No. 223) an Haar verglichen mit dem Protein KBD-B (SEQ ID No.4). Gleiches gilt für einen beispielhaft mit C16- KBD (SEQ ID No.168) sowie KBD-B-C16 (SEQ ID 228) durchgeführten Haarbindungstest.
Die Bindung von beta-Carotin an CBP-KBD (SEQ ID No. 223) im Vergleich zum KBD (SEQ ID No. 4) wurde untersucht. Das UV-Vis-Absorptionsspektrum von beta-Carotin weist ein Maximum bei 440 nm auf. Diese Eigenschaft wurde für die Untersuchung der beta-Carotin-Bindung an das Fusionsprotein herangezogen. Zunächst wurden variierende Konzentrationen (0 - 20 μM) einer CBP-KBD-Lösung mit gleichen Mengen einer ethanolischen beta-Carotinlösung versetzt. Mit steigender Konzentration des Fusionsproteins nahm die Färbung der Lösung zu. Diese Beobachtung wurde durch eine photometrische Messung bei 440 nm bestätigt.
Um die Bindung von beta-Carotin an das CBP-KBD-Fusionsprotein zu verifizieren, wurde jeweils eine KBD und CBP-KBD Lösung (jeweils gleicher Molarität) mit gleichen Konzentrationen einer ethanolischen beta-Carotinlösung versetzt und über Nacht gegen Puffer dialysiert. Am nächsten Tag wurde die Bindung von beta-Carotin durch Absorptionsmessung der Lösungen bei 440 nm bestimmt und mit einer Eichgerade einer beta-Carotin-Lösung verglichen. So wurde festgestellt, dass CBP-KBD im Vergleich zu KBD trotz Dialyse zweifach mehr beta-Carotin bindet. Die Ergebnisse zeigen, dass eine erfolgreiche Bindung von beta-Carotin durch das Fusionsprotein erzielt wird.
Beispiel 17: Überprüfung des Kopplungserfolges (Ellmanntest)
Der Erfolg der Effektorkopplung wurde über zwei verschiedene Tests verfolgt:
(iv) Ellmanntest, bei dem die Anzahl freier Cys-SH-Gruppen im Protein vor und nach der chemischen Effektorproteinkopplung bestimmt werden kann. Hier zeigt eine starke Reduzierung der freien SH-Gruppen nach der Kopplung einen guten Reaktionsablauf an.
(v) Aktivitätstest, bei dem die Bindung der KBD-(bzw. Fusionsprotein-KBD) an Haar gemessen werden kann. Eine gutes Fusionsprotein-KBD sollte die Aktivität der Fusionsprotein-KBD gegenüber ungekoppelter KBD nicht vermindern.
Zu(iii)
Benötigte Materialien:
- Ellmannsreagenz: 5,5'-Dithiobis(2-nitrobenzoesäure) (DTNB); 4mg / 1 ml in 0,1 M Na- Phosphat Puffer
- 0,1 M Na-Phosphat Puffer pH 8,0
- Cysteinlösung (26,3 mg Cystein hydrochlorid monohydrate / 100ml Na-Phosphat Puffer) Die Lösungen wurden und dürfen erst kurz vor dem Gebrauch angesetzt werden.
1. Jeweils 25 μl, 50 μl, 100 μl, 150 μl 200 μl und 250 μl Cysteinlösung wurden in Reagenzgläser (13 x 100 mm) für eine Eichgerade pipettiert. Die zu bestimmenden Proteinproben wurden in separate Reagenzgläser abgefüllt (Volumen <= 250 μl). Von der zu testenden KBD wurden mindestens eine Menge von 1 mg pro Reaktionsansatz abgefüllt. Bei den Reagenzgläsern wurde nun das Gesamtvolumen auf jeweils 250 μl mit Na-Phosphat Puffer eingestellt. Wenn das Volumen von 250 μl Probe überschritten war (aufgrund der benötigten 1 mg KBD), wurde dies beim Auffüllen bei Punkt 2 mit 2,5 ml Na-Phosphat Puffer berücksichtigt.
2. Zugabe von je 50 μl Ellmannsreagenz und 2,5 ml Na-Phosphat Puffer. Kurz mischen und 15 Min bei RT inkubieren. 3. Messen der Absorbtion bei 412nm
4. Erstellen der Eichgeraden, eintragen und ablesen der Werte der zu bestimmenden Protein- proben.
Beispiel 18: Expression von KBD-D (SEQ ID No.: 212) mittels Escherichia coli -Stämmen unter Verwendung des Expressionsplasmids pReeO24 mit einem IPTG induzierbaren Promotor (Abbildung 8) Für die Expression wurde der E. coli Stamm XL10 Gold [Stratagene] verwendet.
Hier wird, stellvertretend als Beispiel, die Klonierung von KBD-D (SEQ ID No.:212) und die anschließende Expression des KBD-D Proteins (SEQ ID No.:213) in E. coli, transformiert mit pReeO24 (Abbildung 8) beschrieben:
Klonierung von pReeO24:
- Lambda-MaxiDNA (DNA-Lambda Maxi Kit, Firma Qiagen) wurde aus einer cDNA-Bank von humanen Keratinozyten hergestellt (Firma BD Bioscience, Clontech, Human Keratinocyte cDNA, foreskin, primary culture in log phase, Vektor: λgt11).
Die PCR zur Amplifikation des KBD-D Gens wurde in zwei Schritten durchgeführt. Zunächst wurde das 5'Ende und 3'Ende unabhängig amplifiziert. Diese Fragmente waren die Matrize für die Amplifikation des gesamten KBD-D Gens.
Die PCR zur Amplifikation des 5'Endes wurde wie folgt durchgeführt: Die Primer hatten die folgende Sequenz:
HRe6: 5'- ATGAACCACTCGCCGCTCAAGACCGCCTTG - 3' (SEQ ID No.: 216) HRe9: 5' - CGTTCCCGGTTCTCCTCAGGAGGCTGACTG - 3' (SEQ ID No.: 217)
100 μl PCR-Ansatz: 1Ox PCR-Puffer Pfu Ultra High Fidelity: 10μl
Lambda DNA(744ng/μl) 1 μl (1 :10 Verd.) dNTP's.-Mix (IOmM) 10μl
HRe6 (196ng/μl) 1 μl
HRe9 (201 ng/μl) 1 μl Pfu Ultra High Fidelity Polymerase 1 μl
H2Q bidest 76μl
Temperaturprogramm:
Im Agarosegel wurde ein etwa 1 kb großes Fragment detektiert. Die Reaktion wurde gereinigt und im folgenden als 5'-Ende-Template für die Amplifikation des KBD-D Gens eingesetzt.
Die PCR zur Amplifikation des 3'Endes wurde wie folgt durchgeführt: Die Primer hatten die folgende Sequenz:
HRe7: 5'- TTAGAATCGGGAGGTGAAGTTCCTGAGGCT - 3' (SEQ ID No.: 218) HRe8: 5' - CACCACCAACAAGCTGGAGACCCGGAG - 3' (SEQ ID No.: 219)
100 μl PCR-Ansatz:
1Ox PCR-Puffer Pfu Ultra High Fidelity: 10μl
Lambda DNA(744ng/μl) 1 μl (1 :10 Verd.) dNTP's.-Mix (10mM) 10μl
HRe7 (201 ng/μl) 1 μl HRe8 (209ng/μl) 1 μl
Pfu Ultra High Fidelity Polymerase 1 μl
H2Q bidest 76μl
Temperaturprogramm:
- Im Agarosegel wurde ein etwa 1 ,2 kb großes Fragment detektiert. Die Reaktion wurde gereinigt und im folgenden als 3'- Ende -Template für die Amplifikation des KBD-D Gens eingesetzt.
Zur Amplifikation des KBD-D Gens wurde das 5'Ende-Template und das 3'Ende- Template als Matrize eingesetzt. Die PCR wurde wie folgt durchgeführt:
100 μl PCR-Ansatz:
10x PCR-Puffer Pfu Ultra High Fidelity: 10μl dNTP - Mix (1O mM) 10μl H2O bidest 75μl
5'Ende-Template 1 μl
3'Ende-Template 1 μl
Pfu Ultra High Fidelity Polymerase 1 μl
H2O 76μl
Temperaturprogramm:
f 60 Sek. 94°C 10x 1 300 Sek. 72°C nach den 10 Zyklen wurde 1 μl Primer HRe6 (196μg/ml) und HRe7 (206μg/ml) und 1 μl Pfu Ultra High Fidelity Polymerase zugegeben und mit der Reaktion das folgende Temperaturprogramm durchgeführt:
Temperaturprogramm:
Anschließend wurde 1 μl Taq-Polymerase dazugegeben und für 10 Minuten bei 72°C inkubiert.
Das entstandene etwa 2150 bp große PCR-Produkt wurde aus einem Agarosegel ausgeschnitten, aufgereinigt und in folgenden Vektor kloniert: pCR2.1-TOPO (Firma Invitrogen).
Der so erhaltene Vektor pReeO19 (6112 bp) wurde anschließend transformiert, in E. coli amplifiziert und das KBD-D Gen durch eine Sequenzierung überprüft.
Im folgenden wurde das KBD-D Gen in den Expressionsvektor kloniert. Dazu wurde mit dem Vektor pReeO19 als Templat eine weitere PCR durchgeführt:
Verwendete Oligonukleotide:
HRe26: 5'- CTCGGTACCAACCACTCGCCGCTCAAGACCGCCTTGGCG - 3' (SEQ ID No.: 220) HRe27: 5'- ATTAAGCTTTTAGAATCGGGAGGTGAAGTTCCTGAGGCT- 3' (SEQ ID No.: 221)
100 μ PCR-Ansatz:
10x PCR-Puffer Pfu Ultra High Fidelity: 10μ pReeO19 (25ng/μl) 1 μl dNTP's.-Mix (10mM) 10μ
HRe26 (287ng/μl) 1 μl
HRe27 (354ng/μl) 1 μl
Pfu Ultra High Fidelity Polymerase 1 μl
H2O bidest 76μ
Temperaturprogramm:
Im Agarosegel wurde ein etwa 2,2 kb großes Fragment detektiert. Die Reaktion wurde gereinigt und im folgenden mit den Restriktionsendonucleasen Kpnl und Hindi Il geschnitten; das entstandene Fragment wurde in den Expressionsvektor kloniert. So wurde der Vektor pReeO24 erhalten, der im weiteren für die KBD-D Expression eingesetzt wurde.
Expression von KBD-D (SEQ ID No.:212) durch pReeO24 in E. coli Vorkulturen wurden von Platte oder Glycerinkultur mit pReeO24 transformierten E. coli Stämmen (z.B. TG10) angeimpft. Je nach Größe der Hauptkultur wurde in einem Röhrchen oder einem kleinen Kolben mit LB-Medium angeimpft (ca. 1 :100). - Antibiotika wurden je nach verwendetem Stamm eingesetzt (für mit pReeO24 transformierte E. coli TG10 Ampicillin 100 μg/ml).
Es wurde bei 250 rpm und 37°C inkubiert.
Die Hauptkultur wurde ca. 1 :100 mit Vorkultur angeimpft, Hauptkultur: LB-Medium oder geeignetes Minimalmedium mit den jeweiligen Antibiotika. Inkubation bei 250 rpm und 37°C. - Die Induktion erfolgte mit 1 mM IPTG ab einer ODszsnm Von 1. Dann wurde die Inkubationstemperatur abgesenkt auf Raumtemperatur (etwa 200C). Die Zellen wurden 2 Stunden nach Induktion abzentrifugiert. (Siehe Abbildung 9)
Beispiel 19: Zell-Aufschluss und Inclusion-Body-Reinigung (pReeO24) Unlöslich exprimierte KBD-D (SEQ ID No.:213) (z.B. in Inclusion Bodies) wurde folgendermaßen gereinigt:
Das Zellsediment aus Beispiel 2 wurde in 2OmM Phosphatpuffer mit 100 mM NaCI pH = 7,5 resuspendiert und durch Ultraschallbehandlung aufgeschlossen.
Der Aufschluss wurde erneut zentrifugiert (4°C, 12 000g, 20 Minuten). Der Überstnad wurde verworfen. Das Sediment wurde in Puffer A (1OmM NaH2PO4, 2mM KH2PO4, 10OmM NaCI, 8 M Harnstoff, 5mM DTT) gelöst. Danach wurde nochmals zentrifugiert und der Überstand auf eine Ni-Chelat-Sepharose aufgetragen. Nach dem Auftrag wurde mit Puffer A und 2OmM Imidazol gewaschen. Die Elution von der Säule erfolgte mit Puffer B (1OmM NaH2PO4, 2mM KH2PO4, 10OmM NaCI, 8 M Harnstoff, 5mM DTT, 50OmM Imidazol). Das Eluat wurde fraktioniert aufgefangen und mittels SDS-PAGE analysiert. Fraktionen, die gereinigte KBD-D enthielten, wurden renaturiert, wie in Beispiel 13 beschrieben.
Beispiel 20: Renaturierung von Keratin-Bindedomäne D (SEQ ID No.:213)
Unlöslich exprimierte Keratin-Bindedomäne D (z.B. aus Inclusion Bodies) konnte durch eine
Dialyse renaturiert und damit aktiviert werden. Es wurde folgendermaßen vorgegangen:
Die Fraktionen aus Beispiel 19, die gereinigte KBD-D enthielten, wurden in einen Dialyseschlauch (MWCO 12-14KD) gefüllt.
Anschließend wurde für ca. 1 Stunde gegen 1 L 8 M Harnstofflsg. dialysiert. Danach wurde über einen Zeitraum von 12 Stunden kontinuierlich 2 L deionisiertes Wasser mittels einer Schlauchpumpe zudosiert. Anschließend wurde der Inhalt des Dialyseschlauchs entnommen. Die so aktivierte KBD-D wurde für folgende Aktivitätstests eingesetzt.
Beispiel 21 : Qualitative Bindung an Haut
Es wurde ein visueller qualitativer Test eingesetzt, um zu überprüfen, ob die KBD-D (SEQ ID No.:213) an Haut bindet.
Verwendete Lösungen: Blockierungslsg: Western Blocking Reagent 1921673 Roche (10 x Lsg) in TBS verdünnt
TBS: 20 mM Tris; 150 mM NaCI pH 7,5 TTBS: TBS + 0,05% Tween20
Der erste Schritt ist der Transfer der äußeren Keratinschicht von der Haut auf einen stabilen Träger. Dazu wurde ein Klarsichtklebestreifen fest auf enthaarte menschliche Haut aufgebracht und wieder entfernt. Der Test kann direkt auf dem Klarsichtklebestreifen durchgeführt werden oder die anhaftende Keratinschicht durch erneutes Aufkleben auf einen Glasobjektträger über- führt werden. Der Nachweis von Bindung wurde wie folgt vorgenommen:
-zur Inkubation mit den verschiedenen Reagentien, Transfer in ein Falcongefäß ggf. Zugabe von Ethanol zur Entfettung, Entfernung von Ethanol und Trocknung der Objektträger -1 h bei Raumtemperatur inkubiert mit Blocking Puffer -2x 5 min gewaschen mit TTBS -1x 5 min gewaschen mit TBS
-Inkubation mit der zu testenden KBD (gekoppelt an tag - z.B. Hisβ, HA etc.) in TBS / 0,05% Tween 20 während 2-4 h bei Raumtemperatur -Entfernung des Überstands -3x Waschen mit TBS
-1 h bei Raumtemperatur Inkubation mit monoklonalen Maus anti-tag-(His6 bzw. HA)-Antikörper mit Peroxidase-Konjugat (1 :2000 in in TBS + 0,01 % Blocking) [Monoclonal AntipolyHistidin Pe- roxidase Conjugate, produced in mouse, lyophilized powder, Firma Sigma] -2x 5min gewaschen mit TTBS -1x 5 min gewaschen mit TBS
-Zugabe von Phosphatasesubstrat (NBT-BCIP; Boehringer MA 1Tablette/40 ml Wasser 2,5 min; Stopp: mit Wasser) -Optische Detektion des Farbniederschlages mit bloßem Auge oder im Mikroskop. Ein blauer Farbniederschlag, als Reaktion des mit der KBD-D wechselwirkenden Anti-
Polyhistidin-AP-Conjugats, wurde auf dem mit KBD-D behandelten Klarsichtklebestreifen sichtbar. Als Negativkontrolle wurde ein Klarsichtklebestreifen nur mit Puffer behandelt. Hier war keine signifikante Blaufärbung zu erkennen. Diese Ergebnisse zeigen, dass KBD-D an das Hautkeratin auf dem Klarsichtklebestreifen gebunden hat.
Beispiel 22: Quantitative Bindung an Haut und Haar
Um die Bindungsstärke der KBD-D (SEQ ID No.:213) an Haut und Haar im Vergleich zur KBD- B (SEQ ID No.:166) zu untersuchen, wurde ein quantitativer Test durchgeführt. Bei diesem Test wurde zunächst Haar mit KBD-B bzw. KBD-D inkubiert und überschüssige KBD-B bzw. -D abgewaschen. Anschließend wurde ein Antikörper-Peroxidase-Konjugat über das His-Tag der KBD-B bzw. -D gekoppelt. Nicht gebundenes Antikörper-Peroxidase-Konjugat wurde erneut abgewaschen. Das gebundene Antikörper-Peroxidase-Konjugat kann ein farbloses Substrat (TMB) in ein farbiges Produkt umsetzen, das photometrisch bei 405 nm vermessen wurde. Die Stärke der Absorption zeigt die Menge an gebundener KBD-B bzw. -D an. Der Test auf Bindung an Haur wurde mit humanen Keratinocyten in Mikrotiterplatten folgendermaßen durchgeführt.
- 2 x Waschen mit PBS / 0,05 % Tween 20 - Zugabe von 1 ml 1 % BSA in PBS und Inkubation während 1 h bei Raumtemperatur, leichte Schwenkbewegungen (900 rpm).
- Entfernung des Überstands
- Zugabe von 100 μg KBD in PBS mit 0,05 % Tween 20; Inkubation 2 h bei Raumtemperatur und leichten Schwenkbewegungen (900 rpm). -Entfernung des Überstands
- 3x Waschen mit PBS / 0,05 % Tween 20
- Inkubation mit 1 ml monoklonalen Maus anti-tag-His6-Antikörper während 2-4 h bei Raumtemperatur, leichte Schwenkbewegung (900 rpm)
- 3x Waschen mit PBS / 0,05 % Tween 20 - Zugabe von Peroxidasesubstrat (1 ml / Eppendorfgefäß; Zusammensetzung s.u.) Reaktion bis zur Blaufärbung (ca. 90 Sekunden).
- Mit 100 μl 2 M H2SO4 die Reaktion abgestoppt.
- Die Absorption wurde bei 405 nm gemessen
Peroxidasesubstrat (kurz vorher angesetzt): 0,1 ml TMB-Lösung (42 mM TMB in DMSO) + 10 ml Substratpuffer (0,1 M Natriumacetat pH 4,9) + 14,7 μl H2O2 3%ig
Um die Haarbindung der KBD-D im Vergleich zur KBD-B zu charakterisieren, wurde der folgende Bindungsassay durchgeführt:
5 mg Haare (human) wurden in 5 mm lange Stücke geschnitten und in Eppendorfgefäße (Prote- in-Lowbind) überführt.
Zugabe von 1 ml Ethanol zur Entfettung
Zentrifugation, Entfernung von Ethanol und Waschung der Haare mit H2O
Zentrifugation, Entfernung des Überstands
Z Zugabe der zu testenden Keratinbindedomäne (gekoppelt an tag - z.B. Hisβ, HA etc.) in 1 ml PBS / 0,05 % Tween 20; Inkubation für 2 h bei Raumtemperatur bei leichten
Schwenkbewegungen.
Zentrifugation, Entfernung des Überstands 3x Waschen mit PBS / 0,05 % Tween 20
Inkubation mit 1 ml monoklonalen Maus anti-tag-(His6 bzw. HA)-Antikörper mit Peroxi- dase-Konjugat (1 :2000 in PBS / 0,05 % Tween 20) [Monoclonal AntipolyHistidin Peroxi- dase Conjugate, produced in mouse, lyophilized powder, Firma Sigma] während 2-4 h bei Raumtemperatur, leichte Schwenkbewegung
3 x Waschen mit PBS / 0,05 % Tween 20 Zugabe von Peroxidasesubstrat (1 ml / Eppendorfgefäß) - Reaktion bis zur Blaufärbung laufen lassen (90 Sekunden). Mit 100 μl 2 M H2SO4 die Reaktion abstoppen. Die Absorption wurde bei 405 nm gemessen
Peroxidasesubstrat (kurz vorher ansetzten): 0,1 ml TMB-Lösung (42 mM TMB in DMSO)
+ 10 ml Substratpuffer (0,1 M Natriumacetat pH 4,9) + 14,7 μl H2O2 3%ig
BSA = Bovine serum albumin PBS = Phosphat gepufferte Salzlösung
Tween 20 = Polyoxyethylene sorbitan monolaureate, n ca. 20 TMB = 3, 5, 3, '5' Tetramethylbenzidin
Keratin-Bindedomäne Absorption bei 405nm
KBD-D an Haut 3,69
KBD-D an Haut nach 10%iger SDS-Behandlung 3,15 KBD-B an Haut 0,93
KBD-B an Haut nach 10%iger SDS-Behandlung 0,185
Tab.10 a: Quantitative Bindung von KBD-D bzw. KBD-B an Haut. Die aufgeführten Absorptionswerte sind auf die Oberfläche (von Haut) normierte Werte
Keratin-Bindedomäne Absorption bei 405nm
KBD-D an Haar 0,88
KBD-D an Haar nach 10%iger SDS-Behandlung 0,62
Tab.10 b Quantitative Bindung von KBD-D an Haar. Die aufgeführten Absorptionswerte sind auf die Oberfläche normierte Werte
relativer Absorptionsverlust
Keratin-Bindedomäne nach 10% iger SDS- Behandlung in %
KBD-D an Haut nach 10%iger SDS-Behandlung 15
KBD-B an Haut nach 10%iger SDS-Behandlung 80
KBD-D an Haar nach 10%iger SDS-Behandlung 30
KBD-B an Haar nach 10%iger SDS-Behandlung 86 Tab.10 c: Quantitative Bindung von KBD-D und KBD-B an Haut und Haar nach 10% iger SDS- Behandlung in % relativ zum KBD-D und KBD-B unbehandeltem Haar bzw. Haut.
Diese Ergebnisse zeigen, dass das Protein KBD-D an Haar und stärker an Haut binden kann (siehe Tab. 10). Die Bindung der KBD-D (SEQ ID No.: 168) wird im Gegenteil zur KBD-B (SEQ ID No.: 166) durch eine Waschung mit einer bis zu 10%igen SDS-Lösung nur schwächer beein- flusst (siehe Tab. 10a).
Beispiel 22a: Microbeads und Filme aus C16-KBD
In experimentellen Ansätzen sollte gezeigt werden, ob das Fusionsprotein C16-KBD Assemblierungsformen bilden und an Haare binden kann. Die Herstellung von Microbeads erfolgte aus wässriger Lösung (5 mM KH2PO4 nach Dialyse) durch Fällung mit 1-3 Vol. 1 M KH2PO4-Puffer. Reines C16-Spinnenseidenprotein bildet dabei sphärische Mikropartikel einer Größenverteilung von etwa 100 nm -10 μM (Abbildung 9). Auch das C16-KBD-B-Fusionsprotein bildet sphärische Partikel (Abbildung 9).
Die Herstellung von Filmen kann ebenfalls aus wässrigen Proteinlösungen (5 mM KH2PO4 nach Dialyse) bzw. aus einer 10-50 mg/ml C16-KBD-B-Fusionsprotein enthaltenden Hexafluorisopro- panollösung erfolgen. Im Labor werden dazu einige ml der Lösung auf eine Polysterol- Oberfläche (z.B. Agarplatte) pipettiert und das Lösungsmittel abgedampft. Dabei erhält man einen wasserlöslichen Proteinfilm, der sich von der Oberfläche abziehen lässt. Die Besonderheit des C16-Spinnenseidenproteins liegt darin, dass man diesen wasserlöslichen Film nachträglich prozessieren und damit wasserunlöslich machen kann. Dazu behandelt man den Film aus KH2PO4 nachträglich mit 100% Ethanol. Der C16-Proteinfilm nicht dann nicht mehr wasser- löslich. Bringt man die C16-KBD-B-Lösung auf eine Polysteroloberfläche aus, so entsteht nach Trocknung ebenfalls ein Film, der nach Behandlung mit Ethanol wasserunlöslich wird. Zusammenfassend kann festgestellt werden, dass aus C16-KBD-Fusionsprotein Assemblierungsformen hergestellt werden können.
Beispiel 22b: Filmbildung auf Haar
Es sollte gezeigt werden, ob die Filmbildung des C16-KBD-Fusionsproteins auf Haaren erfolgt. Dazu wurden Haare in den entsprechenden Proteinlösungen bzw. ohne Protein inkubiert, getrocknet und elektronenmikroskopisch analysiert (SEM) (Siehe Abbildung 10).
Nach Behandlung einer Haaroberfläche mit C16-KBD sind die Haarschuppen deutlich geglättet, was auf eine Verfilmung des C16-KBD-B-Fusionsproteins auf der Haaroberfläche hindeutet.
Im Folgenden sind erfindungsgemäße dermokosmetische Zubereitungen beschrieben, enthal- tend das gemäß Beispiel 3 hergestellte keratinbindende Effektormolekül C16-KBD-B (gemäß
SEQ ID No.: 168). Das C16-KBD-B wird in den folgenden Beispielen stellvertretend für alle anderen oben beschriebenen KBD-Fusionsproteine als Fusionsprotein-KBD bezeichnet. Es ist für den Fachmann selbstverständlich, dass auch alle anderen genannten KBD-Fusionsproteine durch Verwendung der entsprechenden KBD-Fusionsprotein-Konstrukte (z.B. KBD-D Protein gemäß (SEQ ID No.: 212) in pReeO24 (Abb. 8) gemäß Beispiel 3 hergestellt und in den unten genannten Zubereitungen verwendet werden können. Beispiel 23: Verwendung der KBD in einer Emulsion zur Tagespflege - Typ O/W
WS 1 %:
% Inhaltsstoff (INCI) A1 ,7 Ceteareth-6, Stearyl Alcohol
0,7 Ceteareth-25
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
2,0 PEG-14 Dimethicone
3,6 Cetearyl Alcohol 6,0 Ethylhexyl Methoxycinnamate
2,0 Dibutyl Adipate
B5,0 Glycerin
0,2 Disodium EDTA
1 ,0 Panthenol q.s. Konservierungsmittel
67,8 Aqua dem.
C4,0 Caprylic/Capric Triglyceride, Sodium Acrylates Copolymer
DO, 2 Sodium Ascorbyl Phosphate
1 ,0 Tocopheryl Acetate 0,2 Bisabolol
1 ,0 Caprylic/Capric Triglyceride, Sodium Ascorbate, Tocopherol, Retinol
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
Eq. s. Sodium Hydroxide
WS 5%:
% Inhaltsstoff (INCI)
A 1 ,7 Ceteareth-6, Stearyl Alcohol
0,7 Ceteareth-25
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
2,0 PEG-14 Dimethicone
3,6 Cetearyl Alcohol
6,0 Ethylhexyl Methoxycinnamate
2,0 Dibutyl Adipate
B 5,0 Glycerin
0,2 Disodium EDTA
1 ,0 Panthenol q.s. Konservierungsmittel
63,8 Aqua dem.
C 4,0 Caprylic/Capric Triglyceride, Sodium Acrylates Copolymer
D 0,2 Sodium Ascorbyl Phosphate
1 ,0 Tocopheryl Acetate
0,2 Bisabolol
1 ,0 Caprylic/Capric Triglyceride, Sodium Ascorbate, Tocopherol, Retinol
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
E q.s. Sodium Hydroxide Herstellung: Die Phasen A und B getrennt voneinander auf ca. 800C erwärmen. Phase B in Phase A einrühren und homogenisieren. Phase C in die kombinierten Phasen A und B einrühren und nochmals homogenisieren. Unter Rühren auf ca. 400C abkühlen, Phase D zugeben, den pH-Wert mit Phase E auf etwa 6.5 einstellen, homogenisieren und unter Rühren auf Raum- temperatur abkühlen.
Hinweis: Die Formulierung wird ohne Schutzgas hergestellt. Die Abfüllung muß in sauerstoffundurchlässige Verpackungen, z.B. Aluminiumtuben erfolgen.
Beispiel 24: Verwendung der KBD in einer schützenden Tagescreme - Typ O/W
WS 1 %:
% Inhaltsstoff (INCI)
A 1 ,7 Ceteareth-6, Stearyl Alcohol
0,7 Ceteareth-25
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
2,0 PEG-14 Dimethicone
3,6 Cetearyl Alcohol
6,0 Ethylhexyl Methoxycinnamate
2,0 Dibutyl Adipate
B 5,0 Glycerin
0,2 Disodium EDTA
1 ,0 Panthenol q.s. Konservierungsmittel
68,6 Aqua dem.
C 4,0 Caprylic/Capric Triglyceride, Sodium Acrylates Copolymer
D 1 ,0 Sodium Ascorbyl Phosphate
1 ,0 Tocopheryl Acetate
0,2 Bisabolol
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
E q.s. Sodium Hydroxide
WS 5%:
% Inhaltsstoff (INCI)
A 1 ,7 Ceteareth-6, Stearyl Alcohol
0,7 Ceteareth-25
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
2,0 PEG-14 Dimethicone
3,6 Cetearyl Alcohol
6,0 Ethylhexyl Methoxycinnamate
2,0 Dibutyl Adipate
B 5,0 Glycerin
0,2 Disodium EDTA
1 ,0 Panthenol q.s. Konservierungsmittel
64,6 Aqua dem.
C 4,0 Caprylic/Capric Triglyceride, Sodium Acrylates Copolymer
D 1 ,0 Sodium Ascorbyl Phosphate 1 ,0 Tocopheryl Acetate
0,2 Bisabolol
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
E q.s. Sodium Hydroxide
Herstellung: Die Phasen A und B getrennt voneinander auf ca. 800C erwärmen. Phase B in Phase A einrühren und homogenisieren. Phase C in die kombinierten Phasen A und B einarbeiten und homogenisieren. Unter Rühren auf ca. 400C abkühlen. Phase D hinzugeben, den pH- Wert mit Phase E auf ca. 6.5 einstellen und homogenisieren. Unter Rühren auf Raumtempera- tur abkühlen.
Beispiel 25: Verwendung der KBD in einer Gesichtsreinigungslotion - Typ O/W WS 1 %:
% Inhaltsstoff (INCI)
A 10,0 Cetearyl Ethylhexanoate
10,0 Caprylic/Capric Triglyceride
1 ,5 Cyclopentasiloxane, Cyclohexasilosane
2,0 PEG-40 Hydrogenated Castor OiI
B 3,5 Caprylic/Capric Triglyceride, Sodium Acrylates Copolymer
C 1 ,0 Tocopheryl Acetate
0,2 Bisabolol q.s. Konservierungsmittel q.s. Parfümöl
D 3,0 Polyquaternium-44
0,5 Cocotrimonium Methosulfate
0,5 Ceteareth-25
2,0 Panthenol, Propylene Glycol
4,0 Propylene Glycol
0,1 Disodium EDTA
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
60,7 Aqua dem.
WS 5%:
% Inhaltsstoff (INCI)
A 10,0 Cetearyl Ethylhexanoate
10,0 Caprylic/Capric Triglyceride
1 ,5 Cyclopentasiloxane, Cyclohexasilosane
2,0 PEG-40 Hydrogenated Castor OiI
B 3,5 Caprylic/Capric Triglyceride, Sodium Acrylates Copolymer
C 1 ,0 Tocopheryl Acetate
0,2 Bisabolol q.s. Konservierungsmittel q.s. Parfümöl
D 3,0 Polyquaternium-44
0,5 Cocotrimonium Methosulfate
0,5 Ceteareth-25
2,0 Panthenol, Propylene Glycol 4,0 Propylene Glycol
0,1 Disodium EDTA
5,0 wässrige Lösung mit ca. 5 % Fusionsprotein-KBD
56,7 Aqua dem.
Herstellung: Phase A lösen. Phase B in Phase A einrühren, Phase C in die kombinierten Phasen A und B einarbeiten. Phase D lösen, in die kombinierten Phasen A, B und C einrühren und homogenisieren. 15min nachrühren.
Beispiel 26: Verwendung der KBD in einem Daily Care Body Spray
WS 1 %:
% Inhaltsstoff (INCI)
A 3,0 Ethylhexyl Methoxycinnamate
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
1 ,0 Polyquaternium-44
3,0 Propylene Glycol
2,0 Panthenol, Propylene Glycol
1 ,0 Cyclopentasiloxane, Cyclohexasiloxane
10,0 Octyldodecanol
0,5 PVP
10,0 Caprylic/Capric Triglyceride
3,0 C12-15 Alkyl Benzoate
3,0 Glycerin
1 ,0 Tocopheryl Acetate
0,3 Bisabolol
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
59,2 Alcohol
WS 5%:
% Inhaltsstoff (INCI)
A 3,0 Ethylhexyl Methoxycinnamate
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
1 ,0 Polyquaternium-44
3,0 Propylene Glycol
2,0 Panthenol, Propylene Glycol
1 ,0 Cyclopentasiloxane, Cyclohexasiloxane
10,0 Octyldodecanol
0,5 PVP
10,0 Caprylic/Capric Triglyceride
3,0 C 12- 15 Alkyl Benzoate
3,0 Glycerin
1 ,0 Tocopheryl Acetate
0,3 Bisabolol
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
55,2 Alcohol
Herstellung: Die Komponenten der Phase A einwiegen und klar lösen.
Beispiel 27: Verwendung der KBD in einem Hautpflegegel WS 1 %:
% Inhaltsstoff (INCI)
A 3,6 PEG-40 Hydrogenated Castor OiI 15,0 Alcohol
0,1 Bisabolol 0,5 Tocopheryl Acetate q- S. Parfümöl
B 3 ,0 Panthenol
0 ,6 Carbomer
1 ,0 wässrige Lösung mit ca . 5% Fusionsprotein-KBD
75 ,4 Aqua dem,
C 0 ,8 Triethanolamine
WS 5%:
% Inhaltsstoff (INCI)
A 3 ,6 PEG-40 Hydrogenated Castor OiI
15 ,0 Alcohol
0 ,1 Bisabolol
0 ,5 Tocopheryl Acetate q- S. Parfümöl
B 3 ,0 Panthenol
0 ,6 Carbomer
5 ,0 wässrige Lösung mit ca . 5% Fusionsprotein-KBD
71 ,4 Aqua dem,
C 0 .8 Triethanolamine
Herstellung: Die Phase A klar lösen. Phase B quellen lassen und mit Phase C neutralisieren. Phase A in die homogenisierte Phase B einrühren und homogenisieren.
Beispiel 28: Verwendung der KBD in einer After Shave Lotion
WS 1 %:
% Inhaltsstoff (INCI)
A 10 ,0 Cetearyl Ethylhexanoate
5 ,0 Tocopheryl Acetate
1 ,0 Bisabolol
0 ,1 Parfümöl
0 ,3 Acrylates/C10-30 Alkyl Acrylate Crosspolymer
B 15 ,0 Alcohol
1 ,0 Panthenol
3 ,0 Glycerin
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0 ,1 Triethanolamine
63 ,5 Aqua dem.
WS 5%:
% Inhaltsstoff (INCI)
A 10 ,0 Cetearyl Ethylhexanoate
5 ,0 Tocopheryl Acetate
1 ,0 Bisabolol
0 ,1 Parfümöl
0 ,3 Acrylates/C10-30 Alkyl Acrylate Crosspolymer
B 15 .0 Alcohol 1 ,0 Panthenol
3,0 Glycerin
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,1 Triethanolamine
59,5 Aqua dem.
Herstellung: Die Komponenten der Phase A mischen. Phase B lösen, in Phase A einarbeiten und homogenisieren.
Beispiel 29: Verwendung der KBD in einer After Sun Lotion WS 1 %:
% Inhaltsstoff (INCI)
A 0,4 Acrylates/C10-30 Alkyl Acrylate Crosspolymer
15,0 Cetearyl Ethylhexanoate 0,2 Bisabolol
1 ,0 Tocopheryl Acetate q.s. Parfümöl
B 1 ,0 Panthenol
15,0 Alcohol 3,0 Glycerin
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
63,2 Aqua dem,
C 0,2 Triethanolamine
WS 5%:
% Inhaltsstoff (INCI)
A 0,4 Acrylates/C10-30 Alkyl Acrylate Crosspolymer
15,0 Cetearyl Ethylhexanoate
0,2 Bisabolol 1 ,0 Tocopheryl Acetate q.s. Parfümöl
B 1 ,0 Panthenol
15,0 Alcohol
3,0 Glycerin 5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
59,2 Aqua dem,
C 0,2 Triethanolamine
Herstellung: Die Komponenten der Phase A mischen. Phase B unter Homogenisieren in Phase A einrühren. Mit Phase C neutralisieren und erneut homogenisieren.
Beispiel 30: Verwendung der KBD in einer Sonnenschutzlotion WS 1 %:
% Inhaltsstoff (INCI) A 4,5 Ethylhexyl Methoxycinnamate
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate 3,0 Octocrylene 2,5 Di-C12-13 Alkyl Malate
0,5 Tocopheryl Acetate
4,0 Polyglyceryl-3 Methyl Glucose Distearate
B 3,5 Cetearyl Isononanoate
1 ,0 VP/Eicosene Copolymer
5,0 Isohexadecane
2,5 Di-C12-13 Alkyl Malate
3,0 Titanium Dioxide, Trimethoxycaprylylsilane
C 5,0 Glycerin
1 ,0 Sodium Cetearyl Sulfate
0,5 Xanthan Gum
59,7 Aqua dem.
D 1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
1 ,0 Phenoxyethanol, Methylparaben, Ethylparaben, Butylparaben, Propyl- paraben, Isobutylparaben
0,3 Bisabolol
WS 5%:
% Inhaltsstoff (INCI)
A 4,5 Ethylhexyl Methoxycinnamate
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
3,0 Octocrylene
2,5 Di-C12-13 Alkyl Malate
0,5 Tocopheryl Acetate
4,0 Polyglyceryl-3 Methyl Glucose Distearate
B 3,5 Cetearyl Isononanoate
1 ,0 VP/Eicosene Copolymer
5,0 Isohexadecane
2,5 Di-C12-13 Alkyl Malate
3,0 Titanium Dioxide, Trimethoxycaprylylsilane
C 5,0 Glycerin
1 ,0 Sodium Cetearyl Sulfate
0,5 Xanthan Gum
55,7 Aqua dem.
D 5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
1 ,0 Phenoxyethanol, Methylparaben, Ethylparaben, Butylparaben, Propyl- paraben, Isobutylparaben
0.3 Bisabolol
Herstellung: Die Komponenten der Phasen A und B getrennt voneinander auf ca. 800C erwärmen. Phase B in Phase A einrühren und homogenisieren. Phase C auf ca. 800C erwärmen und unter Homogenisieren in die kombinierten Phasen A und B einrühren. Unter Rühren auf ca. 40°C abkühlen, Phase D zugeben und nochmals homogenisieren.
Beispiel 31 : Verwendung der KBD in einer Sonnenschutzlotion - Typ O/W WS 1 %: % Inhaltsstoff (INCI)
A 2,0 Ceteareth-6, Stearyl Alcohol
2,0 Ceteareth-25
3,0 Tribehenin 2,0 Cetearyl Alcohol
2,0 Cetearyl Ethylhexanoate
5,0 Ethylhexyl Methoxycinnamate
1 ,0 Ethylhexyl Triazone
1 ,0 VP/Eicosene Copolymer 7,0 Isopropyl Myristate
B 5,0 Zinc Oxide, Triethoxycaprylylsilane
C 0,2 Xanthan Gum
0,5 Hydroxyethyl Acrylate/Sodium Acryloyldimethyl Taurate Copolymer,
Squalane, Polysorbate 60 0,2 Disodium EDTA
5,0 Propylene Glycol
0,5 Panthenol
60,9 Aqua dem.
D 1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD 0,5 Phenoxyethanol, Methylparaben, Butylparaben, Ethylparaben, Propylpa- raben, Isopropylparaben
1 ,0 Tocopheryl Acetate
0,2 Bisabolol
WS 5%:
% Inhaltsstoff (INCI)
A 2,0 Ceteareth-6, Stearyl Alcohol
2,0 Ceteareth-25
3,0 Tribehenin 2,0 Cetearyl Alcohol
2,0 Cetearyl Ethylhexanoate
5,0 Ethylhexyl Methoxycinnamate
1 ,0 Ethylhexyl Triazone
1 ,0 VP/Eicosene Copolymer 7,0 Isopropyl Myristate
B 5,0 Zinc Oxide, Triethoxycaprylylsilane
C 0,2 Xanthan Gum
0,5 Hydroxyethyl Acrylate/Sodium Acryloyldimethyl Taurate Copolymer,
Squalane, Polysorbate 60 0,2 Disodium EDTA
5,0 Propylene Glycol
0,5 Panthenol
56,9 Aqua dem.
D 5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD 0,5 Phenoxyethanol, Methylparaben, Butylparaben, Ethylparaben, Propylpa- raben, Isopropylparaben 1 ,0 Tocopheryl Acetate
0,2 Bisabolol
Herstellung: Phase A auf ca. 800C erwärmen, Phase B einrühren und 3min homogenisieren. Phase C ebenfalls auf 800C erwärmen und unter Homogenisieren in die kombinierten Phasen A und B einrühren. Abkühlen auf ca. 400C, Phase D einrühren und nochmals homogenisieren.
Beispiel 32: Verwendung der KBD in einer Sonnenschutlotion - Typ O/W
WS 1 %:
% Inhaltsstoff (INCI)
A 3,5 Ceteareth-6, Stearyl Alcohol
1 ,5 Ceteareth-25
7,5 Ethylhexyl Methoxycinnamate 2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
2,0 Cyclopentasiloxane, Cyclohexasiloxane
0,5 Bees Wax
3,0 Cetearyl Alcohol
10,0 Caprylic/Capric Triglyceride B 5,0 Titanium Dioxide, Silica, Methicone, Alumina
C 3,0 Glycerin
0,2 Disodium EDTA
0,3 Xanthan Gum
1 ,0 Decyl Glucoside 2,0 Panthenol, Propylene Glycol
56,3 Aqua dem.
D 1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
1 ,0 Tocopheryl Acetate
0,2 Bisabolol q.s. Parfümöl q.s. Konservierungsmittel
WS 5%:
% Inhaltsstoff (INCI) A 3,5 Ceteareth-6, Stearyl Alcohol
1 ,5 Ceteareth-25
7,5 Ethylhexyl Methoxycinnamate
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
2,0 Cyclopentasiloxane, Cyclohexasiloxane 0,5 Bees Wax
3,0 Cetearyl Alcohol
10,0 Caprylic/Capric Triglyceride
B 5,0 Titanium Dioxide, Silica, Methicone, Alumina
C 3,0 Glycerin 0,2 Disodium EDTA
0,3 Xanthan Gum
1 ,0 Decyl Glucoside 2 ,0 Panthenol, Propylene Glycol
52 ,3 Aqua dem.
D 5 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
1 ,0 Tocopheryl Acetate
0 ,2 Bisabolol q- S. Parfümöl q- S. Konservierungsmittel
Herstellung: Phase A auf ca. 800C erwärmen, Phase B einrühren und 3min homogenisieren. Phase C ebenfalls auf 800C erwärmen und unter Homogenisieren in die kombinierten Phasen A und B einrühren. Abkühlen auf ca. 400C, Phase D einrühren und nochmals homogenisieren.
Beispiel 33: Verwendung der KBD in einem Fußbalsam
WS 1 %:
% Inhaltsstoff (INCI)
A 2,0 Ceteareth-6, Stearyl Alcohol
2,0 Ceteareth-25
5,0 Cetearyl Ethylhexanoate 4,0 Cetyl Alcohol
4,0 Glyceryl Stearate
5,0 Mineral OiI
0,2 Menthol
0,5 Camphor B 69,3 Aqua dem. q.s. Konservierungsmittel
C 1 ,0 Bisabolol
1 ,0 Tocopheryl Acetate
D 1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD 5,0 Witch Hazel Extract
WS 5%:
% Inhaltsstoff (INCI)
A 2,0 Ceteareth-6, Stearyl Alcohol 2,0 Ceteareth-25
5,0 Cetearyl Ethylhexanoate
4,0 Cetyl Alcohol
4,0 Glyceryl Stearate
5,0 Mineral OiI 0,2 Menthol
0,5 Camphor
B 65,3 Aqua dem. q.s. Konservierungsmittel
C 1 ,0 Bisabolol 1 ,0 Tocopheryl Acetate
D 5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
5,0 Witch Hazel Extract Herstellung: Die Komponenten der Phasen A und B getrennt voneinander auf ca. 800C erwärmen. Phase B in Phase A unter Homogenisieren einrühren. Unter Rühren abkühlen auf ca. 400C, die Phasen C und D hinzugeben und kurz nachhomogenisieren. Unter Rühren auf Raum- temperatur abkühlen.
Beispiel 34: Verwendung der KBD in einer W/O Emulsion mit Bisabolol
WS 1 %:
% Inhaltsstoff (INCI)
6,0 PEG-7 Hydrogenated Castor OiI
8,0 Cetearyl Ethylhexanoate
5,0 Isopropyl Myristate
15,0 Mineral OiI
0,3 Magnesium Stearate
0,3 Aluminum Stearate
2,0 PEG-45/Dodecyl Glycol Copolymer
B 5,0 Glycerin
0,7 Magnesium Sulfate
55,6 Aqua dem.
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,5 Tocopheryl Acetate
0,6 Bisabolol
WS 5%:
% Inhaltsstoff (INCI)
6,0 PEG-7 Hydrogenated Castor OiI
8,0 Cetearyl Ethylhexanoate
5,0 Isopropyl Myristate
15,0 Mineral OiI
0,3 Magnesium Stearate
0,3 Aluminum Stearate
2,0 PEG-45/Dodecyl Glycol Copolymer
B 5,0 Glycerin
0,7 Magnesium Sulfate
51 ,6 Aqua dem.
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,5 Tocopheryl Acetate
Herstellung: Die Phasen A und B getrennt voneinander auf ca. 85°C erwärmen. Phase B in
Phase A einrühren und homogenisieren. Unter Rühren auf ca. 400C abkühlen, Phase C hinzugeben und nochmals kurz homogenisieren. Unter Rühren auf Raumtemperatur abkühlen. Zusammenstellung Rezepturen für Patent Keratin-Bindedomäne - Haircare
Beispiel 35: Schaumconditioner mit Festiger
WS 1 % % Inhaltsstoff (INCI)
A 10,0 PVP/VA Copolymer
0,2 Hydroxyethyl Cetyldimonium Phosphate
0,2 Ceteareth-25
0,5 Dimethicone Copolyol q.s. Parfümöl
10,0 Alcohol
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
68,1 Aqua dem.
10,0 Propane/Butane
WS 5%
% Inhaltsstoff (INCI)
A 10,0 PVP/VA Copolymer
0,2 Hydroxyethyl Cetyldimonium Phosphate
0,2 Ceteareth-25
0,5 Dimethicone Copolyol q.s. Parfümöl
10.0 Alcohol
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
64.1 Aqua dem. 10,0 Propane/Butane
Herstellung: Die Komponenten der Phase A zusammenwiegen, rühren bis alles gelöst ist und abfüllen.
Beispiel 36: Schaumconditioner
WS 1 %
% Inhaltsstoff (INCI)
A 1 ,0 Polyquaternium-4 0,5 Hydroxyethyl Cetyldimonium Phosphate
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD q.s. Parfümöl q.s. Konservierungsmittel
91 ,5 Aqua dem. 6,0 Propane/Butane
WS 5%
% Inhaltsstoff (INCI)
A 1 ,0 Polyquaternium-4
0,5 Hydroxyethyl Cetyldimonium Phosphate
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD q.s. Parfümöl q.s. Konservierungsmittel
87,5 Aqua dem.
6,0 Propane/Butane
Herstellung: Die Komponenten der Phase A zusammenwiegen, rühren bis alles klar gelöst ist und abfüllen
Beispiel 37: Schaumconditioner
WS 1 %
% Inhaltsstoff (INCI)
A 1 ,0 Polyquaternium-11
0,5 Hydroxyethyl Cetyldimonium Phosphate
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD q.s. Parfümöl q.s. Konservierungsmittel
91 ,5 Aqua dem. 6,0 Propane/Butane
WS 5%
% Inhaltsstoff (INCI)
A 1 ,0 Polyquaternium-11
0,5 Hydroxyethyl Cetyldimonium Phosphate
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD q.s. Parfümöl q.s. Konservierungsmittel 87,5 Aqua dem.
6,0 Propane/Butane
Herstellung: Die Komponenten der Phase A zusammenwiegen, rühren bis alles klar gelöst ist und abfüllen.
Beispiel 38: Styling Schaum
WS 1 %
% Inhaltsstoff (INCI)
A 0,5 Laureth-4 q.s. Parfümöl
B 77,3 Aqua dem. 10,0 Polyquaternium-28
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,5 Dimethicone Copolyol 0,2 Ceteareth-25
0,2 Panthenol
0,1 PEG-25 PABA
0,2 Hyd roxyethylcel I u lose
C 10,0 HFC 152 A
WS 5%
% Inhaltsstoff (INCI)
A 0,5 Laureth-4 q.s. Parfümöl
B 73,3 Aqua dem. 10,0 Polyquaternium-28
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,5 Dimethicone Copolyol
0,2 Ceteareth-25
0,2 Panthenol 0,1 PEG-25 PABA
0,2 Hyd roxyethylcel I u lose
C 10,0 HFC 152 A
Herstellung: Die Komponenten der Phase A mischen. Die Komponenten der Phase B eine nach der anderen zugeben und lösen. Mit Phase C abfüllen.
Beispiel 39: Styling Schaum
WS 1 %
% Inhaltsstoff (INCI)
A 2,0 Cocotrimonium Methosulfate q.s. Parfümöl
B 78,5 Aqua dem.
6,7 Acrylates Copolymer
0,6 AMP
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,5 Dimethicone Copolyol
0,2 Ceteareth-25
0,2 Panthenol
0,1 PEG-25 PABA
0,2 Hyd roxyethylcel I u lose
C 10.0 HFC 152 A WS 5%
% Inhaltsstoff (INCI)
A 2,0 Cocotrimonium Methosulfate q.s. Parfümöl
B 74,5 Aqua dem.
6,7 Acrylates Copolymer
0,6 AMP 5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,5 Dimethicone Copolyol
0,2 Ceteareth-25
0,2 Panthenol
0,1 PEG-25 PABA 0,2 Hydroxyethylcellulose
C 10,0 HFC 152 A
Herstellung: Die Komponenten der Phase A mischen. Die Komponenten der Phase B eine nach der anderen zugeben und lösen. Mit Phase C abfüllen.
Beispiel 40: Styling Schaum
WS 1 % % Inhaltsstoff (INCI)
A 2,0 Cocotrimonium Methosulfate q.s. Parfümöl
B 7,70 Polyquaternium-44
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD q.s. Konservierungsmittel
79,3 Aqua dem.
C 10,0 Propane/Butane
WS 5%
% Inhaltsstoff (INCI)
A 2,0 Cocotrimonium Methosulfate q.s. Parfümöl
B 7,70 Polyquaternium-44
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD q.s. Konservierungsmittel
75,3 Aqua dem. C 10,0 Propane/Butane
Herstellung: Die Komponenten der Phase A mischen. Die Komponenten der Phase B klar lösen, dann Phase B in Phase A einrühren. Den pH-Wert auf 6-7 einstellen, mit Phase C abfüllen.
Beispiel 41 : Styling Schaum
WS 1 %
% Inhaltsstoff (INCI)
A 2,00 Cocotrimonium Methosulfate q.s. Parfümöl
B 72,32 Aqua dem. 2,00 VP/Acrylates/Lauryl Methacrylate Copolymer
0,53 AMP
1 ,00 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,20 Ceteareth-25
0,50 Panthenol 0,05 Benzophenone-4
0,20 Amodimethicone, Cetrimonium Chloride, Trideceth-12
15,00 Alcohol
C 0,20 Hydroxyethylcellulose
D 6,00 Propane/Butane
WS 5%
% Inhaltsstoff (INCI)
A 2,00 Cocotrimonium Methosulfate q.s. Parfümöl
B 68,32 Aqua dem. 2,00 VP/Acrylates/Lauryl Methacrylate Copolymer
0,53 AMP
5,00 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,20 Ceteareth-25
0,50 Panthenol 0,05 Benzophenone-4
0,20 Amodimethicone, Cetrimonium Chloride, Trideceth-12
15,00 Alcohol
C 0,20 Hydroxyethylcellulose
D 6,00 Propane/Butane Herstellung: Die Komponenten der Phase A mischen. Die Komponenten der Phase B eine nach der anderen zugeben und lösen. Phase C in der Mischung aus A und B lösen, dann den pH- Wert auf 6-7 einstellen. Mit Phase D abfüllen
Beispiel 42: Styling Schaum
WS 1 %
% Inhaltsstoff (INCI)
A 2,00 Cetrimonium Chloride q.s. Parfümöl
B 67,85 Aqua dem.
7,00 Polyquaternium-46 1 ,00 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,20 Ceteareth-25
0,50 Panthenol
0,05 Benzophenone-4
0,20 Amodimethicone, Cetrimonium Chloride, Trideceth-12 15,00 Alcohol
C 0,20 Hydroxyethylcellulose
D 6,00 Propane/Butane
WS 5%
% Inhaltsstoff (INCI)
A 2,00 Cetrimonium Chloride q.s. Parfümöl
B 63,85 Aqua dem.
7,00 Polyquaternium-46
5,00 wässrige Lösung mit ca. 5% Fusionsprotein-KBD 0,20 Ceteareth-25
0,50 Panthenol
0,05 Benzophenone-4
0,20 Amodimethicone, Cetrimonium Chloride, Trideceth-12
15,00 Alcohol
C 0,20 Hydroxyethylcellulose
D 6,00 Propane/Butane
Herstellung: Die Komponenten der Phase A mischen. Die Komponenten der Phase B eine nach der anderen zugeben und lösen. Phase C in der Mischung aus A und B lösen, dann den pH- Wert auf 6-7 einstellen. Mit Phase D abfüllen. Beispiel 43: Styling Schaum
WS 1 % % Inhaltsstoff (INCI)
A q.s. PEG-40 Hydrogenated Castor OiI q.s. Parfümöl
85,5 Aqua dem.
B 7,0 Sodium Polystyrene Sulfonate
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,5 Cetrimonium Bromide q.s. Konservierungsmittel
C 6,0 Propane/Butane
Styling Schaum
WS 5%
% Inhaltsstoff (INCI)
A q.s. PEG-40 Hydrogenated Castor OiI q.s. Parfümöl 81 ,5 Aqua dem.
B 7,0 Sodium Polystyrene Sulfonate
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,5 Cetrimonium Bromide q.s. Konservierungsmittel
C 6,0 Propane/Butane
Herstellung: Phase A solubilisieren. Phase B in Phase A einwiegen und klar lösen. Den pH- Wert auf 6-7 einstellen, mit Phase C abfüllen. Beispiel 40: Styling Schaum
WS 1 %
% Inhaltsstoff (INCI)
A q.s. PEG-40 Hydrogenated Castor OiI q.s. Parfümöl
92,0 Aqua dem.
B 0,5 Polyquaternium-10
1 ,0 wässrige Lösung mit ca. 5% Fusi<
0,5 Cetrimonium Bromide q.s. Konservierungsmittel
C 6,0 Propane/Butane
WS 5%
% Inhaltsstoff (INCI)
A q.s. PEG-40 Hydrogenated Castor OiI q.s. Parfümöl 88,0 Aqua dem.
B 0,5 Polyquaternium-10
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,5 Cetrimonium Bromide q.s. Konservierungsmittel
C 6,0 Propane/Butane
Herstellung: Phase A solubilisieren. Phase B in Phase A einwiegen und klar lösen. Den pH- Wert auf 6-7 einstellen, mit Phase C abfüllen.
Beispiel 44: Styling Schaum
WS 1 % % Inhaltsstoff (INCI)
A q.s. PEG-40 Hydrogenated Castor OiI q.s. Parfümöl
82,5 Aqua dem.
B 10,0 Polyquaternium-16
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,5 Hydroxyethyl Cetyldimonium Phosphate q.s. Konservierungsmittel
C 6,0 Propane/Butane
WS 5%
% Inhaltsstoff (INCI)
A q.s. PEG-40 Hydrogenated Castor OiI q.s. Parfümöl
78,5 Aqua dem.
B 10,0 Polyquaternium-16
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD 0,5 Hydroxyethyl Cetyldimonium Phosphate q.s. Konservierungsmittel
C 6,0 Propane/Butane
Herstellung: Phase A solubilisieren. Phase B in Phase A einwiegen und klar lösen. Den pH- Wert auf 6-7 einstellen, mit Phase C abfüllen.
Beispiel 45: Styling Schaum
WS 1 %
% Inhaltsstoff (INCI)
A 2,0 Cocotrimonium Methosulfate q.s. Parfümöl
B 84,0 Aqua dem.
2,0 Chitosan
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,5 Dimethicone Copolyol 0,2 Ceteareth-25
0,2 Panthenol
0,1 PEG-25 PABA
C 10,0 HFC 152 A
WS 5%
% Inhaltsstoff (INCI)
A 2,0 Cocotrimonium Methosulfate q.s. Parfümöl
B 80,0 Aqua dem. 2,0 Chitosan
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,5 Dimethicone Copolyol
0,2 Ceteareth-25
0,2 Panthenol
0,1 PEG-25 PABA
C 10,0 HFC 152 A
Herstellung: Die Komponenten der Phase A mischen. Die Komponenten der Phase B eine nach der anderen zugeben und lösen. Mit Phase C abfüllen.
Beispiel 46: Pflegeshampoo
WS 1 %
% Inhaltsstoff (INCI)
A 30,0 Sodium Laureth Sulfate
6,0 Sodium Cocoamphoacetate 6,0 Cocamidopropyl Betaine
3,0 Sodium Laureth Sulfate, Glycol Distearate, Cocamide MEA, Laureth-10
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
7,7 Polyquaternium-44
2,0 Amodimethicone q.s. Parfümöl q.s. Konservierungsmittel
1 ,0 Sodium Chloride
43,3 Aqua dem.
B q.s. Citric Acid
WS 5%
% Inhaltsstoff (INCI)
A 30,0 Sodium Laureth Sulfate
6,0 Sodium Cocoamphoacetate
6,0 Cocamidopropyl Betaine
3,0 Sodium Laureth Sulfate, Glycol Distearate, Cocamide MEA, Laureth-10
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD 7,7 Polyquaternium-44
2,0 Amodimethicone q.s. Parfümöl q.s. Konservierungsmittel
1 ,0 Sodium Chloride 39,3 Aqua dem. B q.s. Citric Acid
Herstellung: Die Komponenten der Phase A mischen und lösen. Den pH-Wert mit Citronensäu- re auf 6-7 einstellen.
Beispiel 47: Duschgel
WS 1 %
% Inhaltsstoff (INCI)
A 40,0 Sodium Laureth Sulfate
5,0 Decyl Glucoside
5,0 Cocamidopropyl Betaine
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD 1 ,0 Panthenol q.s. Parfümöl q.s. Konservierungsmittel
2,0 Sodium Chloride
46,0 Aqua dem.
B q.s. Citric Acid
WS 5%
% Inhaltsstoff (INCI)
A 40,0 Sodium Laureth Sulfate
5,0 Decyl Glucoside
5,0 Cocamidopropyl Betaine
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD 1 ,0 Panthenol q.s. Parfümöl q.s. Konservierungsmittel
2,0 Sodium Chloride
42,0 Aqua dem.
B q.s. Citric Acid
Herstellung: Die Komponenten der Phase A mischen und lösen. Den pH-Wert mit Citronensäu- re auf 6-7 einstellen.
Beispiel 48: Shampoo
WS 1 %
% Inhaltsstoff (INCI)
A 40,0 Sodium Laureth Sulfate
5,0 Sodium C12-15 Pareth-15 Sulfonate 5,0 Decyl Glucoside q.s. Parfümöl
0,1 Phytantriol
44,6 Aqua dem.
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,3 Polyquaternium-10
1 ,0 Panthenol q.s. Konservierungsmittel
1 ,0 Laureth-3
2,0 Sodium Chloride
WS 5%
% Inhaltsstoff (INCI)
A 40,0 Sodium Laureth Sulfate
5,0 Sodium C12-15 Pareth-15 Sulfonate
5,0 Decyl Glucoside q.s. Parfümöl
0,1 Phytantriol
40,6 Aqua dem.
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,3 Polyquaternium-10
1 ,0 Panthenol q.s. Konservierungsmittel
1 ,0 Laureth-3
2,0 Sodium Chloride
Herstellung: Die Komponenten der Phase A mischen und lösen. Den pH-Wert mit Citronensäu- re auf 6-7 einstellen.
Beispiel 49: Shampoo
WS 1 %
% Inhaltsstoff (INCI)
A 15,00 Cocamidopropyl Betaine
10,00 Disodium Cocoamphodiacetate
5,00 Polysorbate 20
5,00 Decyl Glucoside q.s. Parfümöl q.s. Konservierungsmittel
1 ,00 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,15 Guar Hydroxypropyltrimonium Chloride
2,00 Laureth-3
58,00 Aqua dem. q.s. Citric Acid B 3,00 PEG-150 Distearate
WS 5%
% Inhaltsstoff (INCI)
15,00 Cocamidopropyl Betaine
10,00 Disodium Cocoamphodiacetate
5,00 Polysorbate 20
5,00 Decyl Glucoside q.s. Parfümöl q.s. Konservierungsmittel
5,00 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,15 Guar Hydroxypropyltrimonium Chloride
2,00 Laureth-3
54,00 Aqua dem. q.s. Citric Acid
B 3,00 PEG-150 Distearate
Herstellung: Die Komponenten der Phase A einwiegen und lösen. Den pH-Wert auf 6-7 einstellen. Phase B zugeben und auf ca. 500C erwärmen. Unter Rühren auf Raumtemperatur abkühlen.
Beispiel 50: Feuchtigkeitsspendende Körperpflegecreme
WS 1 %
% Inhaltsstoff (INCI)
A 2,0 Ceteareth-25
2,0 Ceteareth-6, Stearyl Alcohol
3,0 Cetearyl Ethylhexanoate
1 ,0 Dimethicone
4,0 Cetearyl Alcohol
3,0 Glyceryl Stearate SE
5,0 Mineral OiI
4,0 Simmondsia Chinensis (Jojoba) Seed OiI
3,0 Mineral OiI, Lanolin Alcohol
B 5,0 Propylene Glycol
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotei
1 ,0 Panthenol
0,5 Magnesium Aluminum Silicate q.s Konservierungsmittel
65,5 Aqua dem.
C α.s. Parfümöl D q.s. Citric Acid
WS 5%
% Inhaltsstoff (INCI)
2,0 Ceteareth-25
2,0 Ceteareth-6, Stearyl Alcohol
3,0 Cetearyl Ethylhexanoate
1 ,0 Dimethicone
4,0 Cetearyl Alcohol
3,0 Glyceryl Stearate SE
5,0 Mineral OiI
4,0 Simmondsia Chinensis (Jojoba) Seed OiI
3,0 Mineral OiI, Lanolin Alcohol
B 5,0 Propylene Glycol
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
1 ,0 Panthenol
0,5 Magnesium Aluminum Silicate q.s Konservierungsmittel
61 ,5 Aqua dem.
C q.s. Parfümöl
D q.s. Citric Acid
Herstellung: Die Phasen A und B getrennt auf ca. 800C erwärmen. Phase B kurz vorhomogenisieren, dann Phase B in Phase A einrühren und erneut homogenisieren.Abkühlen auf ca. 400C, Phase C zugeben und nochmals gut homogenisieren. Den pH-Wert mit Citronensäure auf 6-7 einstellen.
Beispiel 51 : Feuchtigkeitsspendende Körperpflegecreme
WS 1 % % Inhaltsstoff (INCI)
A 6,0 PEG-7 Hydrogenated Castor OiI
10,0 Cetearyl Ethylhexanoate
5,0 Isopropyl Myristate 7,0 Mineral OiI
0,5 Shea Butter (Butyrospermum Parkii)
0,5 Aluminum Stearate
0,5 Magnesium Stearate
0,2 Bisabolol 0,7 Quaternium-18-Hectorite B 5,0 Dipropylene Glycol
0,7 Magnesium Sulfate q.s. Konservierungsmittel
62,9 Aqua dem.
C q.s. Parfümöl
1 ,0 wässrige Lösung mit ca. 5% Fusionj
WS 5%
% Inhaltsstoff (INCI)
A 6,0 PEG-7 Hydrogenated Castor OiI
10,0 Cetearyl Ethylhexanoate
5,0 Isopropyl Myristate
7,0 Mineral OiI
0,5 Shea Butter (Butyrospermum Parkii)
0,5 Aluminum Stearate
0,5 Magnesium Stearate
0,2 Bisabolol
0,7 Quaternium-18-Hectorite
B 5,0 Dipropylene Glycol
0,7 Magnesium Sulfate q.s. Konservierungsmittel
58,9 Aqua dem.
C q.s. Parfümöl
5,0 wässriqe Lösung mit ca. 5% Fusionj
Herstellung: Die Phasen A und B getrennt auf ca. 800C erwärmen. Phase B in Phase A einrühren und homogenisieren. Unter Rühren auf ca. 400C abkühlen, Phase C zugeben und nochmals homogenisieren. Unter Rühren auf Raumtemperatur abkühlen lassen.
Beispiel 52: Flüssiges Make-up - Typ O/W
WS 1 %
% Inhaltsstoff (INCI)
A 2,0 Ceteareth-6, Stearyl Alcohol
2,0 Ceteareth-25
6,0 Glyceryl Stearate
1 ,0 Cetyl Alcohol
8,0 Mineral OiI
7,0 Cetearyl Ethylhexanoate
0,2 Dimethicone B 3,0 Propylene Glycol
1 ,0 Panthenol q.s. Konservierungsmittel
61 ,9 Aqua dem.
C 0,1 Bisabolol
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD q.s. Parfümöl
D 5,7 C. I. 77 891 , Titanium Dioxide
1 ,1 Iran Oxides
WS 5%
% Inhaltsstoff (INCI)
A 2,0 Ceteareth-6, Stearyl Alcohol
2,0 Ceteareth-25
6,0 Glyceryl Stearate
1 ,0 Cetyl Alcohol
8,0 Mineral OiI
7,0 Cetearyl Ethylhexanoate
0,2 Dimethicone
B 3,0 Propylene Glycol
1 ,0 Panthenol q.s. Konservierungsmittel
57,9 Aqua dem.
C 0,1 Bisabolol 5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD q.s. Parfümöl
D 5,7 C. I. 77 891 , Titanium Dioxide
1 ,1 Iran Oxides
Herstellung: Die Phasen A und B getrennt auf ca. 800C erwärmen. Phase B in Phase A einrühren und homogenisieren. Unter Rühren auf ca. 400C abkühlen, Phasen C und D zugeben und nochmals gründlich homogenisieren. Unter Rühren auf Raumtemperatur abkühlen lassen.
Beispiel 53
Im Folgenden sind erfindungesgemäße dermokosmetische Zubereitungen beschrieben, enthaltend das gemäß des Beispiels 3 hergestellte keratinbindende Effektormolekül (C16-KBD-B gemäß SEQ ID No.: 168). Das genannten keratinbindende Fusionsprotein wird als ca. 5 Gew.- % ige wäßrige Lösung eingesetzt. Die folgenden Angaben sind Gewichtsteile. Klares Shampoo
Klares Conditioner Shampoo
Schaum O/W-Emulsionen
Conditioner Shampoo mit Perlglanz
pH einstellen auf 6,0
Klares Conditioner Shampoo
pH einstellen auf 6,0
Klares Conditioner Shampoo mit Volumen Effekt
pH einstellen auf 6,0
Gelcreme
OW Sunscreenformulation
Hydrodispersion
Sticks
PIT-Emulsion
Gelcreme
OW Formulations Selbstbräu- ner
OW Make Up
Hydrodispersion Selbstbräuner
Feststoff stabilisierte Emulsion (Pickering Emulsions)
Sticks
PIT-Emulsionen Selbstbräuner
Ölgel
Beispiel 54:
In den folgenden Rezepturen werden kosmetische Sonnenschutzzubereitungen, enthaltend eine Kombination aus mindestens einem anorganischen Pigment, bevorzugt Zinkoxid und/oder Titandioxid und organische UV-A- und UV-B-Filter beschrieben.
Die Herstellung der nachfolgend genanntenen Formulierungen erfolgt auf übliche, dem Fachmann bekannte Art und Weise.
Der Gehalt an Fusionsprotein C16-KBD-B (gemäß SEQ ID No.: 168) bezieht sich auf 100% Wirkstoff. Der erfindungsgemäße Wirkstoff kann sowohl in reiner Form als auch als wässerige Lösung eingesetzt werden. Im Falle der wässerigen Lösung muss der Gehalt an Wasser dem. in der jeweiligen Formulierung angepasst werden.
Es ist für den Fachmann selbstverständlich, dass auch alle anderen genannten KBD- Fusionsproteine durch Verwendung der entsprechenden KBD-Fusionsprotein-Konstrukte (z.B. KBD-D Protein gemäß (SEQ ID No.: 212) in pReeO24 (Abb. 8) gemäß Beispiel 3 hergestellt und in den unten genannten Zubereitungen verwendet werden können. Das C16-KBD-B wird in den folgenden Beispielen stellvertretend für alle anderen oben beschriebenen KBD-Fusionsproteine als Fusionsprotein-KBD bezeichnet.
0,10 Allantoin Allantoin
2,0 Mexoryl SX Terephthalidene Dicamphor Sulfonic Acid
65,20 Wasser dem. Aqua dem.
D 2,00 Simulgel NS Hydroxyethyl Acrylate/Sodium Acryloyldimethyl Taurate Copolymer, Squalane, Polysorbate 60
2% Fusionsprotein-KBD q.s. Konservierungsmittel
Methicone/Dimethicone Copolymer
C 3,00 1 ,2-Propylenglykol Care Propylene Glycol
0,30 Abiol Imidazolidinyl Urea
1 ,00 Magnesiumsulfat-7-hydrat Magnesium Sulfate
0,5% Fusionsprotein-KBD
Ad 100 Wasser dem. Aqua dem. q.s. Konservierungsmittel
Im Folgenden sind erfindungsgemäße dermokosmetische Zubereitungen beschrieben, enthal- tend das analog zum Beispiel 3 hergestellte keratinbindende Effektormolekül C16-KBD-D (gemäß SEQ ID No.: 212 in pReeO24 (Abb. 8)). Das C16-KBD-D wird in den folgenden Beispielen stellvertretend für alle anderen oben beschriebenen KBD-Fusionsproteine als Fusionsprotein- KBD bezeichnet. Es ist für den Fachmann selbstverständlich, dass auch alle anderen genannten KBD-Fusionsproteine durch Verwendung der entsprechenden KBD-Fusionsprotein- Konstrukte gemäß Beispiel 3 hergestellt und in den unten genannten Zubereitungen verwendet werden können.
Beispiel 55: Verwendung der KBD in einer Emulsion zur Tagespflege - Typ O/W
WS 1 %: % Inhaltsstoff (INCI)
A1 ,7 Ceteareth-6, Stearyl Alcohol
0,7 Ceteareth-25
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate 2,0 PEG-14 Dimethicone
3,6 Cetearyl Alcohol
6,0 Ethylhexyl Methoxycinnamate
2,0 Dibutyl Adipate
B5,0 Glycerin 0,2 Disodium EDTA
1 ,0 Panthenol q.s. Konservierungsmittel
67,8 Aqua dem.
C4,0 Caprylic/Capric Triglyceride, Sodium Acrylates Copolymer DO, 2 Sodium Ascorbyl Phosphate
1 ,0 Tocopheryl Acetate
0,2 Bisabolol
1 ,0 Caprylic/Capric Triglyceride, Sodium Ascorbate, Tocopherol, Retinol
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
Eq. s. Sodium Hydroxide
WS 5%:
% Inhaltsstoff (INCI)
A 1 ,7 Ceteareth-6, Stearyl Alcohol
0,7 Ceteareth-25
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
2,0 PEG-14 Dimethicone
3,6 Cetearyl Alcohol
6,0 Ethylhexyl Methoxycinnamate
2,0 Dibutyl Adipate
B 5,0 Glycerin
0,2 Disodium EDTA
1 ,0 Panthenol q.s. Konservierungsmittel
63,8 Aqua dem.
C 4,0 Caprylic/Capric Triglyceride, Sodium Acrylates Copolymer
D 0,2 Sodium Ascorbyl Phosphate
1 ,0 Tocopheryl Acetate
0,2 Bisabolol
1 ,0 Caprylic/Capric Triglyceride, Sodium Ascorbate, Tocopherol, Retinol
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
E q.s. Sodium Hydroxide
Herstellung: Die Phasen A und B getrennt voneinander auf ca. 800C erwärmen. Phase B in
Phase A einrühren und homogenisieren. Phase C in die kombinierten Phasen A und B einrühren und nochmals homogenisieren. Unter Rühren auf ca. 400C abkühlen, Phase D zugeben, den pH-Wert mit Phase E auf etwa 6.5 einstellen, homogenisieren und unter Rühren auf Raumtemperatur abkühlen.
Hinweis: Die Formulierung wird ohne Schutzgas hergestellt. Die Abfüllung muß in sauerstoffundurchlässige Verpackungen, z.B. Aluminiumtuben erfolgen.
Beispiel 56: Verwendung der KBD in einer schützenden Tagescreme - Typ O/W WS 1 %:
% Inhaltsstoff (INCI)
A 1 ,7 Ceteareth-6, Stearyl Alcohol
0,7 Ceteareth-25
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
2,0 PEG-14 Dimethicone
3,6 Cetearyl Alcohol
6,0 Ethylhexyl Methoxycinnamate
2,0 Dibutyl Adipate
B 5,0 Glycerin
0,2 Disodium EDTA
1 ,0 Panthenol q.s. Konservierungsmittel
68,6 Aqua dem.
C 4,0 Caprylic/Capric Triglyceride, Sodium Acrylates Copolymer
D 1 ,0 Sodium Ascorbyl Phosphate
1 ,0 Tocopheryl Acetate
0,2 Bisabolol
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
E q.s. Sodium Hydroxide
WS 5%:
% Inhaltsstoff (INCI)
A 1 ,7 Ceteareth-6, Stearyl Alcohol
0,7 Ceteareth-25
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
2,0 PEG-14 Dimethicone
3,6 Cetearyl Alcohol
6,0 Ethylhexyl Methoxycinnamate
2,0 Dibutyl Adipate
B 5,0 Glycerin
0,2 Disodium EDTA
1 ,0 Panthenol q.s. Konservierungsmittel
64,6 Aqua dem.
C 4,0 Caprylic/Capric Triglyceride, Sodium Acrylates Copolymer
D 1 ,0 Sodium Ascorbyl Phosphate
1 ,0 Tocopheryl Acetate
0,2 Bisabolol 5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
E q.s. Sodium Hydroxide
Herstellung: Die Phasen A und B getrennt voneinander auf ca. 800C erwärmen. Phase B in Phase A einrühren und homogenisieren. Phase C in die kombinierten Phasen A und B einarbeiten und homogenisieren. Unter Rühren auf ca. 400C abkühlen. Phase D hinzugeben, den pH- Wert mit Phase E auf ca. 6.5 einstellen und homogenisieren. Unter Rühren auf Raumtemperatur abkühlen.
Beispiel 57: Verwendung der KBD in einer Gesichtsreinigungslotion - Typ O/W WS 1 %:
% Inhaltsstoff (INCI)
A 10,0 Cetearyl Ethylhexanoate
10,0 Caprylic/Capric Triglyceride 1 ,5 Cyclopentasiloxane, Cyclohexasilosane
2,0 PEG-40 Hydrogenated Castor OiI
B 3,5 Caprylic/Capric Triglyceride, Sodium Acrylates Copolymer
C 1 ,0 Tocopheryl Acetate
0,2 Bisabolol q.s. Konservierungsmittel q.s. Parfümöl
D 3,0 Polyquaternium-44
0,5 Cocotrimonium Methosulfate
0,5 Ceteareth-25 2,0 Panthenol, Propylene Glycol
4,0 Propylene Glycol
0,1 Disodium EDTA
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
60,7 Aqua dem.
WS 5%:
% Inhaltsstoff (INCI)
A 10,0 Cetearyl Ethylhexanoate
10,0 Caprylic/Capric Triglyceride 1 ,5 Cyclopentasiloxane, Cyclohexasilosane
2,0 PEG-40 Hydrogenated Castor OiI
B 3,5 Caprylic/Capric Triglyceride, Sodium Acrylates Copolymer
C 1 ,0 Tocopheryl Acetate
0,2 Bisabolol q.s. Konservierungsmittel q.s. Parfümöl
D 3,0 Polyquaternium-44
0,5 Cocotrimonium Methosulfate
0,5 Ceteareth-25 2,0 Panthenol, Propylene Glycol
4,0 Propylene Glycol
0,1 Disodium EDTA 5,0 wässrige Lösung mit ca. 5 % Fusionsprotein-KBD
56,7 Aqua dem.
Herstellung: Phase A lösen. Phase B in Phase A einrühren, Phase C in die kombinierten Pha- sen A und B einarbeiten. Phase D lösen, in die kombinierten Phasen A, B und C einrühren und homogenisieren. 15min nachrühren.
Beispiel 58: Verwendung der KBD in einem Daily Care Body Spray
WS 1 %:
% Inhaltsstoff (INCI)
A 3,0 Ethylhexyl Methoxycinnamate
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
1 ,0 Polyquaternium-44 3,0 Propylene Glycol
2,0 Panthenol, Propylene Glycol
1 ,0 Cyclopentasiloxane, Cyclohexasiloxane
10,0 Octyldodecanol
0,5 PVP 10,0 Caprylic/Capric Triglyceride
3,0 C12-15 AI kyl Benzoate
3,0 Glycerin
1 ,0 Tocopheryl Acetate
0,3 Bisabolol 1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
59,2 Alcohol
WS 5%:
% Inhaltsstoff (INCI) A 3,0 Ethylhexyl Methoxycinnamate
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
1 ,0 Polyquaternium-44
3,0 Propylene Glycol
2,0 Panthenol, Propylene Glycol 1 ,0 Cyclopentasiloxane, Cyclohexasiloxane
10,0 Octyldodecanol
0,5 PVP
10,0 Caprylic/Capric Triglyceride
3,0 C12-15 AI kyl Benzoate 3,0 Glycerin
1 ,0 Tocopheryl Acetate
0,3 Bisabolol
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
55,2 Alcohol
Herstellung: Die Komponenten der Phase A einwiegen und klar lösen. Beispiel 59: Verwendung der KBD in einem Hautpflegegel WS 1 %:
% Inhaltsstoff (INCI)
A 3,6 PEG-40 Hydrogenated Castor OiI 15,0 Alcohol
0,1 Bisabolol
0,5 Tocopheryl Acetate q.s. Parfümöl
B 3,0 Panthenol 0,6 Carbomer
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
75,4 Aqua dem,
C 0,8 Triethanolamine
WS 5%:
% Inhaltsstoff (INCI)
A 3,6 PEG-40 Hydrogenated Castor OiI
15,0 Alcohol
0,1 Bisabolol 0,5 Tocopheryl Acetate q.s. Parfümöl
B 3,0 Panthenol
0,6 Carbomer
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD 71 ,4 Aqua dem,
C 0,8 Triethanolamine
Herstellung: Die Phase A klar lösen. Phase B quellen lassen und mit Phase C neutralisieren. Phase A in die homogenisierte Phase B einrühren und homogenisieren.
Beispiel 60: Verwendung der KBD in einer After Shave Lotion
WS 1 %:
% Inhaltsstoff (INCI) A 10,0 Cetearyl Ethylhexanoate
5,0 Tocopheryl Acetate
1 ,0 Bisabolol
0,1 Parfümöl
0,3 Acrylates/C10-30 Alkyl Acrylate Crosspolymer B 15,0 Alcohol
1 ,0 Panthenol
3,0 Glycerin
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,1 Triethanolamine 63,5 Aqua dem.
WS 5%: % Inhaltsstoff (INCI)
A 10,0 Cetearyl Ethylhexanoate
5,0 Tocopheryl Acetate
1 ,0 Bisabolol
0,1 Parfümöl
0,3 Acrylates/C10-30 Alkyl Acrylate Crosspolymer
B 15,0 Alcohol
1 ,0 Panthenol
3,0 Glycerin
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,1 Triethanolamine
59,5 Aqua dem.
Herstellung: Die Komponenten der Phase A mischen. Phase B lösen, in Phase A einarbeiten und homogenisieren.
Beispiel 61 : Verwendung der KBD in einer After Sun Lotion WS 1 %:
% Inhaltsstoff (INCI) A 0,4 Acrylates/C10-30 Alkyl Acrylate Crosspolymer
15,0 Cetearyl Ethylhexanoate
0,2 Bisabolol
1 ,0 Tocopheryl Acetate q.s. Parfümöl B 1 ,0 Panthenol
15,0 Alcohol
3,0 Glycerin
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
63,2 Aqua dem, C 0,2 Triethanolamine
WS 5%:
% Inhaltsstoff (INCI)
A 0,4 Acrylates/C10-30 Alkyl Acrylate Crosspolymer 15,0 Cetearyl Ethylhexanoate
0,2 Bisabolol
1 ,0 Tocopheryl Acetate q.s. Parfümöl
B 1 ,0 Panthenol 15,0 Alcohol
3,0 Glycerin
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
59,2 Aqua dem,
C 0,2 Triethanolamine
Herstellung: Die Komponenten der Phase A mischen. Phase B unter Homogenisieren in Phase
A einrühren. Mit Phase C neutralisieren und erneut homogenisieren. Beispiel 62: Verwendung der KBD in einer Sonnenschutzlotion WS 1 %:
% Inhaltsstoff (INCI) A 4,5 Ethylhexyl Methoxycinnamate
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
3,0 Octocrylene
2,5 Di-C12-13 Alkyl Malate
0,5 Tocopheryl Acetate 4,0 Polyglyceryl-3 Methyl Glucose Distearate
B 3,5 Cetearyl Isononanoate
1 ,0 VP/Eicosene Copolymer
5,0 Isohexadecane
2,5 Di-C12-13 Alkyl Malate 3,0 Titanium Dioxide, Trimethoxycaprylylsilane
C 5,0 Glycerin
1 ,0 Sodium Cetearyl Sulfate
0,5 Xanthan Gum
59,7 Aqua dem. D 1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
1 ,0 Phenoxyethanol, Methylparaben, Ethylparaben, Butylparaben, Propyl- paraben, Isobutylparaben
0,3 Bisabolol
WS 5%:
% Inhaltsstoff (INCI)
A 4,5 Ethylhexyl Methoxycinnamate
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
3,0 Octocrylene 2,5 Di-C12-13 Alkyl Malate
0,5 Tocopheryl Acetate
4,0 Polyglyceryl-3 Methyl Glucose Distearate
B 3,5 Cetearyl Isononanoate
1 ,0 VP/Eicosene Copolymer 5,0 Isohexadecane
2,5 Di-C12-13 Alkyl Malate
3,0 Titanium Dioxide, Trimethoxycaprylylsilane
C 5,0 Glycerin
1 ,0 Sodium Cetearyl Sulfate 0,5 Xanthan Gum
55,7 Aqua dem.
D 5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
1 ,0 Phenoxyethanol, Methylparaben, Ethylparaben, Butylparaben, Propyl- paraben, Isobutylparaben 0,3 Bisabolol Herstellung: Die Komponenten der Phasen A und B getrennt voneinander auf ca. 800C erwärmen. Phase B in Phase A einrühren und homogenisieren. Phase C auf ca. 800C erwärmen und unter Homogenisieren in die kombinierten Phasen A und B einrühren. Unter Rühren auf ca. 40°C abkühlen, Phase D zugeben und nochmals homogenisieren.
Beispiel 63: Verwendung der KBD in einer Sonnenschutzlotion - Typ O/W WS 1 %:
% Inhaltsstoff (INCI) A 2,0 Ceteareth-6, Stearyl Alcohol 2,0 Ceteareth-25
3,0 Tribehenin 2,0 Cetearyl Alcohol 2,0 Cetearyl Ethylhexanoate 5,0 Ethylhexyl Methoxycinnamate 1 ,0 Ethylhexyl Triazone
1 ,0 VP/Eicosene Copolymer 7,0 Isopropyl Myristate
B 5,0 Zinc Oxide, Triethoxycaprylylsilane
C 0,2 Xanthan Gum 0,5 Hydroxyethyl Acrylate/Sodium Acryloyldimethyl Taurate Copolymer,
Squalane, Polysorbate 60 0,2 Disodium EDTA 5,0 Propylene Glycol 0,5 Panthenol 60,9 Aqua dem.
D 1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,5 Phenoxyethanol, Methylparaben, Butylparaben, Ethylparaben, Propylpa- raben, Isopropylparaben 1 ,0 Tocopheryl Acetate 0,2 Bisabolol
WS 5%:
% Inhaltsstoff (INCI)
A 2,0 Ceteareth-6, Stearyl Alcohol 2,0 Ceteareth-25
3,0 Tribehenin
2,0 Cetearyl Alcohol
2,0 Cetearyl Ethylhexanoate
5,0 Ethylhexyl Methoxycinnamate 1 ,0 Ethylhexyl Triazone
1 ,0 VP/Eicosene Copolymer
7,0 Isopropyl Myristate
B 5,0 Zinc Oxide, Triethoxycaprylylsilane
C 0,2 Xanthan Gum 0,5 Hydroxyethyl Acrylate/Sodium Acryloyldimethyl Taurate Copolymer,
Squalane, Polysorbate 60
0,2 Disodium EDTA 5, ,0 Propylene Glycol
0, ,5 Panthenol
56; ,9 Aqua dem.
D 5, ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0; ,5 Phenoxyethanol, Methylparaben, Butylparaben, Ethylparaben, Propylpa- raben, Isopropylparaben
1 , ,0 Tocopheryl Acetate
0. .2 Bisabolol
Herstellung: Phase A auf ca. 800C erwärmen, Phase B einrühren und 3min homogenisieren.
Phase C ebenfalls auf 800C erwärmen und unter Homogenisieren in die kombinierten Phasen A und B einrühren. Abkühlen auf ca. 400C, Phase D einrühren und nochmals homogenisieren.
Beispiel 64: Verwendung der KBD in einer Sonnenschutlotion - Typ O/W
WS 1 %:
% Inhaltsstoff (INCI)
A 3,5 Ceteareth-6, Stearyl Alcohol
1 ,5 Ceteareth-25 7,5 Ethylhexyl Methoxycinnamate
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate
2,0 Cyclopentasiloxane, Cyclohexasiloxane
0,5 Bees Wax
3,0 Cetearyl Alcohol 10,0 Caprylic/Capric Triglyceride
B 5,0 Titanium Dioxide, Silica, Methicone, Alumina
C 3,0 Glycerin
0,2 Disodium EDTA
0,3 Xanthan Gum 1 ,0 Decyl Glucoside
2,0 Panthenol, Propylene Glycol
56,3 Aqua dem.
D 1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
1 ,0 Tocopheryl Acetate 0,2 Bisabolol q.s. Parfümöl q.s. Konservierungsmittel
WS 5%: % Inhaltsstoff (INCI)
A 3,5 Ceteareth-6, Stearyl Alcohol
1 ,5 Ceteareth-25
7,5 Ethylhexyl Methoxycinnamate
2,0 Diethylamino Hydroxybenzoyl Hexyl Benzoate 2,0 Cyclopentasiloxane, Cyclohexasiloxane
0,5 Bees Wax
3,0 Cetearyl Alcohol 10,0 Caprylic/Capric Triglyceride
B 5,0 Titanium Dioxide, Silica, Methicone, Alumina
C 3,0 Glycerin
0,2 Disodium EDTA
0,3 Xanthan Gum
1 ,0 Decyl Glucoside
2,0 Panthenol, Propylene Glycol
52,3 Aqua dem.
D 5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
1 ,0 Tocopheryl Acetate
0,2 Bisabolol q.s. Parfümöl q.s. Konservierungsmittel
Herstellung: Phase A auf ca. 800C erwärmen, Phase B einrühren und 3min homogenisieren.
Phase C ebenfalls auf 800C erwärmen und unter Homogenisieren in die kombinierten Phasen A und B einrühren. Abkühlen auf ca. 40°C, Phase D einrühren und nochmals homogenisieren.
Beispiel 65: Verwendung der KBD in einem Fußbalsam
WS 1 %:
% Inhaltsstoff (INCI)
2,0 Ceteareth-6, Stearyl Alcohol
2,0 Ceteareth-25
5,0 Cetearyl Ethylhexanoate
4,0 Cetyl Alcohol
4,0 Glyceryl Stearate
5,0 Mineral OiI
0,2 Menthol
0,5 Camphor
B 69,3 Aqua dem. q.s. Konservierungsmittel
1 ,0 Bisabolol
1 ,0 Tocopheryl Acetate D 1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
5,0 Witch Hazel Extract
WS 5%
% Inhaltsstoff (INCI) A 2,0 Ceteareth-6, Stearyl Alcohol
2,0 Ceteareth-25
5,0 Cetearyl Ethylhexanoate
4,0 Cetyl Alcohol
4,0 Glyceryl Stearate
5,0 Mineral OiI
0,2 Menthol
0,5 Camphor B 65,3 Aqua dem. q.s. Konservierungsmittel
C 1 ,0 Bisabolol
1 ,0 Tocopheryl Acetate
D 5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
5.0 Witch Hazel Extract
Herstellung: Die Komponenten der Phasen A und B getrennt voneinander auf ca. 800C erwärmen. Phase B in Phase A unter Homogenisieren einrühren. Unter Rühren abkühlen auf ca. 400C, die Phasen C und D hinzugeben und kurz nachhomogenisieren. Unter Rühren auf Raumtemperatur abkühlen.
Beispiel 66: Verwendung der KBD in einer W/O Emulsion mit Bisabolol
WS 1 %:
% Inhaltsstoff (INCI)
6,0 PEG-7 Hydrogenated Castor OiI
8,0 Cetearyl Ethylhexanoate
5,0 Isopropyl Myristate
15,0 Mineral OiI
0,3 Magnesium Stearate
0,3 Aluminum Stearate
2,0 PEG-45/Dodecyl Glycol Copolymer
B 5,0 Glycerin
0,7 Magnesium Sulfate
55,6 Aqua dem.
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,5 Tocopheryl Acetate
0,6 Bisabolol
WS 5%
% Inhaltsstoff (INCI) A 6,0 PEG-7 Hydrogenated Castor OiI
8,0 Cetearyl Ethylhexanoate
5,0 Isopropyl Myristate
15,0 Mineral OiI
0,3 Magnesium Stearate
0,3 Aluminum Stearate
2,0 PEG-45/Dodecyl Glycol Copolymer B 5,0 Glycerin
0,7 Magnesium Sulfate
51 ,6 Aqua dem.
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
0,5 Tocopheryl Acetate Herstellung: Die Phasen A und B getrennt voneinander auf ca. 85°C erwärmen. Phase B in Phase A einrühren und homogenisieren. Unter Rühren auf ca. 400C abkühlen, Phase C hinzugeben und nochmals kurz homogenisieren. Unter Rühren auf Raumtemperatur abkühlen. Zusammenstellung Rezepturen für Patent Keratin-Bindedomäne - Haircare
Beispiel 67: Duschgel
WS 1 %
% Inhaltsstoff (INCI)
A 40,0 Sodium Laureth Sulfate
5,0 Decyl Glucoside
5,0 Cocamidopropyl Betaine
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
1 ,0 Panthenol q.s. Parfümöl q.s. Konservierungsmittel
2,0 Sodium Chloride
46,0 Aqua dem.
B q.s. Citric Acid
WS 5%
% Inhaltsstoff (INCI)
A 40,0 Sodium Laureth Sulfate
5,0 Decyl Glucoside
5,0 Cocamidopropyl Betaine
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
1 ,0 Panthenol q.s. Parfümöl q.s. Konservierungsmittel
2,0 Sodium Chloride
42,0 Aqua dem.
B q.s. Citric Acid
Herstellung: Die Komponenten der Phase A mischen und lösen. Den pH-Wert mit Citronensäu- re auf 6-7 einstellen. Beispiel 68: Feuchtigkeitsspendende Körperpflegecreme
WS 1 %
% Inhaltsstoff (INCI)
2,0 Ceteareth-25
2,0 Ceteareth-6, Stearyl Alcohol
3,0 Cetearyl Ethylhexanoate
1 ,0 Dimethicone
4,0 Cetearyl Alcohol
3,0 Glyceryl Stearate SE
5,0 Mineral OiI
4,0 Simmondsia Chinensis (Jojoba) Seed OiI
3,0 Mineral OiI, Lanolin Alcohol
B 5,0 Propylene Glycol
1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
1 ,0 Panthenol
0,5 Magnesium Aluminum Silicate q.s Konservierungsmittel
65,5 Aqua dem.
C q.s. Parfümöl
D q.s. Citric Acid
WS 5%
% Inhaltsstoff (INCI)
A 2,0 Ceteareth-25
2,0 Ceteareth-6, Stearyl Alcohol
3,0 Cetearyl Ethylhexanoate
1 ,0 Dimethicone
4,0 Cetearyl Alcohol
3,0 Glyceryl Stearate SE
5,0 Mineral OiI
4,0 Simmondsia Chinensis (Jojoba) Seed OiI
3,0 Mineral OiI, Lanolin Alcohol
B 5,0 Propylene Glycol
5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
1 ,0 Panthenol
0,5 Magnesium Aluminum Silicate q.s Konservierungsmittel
61 ,5 Aqua dem. C q.s. Parfümöl
D q.s. Citric Acid
Herstellung: Die Phasen A und B getrennt auf ca. 800C erwärmen. Phase B kurz vorhomogenisieren, dann Phase B in Phase A einrühren und erneut homogenisieren.Abkühlen auf ca. 400C, Phase C zugeben und nochmals gut homogenisieren. Den pH-Wert mit Citronensäure auf 6-7 einstellen.
Beispiel 69: Feuchtigkeitsspendende Körperpflegecreme
WS 1 %
% Inhaltsstoff (INCI)
A 6,0 PEG-7 Hydrogenated Castor OiI
10,0 Cetearyl Ethylhexanoate
5,0 Isopropyl Myristate
7,0 Mineral OiI
0,5 Shea Butter (Butyrospermum Parkii)
0,5 Aluminum Stearate
0,5 Magnesium Stearate
0,2 Bisabolol
0,7 Quaternium-18-Hectorite
B 5,0 Dipropylene Glycol
0,7 Magnesium Sulfate q.s. Konservierungsmittel
62,9 Aqua dem.
C q.s. Parfümöl
1 ,0 wässrige Lösung mit ca. 5% Fusionj
WS 5%
% Inhaltsstoff (INCI)
A 6,0 PEG-7 Hydrogenated Castor OiI
10,0 Cetearyl Ethylhexanoate
5,0 Isopropyl Myristate
7,0 Mineral OiI
0,5 Shea Butter (Butyrospermum Parkii)
0,5 Aluminum Stearate
0,5 Magnesium Stearate
0,2 Bisabolol
0,7 Quaternium-18-Hectorite
B 5,0 Dipropylene Glycol
0,7 Magnesium Sulfate q.s. Konservierungsmittel 58,9 Aqua dem.
C q.s. Parfümöl 5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD
Herstellung: Die Phasen A und B getrennt auf ca. 800C erwärmen. Phase B in Phase A einrühren und homogenisieren. Unter Rühren auf ca. 400C abkühlen, Phase C zugeben und nochmals homogenisieren. Unter Rühren auf Raumtemperatur abkühlen lassen.
Beispiel 70: Flüssiges Make-up - Typ O/W
WS 1 %
% Inhaltsstoff (INCI)
A 2,0 Ceteareth-6, Stearyl Alcohol
2,0 Ceteareth-25
6,0 Glyceryl Stearate
1 ,0 Cetyl Alcohol
8,0 Mineral OiI
7,0 Cetearyl Ethylhexanoate
0,2 Dimethicone
B 3,0 Propylene Glycol
1 ,0 Panthenol q.s. Konservierungsmittel
61 ,9 Aqua dem.
C 0,1 Bisabolol 1 ,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD q.s. Parfümöl
D 5,7 C. I. 77 891 , Titanium Dioxide
1 ,1 Iran Oxides
WS 5%
% Inhaltsstoff (INCI)
2,0 Ceteareth-6, Stearyl Alcohol
2,0 Ceteareth-25
6,0 Glyceryl Stearate
1 ,0 Cetyl Alcohol
8,0 Mineral OiI
7,0 Cetearyl Ethylhexanoate
0,2 Dimethicone B 3,0 Propylene Glycol 1 ,0 Panthenol q.s. Konservierungsmittel 57,9 Aqua dem.
C 0,1 Bisabolol 5,0 wässrige Lösung mit ca. 5% Fusionsprotein-KBD q.s. Parfümöl
D 5,7 C. I. 77 891 , Titanium Dioxide 1 ,1 Iran Oxides
Herstellung: Die Phasen A und B getrennt auf ca. 800C erwärmen. Phase B in Phase A einrühren und homogenisieren. Unter Rühren auf ca. 400C abkühlen, Phasen C und D zugeben und nochmals gründlich homogenisieren. Unter Rühren auf Raumtemperatur abkühlen lassen.
Beispiel 71
Im Folgenden sind erfindungsgemäße dermokosmetische Zubereitungen beschrieben, enthaltend das gemäß Beispiel 3 hergestellte keratinbindende Effektormolekül C16-KBD-D (gemäß SEQ ID No.: 212 in pReeO24 (Abb. 8)). Das genannten keratinbindende Fusionsprotein wird als ca. 5 Gew.-% ige wäßrige Lösung eingesetzt. Die folgenden Angaben sind Gewichtsteile.
Gelcreme
OW Sunscreenformulation
Hydrodispersion
Sticks
PIT-Emulsion
Gelcreme
OW Formulations Selbstbräu- ner
OW Make Up
Hydrodispersion Selbstbräuner
Hydrodispersion After sun
WO-Emulsions
Feststoff stabilisierte Emulsion (Pickering Emulsions)
Sticks
Ölgel
Beispiel 72:
In den folgenden Rezepturen werden kosmetische Sonnenschutzzubereitungen, enthaltend eine Kombination aus mindestens einem anorganischen Pigment, bevorzugt Zinkoxid und/oder Titandioxid und organische UV-A- und UV-B-Filter beschrieben.
Die Herstellung der nachfolgend genanntenen Formulierungen erfolgt auf übliche, dem Fachmann bekannte Art und Weise.
Der Gehalt an gemäß Beispiel 3 hergestellte keratinbindende Effektormolekül C16-KBD-D (gemäß SEQ ID No.: 212 in pReeO24 (Abb. 8)) bezieht sich auf 100% Wirkstoff. Der erfindungsgemäße Wirkstoff kann sowohl in reiner Form als auch als wässerige Lösung eingesetzt wer- den. Im Falle der wässerigen Lösung muss der Gehalt an Wasser dem. in der jeweiligen Formulierung angepasst werden.
0,10 Allantoin Allantoin
2,0 Mexoryl SX Terephthalidene Dicamphor Sulfonic Acid
65,20 Wasser dem. Aqua dem.
D 2,00 Simulgel NS Hydroxyethyl Acrylate/Sodium Acryloyldimethyl Taurate Copolymer, Squalane, Polysorbate 60
2% Fusionsprotein-KBD q.s. Konservierungsmittel
Methicone/Dimethicone Copolymer
C 3,00 1 ,2-Propylenglykol Care Propylene Glycol
0,30 Abiol Imidazolidinyl Urea
1 ,00 Magnesiumsulfat-7-hydrat Magnesium Sulfate
0,5% Fusionsprotein-KBD
Ad 100 Wasser dem. Aqua dem. q.s. Konservierungsmittel

Claims

Patentansprüche
1. Chimäres keratinbindendes Effektorprotein umfassend (a) mindestens ein keratinbindendes Polypeptid (i) und (b) mindestens ein weiteres Effektorpolypeptid (ii),
2. Keratinbindendes Effektorprotein nach Anspruch 1 , wobei das keratinbindende Polypeptid (i) Bindungsaffinität zu menschlichem Haar-, Nagel- oder Hautkeratin besitzt.
3. Keratinbindendes Effektorprotein nach einem der Ansprüche 1 bis 2, wobei das verwendete keratinbindende Polypeptid (i)
a) mindestens eine der Sequenzen gemäß SEQ ID No.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108,
110, 1 12, 114, 1 16, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 oder 215 umfaßt, oder b) einem Polypeptid entspricht, welches mindestens zu 40% identisch ist mit wenigstens einer der Sequenzen gemäß SEQ ID No.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72,
74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 112, 114, 1 16, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 oder 215 und in der Lage ist Keratin zu binden.
4. Keratinbindendes Effektorprotein nach einem der Ansprüche 1 bis 3, wobei das verwendete keratinbindende Polypeptid (i) kodiert wird von einem Nukleinsäuremolekül umfassend mindestens ein Nukleinsäuremolekül ausgewählt aus der Gruppe bestehend aus:
c) Nukleinsäuremolekül, das ein Polypeptid kodiert, umfassend die in SEQ ID No.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50,
52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 1 10, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138,140, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 oder 215 gezeigte Sequenz;
d) Nukleinsäuremolekül, das zumindest ein Polynukleotid der Sequenz gezeigt in SEQ ID No.: 1 , 3, 5, 7, 9, 11 , 13, 15, 17, 19, 21 , 23, 25, 27, 29, 31 , 33, 35, 37, 39, 41 , 43, 45, 47, 49, 51 , 53, 55, 57, 59, 61 , 63, 65, 67, 69, 71 , 73, 75, 77, 79, 81 , 83, 85, 87, 89, 91 , 93, 95, 97, 99, 101 , 103, 105, 107, 109, 111 , 1 13, 115, 117, 119, 121 , 123, 125, 127, 129, 131 , 133, 135, 137, 139, 145, 149, 152, 159, 161 , 163, 165, 212 oder
214 umfasst;
e) Nukleinsäuremolekül, das ein Polypeptid gemäß der Sequenzen SEQ ID No.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 oder 215 kodiert;
f) Nukleinsäuremolekül, mit einer Nukleinsäuresequenz entsprechend wenigstens einer der Sequenzen gemäß SEQ ID No.: 1 , 3, 5, 7, 9, 11 , 13, 15, 17, 19, 21 , 23, 25, 27, 29, 31 , 33, 35, 37, 39, 41 , 43, 45, 47, 49, 51 , 53, 55, 57, 59, 61 , 63, 65, 67, 69, 71 , 73, 75, 77, 79, 81 , 83, 85, 87, 89, 91 , 93, 95, 97, 99, 101 , 103, 105, 107, 109, 111 , 113, 115, 117, 1 19, 121 , 123, 125, 127, 129, 131 , 133, 135, 137, 139, 145, 149, 152, 159, 161 , 163, 165, 212 oder 214 oder ein davon durch Substitution, Deletion oder
Insertion abgeleitetes Nukleinsäuremolekül, das ein Polypeptid kodiert, welches mindestens zu 40% identisch ist mit wenigstens einer der Sequenzen gemäß SEQ ID No.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 112, 1 14, 116, 118, 120, 122, 124,
126, 128, 130, 132, 134, 136, 138, 140, 146, 150, 153, 156, 157, 158, 160, 162, 164, 166, 213 oder 215 und in der Lage ist an Keratin zu binden;
g) Nukleinsäuremolekül, das ein Polypeptid kodiert, welches von einem monoklonalen Antikörper, gerichtet gegen ein Polypeptid welches durch die Nukleinsäuremoleküle gemäß (c) bis (e) kodiert wird, erkannt wird;
h) Nukleinsäuremolekül, kodierend für ein keratinbindendes Protein, das unter stringen- ten Bedingungen mit einem Nukleinsäuremolekül gemäß (c) bis (e) hybridisiert; und
i) Nukleinsäuremolekül, kodierend für ein keratinbindendes Protein, das aus einer DNA-Bank unter Verwendung eines Nukleinsäuremoleküls gemäß (c) bis (e) oder deren Teilfragmente umfassend mindestens 15 Nukleotide als Sonde unter stringen- ten Hybridisierungsbedingungen isoliert werden kann.
j) Nukleinsäuremolekül, welches durch Rückübersetzung einer der in den Sequenzen SEQ ID No.: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 146, 150, 153, 156, 157, 158, 160,
162, 164, 166, 213 oder 215 gezeigten Aminosäuresequenzen erzeugt werden kann.
5. Keratinbindendes Effektorprotein nach einem der Ansprüche 1 bis 4, wobei das Effektorpo- lypeptid (ii) ausgewählt ist aus der Gruppe bestehend aus Enzymen, Antikörpern, Effekto- ren bindende Proteine, Fluoreszenzproteinen, Antimikrobiellen-Peptiden und selbstassemblierenden Proteinen.
6. Keratinbindendes Effektorprotein nach Anspruch 5, wobei das Effektorpolypeptid (ii) ein Enzym ist ausgewählt aus der Gruppe bestehend aus Oxidasen, Peroxidasen, Proteasen, Tyrosinasen, Lactoperoxidase, Lysozym, Amyloglycosidasen, Glucoseoxidasen, Supero- xiddismutasen, Photolyasen und Katalasen.
7. Keratinbindendes Effektorprotein nach Anspruch 6, wobei das Effektorpolypeptid (ii) ein Seidenprotein ist.
8. Keratinbindendes Effektorprotein nach Anspruch 7, wobei das Seidenprotein mindestens eine der Sequenzen gemäß SEQ ID No.: 151 , 201 , 202, 203, 204, 205, 206, 207, 208, 209 oder 210 umfaßt, oder einem Polypeptid entspricht, welches mindestens zu 40% identisch ist mit wenigstens einer der Sequenzen gemäß SEQ ID No.: 151 , 201 , 202, 203, 204, 205,
206, 207, 208, 209 oder 210
9. Keratinbindendes Effektorprotein nach einem der Ansprüche 7 bis 8, wobei das Seidenprotein kodiert wird von einem Nukleinsäuremolekül umfassend mindestens ein Nukleinsäu- remolekül ausgewählt aus der Gruppe bestehend aus:
k) Nukleinsäuremolekül, das ein Polypeptid kodiert, umfassend die in SEQ ID No.: 151 , 201 , 202, 203, 204, 205, 206, 207, 208, 209 oder 210 gezeigte Sequenz;
I) Nukleinsäuremolekül, das zumindest ein Polynukleotid der Sequenz gezeigt in SEQ
ID No.: 150 umfasst;
m) Nukleinsäuremolekül, das ein Polypeptid gemäß der Sequenzen SEQ ID No.: 151 ,
201 , 202, 203, 204, 205, 206, 207, 208, 209 oder 210 kodiert;
n) Nukleinsäuremolekül, mit einer Nukleinsäuresequenz gemäß SEQ ID No.: 150 oder ein davon durch Substitution, Deletion oder Insertion abgeleitetes Nukleinsäuremolekül, das ein Polypeptid kodiert, welches mindestens zu 40% identisch ist mit der Sequenz gemäß SEQ ID No.: 151
o) Nukleinsäuremolekül, das ein Polypeptid kodiert, welches von einem monoklonalen Antikörper, gerichtet gegen ein Polypeptid welches durch die Nukleinsäuremoleküle gemäß (k) bis (m) kodiert wird, erkannt wird;
p) Nukleinsäuremolekül, kodierend für ein keratinbindendes Protein, das unter stringen- ten Bedingungen mit einem Nukleinsäuremolekül gemäß (k) bis (m) hybridisiert; und
q) Nukleinsäuremolekül, kodierend für ein keratinbindendes Protein, das aus einer DNA-Bank unter Verwendung eines Nukleinsäuremoleküls gemäß (k) bis (m) oder deren Teilfragmente umfassend mindestens 15 Nukleotide als Sonde unter stringen- ten Hybridisierungsbedingungen isoliert werden kann.
r) Nukleinsäuremolekül, welches durch Rückübersetzung einer der in den Sequenzen SEQ ID No.: 151 , 201 , 202, 203, 204, 205, 206, 207, 208, 209 oder 210 gezeigten Aminosäuresequenzen erzeugt werden kann.
10. Keratinbindendes Effektorprotein nach einem der Ansprüche 1 bis 9, wobei die Polypeptide (i) und (ii) mittels Translationsfusion miteinander verknüpft sind.
11. Keratinbindendes Effektorprotein nach einem der Ansprüche 1 bis 9, wobei die Polypeptide (i) und (ii) mittels einer chemischen Kopplungsreaktion miteinander verknüpft sind.
12. Keratinbindendes Effektorprotein nach Anspruch 11 , wobei das Effektorpolypeptid (ii) an Seitenketten interner Aminosäuren, dem C-Terminus oder dem N-Terminus des keratinbin- denden Polypeptids (i) kovalent gebunden ist.
13. Keratinbindendes Effektorprotein nach einem der Ansprüche 1 bis 9, wobei das Effektorpolypeptid (ii) und das keratinbindende Polypeptid (i) mittels eines Spacerelementes miteinander verbunden sind.
14. Keratinbindendes Effektorprotein nach Anspruch 13, wobei das Spacerelement ein Cross- linker darstellt.
15. Keratinbindendes Effektorprotein nach Anspruch 13, wobei das Spacerelement ein mindes- tens bifunktioneller Linker ist, welcher das keratinbindende Polypeptid (i) und des Effektorpolypeptid durch Bindung an Seitenketten interner Aminosäuren, dem C-Terminus oder dem N-Terminus der genannten Polypeptide kovalent miteinander verbindet.
16. Keratinbindendes Effektorprotein nach Anspruch 13, wobei es sich bei dem Spacerelement um ein Polypeptid handelt.
17. Verwendung der in den Ansprüchen 1-16 beschriebenen keratinbindenden Effektorproteine in Dermokosmetika.
18. Verwendung gemäß Anspruch 17, wobei es sich bei dem Dermokosmetika um ein Hautschutzmittel, Hautpflegemittel, Hautreinigungsmittel, Haarschutzmittel, Haarpflegemittel, Haarreinigungsmittel, Haarfärbemittel oder eine dekorative Kosmetik handelt.
19. Dermokosmetika enthaltend ein keratinbindendes Effektormolekül gemäß der Ansprüche 1 bis 16.
20. Protein gemäß einer der Aminosäuresequenzen gezeigt in SEQ ID No.: 168, 176, 182, 188, 194 und 200.
21. Nukleinsäuremolekül gemäß der in SEQ ID No.: 167, 175, 181 , 187, 193 oder 199 gezeigten Sequenz.
22. DNA Expressionskassette enthaltend ein Nukleinsäuremolekül mit einer Nukleinsäurese- quenz gemäß Anspruch 21.
23. Vektor enthaltend eine Expressionskassette gemäß einem der Ansprüche 21 bis 22.
24. Transgene Zelle, enthaltend ein Nukleinsäuremolekül gemäß Anspruch 21 , eine Expressionskassette gemäß Anspruch 22 oder einen Vektor gemäß Anspruch 23.
EP06819486A 2005-11-24 2006-11-15 Chimäre keratinbindende effektorproteine Withdrawn EP1957034A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06819486A EP1957034A2 (de) 2005-11-24 2006-11-15 Chimäre keratinbindende effektorproteine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP05111240 2005-11-24
EP06116399 2006-06-30
EP06819486A EP1957034A2 (de) 2005-11-24 2006-11-15 Chimäre keratinbindende effektorproteine
PCT/EP2006/068474 WO2007060117A2 (de) 2005-11-24 2006-11-15 Chimäre keratinbindende effektorproteine

Publications (1)

Publication Number Publication Date
EP1957034A2 true EP1957034A2 (de) 2008-08-20

Family

ID=38067566

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06819486A Withdrawn EP1957034A2 (de) 2005-11-24 2006-11-15 Chimäre keratinbindende effektorproteine

Country Status (8)

Country Link
US (1) US20090099075A1 (de)
EP (1) EP1957034A2 (de)
JP (1) JP2009519009A (de)
AU (1) AU2006316537A1 (de)
BR (1) BRPI0618951A2 (de)
CA (1) CA2634187A1 (de)
MX (1) MX2008006663A (de)
WO (1) WO2007060117A2 (de)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7220405B2 (en) 2003-09-08 2007-05-22 E. I. Du Pont De Nemours And Company Peptide-based conditioners and colorants for hair, skin, and nails
US7585495B2 (en) 2003-09-08 2009-09-08 E. I. Du Pont De Nemours And Company Method for identifying shampoo-resistant hair-binding peptides and hair benefit agents therefrom
US7807141B2 (en) 2003-09-08 2010-10-05 E.I. Du Pont De Nemours And Company Peptide-based oral care surface reagents for personal care
CN101855239B (zh) * 2007-06-20 2013-11-06 巴斯夫欧洲公司 合成的重复蛋白及其生产和用途
EP2042155A1 (de) * 2007-09-28 2009-04-01 Basf Se Verfahren zum Entfernen von wasserunlöslichen Substanzen von Substratoberflächen
FR2925313A1 (fr) * 2007-12-19 2009-06-26 Oreal Utilisation cosmetique de proteines de type plakoglobine
WO2009112301A2 (de) * 2008-03-10 2009-09-17 Basf Se Polypeptidwirkstoffe in der form von konjugaten aus keratinbindenden polypeptiden, polymeren und effektormolekülen, verfahren zu ihrer herstellung und ihre verwendung
US8287845B2 (en) 2008-12-18 2012-10-16 E I Du Pont De Nemours And Company Hair-binding peptides
US20100158846A1 (en) * 2008-12-18 2010-06-24 E. I. Du Pont De Nemours And Company Hair-binding peptides
US20100158822A1 (en) * 2008-12-18 2010-06-24 E .I. Du Pont De Nemours And Company Peptides that bind to silica-coated particles
EP2509994B1 (de) * 2009-12-08 2018-09-26 AMSilk GmbH Seidenproteinbeschichtungen
WO2011129784A2 (en) * 2010-04-15 2011-10-20 Mert-Koz Kozmetik Kimya Gida Ambalaj Sanayi Ve Dis Ticaret Limited Sirketi Water-based personal care and cleaning liquid comprising ozone derivative of vegetable oils and its method of obtaining
CN103179940B (zh) * 2010-08-24 2016-01-13 安全白有限公司 提供牙齿洁白外观的方法和材料
EP2654690A2 (de) * 2010-12-20 2013-10-30 E.I. Du Pont De Nemours And Company Stabile wässrige zusammensetzung zur verabreichung von substraten für ein enthaarungsprodukt mit peressigsäuren
JP5751664B2 (ja) * 2011-02-14 2015-07-22 株式会社ミルボン シャンプー
JP5965619B2 (ja) * 2011-11-18 2016-08-10 株式会社ミルボン スプレー
US9757209B2 (en) * 2013-07-03 2017-09-12 Essential Dental Systems, Inc. Compositions and methods for dental applications involving zinc-oxide cements
DE102013213170A1 (de) 2013-07-04 2015-01-08 Beiersdorf Ag Octocrylenfreies, geruchsstabiles Sonnenschutzmittel
FR3007979B1 (fr) * 2013-07-05 2016-09-09 Oreal Composition capillaire non-colorante auto-moussante, comprenant un copolymere anionique particulier, un agent alcalin, un tensioactif et un gaz propulseur
US9672952B2 (en) 2013-08-14 2017-06-06 Industrial Technology Research Institute Polymer and conductive composition
DE102014207916A1 (de) * 2014-04-28 2015-10-29 Beiersdorf Aktiengesellschaft Sonnenschutzmittel mit reduzierter Neigung zur Textilverfleckung II
DE102014207919A1 (de) * 2014-04-28 2015-10-29 Beiersdorf Ag Sonnenschutzmittel mit reduzierter Neigung zur Textilverfleckung I
DE102014207924A1 (de) 2014-04-28 2015-10-29 Beiersdorf Ag Sonnenschutzmittel mit reduzierter Neigung zur Textilverfleckung IV
AU2016281718B2 (en) * 2015-06-24 2022-03-31 Dana-Farber Cancer Institute, Inc. Selective degradation of wild-type DNA and enrichment of mutant alleles using nuclease
DE102015222074A1 (de) 2015-11-10 2017-05-11 Beiersdorf Ag Wirkstoffkombination zur Hautbefeuchtung in Reinigungszubereitungen
DE102018203496A1 (de) * 2018-03-08 2019-09-12 Beiersdorf Ag Sonnenschutzmittel mit reduzierter Textilverfleckung enthaltend hydriertes Pflanzenöl und Diethylamino Hydroxybenzoyl Hexyl Benzoate
US20190314260A1 (en) * 2018-04-13 2019-10-17 Massachusetts Institute Of Technology Engineered treatments for hair repair and long-lasting color retention
CN112770716A (zh) * 2018-10-05 2021-05-07 巴斯夫欧洲公司 包含甲酚曲唑三硅氧烷以减少织物染色的防晒组合物
CN117500923A (zh) 2021-04-07 2024-02-02 巴特尔纪念研究院 用于鉴定和使用非病毒载体的快速设计、构建、测试和学习技术
WO2024166050A1 (en) * 2023-02-10 2024-08-15 Solfarcos - Soluções Farmacêuticas E Cosméticas, Lda Fusion proteins/peptides, methods and uses thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4237253A (en) * 1977-04-21 1980-12-02 L'oreal Copolymers, their process of preparation, and cosmetic compounds containing them
US4906460A (en) * 1988-08-05 1990-03-06 Sorenco Additive for hair treatment compositions
PT733059E (pt) * 1993-12-09 2001-03-30 Univ Jefferson Compostos e metodos para mutacoes dirigidas ao local em celulas eucarioticas
DE10036655A1 (de) * 2000-07-26 2002-02-07 Basf Ag Kosmetische oder dermatologische Zubereitungen zur Vermeidung von Hautschädigungen durch Peroxide
WO2003042387A1 (fr) * 2001-11-13 2003-05-22 Keio University Nouvelles proteines associees a la keratine des poils
CN1617706A (zh) * 2002-01-18 2005-05-18 巴斯福股份公司 用于防止皮肤受到过氧化物损害的化妆品或皮肤病学制剂
US7060260B2 (en) * 2003-02-20 2006-06-13 E.I. Du Pont De Nemours And Company Water-soluble silk proteins in compositions for skin care, hair care or hair coloring
JP2008500301A (ja) * 2004-05-24 2008-01-10 ビーエーエスエフ アクチェンゲゼルシャフト ケラチン結合性ポリペプチド

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007060117A2 *

Also Published As

Publication number Publication date
WO2007060117A2 (de) 2007-05-31
US20090099075A1 (en) 2009-04-16
JP2009519009A (ja) 2009-05-14
WO2007060117A3 (de) 2007-11-22
CA2634187A1 (en) 2007-05-31
AU2006316537A1 (en) 2007-05-31
MX2008006663A (es) 2008-09-22
BRPI0618951A2 (pt) 2016-09-13

Similar Documents

Publication Publication Date Title
EP1957034A2 (de) Chimäre keratinbindende effektorproteine
EP1968642A2 (de) Keratinbindende effektormoleküle und verfahren zu deren herstellung durch kopplung keratinbindender polypeptide mit carboxylgruppen oder sulfonsäuregruppen tragenden effektormolekülen
ES2317237T3 (es) Polipeptidos que enlazan queratina.
JP5688293B2 (ja) ペプチドを含有するフケ防止組成物
EP1898871A2 (de) Verwendung von hydrophobin-polypeptiden sowie konjugaten aus hydrophobin-polypeptiden mit wirk- oder effektstoffen und ihre herstellung sowie deren einsatz in der kosmetik
JP2010509279A (ja) 化粧品における天然、組換えおよび合成レシリン類の使用
US20080220031A1 (en) Dermocosmetic Preparations
JP2009523766A (ja) 化粧品におけるタンパク質マイクロビーズの使用
JP2004520338A (ja) 化粧用および/または医薬用製剤
EP2066406A2 (de) Kosmetische zubereitungen auf basis molekular geprägter polymere
WO2007147445A2 (de) Keratinbindende effektormoleküle und verfahren zu deren herstellung
WO2006097432A2 (de) Keratin-biktdende desmoplakinpolypeptidsequenzen
CN101365493A (zh) 结合角蛋白的效应分子以及产生其的方法
CN101365416A (zh) 嵌合的结合角蛋白的效应蛋白
CN101610792A (zh) 结合角蛋白的效应分子以及通过将结合角蛋白的多肽与携带羧基或磺酸基的效应分子偶联而制备其的方法
MX2008006673A (es) Metodo para acoplar polipeptidos que se enlazan a la queratina con moleculas efectoras que soportan grupos carboxilicos o grupos de acido sulfonico

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080624

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080925

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100601